
Locally Maximal Common Factors as a Tool for
Efficient Dynamic String Algorithms

Amihood Amir1

Bar-Ilan University and Johns Hopkins University
amir@cs.biu.ac.il

Itai Boneh
Bar-Ilan University
barbunyaboy2@gmail.com

Abstract

There has been recent interest in dynamic string algorithms, i.e. string problems where the input
changes dynamically. One such problem is the longest common factor (LCF) problem. It is well
known that the LCF of two strings S and D of length n over a fixed constant-sized alphabet Σ can
be computed in time linear in n. Recently, a new challenge was introduced - finding the LCF of
two strings in a dynamic setting. The problem is the fully dynamic one sided LCF (FDOS-LCF)
problem. In the FDOS-LCF problem we get q consecutive queries of the form < i, α >, where
each such query means: “replace D[i] by α, α ∈ Σ and output the LCF of S and (the updated)
D. The goal is to initially preprocess S and D so that we do not need O(n) time to compute an
LCF for each such query.

The state-of-the-art is an algorithm that preprocesses the two strings S and D in time
O(n log4 n). Subsequently, the algorithm answers in time O(log3 n) a single query of the form:
Given a position i on D and a letter α, return an LCF of S and D′, where D′ is the string
resulting from D after substituting D[i] with α. That algorithm is not extendable to multiple
queries. In this paper we present a tool - Locally Maximal Common Factors (LMCF) - that
proves to be quite useful in solving some restricted versions of the FDOS-LCF problem . The
versions we solve are the Decremental FDOS-LCS problem, where every change < i, α > is of
the form < i, ω >, ω 6∈ Σ, and the Periodic FDOS-LCS problem, where S is a periodic string
with period length p.

For the decremental problem we provide an algorithm with linear time preprocessing and
O(log logn) time per query. For the periodic problem our preprocessing time is linear and the
query time is O(p log logn).

2012 ACM Subject Classification Theory of computation→ Pattern matching, Theory of com-
putation → Dynamic graph algorithms

Keywords and phrases Dynamic Algorithms, Periodicity, Longest Common Factor, Priority
Queue Data Structures, Suffix Tree, Balanced Search Tree, Range Maximum Queries

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.11

1 Partially supported by ISF grant 571/14

© Amihood Amir and I. Boneh;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:amir@cs.biu.ac.il
mailto:barbunyaboy2@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 LMCF’s for Dynamic String Algorithms

1 Introduction

Recently, there has been a growing interest in dynamic pattern matching algorithms. A
particular problem that received attention is finding the longest common factor (LCF) of
two strings. Let S and D be strings of lengths n1 and n2, respectively, over a constant
size alphabet Σ. Their longest common factor (substring) is the longest string F that is a
sunstring of both S and D. The LCF can be computed in O(n1 + n2) time [10].

As mentioned in [13], the LCF problem is not robust and its solution can vary significantly
when the input strings are changed even by one letter. It is, therefore, important to study
the dynamic instance of the problem, i.e. finding the LCF between two strings after an
arbitrary number of changes in one of the two sequences. Other than the purely theoretical
interest, the problem has applications in the field of molecular biology. For instance, when
we wish to find the LCFs by incorporating the single nucleotide polymorphisms (SNPs)
observed in a population in one of the two sequences. The longest common factor with
k-mismatches problem has also received much attention recently, in particular due to its
applications in bioinformatics [11]. We refer the interested reader to [2, 7, 9, 13].

Recently, a solution to the restricted case, where a single edit operation (substitution,
insertion or deletion) is allowed, was presented [1]. In that paper, two strings, S and D, of
length n over a finite fixed alphabet Σ, are given. The strings are preprocessed in O(n log4 n)
time and O(n log3 n) space. After preprocessing, the answer to a query replacing the symbol
in index i of string D by α is computed in O(log3 n) time.

The solution in [1] is not extendable to more substitutions. The goal is solving the
fully dynamic one sided LCF (FDOS-LCF) problem. Specifically, suppose we get q
consecutive queries of the form < i, α >, where each such query means: “replace D[i] by
α, α ∈ Σ and output the LCF of S and (the updated) D. The goal is to initially preprocess
S and D so that we do not need O(n) time to compute an LCF for each such query.

This problem, as well as many other dynamic string problems, would be efficiently solv-
able in a straight-forward manner if one could efficiently maintain a suffix tree of a changing
string. Alas, a fully dynamic suffix tree seems like a very difficult challenge. In this paper
we present a tool – Locally Maximal Common Factors (LMCF) – that proves to be quite
useful in solving some restricted versions of the FDOS-LCF problem .

The first problem we solve is the dynamic LCF problem for the decremental dynamic
model. In this model, every substitution in D is of a symbol ω 6∈ Σ. We provide an algorithm
with two implementations. The first does a linear time preprocessing and answers a query
in time O(logn). It is presented for pedagogical reasons, to describe the power of the LMCF
idea in a simple manner. The second implementation uses data structures such as the van
Emde Boaz tree, or y-fast tries that enable solving the problem in time O(log logn) per
query, following a linear time preprocessing.

The second problem we solve is the FDOS-LCF problem in the special case where S is
periodic. Our solution has a linear time preprocessing and subsequent O(p log logn) time
queries.

2 Preliminaries

We begin with basic definitions and notation generally following [4]. Let S = S[1]S[2]...S[n]
be a string of length |S| = n over a finite ordered alphabet Σ of size |Σ| = O(1). By ε we
denote an empty string. For two positions i and j on S, we denote by S[i . . j] = S[i] . . S[j]
the factor (sometimes called substring) of S that starts at position i and ends at position
j (it equals ε if j < i). We recall that a prefix of S is a factor that starts at position 1

A. Amir and I. Boneh 11:3

(S[1 . . j]) and a suffix is a factor that ends at position n (S[i . . n]). We denote the reverse
string of S by SR, i.e. SR = S[n]S[n − 1] . . . S[1]. We denote the concatenation of two
strings, S1 and S2, by S1S2.

Let Y be a string of length m with 0 < m ≤ n. We say that there exists an occurrence
of Y in S, or, more simply, that Y occurs in S, when Y is a factor of S. Every occurrence
of Y can be characterised by a starting position in S. Thus we say that Y occurs at the
starting position i in S when Y = S[i . . i+m− 1].

Given two strings S and D, a string Y that occurs in both is a longest common factor
(LCF) of S and D if there is no longer factor of D that is also a factor of S; note that S
and D can have multiple LCF strings. We introduce a natural representation of an LCF of
S and T as a triple (m, p, q) such that S[p . . p + m− 1] = T [q . . q + m− 1] is an LCF of S
and T . The decremental dynamic LCF problem is formally defined as follows;

Decremental Dynamic LCF
Input: Two strings S and D of length n over an alphabet Σ, symbol ω 6∈ Σ.
Let < i1, ω >,< i2, ω >, ..., < ik, ω > be a sequence of substitution operations in D, and
let D′ be the result of these k substitutions.
Output: An LCF of S and D′.

Clearly, the problem can be solved by computing an LCF after every change. We will
see that such a computation can be done in linear time. We show an algorithm whose
preprocessing time is linear, and where an LCF computation after each substitution can be
done more efficiently. In Section 4 we present an implementation whose query complexity
is logarithmic. In Section 5 we present an implementation whose query processing time is
O(log logn).

3 Algorithm’s Idea

We need some additional tools and definitions:

I Definition 1. Let S and D be two strings of length n over fixed finite alphabet Σ. A
locally maximal common factor (LMCF) of S in D is a factor D[i..j] of D that satisfies the
following two conditions:
1. D[i..j] is a factor of S.
2. Neither D[i..j + 1] nor D[i− 1..j] are factors of S.

The following observations are crucial.

I Observation 2. An LCF of two strings S and D is an LMCF of S in D. Moreover, a
longest LMCF of S in D is an LCF.

I Observation 3. There are at most n LMCF’s of S in D.

Proof. It is clear that only one LMCF can start at any index i of D. Otherwise, let i be
an index such that both D[i..j] and D[i..`] are LMCF’s, and wlog assume j < `. Then
D[i..j + 1] is a factor of S, contradicting D[i..j]’s maximality.
Since D is of length n there are no more than n indices where an LMCF can start. J

I Observation 4. Let D[i1..j1] and D[i2..j2] be LMCF’s of S in D. Then i1 < i2 iff j1 < j2.

Proof. Otherwise, one is contained in the other contradicting the fact that both are LMCF’s.
J

To achieve our goal, we will show that we can update and maintain a sorted list of
LMCF’s in logarithmic time per substitution. One more tool is needed.

CPM 2018

11:4 LMCF’s for Dynamic String Algorithms

3.1 The Suffix Tree
The suffix tree T (S) of a non-empty string S of length n is a compact trie representing all
suffixes of S. The branching nodes of the trie as well as the terminal nodes, that correspond
to suffixes of S, become explicit nodes of the suffix tree, while the other nodes are implicit.
Each edge of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path of that kind.
Thus, each node of the trie can be represented in the suffix tree by the edge it belongs to
and an index within the corresponding path. We let L(v) denote the path-label of a node
v, i.e., the concatenation of the edge labels along the path from the root to v. We say that
v is path-labelled L(v). Additionally, D(v) = |L(v)| is used to denote the string-depth of
node v. Node v is a terminal node if its path-label is a suffix of S, that is, L(v) = S[i . . n]
for some 1 ≤ i ≤ n; here v is also labelled with index i. It should be clear that each factor
of S is uniquely represented by either an explicit or an implicit node of T (S), called its
locus. In standard suffix tree implementations, we assume that each node of the suffix tree
is able to access its parent. Once T (S) is constructed, it can be traversed in a depth-first
manner to compute the string-depth D(v) for each node v. For every two nodes, v, u, where
L(u) = αL(v), α ∈ Σ, there is a pointer from v to u called a suffix link. It is known that the
suffix tree, with the suffix links, of a string of length n, over a fixed-sized ordered alphabet,
can be computed in time and space O(n) [16, 12, 14]. The suffix tree of an integer alphabet
can also be built in linear time [5].

3.2 Preprocessing
Our algorithm has two parts: a preprocessing part, to set up the data structures; and a
query part that maintains the data structures upon every substitution in a manner allowing
to efficiently pull a maximum LMCF at every instant.

Finding All LMCF’s:

The first preprocessing step is finding all LMCF’s. This is easily done via the suffix tree.
Algorithm AllLMCF (S,D) computes, for each index i, the longest factor starting at D[i]
that occurs in S. Then, starting from D[1], output every factor whose ending position is
farther than the previous one.

Algorithm 1: Algorithm AllLMCF(S,D) – Finding all LMCF’s
1. Construct suffix tree T (S$D) for the string S$D, where $ 6∈ Σ.
2. For every leaf, indicate whether it represents a suffix starting in S or a suffix starting

in D.
3. Traverse T (S$D) (using, e.g., DFS) and mark as blue every node that has in its

subtree at least one leaf from D and one leaf from S.
4. For every leaf representing suffix D[i], mark the lowest blue node on its path from

the root, i.e. the ending index of the longest factor that starts at D[i] and appears
in S. Denote it by LD[i].

5. Set F to be LD[1]. {F will be the farthest common factor so far. }
< 1, LD[1] > is an LMCF.

6. For i=2 to n do:
If LD[i] > F then < i, LD[i] > is an LMCF and LD[i] is the new value of F .
endFor

A. Amir and I. Boneh 11:5

Correctness: The algorithm simply follows the definition of LMCF.

Time: The construction and size of the suffix tree, as well as the tree traversals, are done
in time O(n).

Let us now examine the effects on the LMCF’s of a substitution of ω for the symbol in
index k of D. Clearly, all LMCF’s that end before index k and all those that start after
index k are not affected. Let CMk be the set of LMCF’s D[i..j] such that i ≤ k ≤ j. Since
ω 6∈ S then each of the LMCF’s in CMk is cut at index k. But because of local maximality,
for any two LMCF’s D[i1..j1] and D[i2..j2] where i1 < i2 ≤ k ≤ j1 < j2, only D[i1..k − 1]
and D[k + 1..j2] are potentially LCMF’s after the substitution in k. We can conclude:

I Observation 5. After a replacement of ω in index k of D, if CMk is empty, there is no
change to the LMCF’s. Otherwise, all LMCF’s that are elements in CMk should be deleted
and the following two strings should be inserted to the set of LMCF’s:

L1 = D[i′..k − 1], where i′ = min{i|D[i, j] ∈ CMk}
L2 = D[k + 1..jw], where j′ = max{j|D[i, j] ∈ CMk}

We now have an idea of what our algorithm should look like. We need a data structure
that allows us to efficiently delete the appropriate sets of LMCF’s, to add the two new
LMCF’s, if necessary, and to efficiently find the maximum. In particular, let LCMF D[i..j]
be represented by the pair < i, j >. We need a data structure that supports the following
operations:
1. Costruct LMCF structure
2. Given index k, Delete CMk

3. Insert LMCF < i, j >

4. Find maximum length LMCF.

4 Implementation 1: O(log n) Query Processing

Consider a balanced binary search tree T of the pairs < i, j > that represent LMCF’s, sorted
by the smaller index in every pair. Given a substitution index k, we can efficiently find the
subtree of all indices i for which i ≤ k. The problem is that some of the LMCF’s in this
subtree are not cut by k, i.e. their second index j has j < k, thus they should not be deleted.
However, Observation 4 guarantees that the second indices of all LMCF’s are sorted by the
same order as the first indices. This means that the binary search tree allows us to find i1,
the smallest i for which D[i, j] is cut by k. Similarly, we can find i2, the largest i for which
D[i, j] is cut by k. We delete all the LMCF’s starting between i1 and i2 and add L1 and
L2. We will say a few words about maintaining the tree balanced.

As for the maximum. For each node in the tree write the maximum length LMCF in its
subtree. Updating the maximum after every change means running up the tree, thus the
time is O(logn). Answering a query means starting from the root and running down the
tree towards the maximum, again having time O(logn).

Implementation Details: There are O(n) LMCF’s in total, and each one is a pair < i, j >

starting at a unique i, 1 ≤ i ≤ n. Therefore, we use the balanced binary tree of {1, ..., n},
but for every node we indicate (a) whether the node is “full”, i.e., whether there is an LMCF
that starts at the node of index i, and (b) whether the subtree rooted at node i is empty.
Since the height of the tree is O(logn), the search is bounded by the tree height even in the
tree with “empty” nodes.

CPM 2018

11:6 LMCF’s for Dynamic String Algorithms

Time:
1. Preprocessing: The balanced tree for {1, ..., n} can be constructed in linear time. The

LMCF’s can be found on the suffix tree as shown in Subsection 3.2 in linear time. The
appropriate nodes are marked and denoted “full” and the rest of the nodes as well as the
appropriate subtrees are marked “empty” in linear time using DFS. Every LMCF node
also has a “length” field and every subtree maintains in its root the maximum length in
the subtree. This is also done by DFS in linear time.

2. Deleting CMk: The j’s of the < i, j > LMCF’s are sorted in the same order as the
i’s. Thus finding the largest and smallest i for which D[i, j] includes k is done in time
O(logn). The appropriate subtrees are marked “empty”. Because the tree is balanced
this requires only O(logn) nodes to be marked. The appropriate maximum length fields
along the modified paths are also updated appropriately, also in time O(logn).

3. Inserting LMCF < i, j >: simply turn on the appropriate “full” field of node i in the
tree, as well as the appropriate j and length. Walk up the path updating the subtree
emptiness indicators and the maximum subtree length.

4. Finding Maximum Length LMCF: The maximum length appears in the subtree
max length field of the root, and can be output in constant time. All LCF’s can be
found by going down the tree. The time is then O(tocc logn), where tocc is the number
of LCF’s. A single representative LCF can be found in time O(logn).

5 Implementation 2: O(log log n) Query Processing

The implementation we suggested to our algorithm was based on a balanced search tree.
The height of such a tree is generally O(logn). However, the are data structures that allow
searching in time O(log log u), where u is the size of the universe of keys [15, 17]. Our set of
keys is {1, ..., n}, which would make the search time O(log logn). In this section we describe
an implementation that uses a data structure that supports the following operations on a
set S ⊂ {1, ..., n}: insert, delete, lookup, findnext, findprev. Using such a data structure we
show how to implement the four operations described in Section 3.

Constructing the tree, searching for a key, and inserting a constant number of LMCF’s,
can be done naturally on the vEB tree as well as the y-fast trie. The challenge is imple-
menting the deletion of CMk and the maintenance of the maximum lengths. The difficulty
arises in the fact that these trees don’t have a constant number of children per node, as does
a balanced search tree, thus these updates are more complex.

5.1 Data Structures
As mentioned, we assume a data structure that supports the following operations on a set
S ⊂ {1, ..., n}: insert, delete, lookup, findnext, findprev. We call this a fast tree. The
vEB tree [15] and the y-fast trie [17] can achieve this in space O(n) and time per oper-
ation O(log logn). Nevertheless, our algorithm can use any dynamic priority queue with
predecessor and successor query capability.

In order to implement our four operations, we will need a number of fast trees. We define
them below.

I Definition 6.
1. The LMCF tree is a fast tree of the pairs < i, j > that represent LMCF’s, sorted by the

smaller index in every pair.

A. Amir and I. Boneh 11:7

2. The Interval tree is a fast tree sorted by the starting indices of valid intervals in the
range {1, ..., n}. Each such element also holds its length. Initially, the entire range is
valid, so there is a single element starting at the first index and whose length is n, the
length of the entire range. As our algorithm progresses, we may need to delete entire
intervals of the range, in which no LMCF’s start. We implement it by “cutting” them
out of the interval tree.

3. The max length tree is a fast tree whose entries are the maximum length of the LMCF’s
in the valid intervals. There is also a link between each valid interval entry in the interval
tree and the entry of its length in the max length tree. The max length tree is sorted by
the length.

Our algorithm makes use of the range maximum query algorithm. The problem is defined
as follows:

I Definition 7. The Range Maximum Query (RMQ) problem has as its input an array
A[1..n] of natural numbers. We wish to preprocess the array in a manner that will enable
efficient solution to:

Query: Given [i, j], where 1 ≤ i ≤ j ≤ n. Return index k, i ≤ k ≤ j such that A[k] ≥
A[`], ∀` s.t. i ≤ ` ≤ æ.

Time: It was shown [8, 3, 6] that the RMQ problem can be solved using linear time and
space preprocessing and constant query time.

Space: Since both the fast tree, and the RMQ preprocessing are done in linear space, our
constructions uses linear space.

5.2 The Algorithm
We show the implenmentation of each of our operations using the fast trees.

Preprocessing - Construct the fast trees: We find the LMCF pairs as in Implementation
1 in Section 4. We construct two sets of fast trees: (a) MFT1: sorted by the starting
position of the LMCF’s, along with the length of each LMCF. The lengths are entered into
an M array which is preprocessed for RMQ queries. The length of the m array is n. M [i]
gets the value of the LMCF that starts in D[i], if such an LMCF exists, otherwise M [i]
gets the value −∞. The Interval and the max length fast trees are initialized. (b) MFT2
Sorted by the ending positions of the LMCF’s. Each entry has its length. It comes with
its accompanying interval and max length fast trees. MFT2 is symmetric to MFT1 and
thus in the rest of the paper we will describe operations on MFT1. Similar operations are
symmetrically done in MFT2.

Time: Construction time of the fast trees, and RMQ preprocessing: O(n).

Given Index k, Delete CMk: Computing CMk is straightforward in the LMCF fast trees.
For any k, let j1 be the smallest entry larger than k in the MFT2 set of trees. Initially, it is
found in the LMCF tree. Subsequently, it is checked in the LMCF tree in the closest valid
interval, as found in the interval fast tree. j represents an LMCF < i1, j1 >. If i1 < k then
i1 is the starting position of the LMCF with the smallest index that is cut by k. Therefore

CPM 2018

11:8 LMCF’s for Dynamic String Algorithms

all LMCF’s starting between indices i1 and k − 1 should be removed and replaced by the
new LMCF < i1, k − 1 >. Now, let i2 be the largest entry smaller than k in MFT1. It
represents an LMCF < i2, j2 >. If j2 > k then a new LMCF < k + 1, j2 > needs to be
added. Deleting an entry from a fast tree is simple. However, we need to efficiently delete
many entries, as well as maintain the maximum. As mentioned before, we describe how to
handle MFT1, the operations on MFT2 are symmetrical.

Recall that the interval fast tree is initialized to the entire range. Assume that [i1, k] is
the first interval to be deleted, then the interval fast tree will have a node starting at the
beginning of the interval and ending at i1−1, a node starting at k+1 and ending at the end
of the interval, and a node of length 1 at location i1. In general, the interval fast tree only
has non-overlapping intervals. Additionally, since LMCF’s are cut at the insertion point,
the following holds.

I Observation 8. An interval is deleted from the interval fast tree only if it is entirely
contained in a previous valid interval.

Another crucial observation is the following:

I Observation 9. Only intervals of length 1 (points) may be added and deleted in an interval
that was declared “invalid”.

From the above two observations we get:

I Conclusion 10. The interval tree is composed of intervals and points. Once an interval is
deleted, the activity in the entire deleted interval consists only of adding and deleting single
points.

The deletion of an lnterval requires updating the maximum lengths of the remaining
LMCF’s. If the interval was a point, this is a single operation on the max length fast tree on
the path of the change. If CMk is an interval, then it caused a range change in the interval
fast tree. We need to delete from the max length fast tree the maximum length of the range
that is cut, and add the max length LMCF in the shortened range, as well as k − i1, the
length of the new LMCF. Note that because of Conclusion 10 the only non-point interval
changes are the results of cuts in the initial ranges. But the initial ranges were preprocessed
for RMQ queries. Consequently, we can, in time O(1) update the max length fast tree.

Time: Handling points clearly takes time O(log logn) since these are regular fast tree
operations. Deleting an interval of LMCF’s consists of a fast tree operation. which takes
time O(log logn). Similarly, updating the max length fast tree takes time O(log logn), for
a total of O(log logn) time.

Insert LMCF: Done at the LMCF tree and each of the interval and max length trees.

Time: O(log logn) on the fast trees.

Find Maximum Length LMCF: Find the maximum element in the root max length fast
tree.

Time: O(log logn).

A. Amir and I. Boneh 11:9

6 Dynamic LCF for a Static Periodic String

The LMCF’s are an efficient tool for handling other dynamic versions of the problem. Our
next result is an algorithm for the fully dynamic case. The changes to the text may replace
a character in index i of D with some other character in Σ. We still assume that S is static
and D is dynamic, however, we assume that S is a periodic string whose period length is p.

I Definition 11. Let S be a string of length n. S is called periodic if S = P ipref(P), where
i ∈ N, i ≥ 1, P is a substring of S such that |P | < n, P i is the concatenation of P to itself
i times, and pref(P) is a prefix of P . The smallest such substring P is called the period of
S. If S is not periodic it is called aperiodic.

I Remark. Throughout the paper we use p to denote a period length and P the period
string, i.e., p = |P |.

Formally our problem is:

Periodic Dynamic LCF
Input: Two strings S and D of length n over an alphabet Σ, S is periodic with period
length p.
Let < i1, σ1 >,< i2, σ2 >, ..., < ik, σk > be a sequence of substitution operations in D,
where the symbol D[ij] is replaced by σj ∈ Σ, j = 1, ..., k, and let D′ be the result of
these k substitutions.
Output: An LCF of S and D′.

Our algorithm has linear preprocessing time and takes time O(p log logn) for a substi-
tution and LCF query.

6.1 Algorithm’s Idea
The periodic static string algorithm also maintain the LMCF’s and their maximum length, as
the deremental algorithm did. In order to limit the maintenance time at every substitution,
we need to prove some properties of LMCF’s in a periodic string.

I Observation 12. Every substring of S whose length is larger than p also has a period of
size p. In particular this, of course, applies to the LMCF’s of S in D.

I Lemma 13 (Periodicity unity). Let D1 =< i1, j1 > and D2 =< i2, j2 > be two LMCFs of
S in D. If the length of the overlap of D1 and D2 is at least p then D1 = D2 (i1 = i2 and
j1 = j2).

Proof. Let D1 = D[i1..j1] and D2 = D[i2..j2] be two LMCF’s of S in D s.t the overlap of D1
and D2 is an interval of at least p characters. We assume, wlog, that i1 ≤ i2. That means
that i1 ≤ j1 − p , i2 ≤ j2 − p and, because the overlap is of length at least p, i2 ≤ j1 − p.
As substrings of S, both D1 and D2 have a period of size p. Let S[i3..j3] be an instance
of D1 in S. According to the local maximum property of D1 - it must be satisfied that
D[j1 + 1] 6= S[j3 + 1]. Otherwise D1 could have been extended. S has a period of size p
so S[j3 + 1] = S[j3 + 1 − p]. The index j1 + 1 − p is still within the range of D1 because
i1 ≤ j1−p . so S[j3 +1−p] = D[j1 +1−p]. The index j1+1−p is also within the Range of
D2 because i2 ≤ j1 − p. Assuming that D1 6= D2, The index j1 + 1 is within the range of
D2 as well because j2 > j1 (Otherwise, D2 is fully contained in D1). On top of all, D2 is a
common factor of S that is larger than p. so it has a period of size p as well and it satisfies:
D[j1 + 1− p] = D[j1 + 1]. According to transitivity : D[j1 + 1] = S[j3 + 1], in contradiction
to D1’s local maximum property. J

CPM 2018

11:10 LMCF’s for Dynamic String Algorithms

I Lemma 14 (Periodicity singular extention). Let D1 = D[i..j] be a common factor of D and
S of length greater than p. Then D[i..j + 1] is also a factor of S iff D[j + 1] = D[j + 1− p].

Proof. ⇒ Assume D[i..j + 1] is a factor of S. Its length is greater than p, therefore it has
a period of size p. D1 has length greater than p so j − p + 1 is within its range. From the
indexes presence in the interval and the period we get : D[j + 1] = D[j + 1− p].
⇐ Assume D[j+1] = D[j+1−p]. Let S[i3..j3] be an insance of D1 in S. With the same

reasoning as in the proof of Lemma 13 we get that D[j + 1− p] = S[j3 + 1− p] = S[j3 + 1].
The final conclusion is derived from transitivity. J

Note: Both proofs assume that there is an index j3 + 1 in S, which is not necessarily true.
However, every substring starting after the first p letters of S is equal to a substring that
begins in the first p symbols, and thus there is an instance that can be extended to j3 + 1.
There are only at most p possible substrings where this shift can not be done - those that
already start within the first p symbols of S and extend all the way to the end. The lemmas
don’t hold for these strings, but there are only at most p of them and they are handled
separately by the algorithm.

The above lemmas indicate that given a change in index x in D, the number of LMCF’s
that are affected by this change and are “far” from x is small. “Far” means starting or
ending in an index whose distance from x exceeds O(p). The algorithm will handle “far”
LMCF’s and “close” LMCF’s separately. There are only O(p) “close” LMCF’s, thus they
can be handled in a brute force manner and still cost only O(p) per query. The two lemmas
guarantee a constant number of affected “far” LMCF’s, so they also are handled efficiently.

7 The algorithm

Preprocessing: The preprocessing stage consists of finding all of the LMCF’s, and putting
them in a convenient data structure. The LMCF’s are found using algorithm
AllLMCF (S,D), as presented in Subsection 3.2. The LMCF’s are put in an efficient dy-
namic priority queue data structure, (e.g. the fast tree mentioned above) containing the
indexes, sorted by the i value. Additionally, each node contains extra information about the
maximum value of j− i in the subtree rooted in this node. Denote this priority queue by T .

Handling an Edit Operation: Assume a change is made at location x of D. We can
apply algorithm AllLMCF on the area D[x−p..x+p] and, in time O(p) get all the LMCF’s
starting in that area and ending in D[x+p]. This is almost all we need. The only corrections
necessary are: (1) LMCF’s that started before D[x−p] and extended past D[x]; (2) LMCF’s
that started before D[x− p] and ended at D[x− 1] (maybe they need to be extended); and
(3) new LMCF’s that start at the interval D[x− p..x] and extend past D[x+ p].

Because of the Periodicity Unity Lemma, we know that there is at most one LMCF that
starts before D[x−p] and reaches to or past D[x−1]. If it passed D[x] (Case (1) above), its
endpoint should be replaced by x− 1. If it ends at x− 1 (Case (2) above), then its endpoint
should be extended. We can spend p time to see how much ahead it can be extended. If it
can be extended by more than p positions, then by the Periodicity Unity Lemma, we can
merge it with the previous LMCF that started at D[x + 1]. This leaves us with Case (3) -
all LMCF’s that start at the interval D[x − p..x] and extend past D[x + p]. Again, due to
the Periodicity Unity Lemma, there is at most one such LMCF. We merge it with the old
LMCF that started at D[x+1]. All old LMCF’s that started in D[x−p..x] are deleted. The
total number of changes is O(p) and, for each change the maximum length in the subtree is

A. Amir and I. Boneh 11:11

Algorithm 2: pseudocode for algorithm UpdateLMCF
Algorithm UpdateLMCF(x,α) – substitute location D[x] with α

1. Update D : D[x]← α.
2. Find a pair π1 =< i1, j1 > in T that satisfies j1 ≥ x− 1 and i1 ≤ x− p. If there

isn’t one: π1 ← nill.
3. Find a pair π2 =< i2, j2 > in T that satisfies i2 ≤ x+ 1 and j2 ≥ x+ p. If there

isn’t one: π2 ← nill.
4. Set two binary flags fi, i ∈ {1, 2}. fi = 1 ⇐⇒ πi = nill.
5. For c = 0, 1, 2...p do:

a. If D[x + c] 6= D[x + c − p] and f1 = 0 : Remove π1 from T and add the pair
< i1, x+ c− 1 >. Then set f1 = 1.

b. If D[x − c] 6= D[x − c + p] and f2 = 0 : Remove π2 from T and Add the pair
< x− c+ 1, j2 >. Then set f2 = 1.

6. If both flags are 0 in the end of the loop: Remove both π1 and π2 from T and add
< i1, j2 >.

7. Remove from T all the pairs < i, j > s.t i ≥ x− p and j ≤ x+ p.
8. Use ALLLMCF (S[1..p]3, D[x−p..x+p]) to get all the LMCF’s contained in this

interval. Add all the new LMCF’s found to T . Except the one with the minimal i
value and the one with the maximal j value, denoted as πleft and πright respectively.

9. Check if there is an LMCFs that contains πright in T (smaller i value and greater
j value). If there is not then add πright to T . Do the same for πleft.

end Algorithm

maintained in O(log logn))time, for the fast tree data stucture used. A pseudocode of the
algorithm can be found in Algorithm 2.

7.1 Correctness
As previously indicated, the algorithm handles two types of LMCF’s separately - “far”
LMCFs and “close” ones. A far LMCF is an LMCF that is cut (or touched) by x, the
location of the edit operation, but the diffenece between x and either i or j is at least p. An
important observation is that according to the Periodicity Unity Lemma, there is no more
than one such possible LMCF from each side of x (left and right).

Consequently, our algorithm finds the, possibly, single “far” LMCF from each side of x
and figures out how it should be modified after D has changed.

Another useful property of the “far” LMCF’s is that even if the edit operation cuts them
- they are still at least of size p in the updated D. That property enables the use of the
Singular Extention Lemma to check how far they extend in the modified D.

The final observation to be made in dealing with the “far” LMCF’s is that checking p+1
matches after (or before) x is enought. If a mismatch was found - that’s as far as the LMCF
can extend (Singular Extention Lemma). If the p first letters after x match, that means that
there were “far” LMCFs from both sides of x, and that after the edit operation, they overlap
within an interval greater than p. That makes them the same LMCF due to the Periodicity
Unity Lemma. At that point the algorithm will stop checking symbol by symbol. Rather,
it will combine the two “far” LMCF’s.

Handling the close LMCF’s is done in straightforward way - using AllLMCF on the
small interval in wich “close” LMCF’s can be found. It is easy to observe that they must be
a substring of S[1..p]3.

CPM 2018

11:12 LMCF’s for Dynamic String Algorithms

The algorithm, witout any modifications, accually answers a slighly different question
from the one asked. It finds the LCF of the dynamic string D and some infinite period
of the first p letters of S. if S is in size |D| + p, the questions are equivalent. Any other
size of S will bring into play the issue mentioned in the note that follows the proof of the
two lemmas in Subsection 6.1. For simplicity’s sake we presented the algorithm with the
assumption of the appropriate length of S. However, a slight adjustment, that can be done
without changing the time complexity, can solve this problem. Every time we add to T an
LMCF larger than n− p , wich can only happen twice in a single change, we should check if
it is an actual factor of S and fix it if its not. This can be done by locating the first instance
in S of the new LMCF and use its known size to detect if it is accually a factor. If it is not
- then the starting index of S in the LMCF and its length can be used to deduce the way it
should be partitioned, in O(1) time.

7.2 Complexity
Lines 2 and 3 are standard priority queue searches. Since the size of the LMCF collection
is bounded by n, they take O(log logn) time.
The loop in line 5 repeats at most p times. The operations in every repeat are a constant
amount of symbol comparison or priority queue manipulations, for a total of O(p+
loglogn).
Line 6 is also a priority queue manipulation.
Line 7 requires a few priority queue manipulations. There are no more than O(p) LMCF’s
starting at that area so the total time complexity is O(p log logn).
Line 8 uses AllLMCF on two inputs of size O(p). that has O(p) time complexity. Adding
the O(p) new LMCF’s to the priority queue takes time O(p log logn).
Line 9 makes a constant amount of balanced tree searches and additions for a total of
O(log logn).
Every change or addition causes a percolation up of the changes in the maximum LMCF
length in the subtree. In a balanced search tree, this is O(log logn) time per change.

Total Query Time: O(p log logn).

8 Conclusions

We have presented a tool - the LMCF - that enables efficient solutions to two variants of the
dynamic longest common factor problem. In both variants we have a static string S and a
dynamic string D. For the decremental case, i.e. where symbols of D are substituted by a
new symbol not in the alphabet, the update time is O(log logn), and for the case where S
is periodic with period p, the update time is O(p log logn). In both cases the preprocessing
is linear.

Our algorithm is designed for strings over a constant-sized alphabet. However, with a
O(n logn) pre-sorting of the strings, and converting to the alphabet {1, ..., n}, the same
algorithms will apply.

An open question is to extend this result to a fully dynamic case, that is, to propose a
data structure that allows subsequent edit operations on one or both of the strings S and D
for a general S, and reports the LCF after each operation in an efficient time complexity. Of
course the ultimate challenge is a fully dynamic suffix tree algorithm. That problem seems
hard. In the meanwhile it is important to consider dynamic versions of specific pattern
matching problems. We believe that the LMCF idea can prove useful in other dynamic
string algorithms as well.

A. Amir and I. Boneh 11:13

References
1 A. Amir, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, and J. Radoszewski. Longest

common factor after one edit operation. In Proc. 24th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS, pages 14–26. Springer, 2017. best
paper award.

2 M.A. Babenko and T.A. Starikovskaya. Computing the longest common substring with
one mismatch. Probl. Inf. Transm., 47(1):28–33, 2011.

3 O. Berkman and U. Vishkin. Finding level-ancestors in trees. Journal of Computer and
System Sciences, 48(2):214–229, 1994.

4 M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University
Press, 2007.

5 M. Farach. Optimal suffix tree construction with large alphabets. Proc. 38th IEEE Sym-
posium on Foundations of Computer Science, pages 137–143, 1997.

6 J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem,
with applications to LCA and LCE. In Proc. 17th Annual Symposium on Combinatorial
Pattern Matching (CPM), number 4009 in LNCS, pages 36–48. Springer-Verlag, 2006.

7 T. Flouri, E. Giaquinta, K. Kobert, and E. Ukkonen. Longest common substrings with k
mismatches. Information Processing Letters, 115(6-8):643–647, 2015.

8 H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry
problems. Proc. 16th ACM Symposium on Theory of Computing, 67:135–143, 1984.

9 S. Grabowski. A note on the longest common substrings with k mismatches problem.
Information Processing Letters, 115(6-8):640–642, 2015.

10 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

11 C.-A. Leimeister and B. Morgenstern. KMACS: the k-mismatch average common substring
approach to alignment-free sequence comparison. Bioinformatics, 30(14):2000–2008, 2014.

12 E. M. McCreight. A space-economical suffix tree construction algorithm. J. of the ACM,
23:262–272, 1976.

13 T. Starikovskaya. Longest common substrings with approximately k mismatches. In Proc.
27th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 54 of LIPIcs,
pages 21:1–21:11, 2016.

14 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
15 P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient

priority queue. Mathematical Systems Theory, 10:99–127, 1977.
16 P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on Switching

and Automata Theory, pages 1–11, 1973.
17 D. E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Inform-

ation Processing Letters, 17(2):81–84, 1983.

CPM 2018

	Introduction
	Preliminaries
	Algorithm's Idea
	The Suffix Tree
	Preprocessing

	Implementation 1: O(log n) Query Processing
	Implementation 2: O(log log n) Query Processing
	Data Structures
	The Algorithm

	Dynamic LCF for a Static Periodic String
	Algorithm's Idea

	The algorithm
	Correctness
	Complexity

	Conclusions

