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Abstract
The classical Four Russians speedup for computing edit distance (a.k.a. Levenshtein distance),
due to Masek and Paterson [15], involves partitioning the dynamic programming table into k-by-
k square blocks and generating a lookup table in O(ψ2kk2|Σ|2k) time and O(ψ2kk|Σ|2k) space
for block size k, where ψ depends on the cost function (for unit costs ψ = 3) and |Σ| is the size
of the alphabet. We show that the O(ψ2kk2) and O(ψ2kk) factors can be improved to O(k2 lg k)
time and O(k2) space. Thus, we improve the time and space complexity of that aspect compared
to Masek and Paterson [15] and remove the dependence on ψ.

We further show that for certain problems the O(|Σ|2k) factor can also be reduced. Using this
technique, we show a new algorithm for the fundamental problem of one-against-many banded
alignment. In particular, comparing one string of length m to n other strings of length m with
maximum distance d can be performed in O(nm + md2 lg d + nd3) time. When d is reasonably
small, this approaches or meets the current best theoretic result of O(nm + nd2) achieved by
using the best known pairwise algorithm running in O(m + d2) time [17, 22] while potentially
being more practical. It also improves on the standard practical approach which requires O(nmd)
time to iteratively run an O(md) time pairwise banded alignment algorithm.

Regarding pairwise comparison, we extend the classic result of Masek and Paterson [15] which
computes the edit distance between two strings in O(m2/ logm) time to remove the dependence
on ψ even when edits have arbitrary costs from a penalty matrix. Crochemore, Landau, and
Ziv-Ukelson [8] achieved a similar result, also allowing for unrestricted scoring matrices, but
with variable-sized blocks. In practical applications of the Four Russians speedup wherein space
efficiency is important and smaller block sizes k are used (notably k < |Σ|), Kim, Na, Park, and
Sim [13] showed how to remove the dependence on the alphabet size for the unit cost version,
generating a lookup table in O(32k(2k)!k2) time and O(32k(2k)!k) space. Combining their work
with our result yields an improvement to O((2k)!k2 lg k) time and O((2k)!k2) space.
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1 Introduction

Edit distance (a.k.a. Levenshtein distance) is one of the most natural and ubiquitous
measures of similarity between two strings. In the most common variant, unit cost, it counts
the minimum number of edits needed to transform one string into another. Here, we use
the Levenshtein definition of edits which include insertions, deletions, or substitutions of a
single character. However, in some cases edit operations may be assigned differring costs
from a penalty matrix and additional operations (e.g. inversions or transpositions) may be
considered. Computing this distance is a fundamental problem with applications in many
areas such as computation biology, natural language processing, and information theory.

The most well known algorithms use dynamic programming to solve the problem in
O(m2) time where m is the length of the strings. The only improvement to this has been the
Four Russians algorithm [15], running in O(m2/ logm) time. While the conditional hardness
results, such as [3], suggest this is unlikely to be improved further for arbitrary strings even
on small alphabets [5].

The problem of comparing a string against a large set of sequences is of central importance
in domains such as computational biology, information retrieval, and databases. The banded
alignment variant (a.k.a. the d differences approximate string matching problem), in which
we only report the distance when it is at most some parameter d is also highly relevant.
It’s useful in numerous settings wherein we only care about finding small distances or the
maximum distance between any two strings in known to be small. In gene clustering for
example, solving this problem is a key subroutine in many greedy clustering heuristics wherein
we iteratively choose a cluster center and form a cluster by recruiting all strings which are
within some small maximum distance d of the center [6]. With the development of faster
and cheaper DNA sequencing technologies, metagenomic sequencing datasets can contain
over 1 billion sequences [7].

Another area of research surrounding the Four Russians speedup is how to apply it in
practice. While the theoretical result uses a block size of logm, such a large block size is
impractical due the size of the lookup table exceeding hardware constraints. For the unit
cost version, [13] showed how to drastically reduce the required space, especially for large
alphabets, by avoiding redundant string comparisons. We show that our approach can be
combined with theirs to reduce the space (and preprocessing time) requirement even further.

1.1 Related Work
The edit distance problem is extremely well-studied and the following related work is by no
means exhaustive. We focus primarily on the aspects most related to this paper: pairwise
comparison, the Four Russians speedup, and one-against-many comparison. For simplicity,
we describe all results in the context wherein all strings have length exactly equal to m.

The most well-known approach for computing the edit distance between a pair of strings
of length m uses dynamic programming and requires O(m2). This was later improved to
O(m2/ logm) in 1980 using the Four Russians speedup [15, 14] and [8] achieved O(m2/ logm)
for unrestricted scoring matrices. The Four Russians speedup, originally proposed for matrix
multiplication, has been adapted to many problems besides edit distance including: RNA
folding [10], transitive closure of graphs [20], and matrix inversion [4]. On the negative
side, [3] recently showed that no algorithm for edit distance can do better than m2−ε time
unless the Strong Exponential Time Hypothesis (SETH) is false and [5] extended this to
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include strings on a binary alphabet. They accomplished this by reducing a satisfiability
problem to edit distance and showing that a subquadratic algorithm for edit distance implies
a subexponential algorithm for satisfiability. However, if we fix a maximum distance d and
only care about reporting the exact distance when it’s less than d, we call this the banded
alignment problem. This problem has seen improvements to O(md) time [9] and the current
best algorithm takes only O(m+ d2) time [17, 22].

One-against-many edit distance comparison involves comparing a single string to a set
of n other strings. Here, we consider only the banded alignment version of the problem
wherein we seek to find the distance to all strings within maximum distance d. This problem
can be solved in O(nm+ nd2) or O(nmd) time by iteratively applying the pairwise banded
alignment algorithms discussed above. Heuristic approaches may run much faster in practice
by exploiting properties of the input strings such as prefix similarity and storing the set of
strings in a clever data structure such as a trie or BK-tree [9]. However, little theoretical
progress has been made. A popular approach to this problem in the context of spell checkers
employs Levenshtein automata and/or transducers [21, 16, 12]. Assuming d is a fixed constant,
these algorithms run in O(nm) time. However, in practice they consider extremely small
values of d (at most 3 or 4) and their runtime appears to grow exponentially in d. In the
context of gene clustering in computational biology, [6] show that all pairs banded alignment
can be performed in O(n2m) time under the assumption that all strings are extremely
similar. They also use an extension of the Four Russians speedup to one-against-many
banded alignment, but our approach to this problem requires no assumptions on the input
strings.

The Four Russian speedup is well-studied in context of the regular expression membership
problem where the goal is to determine if a particular string matches a given regular
expression. Myers[18] showed that for a regular expression of length P and a string of length
m, the exact regular expression membership problem (no mismatches are allowed) can be
solved in O(mP/ logm) time using the Four Russian speedup compared to the naive O(mP )
runtime. Wu, Manber, and Myers [23] extended this result for approximate regular expression
membership problem where the goal is to check if a string is within an edit distance d from
the given regular expression. They showed that approximate regular expression matching
problem can be solved in O(mP/ logd+2m) time.

Space efficiency is also a major concern in practical applications of the Four Russians
speedup since the entire lookup table must be stored in main memory. Thus, block sizes
as small as k = 4 or 5 may be used. The classical approach for the unit cost variant uses
O(32kk|Σ|2k) space. Kim, Na, Park, and Sim [13] showed how to remove the dependence on
the alphabet size, generating a lookup table in O(32k(2k)!k2) time and O(32k(2k)!k) space.
This offers a significant improvement, for example, when |Σ| = 20 for protein sequences or
|Σ| = 26 for the English language.

1.2 Preliminaries

For simplicity of presentation, we assume all strings have equal length m. However, the
results extend easily to the case where strings have different lengths. We assume the lookup
table is any data structure that can perform lookups and insertions in O(k) time for blocks
which are identified by distinct keys of length O(k).

CPM 2018
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Figure 1 Example of classic Four Russians. Left: a single block. Notice that for any input in the
upper left corner, we can sum that value with one path along the edges of the block to recover the
value in the lower right corner. Note that the offset value in the lower right corner may be different
for the row and column vectors overlapping at that cell. In this case, the lower right cell is one more
than its left neighbor and one less than its above neighbor. Right: the full dynamic programming
table divided into sixteen 5 × 5 blocks. Note that the offset values in the example block may not
correspond to the optimal alignment of the two substrings shown since they depend on the global
alignment between the two full length strings.

1.2.1 The classical Four Russians speedup
In the classical Four Russians speedup of edit distance computation due to [15, 14], the
dynamic programming table is broken up into square blocks of size k-by-k as shown in the
right of Fig. 1. These blocks are tiled such that they overlap by one column/row on each
side (for a thorough description see [11]).

The high level idea of the Four Russians speedup is to precompute all possible solutions
to a block function and store them in a lookup table. The block function takes as input the
two substrings to be compared in that block and the first row and column of the block itself
in the dynamic programming table. It outputs the last row and column of the block. We
can see in Figure 1 that given the two strings and the first row and column of the table,
such a function could be applied repeatedly to compute the lower right cell of the table and
therefore, the edit distance.

There are several tricks that reduce the number of inputs to the block function to bound
the time and space requirements of the lookup table. For example, when the edits have unit
cost, the input row and column for each block can be reduced to vectors in {−1, 0, 1}k. These
offset vectors encode only the difference between one cell and the next (see Fig. 1) which is
known to be in in {−1, 0, 1}. It has also been shown that the upper left corner does not need
to be included in the offset vectors. This bounds the number of possible row and column
inputs at 3k each [15]. More generally, when edit costs are derived from a penalty matrix,
the number of row/column inputs is bounded by ψk where ψ is the number of possible offset
values and depends on the penalty matrix.

1.3 Our Contributions
We show a new way to store and query block functions. For a given pair of strings cor-
responding to a k-by-k block in the dynamic programming table, we store an entry in the
lookup table using only O(k2 lg k) time and O(k2) space. We show how to query this entry
in O(k) time. By contrast, the classical approach requires O(ψ2kk2) time and O(ψ2kk) space,
where ψ is the number of possible offset values and depends on the costs of edits, to store a
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lookup entry for a pair of strings since it computes the function for all possible row/column
offset vectors and O(k) time per query. Thus, we improve the time and space complexity of
that aspect by a factor of at least ψ2k/k and remove the dependence on ψ. This result is
stated in Theorem 1.

I Theorem 1. Given two strings corresponding to a k-by-k block, we can store a lookup
entry using O(k2 lg k) time and O(k2) space such that given any values for the first row and
column of the block, we can compute the last row and column of the block in O(k) time.

We demonstrate the power of our technique for block functions by designing an algorithm
for the fundamental problem of one-against-many banded alignment. In particular, comparing
one string of length m to n other strings of length m where we only need to report distances
within a maximum distance threshold d can be performed in O(nm+md2 lg d+ nd3) time.
When d is reasonably small, this improves on the common, naive approach which requires
O(nmd) time to iteratively run an O(md) time pairwise banded alignment algorithm. It also
approaches the best theoretic result of O(nm+nd2) achieved by using the best known pairwise
algorithm running in O(m+ d2) time [17, 22]. We note that the author of [17], describes the
O(m+ d2) time algorithm as “impractical” and “primarily of theoretical interest”. We are
somewhat more optimistic, observing that our algorithm blends neatly with approaches such
as [6] for comparing genetic sequences and as discussed in Section 4.3 can be implemented in
a way that exploits the prefix similarity occurring in practice.

I Theorem 2. Performing banded alignment with maximum distance d between a string of
length m and n other strings also of length m can be done in O(nm+md2 lg d+ nd3) time.

We extend the classic result of [15] which computes the edit distance between two strings
in O(m2/ logm) time to remove the dependence on ψ even when edits have costs derived
from a penalty matrix. Here, the number of entries in the lookup table does not depend on
the penalty matrix. We acknowledge that [8] also achieves the same O(m2/ logm) running
time on unrestricted scoring matrices. However, there are some differences between our
approach and theirs which may make one or the other more advantageous in different settings.
Most notably our approach adheres more closely to the classic Four Russians speedup and
uses a uniform block size which is necessary for our one-against-many algorithm. Uniform
block sizes also allow our technique to be combined easily with the space-efficient approach
in [13] and the gene clustering technique in [6] since both rely on splitting the dynamic
programming table into uniform size blocks. In the case of [6], this is crucial to exploiting the
prefix similarity among highly conserved genomic sequences. On the other hand, the blocks
in [8] vary in size in a clever way to take advantage of the compressibility of the strings being
compared. This yields a faster running time for pairwise comparison of strings with small
entropy, O(hn2/ logn), where h ≤ 1 is the entropy of the text.

I Theorem 3. Given a penalty matrix for edit operations, the edit distance between two
strings can be computed in O(m2/ logm) time.

In practical applications of the Four Russians speedup wherein space efficiency is important
and smaller block sizes k are used (notably k < |Σ|), [13] showed how to remove the
dependence on the alphabet size for the unit cost version, generating a lookup table in
O(32k(2k)!k2) time and O(32k(2k)!k) space. Combining their work with our result yields an
improvement to O((2k)!k2 lg k) time and O((2k)!k2) space.

I Theorem 4. For a block size k, a lookup table can be generated in O((2k)!k2 lg k) time
and O((2k)!k2) space such that we can find the unit cost edit distance between two strings of
length m in O(m2/k) time.

CPM 2018
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2 Storing and querying the block function

Here, we consider the crucial subroutine in our algorithms and prove Theorem 1. For a
block size k, we first show how to store a lookup entry for any two strings of length k in
O(k2 lg k) time and O(k2) space. Then, we show how, given two strings of length k and the
first row and column of the block, we can compute the last row and column in O(k) time
by querying the corresponding lookup entry. Notice that in contrast to the classical Four
Russians speedup, the information we precompute and store for a block function is based
only on the two strings being compared. Thus, we avoid having to store an entry for each of
the 32k possible input vectors considered in [15] (For unit costs, they encode rows/columns
as offset vectors in {-1, 0, 1} since the values in adjacent cells differ by at most 1, yielding 3k
possible inputs each for the row and column vectors).

2.1 Notation
We start by defining some notation, illustrated in Figure 2. Let U = {u1, u2, . . . , u2k−1} be an
ordered set of the cells in the first row and column of the block and let V = {v1, v2, . . . , v2k−1}
be an ordered set of the cells in the last row and column of the block. For both sets, the
ordering starts with the upper right corner and ends in the lower left corner. Thus, both
u1 and v1 correspond to the upper right corner, uk corresponds to the upper left corner, vk
corresponds to the lower right corner, and both u2k−1 and v2k−1 correspond to the lower left
corner.

For each pair of cells (u, v), we store the least cost cu,v of any path through the block
from u to v. If no such path exists, we set cu,v =∞ and if u and v correspond to the same
cell, we set cu,v = 0. Note that cu,v is not necessarily based on the optimal alignment within
the entire block. It corresponds to an alignment of the subset of the block with u as the
upper left corner and v as the lower right. Also, recall that this block will be part of a larger
dynamic programming table and the path through the block corresponding to the best global
alignment may not be the same as the path corresponding to the best local alignment within
the block.

We can think of this set of costs as a complete, weighted bipartite graph G = {U, V, U×V }
with weights cu,v on the edges. We also use cu and cv to denote the values stored in the
corresponding cells of the block within the dynamic programming table. When we query a
block function for two strings, the cu values (input row and column) will be given as input
and our goal will be to compute the cv values (output row and column). Thus, if we consider
the values stored in the cells after the full dynamic programing table has been computed, we
have that cv = minu∈U (cu + cu,v).

2.2 Storing lookup entries
For every pair of substrings we wish to query eventually, our lookup table will simply store
the cost cuv for every edge in the graph G defined by comparing those substrings. These
cost values will be stored in a |V | × |U | matrix M with a row for each v ∈ V and a column
for each u ∈ U . Cell Mji will contain cuivj . We now show that computing G and storing M
for any pair of substrings of length k can be done in O(k2 lg k) time.

I Lemma 5. Given a pair of strings of length k, we can compute all cu,v in O(k2 lg k) time.

Proof. Note that each cu,v can be seen as the weight of the shortest path in a grid graph
of dimension k × k. Thus the algorithm of [19] can be applied. That algorithm requires
O(k2 lg k) preprocessing time and can then compute each of the O(k2) cu,v entries in O(lg k)
time. This leads to an overall running time of O(k2 lg k). J
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Figure 2 Illustration of how the dynamic programming table is represented as a bipartite graph
of least cost paths. Left: The dynamic programming table for a block comparing the strings “ACAT”
and “TAGA” with all u, v, cu, and cv labeled. Right: The bipartite graph representation. Note
that this will be a complete, weighted bipartite graph with costs cu,v for all pairs in U × V .

For completeness, we also state the simple fact that the space requirement for an entry is
O(k2).

I Lemma 6. Given a pair of strings of length k, storing the entry requires O(k2) space.

Proof. The proof follows directly from the fact that we are simply storing the edges of a
complete, weighted bipartite graph G = {U, V, U × V } with |U | = |V | = 2k − 1. J

2.3 Querying a block function

Given the two substrings and the input row and column vectors, we now show how to use
our lookup entry matrix M to compute the output row and column (a.k.a all cv for v ∈ V )
in O(k) time.

I Lemma 7. Given the input row and column vectors and the O(k) × O(k) lookup entry
matrix M , we can compute the output row and column in O(k) time using the SMAWK
algorithm [2].

Proof. Let ~w be the vector of all cu values generated from the input row and column vectors.
Scaling each column ofM by the corresponding cell in ~w gives us a new matrixM ′ wherein the
minimum value in each row j is our desired output value cvj = minu∈U (cu+cu,vj ). It is known
that M ′ is totally monotone [1, 19] and thus we can find row minima in O(|U |) = O(k) time
using the classic SMAWK algorithm [2]. Note that we need not explicitly generate M ′ since
the value of any cell we wish to query can be computed fromM and ~w asM ′ji = Mji+ ~wi. J

The proof of Theorem 1 follows from Lemmas 5, 6, and 7.

CPM 2018
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2.4 Alternatives to query a block function without SMAWK

While our algorithm for banded alignment in Section 3 uses larger block sizes than the typical
pairwise Four Russians approach, in many cases, the blocks will be small enough for SMAWK
to be inefficient in practice. As such, we introduce a simpler query algorithm here and briefly
discuss the potential for future work to speed up the query function in practice.

This simpler query algorithm achieves a slightly worse asymptotic running time of O(k lg k)
and can be described as follows. Recall that our goal is to find the minimum value of each
row in the totally monotone matrix M ′ with |U | columns and |V | rows. We first find the
minimum value in row |V |/2 and let mincol be the column containing that cell. We then
perform the same operation recursively on two submatrices of M ′. The first submatrix
includes all rows up to |V |/2 and all columns up to (and including) mincol. The second
includes the rows after |V |/2 and columns from mincol to |U |. We do not claim this simpler
algorithm is a novel approach to finding row minima and include it merely to illustrate
possible alternatives to SMAWK.

I Lemma 8. The algorithm described here runs in O(k lg k) time and outputs the correct
result.

Proof. For the running time, note that each recursive call nearly partitions the columns
of M ′ (pairs of submatrices overlap at single columns), resulting in O(|U |) = O(k) time
spent at each level of recursion. Since we split the rows in half at each level, there will be
O(lg |V |) = O(lg k) levels total, giving a final running time of O(k lg k).

The correctness follows directly from the properties of totally monotone matrices also
utilized in the analysis of SMAWK. J

Looking to the future, we note that neither SMAWK nor the algorithm in this section
leverage all of the specific properties of the matrix M ′. For example, M ′ is not an arbitrary
totally monotone matrix. It comes from M , a matrix which we can afford to spend k2 time
preprocessing, scaled by ~w, a vector with the property that adjacent cells differ by at most 1
in the unit cost setting.

3 One-against-many comparison

3.1 Extending the Four Russians approach to banded alignment

For our algorithm for one against many banded alignment, we use the extension to banded
alignment from [6] which simplifies both the analysis and practical implementation. The
extension uses a slightly different block function and way of tiling blocks to cover the relevant
diagonal “band” of the dynamic programming table. The blocks now overlap on a square of
size d+ 1 at the upper left and lower right corners. We will call these overlapping regions
overlap squares. The block function still takes as input the two substrings to be compared.
The set U contains only the first row and column of the the upper left overlap square and
V contains only the first row and column of the lower right overlap square as well as the
difference between the upper left corners of the two overlap squares.

Thus, we can move directly from one block to the next, storing a sum of the differences
between the upper left corners. In this case, reaching the final lower right cell of the table
requires an additional O(d2) operation to fill in the last overlap square, but this adds only a
negligible factor to the running time.
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Figure 3 Example of our approach to the Four Russians speedup. Left: a block for maximum
edit distance d = 2. The output δ represents the offset from the upper left corner of one block to
the upper left corner of the next block. Note that we only need to consider a diagonal band of the
block itself. Right: using these blocks to cover the diagonal band of the dynamic programming
table in the context of banded alignment.

3.2 Our algorithm
We start with some notation and definitions. For a string s, let si,i+k be a length k

substring starting at index i of s. We define two types of block comparisons, identities and
differences, based on the strings being compared. An identity comparison is between the
substring si,i+k and another substring that is identical to one of the substrings sj,j+k for
j ∈ {i − d, i − d + 1, . . . , i, . . . , i + d}. All other comparisons are difference comparisons.
In other words, identity comparisons between two strings will come from long common
subsequences between the two strings. Difference comparisons will come from the locations
where an edit occurs. Note that we can stop comparing two strings once we’ve encountered
more than d differences among their prefixes. Let S be a set of strings and let p be the single
string we wish to compare to all strings in S.

The algorithm can be summarized as follows. We first compute and store lookup entries for
all possible identity comparisons for each block in p. We then perform pairwise comparisons
between p and each string in S. A pairwise comparison is computed as follows. For each
block, we first query the lookup table using the corresponding substrings. If we find an
entry (similarity comparison), we query it as described in Section 2. Otherwise (difference
comparison), we perform standard banded alignment on the two strings with the first row
and column of the table initialized to the values of the input row and column of the block.
If at any time during a pairwise comparison the distance accumulated exceeds d, then we
immediately halt and move on to the next pair.

We divide the analysis into three parts: the time to compute and store the lookup table,
the time to query the lookup table during pairwise comparison, and the time to compute the
block function for difference comparisons.

I Lemma 9. The time to compute and store the lookup table for all block identity comparisons
in a single string p of length m and max distance d is O(md2 lg d).

Proof. Let the block size k = 2d. Then p will be divided into m/d − 1 blocks. For any
given block, let pi,i+k be the substring of p corresponding to that block. Then, for every
j ∈ {i− d, i− d+ 1, . . . , i, . . . , i+ d}, we need to store the comparison between pi,i+k and
pj,j+k. We need not compare pi,i+k to any substrings outside this range since that would
imply an alignment of distance greater than d. Thus, for each block we need to store lookups

CPM 2018
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for at most 2d+ 1 = O(d) different identity comparisons. Computing the lookup entry for
each comparison takes O(k2 lg k) = O(d2 lg d) time by Theorem 1. Putting it all together,
we have O(m/d · d · d2 lg d) = O(md2 lg d). J

I Lemma 10. Excluding the time to compute block functions for difference comparisons, the
time to compare a string p of length m to n other strings using the precomputed lookup table
is O(nm).

Proof. Each pairwise comparison involves computing m/d− 1 block functions. If a block
corresponds to an identity comparison querying the block function takes O(k) = O(d) time
by Theorem 1. Otherwise, if it’s a difference comparison block, the only time will come from
checking the lookup table which we’ve assumed takes O(d) time. It follows that the running
time for each pairwise comparison is O(m) and comparing p to all n strings requires O(nm)
time. J

I Lemma 11. The time needed to compute block functions for difference comparisons between
p and all n other strings is O(nd3).

Proof. Notice that each edit is present in at most two overlapping blocks. It follows that
for a given pair of strings, the number of block queries corresponding to differences can be
at most 2(d+ 1) = O(d) since we will halt a comparison if the distance ever reaches d+ 1
or more. Thus, the running time to compute the full dynamic programming for difference
blocks for all n pairwise comparisons is O(n · d · d2) = O(nd3). J

The proof of Theorem 2 follows from combining Lemmas 9, 10, and 11.

4 Extensions and applications

In this section, we briefly show how the results of Section 2 can be applied to other settings
in which the Four Russians speedup is used for computing string edit distance.

4.1 Comparing two arbitrary strings with a penalty matrix
As with the classical Four Russians, when the alphabet size is constant, we can choose the
block length k to be an appropriate logarithmic function of the string length m such that
the lookup table can be computed efficiently. For an alphabet Σ, there are |Σ|2k pairs of
string of length k. By Theorem 1, each pair requires O(k2 lg k) time to compute the lookup
entry regardless of the costs of the edits. Thus, the preprocessing for k = (log|Σ|m)/2 takes
O(m log2m log logm) time. Since the total number of blocks in the dynamic programming
table is O(m2/k2) and computing each block function from the lookup table takes O(k)
time by Theorem 1, the running time to compute the distance using the lookup table is
O(m2/ logm). This completes the proof of Theorem 3.

4.2 Improved space-efficiency
The approach in Section 2 can be combined with the work of [13] to achieve the improved
time and space bound in Theorem 4 for computing the lookup table. Notice that Theorem 1
gives a time and space bound for each pair of substrings for which we need to compute
a block function. Specifically, each pair of strings contributes O(k2 lg k) time and O(k2)
space. As a complement, [13] showed how to encode strings in such a way that we reduce the
number of redundant string comparisons. There, the number of strings compared is reduced
to O((2k)!). Theorem 4 follows from these simple observations.
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4.3 Exploiting prefix similarity in one-against-many comparison
Since the one-against-many banded alignment algorithm in Section 3 uses the same extension
to banded alignment as [6], it can be combined with other techniques from that paper. In
particular, they divide all of the strings in the database S into blocks and store the blocks in
a trie-like data structure. This allows them to exploit prefix similarity of the strings of S and
further improve the running time in practice. Additionally, that uses lazy computation, the
technique of computing and storing the lookup table on-the-fly rather than precomputing it
to heuristically avoid comparing substrings which don’t actually appear in the dataset. In
the context of Theorem 2, that could potentially reduce the md3 factor.

5 Conclusion and future directions

In this paper, we provided an approach to storing and querying block functions in the
Four Russians speedup for edit distance computation using less time and space than the
original method. We demonstrated how this approach can lead to an algorithm for the
one-against-many banded alignment problem. Finally, we showed how our approach can
easily be combined with prior work to gain additional improvements such as space-efficiency.

The problems of comparing two similar strings and one-against-many comparison of
highly similar strings have applications in variety of domains. For example, searching a query
sequence against the database of multiple sequence within a certain similarity threshold is
one of the basic tasks in designing database management systems. In the case of document
plagiarism detection, the task is to compare two documents which are assumed to be highly
similar to each other. In the case of computational biology, sequence similarity detection is a
ubiquitous task in most analysis. Although there have been efficient algorithms proposed in
literature, they are not very easy or practical to implement on a routine basis. Our algorithm
may bridge this gap and be easier to implement while yielding similar theoretical bounds.

There are many questions and potential future directions following this work. One natural
question is whether the techniques in this paper can be applied to other problems yielding a
Four Russians speedup. In many cases, such as boolean matrix multiplication, the answer is
no. However, problems more closely related to edit distance may yield some improvement.
Regarding the specific problems in this paper, the O(nd3) term in the one-against-many
result can likely be improved to O(nd2) to match [17] and doing so using practical techniques
would be a nice addition to this work. Similarly, improving the constant factors in the
query by using a more specialized algorithm than SMAWK (even an asymptotically worse
algorithm) could enhance the practical applications of our approach. On the hardness side,
which of these results are tight?
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