
Non-Overlapping Indexing – Cache Obliviously
Sahar Hooshmand
Dept. of Computer Science, University of Central Florida - Orlando, USA
sahar@cs.ucf.edu

Paniz Abedin
Dept. of Computer Science, University of Central Florida - Orlando, USA
paniz@cs.ucf.edu

M. Oğuzhan Külekci
Informatics Institute, Istanbul Technical University - Turkey
kulekci@itu.edu.tr

Sharma V. Thankachan
Dept. of Computer Science, University of Central Florida - Orlando, USA
sharma.thankachan@ucf.edu

Abstract
The non-overlapping indexing problem is defined as follows: pre-process a given text T[1, n] of
length n into a data structure such that whenever a pattern P [1, p] comes as an input, we can
efficiently report the largest set of non-overlapping occurrences of P in T. The best known
solution is by Cohen and Porat [ISAAC, 2009]. Their index size is O(n) words and query time is
optimal O(p+nocc), where nocc is the output size. We study this problem in the cache-oblivious
model and present a new data structure of size O(n logn) words. It can answer queries in optimal
O(pB + logB n+ nocc

B) I/Os, where B is the block size.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Suffix Trees, Cache Oblivious, Data Structure, String Algorithms

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.8

Funding Part of this work was done while the last author was visiting the third author with the
TÜBİTAK-BİDEB 2221 program grant number 1059B211700766. This work has also received
funding from the European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No 69094 in the form of student travel grant to present
a preliminary version of this work in the 12th Workshop on Compression, Text and Algorithms
(WCTA), 2017.

1 Introduction and Related Work

Text indexing is fundamental to many areas in Computer Science such as Information
Retrieval, Bioinformatics, etc. The primary goal here is to pre-process a long text T[1, n]
(given in advance), such that whenever a shorter pattern P [1, p] comes as query, all occ
occurrences (or simply, starting positions) of P in T can be reported efficiently. Such queries
can be answered in optimal O(p+occ) time using the classic Suffix tree data structure [14, 15].
It takes O(n) words of space. In this paper, we focus on a variation of the text indexing
problem, known as the non-overlapping indexing. Here we are interested in finding the largest
set of occurrences of P in T (denote its size by nocc), such that any two (distinct) text
positions in the output are separated by at least p characters. This primitive is central to
data compression [2, 5]. The above task can be easily reduced to a set of geometric range

© Sahar Hooshmand, Paniz Abedin, M. Oğuzhan Külekci, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 8; pp. 8:1–8:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sahar@cs.ucf.edu
mailto:paniz@cs.ucf.edu
mailto:kulekci@itu.edu.tr
mailto:sharma.thankachan@ucf.edu
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Non-Overlapping Indexing – Cache Obliviously

queries, specifically (1 + nocc) number of orthogonal range next value queries on the suffix
array [12] of T. Although efficient, the solutions based on this approach are not optimal
in terms of query time [11, 13]. The first space-efficient (linear) and optimal O(p + nocc)
time solution is due to Cohen and Porat [5]. They took an alternative strategy in which
the periodicity of both text and the pattern are exploited. Subsequently, Ganguly et al. [9]
showed that the problem can also be solved in succinct space.

Unfortunately, all the aforementioned indexes heavily relay on random access over the
data structure, therefore efficient only when resides in the internal memory (usually RAM,
the random access memory). To this end, we revisit this problem in the secondary memory
model in the context of very large input data. Here we assume that the data (and the data
structure) is too big to fit within the main memory, therefore deployed in a (much larger, but
slower) secondary memory. Popular models of computation are (i) the cache-aware model
and (ii) the cache-oblivious model. We now preset a brief description of both models.

In the cache-aware model (a.k.a. external memory model, I/O model and disk access
model), introduced by Aggarwal and Vitter [1] the CPU is connected directly to an internal
memory (of size M words), which is then connected to a very large external memory (disk).
The disk is partitioned into blocks/pages and the size of each block is B words. The CPU
can only work on data inside the internal memory. Therefore, to work on some data in
the external memory, the corresponding blocks have to be transferred to internal memory.
The transfer of a block from external memory to internal memory (or vice versa) is referred
as an I/O operation. The operations inside the internal memory are orders of magnitude
faster than the time for an I/O operation. Therefore, they are considered free, and the
efficiency of an algorithm is measured in terms of the number of I/O operations. The
cache-oblivious model is essentially the same as above, except the following key twist: M
and B are unknown at the time of the design of algorithms and data structures [8, 7]. This
means, if a cache-oblivious algorithm performs optimally between two levels of the memory
hierarchy, then it is optimal at any level of the memory hierarchy. Lastly, cache-oblivious
algorithms are usually more intricate than cache-aware algorithms.

Contribution. We present the first I/O-optimal solution for the non-overlapping indexing
problem. To the best of our knowledge, this is the first of its kind over both cache-oblivious
and cache-aware models of computation. The main result is summarized below.

I Theorem 1. There exists an O(n logn) space data structure for the non-overlapping
indexing problem in the cache oblivious model, where n is the length of the input text T. It
can report the largest set of non-overlapping occurrences of an input pattern P [1, p] in their
sorted order in optimal O(pB + logB n+ nocc

B) I/Os, where nocc is the output size.

The main component of our index is the suffix tree data structure and its cache-oblivious
counter part [4]. The suffix tree of T (denoted by ST) is a compact trie of all n suffixes of
T. It has n leaves and at most (n − 1) internal nodes (each having at least two children).
Corresponding to each leaf in ST, there is a unique suffix in T. Specifically, the ith leftmost
leaf `i corresponds to the ith lexicographically smallest suffix of T, denoted by T[SA[i], n].
Edges are labeled and the concatenation of edge labels on the path from root to a node
u is called its path, denoted by path(u). The locus of a pattern P , denoted by locus(P)
is the node closest to root, such that P is a prefix of its path. The array SA is called
the suffix array of T. The suffix range of a pattern P , denoted by [sp(P), ep(P)] is the
range of (contiguous) leaves in the subtree of locus(P). Therefore, the set of occurrences
of P is {SA[i] | sp(P) ≤ i ≤ ep(P)} and ep(P) − sp(P) + 1 = occ. The suffix range can

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:3

be computed in O(p) time. The space is O(n) words for both suffix array and suffix tree.
For our problem, we maintain both the suffix tree and its cache-oblivious equivalent by
Brodal and Fagerberg [4], which occupies O(n) space and can compute locus(P) in optimal
O(p/B + logB n) I/Os. Moreover, we design a data structure for reporting occurrences in
the sorted order (see Theorem 2), which may be of independent interest. We remark that all
results in this paper assumes M > B2+Θ(1) as in [4].

I Theorem 2. A given text T[1, n] can be indexed in O(n logn) words in the cache oblivious
model, such that we can report all occ occurrences of an input pattern P [1, p] in their sorted
order in optimal O(pB + logB n+ occ

B) I/Os.

We arrive at Theorem 1 by exploring the periodicity of query pattern. Let Q be the
shortest prefix of P such that P can be written as the concatenation of α ≥ 1 copies of
Q and a (possibly empty) prefix R of Q. i.e., P = QαR. Then, the period of P , denoted
by period(P) is |Q|. For example, Q = cat, R = ca and α = 3 when P = catcatcatca. The
period can be computed in O(p) time [6]. Note that nocc ≤ occ ≤ (α+ 1)nocc.

2 An Overview of Our Non-Overlapping Indexing Framework

In this section, we present a high level description of our query algorithm with some key steps
summarized as lemmas (long proofs are deferred to later sections). We maintain a suffix tree
ST of T, however all pattern matching tasks are performed using its cache-oblivious counter
part [4]. The structure in Theorem 2 is also maintained.

We say that the input pattern P is periodic if period(P) ≤ |P |/2 (equivalently α ≥ 2),
else we say P is aperiodic (i.e., α = 1). The first step of our algorithm is to verify if P is
periodic or not, and we rely on the result in Lemma 3. We handle both cases separately.

I Lemma 3. Given a pattern P [1, p] which appears at least once in T, we can find if P is
periodic or not in in O(p/B + logB n) I/Os using an O(n logn) space structure. Also, it
returns period(P) if P is periodic.

2.1 Handling aperiodic case
When P is aperiodic, occ = Θ(nocc) and we answer queries using the structure in Theorem 2
as follows. First obtain all occurrences of P in their sorted order. Then, scan them in
the ascending order and do the following: report the first occurrence and report any other
occurrence iff it is not overlapping with the last reported occurrence. This step can be
implemented in occ/B = Θ(nocc/B) I/Os. Thus O(p/B + logB n+ nocc/B) I/Os overall.

2.2 Handling periodic case
For periodic case, we start with the following simple observation.

I Observation 4. If we list all the occurrences of P = QαR in T in the ascending order,
we can see clusters of occurrences holding the following property: two consecutive occurrences
1. within a cluster, are exactly period(P) distance apart
2. not within a cluster cannot have an overlap of length period(P) or more.

I Lemma 5. The number of clusters, denoted by π is O(nocc).

Proof. Two occurrences i, j not within the same cluster overlap only if i is the last occurrence
in a cluster and j is the first occurrence within the next cluster (follows from Observation 4(2)).
Clearly, only one of them can be a part of the final output. Therefore, nocc ≥ π/2. J

CPM 2018

8:4 Non-Overlapping Indexing – Cache Obliviously

Figure 1 Here P = catcatca, x is the cluster-head and y = x + 21 is the cluster-tail. Then, the
largest set of non-overlapping occurrences with the first occurrence included, and the first occurrence
excluded are {x, x + 9, x + 18} and {x + 3, x + 12, x + 21}, respectively.

Algorithm 1 Reports the largest set of non-overlapping occurrences of P in T.
1: report S1
2: for (i = 2 to π) do
3: if (the last reported occurrence and L′[i] are non-overlapping) then report Si
4: else report S∗i
5: end for

I Definition 6. An occurrence is a cluster-head (resp., cluster-tail) iff it is the first (resp.,
last) occurrence within a cluster. Also, let L′ (resp., L′′) be the list of all cluster heads (resp.,
tails) in their ascending order.

Observe that the distance between two consecutive non-overlapping occurrences within
the same cluster, denoted by λ is period(P) × dp/period(P)e. Let Ci be the ith leftmost
cluster and Si (resp., S∗i) be the largest set of non-overlapping occurrences in Ci including
(resp., excluding) the first occurrence L′[i] in Ci. Specifically (see Figure 1 for an illustration),

Si = {L′[i] + kλ | for k = 0, 1, 2, 3, ... until L′[i] + kλ ≤ L′′[i]}

S∗i = {period(P) +L′[i] +kλ | for k = 0, 1, 2, 3, ... until (period(P) +L′[i] +kλ ≤ L′′[i])}

Then, the final output can be generated by just examining L′ and L′′ using the procedure
in Algorithm 1. Correctness follows from Observation 4. In short, the periodic case can be
handled in O(nocc/B) I/Os, given L′ and L′′. What remains to show is, how to obtain the
arrays L′ and L′′ in optimal I/Os and we rely on the following lemmas for this crucial step.

I Lemma 7. By maintaining an O(n logn) space structure, the array L′′ corresponding to
any query pattern P [1, p] can be obtained in O(p/B + logB n+ π/B) I/Os.

I Lemma 8. By maintaining an O(n logn) space structure, the array L′ corresponding to
any query pattern P [1, p] can be obtained in O(p/B + logB n+ π/B) I/Os.

By combining all pieces together, we obtain O(n logn) total space and p/B + logB n+
π/B + nocc/B = O(p/B + logB n + nocc/B) query I/Os. This completes the proof of
Theorem 1. The rest of this paper is dedicated to missing proofs.

3 Preliminaries for Missing Proofs

3.1 Heavy Path Decomposition
We first categorize the nodes in ST into light and heavy. The root is light. For each internal
node u, its heaviest child is the one with the maximum number of leaves, denoted by size(·),
in its subtree, breaking ties arbitrarily. Therefore, the size of a light node is at most half of
the size of its parent. Thus we have the following result.

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:5

I Lemma 9 (Harel and Tarjan [10]). The number of light nodes on any root to leaf path is at
most (logn).

I Corollary 10. The sum of sub-tree sizes of all light nodes in ST is ≤ n logn.

A heavy path is a downward path in the tree, starting from a light node with all other
nodes on the path are heavy. Each heavy path ends at a unique leaf node. Also, each node
intersect with exactly one heavy path. For brevity, we shall use the following terminologies:
for any node u in ST, let

hp_root(u) be the first light node on the path from u to root. Equivalently, hp_root(u)
is the root of the heavy path that intersects with u.
hp_leaf(u) = `j , where u and `j are on the same heavy path. Note that `j is unique for
u.

3.2 Right-Maximally-Periodic Prefixes
I Definition 11. We call a substring T[i, i+ l − 1] right-maximally-periodic iff T[i, i+ l − 1]
is periodic and T[i, i+ l] is aperiodic.

I Lemma 12. For a fixed suffix T[i, n], let l1, l2, ..., lk be the length of all right-maximally-
periodic prefixes in their ascending order and q1, q2, ..., qk be their respective periods. A p-long
prefix of T[i, n] is periodic (with period qj) iff 2× qj ≤ p ≤ lj for some j.

I Lemma 13. The number of right-maximally-periodic prefixes of T[i, n] is O(logn).

Proof. From the definition of periodic and aperiodic, qj ≥ lj−1 and lj ≥ 2× qj . Therefore,
lj ≥ 2× lj−1 and lk ≥ 2k−1l1. Hence k ≤ 1 + log(n− i+ 1). J

3.3 1-Sided Sorted Range Reporting
We now prove two useful results.

I Lemma 14. Let S = {(x1, y1), (x2, y2), ..., (xm, ym)} be a set of m points in 2D. A 1-Sided
range sorted range reporting query “r” asks to return the points in S(r,−) = {(xi, yj) ∈ S |
xi ≤ r} in the sorted order of their y-coordinates. The query can be answered in optimal
O(1 + k/B) I/Os using an O(m) space data structure, where k is the size of S(r,−).

Proof. Without loss of generality, assume x1 ≤ x2 ≤ x3 ≤ ... ≤ xm. Let A[1,m] be an array
of length m, such that A[i] = xi. We maintain a Cache-Oblivious B-tree [3] over A, so that
for any query r, we can find k = max{i | A[i] ≤ r} in O(logBm) I/Os. Let D be an array of
points in the ascending order of x-coordinates (i.e., D[i] = (xi, yi)) and Dj be an array of
first j-points in D in the ascending order of y-coordinates. We explicitly maintain Dj for
j = 1, 2, 4, 8, ...,m. Total space is O(m).

Now to answer a query r, first find k using a predecessor search query. Then, simply scan
through the array Dk′ (in the left to right order) and report only those points (xi, yj) with
xi ≤ r, where k′ = 2dlog ke. I/Os required is k′/B = O(k/B). J

I Lemma 15. Let S = {(x1, y1), (x2, y2), ..., (xm, ym)} be a set of m points in 2D. A 1-Sided
range sorted range reporting query “r” asks to return the points in S(r,+) = {(xi, yj) ∈ S |
xi ≥ r} in the sorted order of their y-coordinates. The query can be answered in optimal
O(1 + k/B) I/Os using an O(m) space data structure, where k is the size of S(r,+).

Proof. Maintain the data structure in Lemma 14 over the set S∗ = {(−xi, yj) | (xi, yj) ∈ S}.
When r comes as an input, obtain S∗(−r,−) in y-sorted order and report them in the same
order after replacing each point (a, b) by (−a, b). J

CPM 2018

8:6 Non-Overlapping Indexing – Cache Obliviously

4 Proof of Theorem 2

Our data structure is simple. For each light node w in the suffix tree, define a set Hw of
two-dimensional points, where

Hw = {(δ(i), SA[i]) | `i is under w}

Here δ(i) is the string depth of the lowest common ancestor (lca) of `i and hp_leaf(w).
Note that |Hw| = size(w). For each light node w, we maintain a 1-sided sorted range
reporting structure (in Lemma 15) over the set Hw. The total space is O(n logn) words
(from Corollary 10).

To answer a query P , we first find the locus of P via searching in the cache-oblivious
suffix tree in O(p/B + logB n) I/Os [4]. The remaining task is to report the set {SA[i] |
`i is under locus(P)} with its elements sorted. Let w be the first light node on the path from
locus(P) to the root of ST. Specifically, w = hp_root(locus(P)). Then, the following holds.

{SA[i] | `i is under locus(P)} = {SA[i] | string depth of lca(`i, hp_leaf(w)) is ≥ p}

The remaining part of the query can be completed via a single 1-sided sorted range reporting
query “p” over the set of points in Hw. The total number of I/Os required is O(p/B +
logB n+ occ/B).

5 Proof of Lemma 3

The design of our data structure is straightforward from the discussion in Section 3.2. For
each T[i, n], we maintain the lengths and periods of all its right-maximally-periodic prefixes.
The space required is O(n logn) words (refer to Lemma 13).

When a pattern P comes, we first find an occurrence i of P in T. Then examine lengths of
all right-maximally-periodic prefixes (and their periods) of T[i, n] and decide if P is periodic
or not in (logn)/B = O(logB n) I/Os. Also, retrieve its period if it is periodic.

6 Proof of Lemma 7

We use the following observation [9]: a text position y is the rightmost occurrence of P within
a cluster (i.e., cluster-tail) iff T[y, n] is prefixed by P = QαR, but not by QP = Q1+αR.
This means, L′′ is the sorted list of all elements in the following set of size π (see Figure 2).

{SA[i] | i ∈ [sp(P), ep(P)] ∧ i /∈ [sp(QP), ep(QP)]}

We consider the following two cases separately.

6.1 Case 1: locus(P) and locus(QP) are on different heavy paths
Here hp_root(locus(P)) 6= hp_root(locus(QP)) (we perform this check in O(1) I/Os). The
following lemma is the key.

I Lemma 16. When locus(P) and locus(QP) are on different heavy paths, occ = Θ(nocc).

Proof. Let u be the first node on the path from locus(QP) to root, such that locus(P)
and the parent of u are on the same heavy path and u′ be the heavy sibling of u. Then,
clearly, size(locus(QP)) ≤ size(u) ≤ size(u′) ≤ π and π + size(locus(QP)) = occ. Therefore,
π ≥ occ/2 and π ≤ nocc, hence occ = Θ(nocc). J

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:7

Figure 2 Suffix tree with the region corresponding to L′ highlighted.

In the light of the above lemma, when the query P falls in this case, we can in fact
generate the final output directly instead of generating L′′ first and using it. First obtain
all occurrences of P in the sorted order (using the structure in Theorem 2) and extract the
largest set of non-overlapping occurrences from it by following the exact same procedure as
in aperiodic case. I/Os required is p/B + logB n+ occ/B = O(p/B + logB n+ nocc/B).

6.2 Case 2: locus(P) and locus(QP) are on the same heavy path

We start with two definitions and a crucial observation based on them.

I Definition 17. A pattern P is a power (or perfectly periodic) iff P = Qα for an integer
α ≥ 2.

For example, aabaabaab is a power, whereas aabaaba is not.

I Definition 18. We call a node in the suffix tree special if it is the locus of at least one
power. Note that a special node can be the locus of a pattern which is not a power.

I Observation 19. Let P be a periodic pattern with Q being its period(P)-long prefix. Then,
among all nodes on the path from locus(QP) to locus(P), excluding locus(QP), exactly one
node is special.

6.2.1 The Data Structure

For each light node w in the suffix tree, we maintain the following structure.
Let v0 = w, v1, v2, v3, .., vh be the special nodes on the heavy path corresponding to w (in

the ascending order of pre-order rank) and let vh+1 = hp_leaf(w) if it is not special. Define
sets Gw(vj) for j = 0, 1, 2, ..., h, such that Gw(vh) = {(δ(i), SA[i]) | `i is under vh} and for
j < h,

Gw(vj) = {(δ(i), SA[i]) | `i is under vj , but not under vj+1}

We then maintain the 1-sided sorted range reporting structures (in Lemma 14 and Lemma 15)
over the set of points in each Gw(vj). The space required for a fixed w is O(size(w)) words.
Hence, the space over all lights nodes is O(n logn).

CPM 2018

8:8 Non-Overlapping Indexing – Cache Obliviously

6.2.2 The Algorithm
When P is a power, L′′ can be obtained via a single 1-sided sorted range reporting query
“(p+|Q|−1)” on the structure in Lemma 14 over the set Gw(vj), where w = hp_root(locus(P))
and vj = locus(P).

For the other case, choose w = hp_root(locus(P)) and vj = locus(Qα+1). Then obtain
elements in the following two sets, in the sorted order of SA[·] via 1-sided sorted range
reported queries.
1. {(δ(i), SA[i]) | `i is under vj , but not under locus(QP)} via a query “(p + |Q| − 1)” on

the structure in Lemma 14 over Gw(vj).
2. {(δ(i), SA[i]) | `i is under locus(P), but not under vj} via a 1-sided sorted range report-

ing query “p” on the structure in Lemma 15 maintained over Gw(vj−1).

By scanning both arrays in linear I/Os, specifically O(π/B) I/Os, we obtain L′′.

7 Proof of Lemma 8

For L′, we use the following observation: for each cluster of P in T, there is a corresponding
cluster of ←−P in

←−
T . Here

←−
T (resp., ←−P) is the reverse of T (resp.., P). Then, we have the

following simple observation.

I Observation 20. Suppose z is the last occurrence of ←−P within a cluster of ←−P in ←−T , then
(n+ 2− p− z) is the first occurrence of P within the corresponding cluster of P in T.

Therefore, we simply construct and maintain our previous data structure for computing L′′,
but on ←−T . When P comes as input to the original problem, we find L′′ corresponding to ←−P
in ←−T . Then, simply report (n+ 2− p− L′′[i])’s in the descending order of i. Note that we
need to maintain the suffix tree (and its cache-oblivious version) of ←−T as well. However, the
total space is still O(n logn).

8 Concluding Remarks

We present the first I/O optimal data structure for the non-overlapping indexing problem in
both cache-award and cache-oblivious models of computation. We remark that by combining
our framework with standard techniques, we can design an I/O optimal, O(n log2 n) space
structure for the range non-overlapping problem in the cache-aware model. However, it is
not clear if the same is possible in cache-oblivious model. An interesting question is: Can we
improve the space (yet, keeping the query I/Os optimal), at least in the cache-award model ?

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.
2 Alberto Apostolico and Franco P Preparata. Data structures and algorithms for the string

statistics problem. Algorithmica, 15(5):481–494, 1996.
3 Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious b-trees.

SIAM J. Comput., 35(2):341–358, 2005. doi:10.1137/S0097539701389956.
4 Gerth Stølting Brodal and Rolf Fagerberg. Cache-oblivious string dictionaries. In Pro-

ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, January 22-26, 2006, pages 581–590. ACM Press, 2006. URL:
http://dl.acm.org/citation.cfm?id=1109557.1109621.

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1137/S0097539701389956
http://dl.acm.org/citation.cfm?id=1109557.1109621

S. Hooshmand, P. Abedin, M.O. Külekci, and S. V. Thankachan 8:9

5 Hagai Cohen and Ely Porat. Range non-overlapping indexing. In Yingfei Dong, Ding-
Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Computation, 20th International
Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings,
volume 5878 of Lecture Notes in Computer Science, pages 1044–1053. Springer, 2009. doi:
10.1007/978-3-642-10631-6_105.

6 Maxime Crochemore. String-matching on ordered alphabets. Theoretical Computer Science,
92(1):33–47, 1992.

7 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 285–298. IEEE Computer
Society, 1999. doi:10.1109/SFFCS.1999.814600.

8 Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1):4:1–4:22, 2012. doi:10.1145/2071379.
2071383.

9 Arnab Ganguly, Rahul Shah, and Sharma V Thankachan. Succinct non-overlapping index-
ing. In Annual Symposium on Combinatorial Pattern Matching, pages 185–195. Springer,
2015.

10 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

11 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. Range non-overlapping indexing
and successive list indexing. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh,
editors, Algorithms and Data Structures, 10th International Workshop, WADS 2007, Hali-
fax, Canada, August 15-17, 2007, Proceedings, volume 4619 of Lecture Notes in Computer
Science, pages 625–636. Springer, 2007. doi:10.1007/978-3-540-73951-7_54.

12 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

13 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Fedor V. Fomin and
Petteri Kaski, editors, Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and
Workshops, Helsinki, Finland, July 4-6, 2012. Proceedings, volume 7357 of Lecture Notes in
Computer Science, pages 271–282. Springer, 2012. doi:10.1007/978-3-642-31155-0_24.

14 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

15 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE
Computer Society, 1973. doi:10.1109/SWAT.1973.13.

CPM 2018

http://dx.doi.org/10.1007/978-3-642-10631-6_105
http://dx.doi.org/10.1007/978-3-642-10631-6_105
http://dx.doi.org/10.1109/SFFCS.1999.814600
http://dx.doi.org/10.1145/2071379.2071383
http://dx.doi.org/10.1145/2071379.2071383
http://dx.doi.org/10.1137/0213024
http://dx.doi.org/10.1007/978-3-540-73951-7_54
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/978-3-642-31155-0_24
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13

	Introduction and Related Work
	An Overview of Our Non-Overlapping Indexing Framework
	Handling aperiodic case
	Handling periodic case

	Preliminaries for Missing Proofs
	Heavy Path Decomposition
	Right-Maximally-Periodic Prefixes
	1-Sided Sorted Range Reporting

	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 7
	Case 1: locus(P) and locus(QP) are on different heavy paths
	Case 2: locus(P) and locus(QP) are on the same heavy path
	The Data Structure
	 The Algorithm

	Proof of Lemma 8
	Concluding Remarks

