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Abstract
A square is a non-empty string of form Y Y . The longest common square subsequence (LCSqS)
problem is to compute a longest square occurring as a subsequence in two given strings A and
B. We show that the problem can easily be solved in O(n6) time or O(|M|n4) time with O(n4)
space, where n is the length of the strings andM is the set of matching points between A and
B. Then, we show that the problem can also be solved in O(σ|M|3 + n) time and O(|M|2 + n)
space, or in O(|M|3 log2 n log logn+ n) time with O(|M|3 + n) space, where σ is the number of
distinct characters occurring in A and B. We also study lower bounds for the LCSqS problem
for two or more strings.
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1 Introduction

Computing the longest common subsequence (LCS) of given strings is the fundamental way
to compare the strings. Given two strings A and B of length n each, the basic dynamic
programming solution computes the LCS of A and B in O(n2) time and space [27]. While
faster solutions for the LCS problem exist, such as those running in O(n2/ log2 n) time for
constant-size alphabets [22], and in O(n2(log logn)2/ log2 n) time or in O(n2 log logn/ log2 n)
time for non constant-size alphabets [5, 12] 1, no strongly sub-quadratic O(n2−ε)-time

1 Grabowski’s method [12] works when the length m of one string is at least log2 n, where n is the length
of the other string.
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solutions are known for any constant ε > 0. Difficulty in breaking this barrier is supported
by recent studies on conditional lower bounds for string similarity measures: It is shown
in [1] that if there is an O(n2−ε)-time solution for the LCS problem with a constant ε > 0,
then the famous strong exponential time hypothesis (SETH ) fails.

To reflect a priori knowledge to the solution to be found, many variants of the LCS
problem where some constraints are introduced in the solution have been considered (see
e.g. [7, 2, 14, 20, 9, 10, 28, 11, 29, 30, 8, 16, 19]).

This paper considers a new variant of the LCS problem where the solution must be a
square (of form Y Y with some string Y ), called the longest common square subsequence
(LCSqS) problem defined as follows: Given two strings A and B of length n, compute (the
length of) a longest square which appears as a subsequence in A and B. For instance, for
A = babcabdbaca and B = dbcacbbcacd, their LCSqSs are bacbac and bcabca of length 6.

We propose several solutions for the LCSqS problem. We first show that there is a
simple O(n6)-time O(n4)-space solution for the LCSqS problem. The algorithm is also
improved to O(|M|n4)-time by using the setM of matching points between the two input
strings. Albeit M can be as large as O(n2) in the worst case, it can be smaller in many
cases. We then give two more sophisticated algorithms based on the set R of matching
rectangles: one runs in O(σ|M||R| + n) = O(σ|M|3 + n) time with O(|M|2 + n) space,
and the other in O(|M||R| log2 log logn+ |M|3 + n) = O(|M|3 log2 log logn+ n) time with
O(|M|3 + n) space, where σ denotes the number of distinct characters that appear in both
strings. These two solutions are faster than the simple O(n6)-time or O(|M|n4)-time solutions
whenM is sparse. Note e.g. that under uniformly distributed random text |M| ≈ n2/σ and
|R| ≈ |M|2/σ ≈ n4/σ3, in which case the expected running times of our three algorithms
would be O(n6/σ), O(n6/σ3) and O(n6(log2 log logn+ σ)/σ4) respectively.

The set M of matching points can easily be computed in O(|M| + n) time under a
common assumption that the input strings are over an integer alphabet of size nO(1).

We also study hardness of the LCSqS problem for two or more strings. The k-LCSqS
problem is to compute the LCSqS of given k ≥ 2 strings. We show that the k-LCSqS problem
is at least as hard as the 2k-LCS problem which asks to compute the LCS of 2k given strings.
This implies that for unfixed k the k-LCSqS problem is NP-hard, and that for fixed k it
seems hard to solve the k-LCSqS problem in O(nk−ε) time for any constant ε > 0.

Related work
It is known that one can compute (the length of) a longest square subsequence (LSqS) of
a single string of length n in O(n2) time and O(n) space [18]. Also, it is shown in [1] that
if there is an O(n2−ε)-time solution for the LSqS problem with a constant ε > 0, then the
famous strong exponential time hypothesis (SETH ) fails. Our results for the LCSqS problem
can be seen as a generalization of these results for the LSqS problem.

Technically speaking, our results for the LCSqS problem are most related to those for the
longest common palindromic subsequence (LCPS) problem, where the task is to find a longest
palindrome that appears as a subsequence in both of the two strings A and B. Chowdhury
et al. [8] were the first to consider the LCPS problem, giving an O(n4)-time solution and
an O(|M|2 log2 n log logn + n)-time solution2. Inenaga and Hyyrö [16] proposed another

2 Our careful analysis reveals that Chowdhury et al.’s algorithm [8] uses at least Ω(min{|M|2n2 log n, n3})
space (and hence time), but it can be fixed to run in O(|M|2 log2 n log log n+n) time using our technique
proposed in Section 3.
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algorithm which solves the LCPS problem in O(σ|M|2 + n) time and O(|M|2 + n) space.
Very recently, Bae and Lee [3] showed how to solve the LCPS problem in O(|M|2 + n) time.
Inenaga and Hyyrö [16] also showed that the LCPS problem for two strings is at least as
hard as the LCS problem for four strings, implying that it seems hard to solve the LCPS
problem in O(n4−ε) time for any constant ε > 0.

2 Preliminaries

Let Σ be the alphabet. An element X of Σ∗ is called a string. The length of string X
is denoted by |X|. For any 1 ≤ i ≤ |X|, X[i] denotes the ith character of X. For any
1 ≤ i ≤ j ≤ |X|, X[i..j] denotes the substring of X beginning at position i and ending at
position j.

A string X is said to be a subsequence of another string Y if there exists a sequence
1 ≤ i1 < · · · < i|X| ≤ |Y | of increasing positions of Y such that X = Y [i1] · · ·Y [i|X|]. In
other words, a subsequence of Y can be obtained by removing zero or more characters
from Y . The k-LCS problem is to compute the length of a longest common subsequence
(LCS) of given k strings, where k ≥ 2. Let LCS(A1, . . . , Ak) denote the length of a longest
common subsequence of k strings A1, . . . , Ak. A non-empty string X of length 2k is called
a square if there exists a string Y of length k such that X = Y Y . A square S is called a
square subsequence of another string Y if square S is a subsequence of Y . Let LCSqS(A,B)
denote the length of a longest common square subsequence (LCSqS) of strings A and B. This
paper deals with the problem of computing LCSqS(A,B) for two given strings A and B.
For simplicity, we assume that the input strings A and B are of the same length and let
n = |A| = |B|. Our algorithms can easily be extended to the case where |A| 6= |B| as well as
to the case where we wish to compute one longest common square subsequence of A and B.

For two strings A and B, a pair (i, j) of positions 1 ≤ i ≤ |A| and 1 ≤ j ≤ |B| is said to
be a matching point if A[i] = B[j]. The set of all matching positions of A and B is denoted
by M(A,B), namely, M(A,B) = {(i, j) | 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|, A[i] = B[j]}. We will
abbreviateM(A,B) asM when it is clear from the context.

3 Algorithms

In this section, we present several algorithms for computing LCSqS(A,B). In order to avoid
processing unnecessary characters, we will assume that the input strings A and B have been
already preprocessed by an alphabet reduction technique [16] as follows: First, we compute
the lexicographical ranks of the characters in A and B. Assuming that A and B are drawn
from an integer alphabet of size nO(1), this can be done in O(n) time with radix sort. We
then replace each character in A and B with its rank, turning A and B into strings over the
integer alphabet [1, 2n]. Then we remove every character that appears only either in A or in
B. It is clear that this preprocessing essentially preserves common subsequences between
the original A and B and thus has no negative effect on computing LCSqS(A,B). Note that
n ≤M holds after alphabet reduction, whileM = O(n2) still also holds.

3.1 Simple Algorithm
Our first algorithm considers Θ(n2) pairs of partitioning of A and B. Namely, we have that

LCSqS(A,B) = max
1≤i<n,1≤j<n

{2× LCS(A[1..i], A[i+ 1..n], B[1..j], B[j + 1..n])}.

CPM 2018
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This immediately implies an O(n6)-time O(n4)-space algorithm for computing LCSqS(A,B),
since the LCS of four strings can be computed in O(n4) time and space by standard DP.

The O(n6)-time complexity can be improved as follows. For any matching point (i, j) ∈M,
let i′ (resp. j′) be the smallest position such that i < i′, j < j′, and (i′, j′) ∈ M. If such
(i′, j′) does not exist, then let i′ = j′ = n.

I Observation 1. For any i ≤ k < i′ and j ≤ h < j′, LCS(A[1..k], A[k+ 1..n], B[1..h], B[h+
1..n] = LCS(A[1..i], A[i+ 1..n], B[1..j], B[j + 1..n].

By Observation 1, it is sufficient for us to consider only |M| partition points between A and
B. Hence, we can compute LCSqS(A,B) in O(|M|n4) time and O(n4) space.

3.2 O(σ|M|3 + n)-time algorithm
Here we present our O(σ|M|3 + n)-time algorithm for computing LCSqS(A,B), where σ
is the number of distinct characters occurring in A and B. This algorithm is based on
Inenaga and Hyyrö’s algorithm [16] which computes (the length of) a longest palindromic
common subsequence of two given strings in O(σ|M|2 + n) time. Consider a 2D plain
where the string A corresponds to the vertical axis upward (i.e., A[1] is on the bottom and
A[n] is on the top), and the string B corresponds to the horizontal axis rightward (i.e.,
B[1] is on the left end and B[n] is on the right end). Our key idea is to represent each
common square subsequence of strings A and B by matching rectangles defined as follows:
For 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n, a tuple r = (i, j, k, l) is said to be a matching
rectangle iff A[i] = A[j] = B[k] = B[l], and more specifically a c-matching rectangle iff
A[i] = A[j] = B[k] = B[l] = c. For a matching rectangle r = (i, j, k, l), (i, k) is said to be the
left-bottom corner of r, and (j, l) is said to be the right-upper corner of r. Let R denote the
set of matching rectangles of A and B. Notice |R| = O(|M|2). For two matching rectangles
r = (i, j, k, l) and r′ = (i′, j′, k′, l′), let

r = r′ ⇐⇒ i = i′, j = j′, k = k′, and l = l′

r < r′ ⇐⇒ i < i′, j < j′, k < k′, and l < l′

r C r′ ⇐⇒ i ≤ i′, j ≤ j′, k ≤ k′, l ≤ l′, and r 6= r′.

For two c-matching rectangles r = (i, j, k, l) and r′ = (i′, j′, k′, l′), let

r � r′ ⇐⇒ i ≤ i′, j ≤ j′, k ≤ k′ and l ≤ l′.

A sequence 〈r1, . . . , rm〉 of matching rectangles is said to be a sequence of diagonally
overlapping matching rectangles (DOMRs) iff rx < rx+1 for all 1 ≤ x < m, im < j1 and
km < l1, where we use the notation rh = (ih, jh, kh, lh) for all h = 1, . . . ,m. The size of a
sequence 〈r1, . . . , rm〉 of DOMRs is the number m of overlapping rectangles in it.

The following observation lays the foundation to the algorithms of this subsection (and
to the one of the following subsection as well):

I Observation 2. There is a common square subsequence T of length 2m of strings A and
B iff there exists a sequence 〈r1, . . . , rm〉 of DOMRs of length m.

See Figure 1 which depicts the relationship between common square subsequences and
DOMRs for two strings A and B. By Observation 2, the problem of computing LCSqS(A,B)
reduces to the problem of finding a longest sequence of DOMRs.
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Figure 1 Illustration of the relationship between common square subsequences and DOMRs.

The basic idea of our algorithm is to extend a given sequence S = 〈r1, . . . , rm〉 of DOMRs
by adding a new matching rectangle to its right-end. We say that a c-matching rectangle
r = (i, j, k, l) is a c-extension of S if 〈r1, . . . , rm, r〉 is a sequence of DOMRs. A c-extension
r of S is dominant if the condition r � r′ holds between r and any c-extension r′ of S. The
algorithms in this subsection are based on the following lemmas.

I Lemma 3. Let S = 〈r1, . . . , rm〉 be any sequence of DOMRs. If S has at least one c-
extension, then S has a unique dominant c-extension r′. It is furthermore possible to compute
any such r′ in O(1) time after initial preprocessing of A and B in O(σn) time and space.

Proof. Consider r′ = (i′, j′, k′, l′), where i′ = min({i | im < i < j1, A[i] = c} ∪ {n + 1}),
j′ = min({j | jm < j,A[j] = c} ∪ {n+ 1}), k′ = min({k | km < k < l1, B[k] = c} ∪ {n+ 1})
and l′ = min({l | l > lm, B[l] = c}∪{n+1}). If any of i′, j′, k′ and l′ holds the sentinel value
n+ 1 that corresponds to non-existence of a further suitable match with c, then S cannot
have any c-extension. Otherwise A[i′] = A[j′] = B[k′] = B[l′] = c and r′ is a c-matching
rectangle. Furthermore im < i′, jm < j′, km < k′, lm < l′, i′ < j1 and k′ < l1, so r′ is a
c-extension of S. If we assume the existence of another c-extension r′ of S such that r′′ � r′
does not hold, then at least one of the definitions of i′, j′, k′ and l′ above is contradicted.
Hence r′ must be dominant. Finally, r′ must clearly be unique: if also r′′ 6= r′ is a dominant
c-extension, then both r′ � r′′ and r′′ � r′ must hold, but this is possible only if r′′ = r′.

The values i′ and j′ can be computed in O(1) time by using a precomputed table PA of
size σ × n that holds the values PA[c, h] = min({i | h < i,A[h] = c} ∪ {n+ 1}) for all c ∈ Σ
and 1 ≤ h ≤ n. The values k′ and l′ can be computed in O(1) time by using an analogous
precomputed table PB with values PB[c, h] = min({i | h < i,B[h] = c} ∪ {n + 1}). Both
tables can be precomputed in O(σn) time and space in a straight-forward manner. J

Note that the proof of Lemma 3 refers only to r1 and rm when determining the unique
dominant extension of 〈r1, . . . , rm〉: any inner rectangle ri for 1 < i < m does not need to be
considered. Thus all sequences of DOMRs that begin with the rectangle r1 and end with the
rectangle rm share the same unique dominant extensions.

I Lemma 4. Let S = 〈r1, . . . , rm〉 be any sequence of at least two DOMRs. If any c-matching
rectangle rh with 1 < h ≤ m is replaced by the dominant c-extension of 〈r1, . . . , rh−1〉, also
the resulting sequence of matching rectangles is a sequence of DOMRs.

Proof. The lemma clearly holds if h = m, so consider the case 1 < h < m. Let (i′, j′, k′, l′)
be the dominant c-extension of 〈r1, . . . , rh−1〉, and let S′ = 〈r′1, . . . , r′m〉 denote the sequence
obtained from S by replacing rh with (i′, j′, k′, l′). S is a sequence of DOMRs, and thus

CPM 2018
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i′m = im < j1 = j′1, k′m = km < l1 = l′1, and rx < rx+1 for 1 ≤ x < m. On the other
hand r′h−1 < r′h, as also 〈r′1, . . . , r′h〉 = 〈r1, . . . , rh−1, (i′, j′, k′, l′)〉 is a sequence of DOMRs.
Because r′h is dominant, we have r′h−1 < r′h � rh < rh+1 = r′h+1, which in turn implies that
r′h < r′h+1 for 1 ≤ h < m, and hence S′ fulfills all conditions of a sequence of DOMRs. J

Basic algorithm. The basic principle of our first rectangle-based algorithm, Algorithm 1,
is to fix the first left-bottom matching rectangle rb, and then try to extend it as long as
possible to the right-upper direction. For each such starting rectangle rb, we compute a
dynamic programming table DPrb

of size O(|M|2) such that DPrb
[re] will finally store the

length of the longest sequence of DOMRs beginning with rb and ending with re, where re is
either rb itself or a dominant extension. In more detail, Algorithm 1 works as follows:

Algorithm 1:
Preprocessing: Compute a list L of all matching rectangles sorted according to < and
� by radix sorting all rectangles (i, j, k, l) as 4-digit numbers.

Compute longest sequence of DOMRs: For each matching rectangle rb (in any
order), perform the following:
(1) For each re ( 6= rb), we initialize DPrb

[re]← 0. We let DPrb
[rb]← 2.

(2) Suppose rb is the ith element of L. For each j = i+ 1, . . . , |L| in increasing order,
let r ← L[j] and attempt to extend a sequence 〈rb, . . . , r〉 of DOMRs as follows:
(a) If DPrb

[r] = 0, then no sequence of DOMRs of form 〈rb, . . . , r〉 exists.
(b) Otherwise, for each character c, try to compute the unique dominant c-extension

r′ of any sequence 〈rb, . . . , r〉 of DOMRs which begins with rb and ends with r.
If such r′ exists, set DPrb

[r′]← max{DPrb
[r′], DPrb

[r] + 2}.
(3) If the maximum value in DPrb

exceeds the current best solution, then update it.

Let us explain the correctness of Algorithm 1. Lemma 4 guarantees that an optimal sequence
of DOMRs can be constructed by considering only dominant extensions. Consider any
such optimal sequence of DOMRs S = 〈r1, . . . , rm〉. The outer loop of Algorithm 1 will at
some point select rb = r1. As r ← L[j] are processed in increasing order of j, the sorting
order of L guarantees that rectangles ri of S will be selected as the current r in the order
i = 1, . . . ,m. For each such r = ri, the algorithm uses Lemma 3 to consider all possible
dominant extensions, including also the extension ri+1 if i < m. A simple inductive argument
shows that the values DPr1 [ri] will become correctly computed in the order i = 1, . . . ,m.

Let us analyze the efficiency of Algorithm 1. Constructing the tables PA and PB takes
O(σn) time and space. Note that alphabet reduction guarantees that O(σn) = O(σ|M|).
Since 1 ≤ i, j, k, l ≤ n for each matching rectangle (i, j, k, l), we obtain a sorted list L of
all O(|M|2) matching rectangles in O(|M|2 + n) time and space by radix sort. Hence the
preprocessing takes O(|M|2 + n) total time and space. We test no more than σ characters
for any cell DPrb

[r] of the dynamic programming table DPrb
. By Lemma 3, we can compute

a unique dominant c-extension in O(1) time, if it exists. Since there are O(|M|2) candidates
for rb and O(|R|) = O(|M|2) candidates for r, Algorithm 1 takes overall O(σ|M|4 + n) time
and O(|M|2 + n) space.

Improved algorithm. Now we show how to reduce the number of candidates for the starting
rectangle rb. We give proof for Lemma 5. Lemmas 6 and 7 can be proven similarly.
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I Lemma 5. Let rb1 = (ib1 , jb1 , kb1 , lb1) and rb2 = (ib2 , jb2 , kb2 , lb2) be any matching rectangles
s.t. ib1 < ib2 , jb1 = jb2 , kb1 = kb2 , and lb1 = lb2 . Let `1 and `2 be the lengths of LCSqS of A
and B whose corresponding sequences of DOMRs begin with rb1 and rb2 , respectively. Then,
`1 ≥ `2.

Proof. See Figure 2 for illustration. It follows from jb1 = jb2 , kb1 = kb2 , and lb1 =
lb2 that the two matching rectangles rb1 and rb2 correspond to the same character. Let
〈rb2,1, rb2,2, . . . , rb2,`2〉 be any sequence of DOMRs which begins with rb2 and represents a
common square subsequence of length `2, namely rb2 = rb2,1. Since ib1 < ib2 , jb1 = jb2 ,
kb1 = kb2 , and lb1 = lb2 , 〈rb1 , rb2,2, . . . , rb2,`2〉 is a sequence of DOMRs which begins with rb1

and represents a common square subsequence of length `2. This implies that `1 ≥ `2. J

I Lemma 6. Let rb1 = (ib1 , jb1 , kb1 , lb1) and rb2 = (ib2 , jb2 , kb2 , lb2) be any matching rectangles
s.t. ib1 = ib2 , jb1 = jb2 , kb1 < kb2 , and lb1 = lb2 . Let `1 and `2 be the lengths of LCSqS of A
and B whose corresponding sequences of DOMRs begin with rb1 and rb2 , respectively. Then,
`1 ≥ `2.

I Lemma 7. Let rb1 = (ib1 , jb1 , kb1 , lb1) and rb2 = (ib2 , jb2 , kb2 , lb2) be any matching rectangles
such that ib1 < ib2 , jb1 = jb2 , kb1 < kb2 , and lb1 = lb2 . Let `1 and `2 be the lengths of longest
common square subsequences of A and B whose corresponding sequences of DOMRs begin
with rb1 and rb2 , respectively. Then, `1 ≥ `2.

It follows from Lemmas 5–7 that it suffices to consider only all right-upper corners (jb, lb)
instead of all matching rectangles rb = (ib, jb, kb, lb). Namely, for each arbitrarily fixed
right-upper corner (jb, lb) such that A[jb] = B[lb] = c, we can always use (imin, kmin) as
its left-bottom corner, where imin and kmin are respectively the left-most occurrences of
character c in A and B. The following is our improved algorithm.

Algorithm 2:
Preprocessing: As in Algorithm 1, but now also precompute positions ib = min{i |
A[i] = c} and kb = min{k | B[k] = c} for each character c that appears in A and B.

Computing longest sequence of DOMRs: For each matching point pb = (jb, lb) ∈
M we perform the following:
(i) Let c = A[jb] = B[lb]. We compute ib = min{i | A[i] = c} and kb = min{k | B[k] =

c}, and let rb ← (ib, jb, kb, lb). If ib = jb or kb = lb, then we stop processing the
current matching point and proceed to the next matching point inM.

(ii) Perform the same procedures (1)–(3) as in Algorithm 1.
(iii) If the maximum value in DPrb

exceeds the current best solution, then update it.

The correctness of Algorithm 2 follows from that of Algorithm 1 and Lemmas 5-7.
Let us analyze the efficiency of Algorithm 2. For all characters c, we can precompute

ib = min{i | A[i] = c} and kb = min{k | B[k] = c} in total O(n) time and space. The
other preprocessing steps are the same as in Algorithm 1 and take O(σ|M|+ n) total time
and space. There are O(|M|) candidates for the right-upper corner pb = (jb, lb) of the first
matching rectangle from which considered sequences of DOMRs begin. For each pb = (jb, lb),
its left-bottom corner (ib, kb) can be retrieved in O(1) time. We again test no more than
σ characters for any cell DPrb

[r], and Lemma 3 allows to check each unique dominant
c-extension in O(1) time. Since there are O(|M|) candidates for rb and O(|R|) = O(|M|2)

CPM 2018
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Figure 2 Illustration for
Lemma 5.
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candidates for r, the whole algorithm takes overall O(σ|M|3 + n) time and O(|M|2 + n)
space. We have shown the following theorem:

I Theorem 8. We can compute LCSqS(A,B) in O(σ|M|3 +n) time and O(|M|2 +n) space.

3.3 O(|M|3 log2 n log logn+ n)-time algorithm
In this section we propose an O(|M|3 log2 n log logn + n)-time and O(|M|3 + n)-space
algorithm for computing LCSqS(A,B).

For any 1 ≤ i < s ≤ j ≤ n and 1 ≤ k < t ≤ l ≤ n, let LCSqSs,t(i, j, k, l) = 2 ×
LCS(A[1..i], A[s..j], B[1..k], B[t..l]).

By definition, LCSqS(A,B) = max1≤i<s≤j≤n,1≤k<t≤l≤n,(s,t)∈M{LCSqSs,t(i, j, k, l)}.
Now, let (s, t) ∈ M be an arbitrarily fixed matching point between A and B. This

corresponds to Observation 1. A recurrence for computing LCSqSs,t(i, j, k, l) is given as
follows:

LCSqSs,t(i, j, k, l) =

max(i′,j′,k′,l′)<(i,j,k,l){LCSqSs,t(i′, j′, k′, l′)}+ 2
((i, j, k, l) ∈ R,
1 ≤ i < s ≤ j ≤ n,
1 ≤ k < t ≤ l ≤ n)

max(i′,j′,k′,l′)C(i,j,k,l){LCSqSs,t(i′, j′, k′, l′)}
((i, j, k, l) /∈ R,
1 ≤ i < s ≤ j ≤ n,
1 ≤ k < t ≤ l ≤ n)

0 (otherwise)

(1)

Our technique for computing LCSqSs,t(i, j, k, l) is similar to Chowdhury et al.’s method [8]
for computing longest common palindromic subsequences, which uses the following well-
known van Emde Boas tree data structure: Let S be a set of integers from the universe [1, U ].
The van Emde Boas tree for S takes Θ(U) space and supports predecessor/successor queries
and insertion/deletion operations on S in O(log logU) time each [26].

Let (s, t) ∈ M be an arbitrary fixed matching point. We plot a point (i, j, k) on the
3D grid [1..n]× [1..n]× [1..n] if and only if there is a matching rectangle of form (i, j, k, ∗),
namely, one having i, j, k as its first three coordinates. This 3D point (i, j, k) will finally be
associated with max(i,j,k,l)∈R{LCSqSs,t(i, j, k, l)}.
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Now we show how to compute those associated values for all the 3D points. We consider
the permuted tuples (l, i, j, k) and sort them as 4-digit numbers, like we did for L in Section 3.2.
We process the permuted tuples in this sorted order. Suppose we are to process a permuted
tuple (l, i, j, k) such that its original tuple (i, j, k, l) is in R. It is now guaranteed that
we have processed all tuples (l′, ∗, ∗, ∗) with l′ < l. Therefore, if z is the maxima among
the associated values of all 3D points in the range [1..i − 1] × [1..j − 1] × [1..k − 1], then
we have that LCSqSs,t(i, j, k, l) = z + 2 (see also the recurrence (1) above). We maintain
these 3D points with a variant of the 3D range tree [4]. Then, the maxima z can be
efficiently retrieved by querying the point with the maximum associated value in the range
[1..i− 1]× [1..j − 1]× [1..k − 1]. If there is no existing 3D point (i, j, k), then we insert this
point with the associated value z + 2. Otherwise, we update the associated value of the
already existing 3D point (i, j, k) with z + 2.

The 3D range tree is a three layered data structure: The top layer tree maintains the
first i-coordinate [1..n], and each of its nodes is associated with a middle layer tree. Each
middle layer tree maintains the second j-coordinate [1..n], and each of its nodes is associated
with a bottom layer tree. Each bottom layer tree maintains the third k-coordinate [1..n].
Since each bottom layer tree can contain O(n) nodes, each middle layer tree can contain at
most O(n) nodes, and the top layer can contain at most O(n) nodes, the total size of the 3D
range tree data structure is trivially bounded by O(n3) = O(|M|3). Since at most O(|M|2)
points are inserted to the 3D range tree and since |M| = O(n2), the 3D range tree supports
range maxima queries and insertions of new points in O(log3(|M|2)) = O(log3 n) time.

Next, we improve the query and update times from O(log3 n) to O(log2 n log logn).
Chowdhury et al. [8] claimed that using the technique from [15] it is possible to replace each
1D range tree on the bottom layer with a van Emde Boas tree data structure [26], leading
to O(log2 n log logn) query and update times. However, the way how van Emde Boas trees
are used in the approach of [15] indeed requires to maintain a set of integers in the universe
of size Θ(n2). This implies that each van Emde Boas tree requires Θ(n2) space. Since the
total size of the top layer tree and the middle layer trees is O(n2), and since each node of a
middle layer tree maintains a van Emde Boas tree of size O(n2), it takes O(n4) space3. This
is, however, prohibitive since it can exceed our target time bound O(|M|3 log2 n log logn)
when the setM of matching points is sparse (e.g., when |M| = Θ(n)). Below, we will reduce
the space requirement for the van Emde Boas trees used in our data structure.

Space efficient 3D range tree with van Emde Boas trees. We briefly recall how the
algorithm of [15] computes the maxima in a given range using a van Emde Boas tree. Let
D[1..n] be an array of monotonically non-decreasing non-negative integers from [0..n], namely,
0 ≤ D[k] ≤ n for all 1 ≤ k ≤ n and D[k] ≤ D[k + 1] for all 1 ≤ k < n. We will store in
D the associated values of 3D points in increasing order of positions, and in the sequel we
assume that D[k+ 1]−D[k] ∈ {0, 2}. Let RMQS(1, k) denote a query to return the maxima
in the sub-array D[1..k] for 1 ≤ k ≤ n. For any integer val (1 ≤ val ≤ n), if some entry of
D stores val, then we insert the pair (pos, val) s.t. pos is the rightmost position in D that
stores val. For instance, if D = [0, 0, 2, 4, 4, 6], then the van Emde Boas tree maintains the
set {(2, 0), (3, 2), (5, 4), (6, 6)} of integer pairs. However, since a van Emde Boas tree is an
integer data structure, we convert each pair (pos, val) to integer pos× (n+ 1) + val and insert

3 A more careful analysis reveals that the total size of this variant of the 3D range tree with van Emde
Boas bottom layer trees is O(|M|2n2 log n), however, this can also exceed O(|M|3 log2 n log log n) when
M is sparse.
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it to the van Emde Boas tree. Now, observe that computing RMQS(1, k) reduces to finding
the successor for the pair (k − 1, n).

The value of LCSqSs,t(i, j, k, l) is monotonically non-decreasing as i, j, k, l grow, for fixed
s and t. Also, val in our case is in range [0, n]. Hence, we can use the above approach in our
algorithm. The remaining problem is that the universe size is Θ(n2), meaning that each van
Emde Boas tree above takes Θ(n2) space.

To reduce the space requirement, we maintain only pos’s in our van Emde Boas tree, and
store val’s in an array V of size n so that V [pos] = val. We let V [i] = −1 if i does not exist
in the van Emde Boas tree. Let us denote by Pos_vEB and ValPos_vEB the van Emde
Boas trees which store pos’s only and pairs (pos, val), respectively. Namely, the former is
ours and the latter is the method from [15]. It is sufficient for ValPos_vEB to support
insertions, deletions, and successor queries. These operations and queries can be simulated by
our Pos_vEB as follows: When a pair (pos, val) is inserted to ValPos_vEB, then we insert
pos to Pos_vEB and set V [pos] ← val. Notice that at any moment ValPos_vEB never
maintains two pairs (pos1, val) and (pos2, val) with pos1 6= pos2 for the same associated value
val, since otherwise we get argmax{i | D[i] = val} = pos1 6= pos2 = argmax{i | D[i] = val},
a contradiction. Therefore, we can simulate insertions on ValPos_vEB with Pos_vEB
and V as above. When we delete a pair (pos, val) from ValPos_vEB, then we delete pos
from Pos_vEB and modify the value stored in V [pos] accordingly. When we query the
successor (pos, val) of (k − 1, n) on ValPos_vEB, then we query the successor pos of k − 1
on Pos_vEB, and retrieve val = V [pos]. This way, we can simulate ValPos_vEB with
Pos_vEB of O(n) total space, retaining O(log logn) time efficiency for insertion/deletion
operations and successor queries. Since the total number of ValPos_vEB’s is linear in the
number of nodes in the top and middle layer trees, our version of 3D range tree, named
New_vEB_3DRangeTree, takes a total of O(n3) space and supports range maxima
queries in O(log2 n log logn) time for query ranges of form [1..i]× [1..j]× [i..k]. The whole
algorithm is the following:

Algorithm 3:
Preprocessing: For all matching rectangles (i, j, k, l) ∈ R, sort the permuted tuples
(l, i, j, k) as 4-digit numbers. Initialize New_vEB_3DRangeTree, so that no points
are inserted and every entry of array V in each Pos_vEB stores 0.

Compute LCSqSs,t(i, j, k, l): For each matching point (s, t) ∈M, perform the follow-
ing:
(1) Process each permuted tuple (l, i, j, k) in the sorted order. Compute

LCSqSs,t(i, j, k, l) according to recurrence (1): For each different value of l, let
PT l denote the list of permuted tuples whose first elements are l. For each per-
muted tuple q = (l, i, j, k) ∈ PT l, perform the following:

If i < s < j and k < t < l, then using New_vEB_3DRangeTree find a 3D
point with the maximum associated value zq in range [1..i − 1] × [1..j − 1] ×
[1..k − 1].
After computing LCSqSs,t(i, j, k, l) for all permuted tuples q = (l, i, j, k) ∈ PT l,
insert zq + 2 in (i, j, k) to New_vEB_3DRangeTree for all such permuted
tuples in PT `.

(2) If some value LCSqSs,t(i, j, k, l) exceeds the currently stored maxima, we update it.
Then, delete all existing 3D points from New_vEB_3DRangeTree.
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Let us recall recurrence (1) to see why Algorithm 3 correctly computes LCSqSs,t(i, j, k, l).
The rule for the second case (where (i, j, k, l) ∈ R) requires (i′, j′, k′, l′) < (i, j, k, l). To
reflect this, Algorithm 3 processes all permuted tuples in PT l for each difference value of l
and in increasing order of l. After processing all permuted tuples q = (l.i, j, k) ∈ PT l, we
can safely insert the value zq + 2 in the corresponding 3D point (i, j, k) for all such tuples q,
and can proceed to the permuted tuples with larger first values.

Let us analyze the efficiency of Algorithm 3. For preprocessing, we use O(n) time and
space for alphabet reduction, for sorting the permuted tuples (l, i, j, k), and for initializing
New_vEB_3DRangeTree. For each (s, t) ∈M, we compute LCSqSs,t(i, j, k, l) with each
(i, j, k, l) ∈ R, by querying and updating New_vEB_3DRangeTree. Each query and
update here take O(log2 n log logn) time. After computing all LCSqSs,t(i, j, k, l) for the
current matching point (s, t), we delete all 3D points from New_vEB_3DRangeTree.
Thus it takes O(|R| log2 n log logn) time for each (s, t) ∈M. New_vEB_3DRangeTree
uses O(n3) = O(|M|3) space (recall that n ≤ |M| holds after alphabet reduction). Since
|R| = O(|M|2), Algorithm 3 takes a total of O(|M||R| log2 n log logn + |M|3 + n) =
O(|M|3 log2 n log logn+ n) time and O(|M|3 + n) space.

We have shown the following theorem:

I Theorem 9. We can compute LCSqS(A,B) in O(|M|3 log2 n log logn + n) time and
O(|M|3 + n) space.

4 Hardness results on the LCSqS problem

The k-LCSqS problem is to compute an LCSqS of k given strings. For simplicity, we assume
that each given string is of length n.

I Lemma 10. For any k ≥ 2, the k-LCS problem can be reduced in linear time to the
dk/2e-LCSqS problem.

Proof. Our proof uses an idea similar to [6] and [16]. We first consider the case where k
is even. Let A1, . . . , Ak be the input strings for the k-LCS problem. For each 1 ≤ i ≤ k/2,
we construct a string Bi of length 4n+ 2 such that Bi = A2i−1$n+1A2i$n+1, where $ is a
special character which does not appear in A1, . . . , Ak. Let Z be any LCSqS of B1, . . . , Bk/2.
Since each Aj (1 ≤ j ≤ k) is of length n, Z must be of form X$n+1X$n+1. Then, clearly
the string X is a longest common subsequence of the original strings A1, . . . , Ak.

For odd k, it suffices to consider the same strings Bi for 1 ≤ i ≤ bk/2c and one additional
string Bdk/2e = Ak$n+1Ak$n+1. This completes the proof. J

By Lemma 10, the k-LCSqS problem is NP-hard for an unfixed k. For an arbitrarily
fixed k, Abboud et al. [1] showed that if there exist a constant ε > 0, an integer k ≥ 2, and
an algorithm which solves the k-LCS problem for an alphabet of size O(k) in O(nk−ε) time,
then the famous strong exponential time hypothesis (SETH ) is false. This suggests that it
seems hard to compute LCSqS(A,B) in O(n4−ε) time for any ε > 0.

5 Discussions

We observe that it seems difficult to shave the |M|3 term in the time complexity of any
matching-rectangle-based algorithm for computing the LCSqS: For instance, in both Algo-
rithm 2 and Algorithm 3, we first fix a matching point inM, and this indeed corresponds
to the |M| term in the O(|M|n4)-time complexity of the simple solution for computing
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LCSqS(A,B). The rest of all these algorithms exactly computes the LCS of the four strings
obtained by partitioning A and B at a given matching point using at least O(|M|2) or O(n4)
time. This seems almost best possible, since it is widely believed that there is no algorithm
which computes the LCS of four strings in O(n4−ε) time for any ε > 0 (recall Section 4).

Can we break the O(|M|3) or O(n6) barrier? The only hope seems to generalize an
incremental LCS computation algorithm for two strings ([21, 24, 17, 23, 25, 13]) to the case of
four strings. This would help us update a data structure for LCS(A[1..i− 1], A[i..n], B[1..j−
1], B[j..n]) to that for LCS(A[1..i], A[i+ 1..n], B[1..j], B[j + 1..n]) in faster than O(n4) time.
However, this seems difficult, too. We investigated whether Kim and Park’s method [17],
the simplest incremental LCS algorithm for two strings, can be generalized to more strings.
Their algorithm uses the differential encoding of the 2-dimensional DP tables (for two strings)
before and after the first character of one string is deleted, and they showed that only O(n)
entries of the differential encoding need to be updated. However, our preliminary experiments
for 3-dimensional DP tables (i.e. for three strings) already suggested that there would be
more than O(n2) entries in the differential encoding that need to be updated.

Overall, it is an intriguing open question how one can close the (almost) quadratic gap
between the upper and lower bounds for the LCSqS problem.
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