-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Dagstuhl Research Online Publication Server

Longest substring palindrome after edit

Mitsuru Funakoshi

Department of Physics, Kyushu University, Japan
mitsuru.funakoshi@inf. kyushu-u.ac.jp

Yuto Nakashima

Department of Informatics, Kyushu University, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai

Department of Informatics, Kyushu University, Japan

bannai@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185

Masayuki Takeda

Department of Informatics, Kyushu University, Japan
takeda@inf.kyushu-u.ac.jp

—— Abstract

It is known that the length of the longest substring palindromes (LSPals) of a given string T
of length n can be computed in O(n) time by Manacher’s algorithm [J. ACM ’75]. In this
paper, we consider the problem of finding the LSPal after the string is edited. We present an
algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals
in O(log(min{o,logn})) time after single character substitution, insertion, or deletion, where o
denotes the number of distinct characters appearing in 7. We also propose an algorithm that
uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(¢ 4 logn)

time, after an existing substring in T is replaced by a string of arbitrary length /.
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1 Introduction

Palindromes are strings that read the same forward and backward. The problems of finding
palindromes or palindrome-like structures in a given string are fundamental tasks in string
processing, and thus have been extensively studied (e.g., see [2, 14, 8, 12, 16, 11, 15, 6] and
references therein).

One of the earliest problems regarding palindromes is the longest substring palindrome
(LSPal) problem, which asks to find (the length) of the longest palindromes that appear in a
given string. This problem dates back to 1970’s [13], and since then it has been popular as a
good algorithmic exercise. Observe that the longest substring palindrome is also a maximal
(non-extensible) palindrome in the string, whose center is an integer position if its length
is odd, or a half-integer position if its length is even. Since one can compute the maximal
palindromes for all such centers in O(n?) total time by naive character comparisons, the
LSPal problem can also be easily solved in O(n?) time.
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Manacher [13] gave an elegant O(n)-time solution to the LSPal problem. Manacher’s
algorithm uses symmetry of palindromes and character equality comparisons only, and
therefore works in O(n) time for any alphabet. It was pointed out in [2] that Manacher’s
algorithm actually computes all the maximal palindromes in the string. In case where the
input string is drawn from a constant size alphabet or an integer alphabet of size polynomial
in n, there is an alternative suffix tree [19] based algorithm which takes O(n) time [9]. This
algorithm also computes all maximal palindromes.

There is a simple O(n)-space data structure representing all of these computed maximal
palindromes; simply store their lengths in an array of length 2n — 1 together with the input
string T'. However, this data structure is apparently not flexible for string edits, since even
a single character substitution, insertion, or deletion can significantly break palindromic
structures of the string. Indeed, Q(n?) substring palindromes and 2(n) maximal palindromes
can be affected by a single edit operation (E.g., consider to replace the middle character
of string a™ with another character b). Hence, an intriguing question is whether there
exists a space-efficient data structure for the input string 7" which can quickly answer the
following query: What is the length of the longest substring palindrome(s), if single character
substitution, insertion, or deletion is performed? We call this as a 1-ELSPal query.

In this paper, we present an algorithm which uses O(n) time and space for preprocessing
and O(log(min{o,logn})) time for 1-ELSPal queries, where o is the number of distinct
characters appearing in 7. We also consider a more general variant of 1-ELSPal queries,
where an existing substring in the input string T can be replaced with a string of arbitrary
length ¢, called an ¢-ELSPal queries. We present an algorithm which uses O(n) time and
space for preprocessing and O(¢ 4 logn) time for -ELSPal queries. Our results are valid for
string of length n over an integer alphabet of size polynomial in n. All bounds in this paper
are in the worst case unless otherwise stated.

Related work

This line of research was recently initiated by Amir et al. [1] for the longest common factor
(LCF) of two strings. For two strings S and T of length at most n, they proposed a data
structure of O(nlog® n) space which answers in O(log® n) time the length of the LCF of S
and the string T” obtained by a single character edit operation on T. Their data structure
can be constructed in O(nlog? n) expected time.

2 Preliminaries

Let ¥ be the alphabet. An element of 3X* is called a string. The length of a string T is
denoted by |T|. The empty string ¢ is a string of length 0, namely, |¢| = 0. For a string
T = zyz, x, y and z are called a prefix, substring, and suffiz of T, respectively. For two
strings X and Y, let lep(X,Y) denote the length of the longest common prefix of X and Y.

For a string T and an integer 1 < i < |T|, T[i] denotes the i-th character of T, and for
two integers 1 <1 < j < |T|, T'[i..j] denotes the substring of T that begins at position ¢ and
ends at position j. For convenience, let T'[i..j] = & when i > j. An integer p > 1 is said to
be a period of a string T iff T[;] =T[i + p| for all 1 < i <|T|— p.

The run length (RL) factorization of a string T is a sequence fi, ..., f;, of maximal runs
of the same characters such that 7' = f; - - - f,,, (namely, each RL factor f; is a repetition of
the same character a; with a; # a;j4+1). For each position 1 < ¢ <n in T, let RLFBeg(i) and
RLFEnd(i) denote the beginning and ending positions of the RL factor that contains the
position 4, respectively. One can easily compute in O(n) time the RL factorization of string
T of length n together with RLFBeg(i) and RLFEnd(i) for all positions 1 <i < n.
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Let T denote the reversed string of T', i.e., T® = T[|T|] - -- T[1]. A string T is called a
palindrome if T = T®. For any non-empty substring palindrome 7'[i..j] in T, % is called its
center. It is clear that for each center ¢ = 1,1.5,...,n — 0.5, n, we can identify the maximal
palindrome Ti..j] whose center is ¢ (namely, ¢ = %) Thus, there are exactly 2n — 1
maximal palindromes in a string of length n.

Let PrePals(T) and SufPals(T) denote the sets of prefix palindromes and suffix palin-
dromes of T, respectively. A non-empty substring palindrome T[i..j] is said to be a mazimal
palindrome of T if T[i — 1] # T[j + 1], i = 1, or j = |T|. Clearly, prefix palindromes and
suffix palindromes of T are maximal palindromes of T'.

A rightward longest common extension (rightward LCE) query on a string 7' is to compute
lep(T[i..|T|], T[j.-|T|]) for given two positions 1 < i # j < |T|. Similarly, a leftward LCE
query is to compute lep(T[1..i]%, T[1..5]™). We denote by RightLCE (i, ) and LeftLCEx (i, )
rightward and leftward LCE queries for positions 1 < i # j < |T|, respectively. An outward
LCE query is, given two positions 1 < i < j < |T), to compute lep((T[1..i))", T[}..|T|]). We
denote by OutLCEr(i,j) an outward LCE query for positions ¢ < j in the string 7.

Manacher [13] showed an elegant online algorithm which computes all maximal palin-
dromes of a given string T of length n in O(n) time. An alternative offline approach is to
use outward LCE queries for 2n — 1 pairs of positions in 7. Using the suffix tree [19] for
string T$TF# enhanced with a lowest common ancestor data structure [10, 17, 3], where $
and # are special characters which do not appear in T', each outward LCE query can be
answered in O(1) time. For any integer alphabet of size polynomial in n, preprocessing for
this approach takes O(n) time and space [5, 9]. Let M be an array of length 2n — 1 storing
the lengths of maximal palindromes in increasing order of centers. For convenience, we allow
the index for M to be an integer or a half-integer from 1 to n, so that M]i] stores the length
of the maximal palindrome of T centered at 1.

A palindromic substring P of a string 7" is called a longest substring palindrome (LSPal)
if there are no palindromic substrings of T which are longer than P. Since any LSPal of T is
always a maximal palindrome of T, we can find all LSPals and their lengths in O(n) time.

In this paper, we consider the three standard edit operations, i.e., insertion, deletion, and
substitution of a character in the input string 7" of length n. Let T” denote the string after
one of the above edit position was performed at a given position. A 1-edit longest substring
palindrome query (1-ELSPal query) is to answer (the length of) a longest palindromic
substring of 7”. In the next section, we will present an O(n)-time and space preprocessing
scheme such that subsequent 1-ELSPal queries can be answered in O(log(min{o,logn}))
time. For any integer ¢ > 0, an £-block edit longest substring palindrome query (¢-ELSPal
query), which is a generalization of the 1-ELSPal query, asks (the length of) a longest
palindromic substring of 7", where T” denotes the string after an interval (substring) of T
is replaced by a string of length ¢. In the following section, we will propose an O(n)-time
and space preprocessing scheme such that subsequent /-ELSPal queries can be answered in
O(¢+logn) time. We remark that in both problems string edits are only given as queries, i.e.,
we do not explicitly rewrite the original string T' into T” nor T" and T remains unchanged
for further queries.

3 Algorithm for 1-ELSPal

In this section, we will show the following result:

» Theorem 1. There is an algorithm for the 1-ELSPal problem which uses O(n) time and
space for preprocessing, and answers each query in O(log(min{o,logn})) time for single
character substitution and insertion, and in O(1) time for single character deletion.
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3.1 Periodic structures of maximal palindromes

Let T be a string of length n. For each 1 < i < n, let MaxzPalEndr(i) denote the set
of maximal palindromes of T' that end at position i. Let S; = s1,..., s, be the sequence
of lengths of maximal palindromes in MazPalEndy (i) sorted in increasing order, where
k = |MazPalEndr(i)|. Let d; be the progression difference for s, i.e., d; = sj41 — s; for
1 < j < k. We use the following lemma which is based on periodic properties of maximal
palindromes ending at the same position.

» Lemma 2.

(i) Foranyl<j<k, djt1 > d;.

(ii) Forany 1< j <k, ifdjy1 # dj, then dji1 > dj +dj_1.

(iii) S; can be represented by O(log ) arithmetic progressions, where each arithmetic progres-
sion is a tuple (s,d,t) representing the sequence s,s+d,...,s+ (t — 1)d with common
difference d.

(iv) Ift > 2, then the common difference d is a period of every mazimal palindrome which
end at position i in T and whose length belongs to the arithmetic progression (s,d,t).

Each arithmetic progression (s,d,t) is called a group of maximal palindromes. Similar

arguments hold for the set MazPalBegy(i) of maximal palindromes of T that begin at

position 3.

To prove Lemma 2, we use arguments from the literature [2, 7, 14]. Let us for now
consider any string W of length m. In what follows we will focus on suffix palindromes in
SufPals(W) and discuss their useful properties. We remark that symmetric arguments hold
for prefix palindromes in PrePals(W) as well. Let S" = s/,..., s}, be the sequence of lengths
of suffix palindromes of " sorted in increasing order, where k" = [SufPals(W)|. Let d be
the progression difference for s, i.e., d; = %, — s for 1 < j < k’. Then, the following
results are known:

» Lemma 3 ([2, 7, 14]).

(A) Forany 1 <j' <K, dj 4 >dj.

(B) Forany 1 <j <K, ifd,, , #d, thend} , >d; +dj_,.

(C) S’ can be represented by O(logm) arithmetic progressions, where each arithmetic pro-
gression is a tuple (s',d’,t') representing the sequence s',s' +d',...,s' + (' —1)d" of
lengths of t' suffix palindromes with common difference d'.

(D) Ift' > 2, then the common difference d' is a period of every suffiz palindrome of W
whose length belongs to the arithmetic progression (s',d',t').

The set of suffix palindromes of W whose lengths belong to the same arithmetic progression
(s',d',t') is also called a group of suffix palindromes. Clearly, every suffix palindrome in the
same group has period d’, and this periodicity will play a central role in our algorithms.

We are ready to prove Lemma 2.

Proof. It is clear that MazPalEndy(i) C SufPals(T[1..71]), namely,
MazPalEndr (i) = {s’ € SufPals(T[1..i]) | T[i — s'| #T[i + 1],i — s’ =1, or i = n}.

The case where ¢ = n is trivial, and hence in what follows suppose that i < n. Let
¢ = T[i+ 1], and for a group (s',d’,t') of suffix palindromes let a = T[i — s'] and b =
T[i — s — (t' —1)d'], namely, a (resp. b) is the character that immediately precedes the
shortest (resp. longest) palindrome in the group (notice that a = b when ¢' = 1). Then, it
follows from Lemma 3 (D) that s',s'+d',...,s" + (t' —2)d’ € MazPalEndr (i) iff a # c. Also,
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'+ (¢ = 1)d’ € MaxPalEndy (i) iff b # c. Therefore, for each group of suffix palindromes of
T[1..7], there are only four possible cases: (1) all members of the group are in MaxPalEndr (i),
(2) all members but the longest one are in MaxzPalEndr (i), (3) only the longest member is
in MazPalEndr(i), or (4) none of the members is in MazPalEndr(i).

Now, it immediately follows from Lemma 3 that (i) d;+1 > d; for 1 < j < k and (ii)
dj+1 > dj + dj—q holds for 1 < j < k. Properties (iii) and (iv) also follow from the above
arguments and Lemma 3. |

For all 1 < ¢ < n we can compute MazPalEndr(i) and MaxPalBegy (i) in total O(n)
time: After computing all maximal palindromes of T in O(n) time, we can bucket sort all
the maximal palindromes with their ending positions and with their beginning positions in
O(n) time each.

3.2 Algorithm for substitutions

In what follows, we will present our algorithm to compute the length of the LSPals after
single character substitution. Our algorithm can also return the occurrence of an LSPal.

Let ¢ be any position in the string T of length n and let ¢ = T[i]. Also, let 7" =
T[1..i —1)¢T[i + 1..n], i.e., T' is the string obtained by substituting character ¢’ for the
original character ¢ = T[] at position i. To compute the length of the LSPals of T”, it suffices
to consider maximal palindromes of T”. Those maximal palindromes of T” will be computed
from the maximal palindromes of 7.

The following observation shows that some maximal palindromes of T' remain unchanged
after character substitution at position 1.

» Observation 4 (Unchanged maximal palindromes after single character substitution). For
any position 1 < j < i, MazPalEndr: (j) = MaxPalEndr(j). For any position i < j < n,
MazPalBegry.(j) = MazPalBegr(j).

By Observation 4, for each position i (1 < i < n) of T, we precompute the largest element
of U, <<, MazPalEndr(j) and that of U, <,
the ith position of an array U of length n. U[i] is a candidate for the solution after the

MazPalBegr(j), and store the larger one in

substitution at position i. For each position i, | J; j<i MazPalEndr(j) contains the lengths of

all maximal palindromes which end to the left of ¢, and | J MazPalBegy(j) contains the

i<j<n
lengths of all maximal palindromes which begin to the rig?l%iof i. Thus, by simply scanning
MazPalEndr(j) for increasing j = 1,...,n and MazPalBegy(j) for decreasing j =n,...,1,
we can compute U[i] for every position 1 < ¢ < n. Since there are only 2n — 1 maximal
palindromes in string T, it takes O(n) time to compute the whole array U.

Next, we consider maximal palindromes of the original string 7" whose lengths are extended
in the edited string T”. As above, let 7 be the position where a new character ¢’ is substituted
for the original character ¢ = T'[i]. In what follows, let o denote the number of distinct

characters appearing in 7.

» Observation 5 (Extended maximal palindromes after single character substitution). For any

s € MaxPalEndr(i — 1), the corresponding mazimal palindrome T[i — s..i — 1] centered at

2i=s=1 gets extended in T' iff T[i — s — 1] = ¢. Similarly, for any p € MaxzPalBegy (i + 1),

¢ 2itptl
2

the corresponding maximal palindrome T[i + 1..i + p| centered a gets extended in T’

ifTli+p+1] =c.

» Lemma 6. Let T be a string of length n over an integer alphabet of size polynomial in
n. It is possible to preprocess T in O(n) time and space so that later we can compute in
O(log(min{o,logn})) time the length of the longest maximal palindromes in T’ that are
extended after substitution of a character.
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i
bbaabaabaacaabaabaaaaacaabab

Figure 1 Example for Lemma 6, with string bbaabaabaacaabaabaaaaacaabab where the character
a at position i = 20 is to be substituted. There are four maximal palindromes ending at position 19,
whose lengths are represented by two groups (2,3,3) and (17,9, 1). For the first group, c precedes
the longest maximal palindrome and b precedes all the other maximal palindromes. The second
group contains only one maximal palindrome and b precedes it. The largest extended lengths are 21
for b, and 14 for c. Thus we have & = [(b,21), (¢, 14), (¢, 17)], where 17 is the length of the longest
maximal palindrome ending at position 19 in the original string.

Proof. By Observation 5, we consider maximal palindromes corresponding to
MazPalEndr(i — 1). Those corresponding to MazPalBeg,(i + 1) can be treated similarly.
Let (s,d,t) be an arithmetic progression representing a group of maximal palindromes in
MazPalEndy(i —1). Let us assume that the group contains more than 1 member (i.e., t > 2)
and that ¢ —s > 2, since the case where t = 1 or i — s = 1 is easier to deal with. Let P; denote
the jth shortest member of the group, i.e., P, = T[i—s..i—1] and P, = T[i—s—(t—1)d..i—1].
Then, it follows from Lemma 2 (iv) that if a is the character immediately preceding the
occurrence of Py (i.e., a = T[i — s — 1]), then a also immediately precedes the occurrences of
Ps,...,P,_1. Hence, by Observation 5, P; (2 < j < t) gets extended in the edited text 7" iff
¢’ = a. Similarly, P, gets extended iff ¢’ = b, where b is the character immediately preceding
the occurrence of P;. For each 1 < j <t the final length of the extended maximal palindrome
can be computed in O(1) time by a single outward LCE query OutLCE(i—s—(j—1)d—2,i+1).
Let PJ( denote the extended maximal palindrome for each 1 < j <'t¢.

The above arguments suggest that for each group of maximal palindromes, there are
at most two distinct characters that can extend those palindromes after single character
substitution. For each position 7 in T, let ¥; denote the set of characters which can extend
maximal palindromes w.r.t. MaxPalEndr(i — 1) after character substitution at position i.
It now follows from Lemma 2 and from the above arguments that |2;| = O(min{o,logi}).
Also, when any character in X\ ¥; is given for character substitution at position 4, then no
maximal palindromes w.r.t. MazPalEndy(i — 1) are extended.

For each maximal palindrome P of T, let (i,¢,l) be a tuple such that ¢ is the ending
position of P, and [ is the length of the extended maximal palindrome P’ after the immediately
following character T'[i4 1] is substituted for the character ¢ = T'[i—|P|—1] which immediately
precedes the occurrence of P in T. We then radix-sort the tuples (i,¢,!) for all maximal
palindromes in T as 3-digit numbers. This can be done in O(n) time since T is over an
integer alphabet of size polynomial in n. Then, for each position i, we compute the maximum
value [, for each character ¢. Since we have sorted the tuples (i, ¢, 1), this can also be done in
total O(n) time for all positions and characters. See Figure 1 for a concrete example.

Let ¢ be a special character which represents any character in X\ X; (if X\ X; # (). Since
no maximal palindromes w.r.t. MazPalEndr(i — 1) are extended by &, we associate ¢ with
the length £ of the longest maximal palindrome w.r.t. MaxPalEndr(i —1). We assume that
¢ is lexicographically larger than any characters in 3;. For each position ¢ we store pairs
(¢,1c) in an array &; of size |X;| + 1 = O(min{o,logi}) in lexicographical order of ¢. Then,



Funakoshi et al.

given a character ¢ to substitute for the character at position ¢ (1 <7 < n), we can binary
search &; for (/,1.) in O(log(min{c,logn})) time. If ¢’ is not found in the array, then we
take the pair (¢,1;) from the last entry of &. We remark that Y"1, |€;| = O(n) since there
are 2n — 1 maximal palindromes in T and for each of them at most two distinct characters
contribute to Y., |&]. <

Finally, we consider maximal palindromes of the original string 7" whose lengths are
shortened in the edited string T” after substituting a character ¢’ for the original character
at position i.

» Observation 7 (Shortened maximal palindromes after single character substitution). A
maximal palindrome T[b..€] of T gets shortened in T' iff b < i <e, T[b+e—i] # ¢, and
i # e

» Lemma 8. It is possible to preprocess a string T of length n in O(n) time and space so
that later we can compute in O(1) time the length of the longest mazimal palindromes of T’
that are shortened after substitution of a character.

Proof. Let S be an array of length n such that S[i] stores the length of the longest maximal
palindrome that is shortened by the character substitution at position i. To compute S,
we preprocess T by scanning it from left to right. Suppose that we have computed S[i].
By Observation 7, we have that S[i] = 2(i — 2+5H) where T'[b..€] is the longest maximal

palindrome of T satisfying the conditions of Observation 7. In other words, T'[b..e] is the
b+e
2

maximal palindrome of T" of which the center is the smallest possible under the conditions.

For any position i < ¢’ < e, we have that S[i'] = S[i]. For the next position e + 1, we
can compute S[e + 1] in amortized O(1) time by simply scanning the array M from position
% to the right until finding the first (i.e., leftmost) entry of M which stores the length
of a maximal palindrome whose ending position is at least e + 1. Hence, we can compute S

in O(n) total time and space. |

Remark that maximal palindromes of T" which do not satisfy the conditions of Observa-
tions 5 and 7 are also unchanged in 7".The following lemma summarizes this subsection:

» Lemma 9. Let T be a string of length n over an integer alphabet of size polynomial in
n. It is possible to preprocess T of length n in O(n) time and space so that later we can
compute in O(log(min{o,logn})) time the length of the LSPals of the edited string T' after
substitution of a character.

3.3 Algorithm for deletions

Suppose the character at position 4 is deleted from the string T, and let T denote the
resulting string, namely T, = T'[1..i — 1]T[i + 1..n]. Now the RL factorization of T' comes
into play: Observe that for any 1 <i <n, T} = Tj%LFBeg(i) = TI’%LFEnd(i). Thus, it suffices
for us to consider only the boundaries of the RL factors for T

It is easy to see that an analogue of Observation 4 for unchanged maximal palindromes

holds, as follows.

» Observation 10 (Unchanged maximal palindromes after single character deletion). For
any position 1 < j < RLFEnd(i), MazPalEndr:(j) = MaxPalEndr(j). For any position
RLFBeg(i) < j <n, MaxPalBegy/(j) = MaxPalBegr(j).

12:7
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i RLFEnd()
v v
abcaaaabaaaaaacbb abcaaaabaaaaacbb
— . E—

Figure 2 Example for Observation 10. The maximal palindrome aaaabaaaa do not change if the
character a at position i is deleted. The result is the same if the character a at position RLFEnd(i)
is deleted.

i RLFEnd(i)

v v
abcaaaabaaaaacbb ak}caaaabaaaackgb
— <+ + +

Figure 3 Example for Observation 11. The maximal palindrome aaaabaaaa gets extended to
bcaaaabaaaacb if the character a at position ¢ is deleted. The result is the same if the character a
at position RLFEnd(i) is deleted.

i RLFEnd(i)
v

v
accaaaaabaaaaaccb accaaaaabaaaaccb
[, t | | e e |

Figure 4 Example for Observation 12. The maximal palindrome ccaaaaabaaaaacc gets shortened
to aaaabaaaa if the character a at position i is deleted. The result is the same if the character a at
position RLFEnd(3) is deleted.

See Figure 2 for a concrete example of Observation 10.

By the above observation, we can compute the lengths of the longest unchanged maximal
palindromes for the boundaries of all RL factors in O(n) time, in a similar way to the case
of substitution.

Clearly the new character at position RLFEnd(i) in the string T’ after deletion is
always T[RLFEnd(i) + 1], and a similar argument holds for RLFBeg(i). Thus, we have the
following observation for extended maximal palindromes after deletion, which is an analogue
of Observation 5.

» Observation 11 (Extended maximal palindromes after single character deletion). For any
s € MaxPalEndyr(RLFEnd(i) — 1), the corresponding mazximal palindrome T|RLFEnd(i) —
s..RLFEnd(i) — 1] centered at %’1(“_5—1 gets extended in T' iff T[RLFEnd(i) —s—1] =
T[RLFEnd(i) + 1]. Similarly, for any p € MazPalBeg(RLFBeg(i) + 1), the correspond-
ing mazimal palindrome T[RLFBeg(i) + 1..RLFBeg(i) + p| centered at %‘qmﬂm gets
extended in T' iff T[RLFBeg(i) + p + 1] = T[RLFBeg(i) — 1].

See Figure 3 for a concrete example for Observation 11.

Since the new characters that come from the left and the right of each deleted position
are always unique, for each RLFEnd(i) and RLFBeg(i), the longest maximal palindrome
that gets extended after deletion is also unique. Overall, we can precompute their lengths for
all positions 1 <4 < n in O(n) total time by using O(n) outward LCE queries in the original
string T'.

Next, we consider those maximal palindromes which get shortened after single character
deletion. We have the following observation which is analogue to Observation 7.

» Observation 12 (Shortened maximal palindromes after deletion). A mazimal palindrome
T[b..€] of T gets shortened in T iff b < RLFBeg(i) and RLFEnd(i) < e.

See Figure 4 for a concrete example for Observation 12.
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By Observation 12, we can precompute the length of the longest maximal palindrome
after deleting the characters at the beginning and ending positions of each RL factors in
O(n) total time, using an analogous way to Lemma 8.

Summing up all the above discussions, we obtain the following lemma:

» Lemma 13. 1t is possible to preprocess a string T of length n in O(n) time and space so
that later we can compute in O(1) time the length of the LSPals of the edited string T' after
deletion of a character.

3.4 Algorithm for insertion

Consider to insert a new character ¢’ between the ith and (i + 1)th positions in T, and let
T' =T[1.4|dT[i+1..n]. If ¢ # T[i] and ¢’ # T[i+ 1], we can find the length of the LSPals in
T’ in a similar way to substitution. Otherwise (if ¢/ = T[i] or ¢/ = T'[i + 1]), then we can find
the length of the LSPals in 7" in a similar way to deletion since ¢’ is merged to an adjacent
RL factor. Thus, we have the following.

» Lemma 14. Let T be a string of length n over an integer alphabet of size polynomial in n.
It is possible to preprocess in O(n) time and space string T so that later we can compute in
O(log(min{o,logn})) time the length of the LSPals of the edited string T' after insertion of
a character.

3.5 Hashing

By using hashing instead of binary searches on arrays, the following corollary is immediately
obtained from Theorem 1.

» Corollary 15. There is an algorithm for the 1-ELSPal problem which uses O(n) expected
time and O(n) space for preprocessing, and answers each query in O(1) time for single
character substitution, insertion, and deletion.

4 Algorithm for /-ELSPal

In this section, we consider the ¢-ELSPal problem where an existing block of length ¢’ in the
string T is replaced with a new block of length . This generalizes substitution when ¢’ > 0
and £ > 0, insertion when ¢/ = 0 and £ > 0, and deletion when ¢ > 0 and ¢ = 0.

This section presents the following result:

» Theorem 16. There is an O(n)-time and space preprocessing for the £-ELSPal problem
such that each query can be answered in O(€ + logn) time, where ¢ denotes the length of the
block after edit.

Note that the time complexity for our algorithm is independent of the length ¢’ of the original
block to edit. Also, the length ¢ of a new block can be arbitrary.

Consider to substitute a substring X of length ¢ for the substring T'[ip..i.] beginning at
position i, and ending at position 4., where i, — i + 1 = ¢ and X # Tip..i]. Let T" =
T1..ip— 1] X T[ic+1..n] be the string after edit. For ease of explanation, we assume that there
exist two positions j; < jo in X such that j; is the smallest position with T'[ip +j1 —1] # X [J1]
and js is the greatest position with T'[i, — €+ j2] # X[j2]. The other cases (e.g., X or T'[ip..i.]
is the empty string, j; and j, do not exist, or j; = j3) can be treated similarly. Given the
above assumption, we can restrict ourselves to the case where the first and last characters
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accbaabaabaabaabaabaiabaabaabccc

i

< N
N 7

Y

A
v

A

A 4

o

Figure 5 Example for Lemma 19, where Y = accbaabaabaabaabaaba and Z = abaabaabccc.
Here we have a = 8, § = 2, and v = 10.

of Tip..ie] differ from those of X: Otherwise, then let p, = lep(T[ip..ic], X) = j1 — 1 and
pe = lep(Tiy..i]) ", XB) = € — j5. We can compute py and p. in O(¢ — £ + 1) time by naive
character comparisons, where ¢ = ¢ — p, — p. = j2 — 71 + 1. Then, the above ¢-ELSPal query
reduces to an (-ELSPal query with edited string T'[1..ip + pp] X [po + 1.0 — pe]T[ic — pe..n].

We have the following observation for those of maximal palindromes in 7" whose lengths
do not change, which is a generalization of Observation 4.

» Observation 17 (Unchanged maximal palindromes after block edit). For any position 1 < j <
iy, MazPalEndr:(j) = MazPalEndr(j). For any position i. < j < n, MaxPalBegy., (j) =
MaxPalBegr(j).

Hence, we can use the same O(n)-time preprocessing and O(1) queries as the 1-ELSPal
problem: When we consider substitution for an existing block T'[ép..i.], we take the length of
the longest maximal palindrome ending before 7, and that of the longest maximal palindrome
beginning after i, as candidates for a solution to the ¢-ELSPal query.

Next, we consider the maximal palindromes of T' that get extended after block edit.

» Observation 18 (Extended maximal palindromes after block edit). For any s €
MazPalEndr(iy—1), the corresponding maximal palindrome T[ip—s..ip—1] centered at %
gets extended in T" iff OutLCEr (ip—s—1,4p) > 1. Similarly, for any p € MazPalBegy(i.+1),
the corresponding mazimal palindrome T[i. + 1..i, + p| centered at 2127”“ gets extended in
T" iff OUtLCET//(ie,ie +p+ 1) > 1.

It follows from Observation 18 that it suffices to compute outward LCE queries efficiently
for all maximal palindromes which end at position i, — 1 or begin at position i, + 1 in the
edited string 7”. However, there can be {2(n) maximal palindromes beginning or ending at
each position of a string of length n. Yet, we can compute the length of the longest maximal
palindromes that get extended after edit using periodic structures of maximal palindromes.

Let (s,d,t) be an arithmetic progression representing a group of maximal palindromes
ending at position 7, — 1. For each 1 < j < ¢, let s; denote the jth shortest element for
(s,d,t), namely, s; = s+ (j — 1)d. For simplicity, let Y = T'[1..iy — 1] and Z = XT[i. + 1..n].
Let Fxt(s;) denote the length of the maximal palindrome that is obtained by extending s;
inYZ.

» Lemma 19. Let o = lep(Y[1.|Y] — 1)), Z) and 8 = lep(Y[L..|Y| — s:))", Z). If there
exists s, € (s,d,t) such that s, + o = s, + B, then let v = lep(Y[1..|Y| — su))™, Z). Then,
for any s; € (s,d,t) \ {sn}, Ext(s;) = s; +2min{a, B+ (t — j)d}. Also, if sy exists, then
Ext(sp) = sp + 2y > Ext(s;) for any j # h.

See Figure 5 for a concrete example of Lemma 19.

Lemma 19 can be proven immediately from Lemma 12 of [14]. However, for the sake of
completeness we here provide a proof. We use the following known result:
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e [

<asdt; >
@rrtnndnnnnnnnnnnnana\¢————p| sunsssssannnnndnnnnsn >
<ad,t, >

<aydt; >

Figure 6 Illustration for the proof of Lemma 19, where a1 = s, a2 = s+t1d, and az = s+ (t1+t2)d.

» Lemma 20 ([14]). For any string Y and {s; | s; € (s,d,t)} C SufPals(Y), there exist
palindromes u,v and a non-negative integer k, such that (uv)**~1u is a suffiz of Y, |uv| = d
and |(uwv)ku| = s.

Now we are ready to prove Lemma 19 (see also Figure 6).

Proof. Let us consider Ezt(s;), such that s; € (s,d,t). By Lemma 20, Y[|Y| —s1 — (t —
1)d + 1] = (uwv)***~1u, where |uv| = d and |(uv)*u| = s.

Let z be the largest integer such that (Y[|Y| —z + 1..|Y|])® has a period |uv|. Namely,
(Y[|Y| — 2 + 1..|Y|])f is the longest prefix of Y that has a period |uv|. Then x is given as
z=lep(YE, (Y[1.]Y] — d)) + d. Let y be largest integer such that (uv)¥/? is a prefix of Z.
Then y is given as y = lep(Y R, Z).

Let e, =1Y|—xz+ 1 and e, = |Y| +y. Then, clearly string 7"[e;..e,| has a period d. We
divide (s, d,t) into three disjoint subsets as

<S, d, t> = <S,d,t1> @] <8 + t1d, d, t2> @] <8 + (tl + tg)d, d, t3>,

such that

Y| —e —sj+1>e, — Y] for any s; € (s,d, 1),

Y| —e —sj+1=e, — Y] for any s; € (s + t1d,d, t2),

Y| —e —sj+1<e,— Y] forany s; € (s+ (t1 + t2)d, d, t3),
and t1 +to +t3 = t.

Then, for any s; in the first sub-group (s, d, t1), Ezt(s;) = s; +2(e, —|Y|) = s; +2y. Also,
for any s; in the third sub-group (s + (t1 +t2)d, d, t3), Fxt(s;) =s; +2(|]Y| —e;—s; +1) =
sj +2(x — s;). Now let us consider s; € (as, d, t2), in which case s; = s, (see the statement
of Lemma 19). Note that 0 < t5 < 1, and here we consider the interesting case where
to = 1. Since the palindrome s; can be extended beyond the periodicity w.r.t. uv, we have
Ext(sy) = sp + 2v, where v = lep(Y[1..|Y] — sx)) %, 2).

Additionally, we have that y = lep(YE, Z) = lep((Y[1..]Y| = s1]), Z) = o where the sec-
ond equality comes from the periodicity w.r.t. wv, and that z—s; = lep((Y[1..|Y] — s, 2)+
(t—j)d =+ (t—j)d. Therefore, for any s; € (s,d,t), Ext(s;) can be represented as follows:

s; + 2 (a <B4+ (t—j)d)
Ext(s;) =< s; +2(B+ (t—j)d) (a>pf+(t—j)d)
55 + 27 (a=pB+(t—j)d)
This completes the proof. <
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T[1..ip-1] X Tlietl.n]

m

§

A
A

:S-‘r(l‘-l)a:' \TL

Figure 7 Illustration for Lemma 21, where solid arrows represent the matches obtained by naive
character comparisons, and broken arrows represent those obtained by LCE queries. Here we consider
the case where 0 < 7 < £. To compute «, we first perform a leftward LCE query. Here, the LCE
value is less than 7 and thus it is @. To compute 3, we also perform a leftward LCE query. Here,
the LCE value is at least 7, and thus we perform naive character comparisons to determine the
remainder of 3. Other cases can be treated similarly.

Due to Lemma 19, provided that «, 3, and v (if s;, exists) are already computed, then it
is a simple arithmetic to calculate the length of the longest extended maximal palindrome
from (s,d,t) in T" =Y Z.

» Lemma 21. Let T be a string of length n over an integer alphabet of size polynomially
bounded in n. It is possible to preprocess T in O(n) time and space so that later we can
compute in O(£+logn) time the length of the longest mazimal palindromes of T" that are
extended after replacing an existing block with a new block of length £.

Proof. Let (s, d,t) be any arithmetic progression representing a group of MazPalEndr(ip—1),
and «, (3, and - be the lcp values for this group as defined in Lemma 19. Suppose that we have
already processed all groups of shorter maximal palindromes. Let s’ be one of the already
processed maximal palindromes which has the longest extension of length 7 (i.e., s’ +27 is the
length of the extended maximal palindrome for s’). See also Figure 7. There are three cases:
(1) If 7 = 0, then we compute a by naive character comparisons between (T'[1..ip — s — 1])*
and X. (2) If 0 < 7 < ¢, then we first compute § = LeftLCEr(ip — s — 1,45 — 8" — 1).
(2-a) If & < 7, then @ = 4. (2-b) Otherwise (6 > 7), then we know that « is at least as
large as 7. We then compute the remainder of « by naive character comparisons. If the
character comparison reaches the end of X, then the remainder of « can be computed by
OutLCE7(ip — s — € — 1,i. + 1). Then we update 7 with . (3) If 7 > ¢, then we can
compute « by LeftLCEr(i, —s — 1,4, — s’ — 1), and if this value is at least ¢, then by
OutLCE7(ip —s — € —1,i. + 1). B and ~ (if it exists) can also be computed similarly.

After processing all arithmetic progressions representing the groups for MazPalEndr (i, —
1), the total number of matching character comparisons is at most £ since each position of
X is involved in at most one matching character comparison. Also, the total number of
mismatching character comparisons is O(logn) since for each arithmetic progression there
are at most three mismatching character comparisons (those for a, 8, and 7). The total
number of LCE queries in the original text T is O(logn), each of which can be answered in
O(1) time. Thus, together with Lemma 19, it takes O(¢ + logn) time to compute the length
of the longest maximal palindromes of T that are extended after block edit. |

» Remark. An alternative method to Lemma 21 would be to first build the suffix tree of
T#T!$ enhanced with a dynamic lowest common ancestor data structure [4] using O(n)
time and space [5], and then to update the suffix tree with string T#T?$X#' X #$' using
Ukkonen’s online algorithm [18], where #’ and $’ are special characters not appearing in T
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. T[1.ip-1] X Tliet]1..n]
i
B - T Siam SEUEEE >
p3 o3
e o3
< I3 o
———
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Figure 8 Illustration for Lemma 24, where solid arrows represent the matches obtained by
naive character comparisons, and broken arrows represent those obtained by LCE queries. Here
are three prefix palindromes of X of length p1, p2, and ps. We compute a1 naively. Here, since

p1+a1 < p2, we compute p2 naively. Since p2+as > ps, we compute LeftLCEr (i, —1,ip — a2 +a5—1).

Here, since its value reached o, we perform naive character comparison for X [p3 + o + 1..£] and
(T[1..ip — ay — 1])". Here, since there was no mismatch, we perform OutLCEz (i — £+ p3 — 1,ic +1)
and finally obtain as. Other cases can be treated similarly.

nor X. This way, one can answer LCE queries between any position of the original string
T and any position of the new block X in O(1) time. Since we need O(logn) LCE queries,
it takes O(logn) total time for all LCE queries. However, Ukkonen’s algorithm requires
O({log o) time to insert X#' X'$’ into the existing suffix tree, where ¢ = | X|. Thus, this
method requires us O(¢logo + logn) time and thus is slower by a factor of log o than the
method of Lemma 21.

Finally, we consider the maximal palindromes that get shortened after block edit.

» Observation 22 (Shortened maximal palindromes after block edit). A mazimal palindrome

T[b..e] of T gets shortened in T" iff b < iy < e and i, # bge, orb<i.,<eandi,# b+7€.

The difference between Observation 7 and this one is only in that here we need to consider
two positions ¢, and ¢.. Hence, we obtain the next lemma using a similar method to Lemma 8:

» Lemma 23. We can preprocess a string T of length n in O(n) time and space so that later
we can compute in O(1) time the length of the longest maximal palindromes of T" that are
shortened after block edit.

Finally, we consider those maximal palindromes whose centers exist in the new block X
of length ¢. By symmetric arguments to Observation 18, we only need to consider the prefix
palindromes and suffix palindromes of X. Using a similar technique to Lemma 21, we obtain:

» Lemma 24. We can compute the length of the longest mazximal palindromes whose centers
are inside X in O(¢) time and space.

Proof. First, we compute all maximal palindromes in X in O(¢) time. Let pq,...,p, be
a sequence of the lengths of the prefix palindromes of X sorted in increasing order. For
each 1 < j < u, let a; = lep(X[p; + 1..4], (T[1..3p — 1])R), namely, p; + 2a; is the length
of the extended maximal palindrome for each p;. Suppose we have computed a;_;, and
we are to compute «;. See also Figure 8. If p;_; + aj—1 < pj;, then we compute p; by
naive character comparisons. Otherwise, then let a; = pj—1 +aj_1 — pj. Then, we can
compute lep(X[p; + 1..p; + o], (T'[1..5 — 1)™) by a leftward LCE query in the original
string T'. If this value is less than a;, then it equals to a;. Otherwise, then we compute
lep(X[p; + o + 1.4, (T'[1..3p — 1))™) by naive character comparisons. The total number of
matching character comparisons is at most ¢ since each position in X can be involved in
at most one matching character comparison. The total number of mismatching character
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comparisons is also ¢, since there are at most ¢ prefix palindromes of X and for each of
them there is at most one mismatching character comparison. Hence, it takes O(¢) time to

compute the length of the longest maximal palindromes whose centers are inside X . |
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