-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Slowing Down Top Trees for Better Worst-Case
Compression

Barttomiej Dudek

Institute of Computer Science, University of Wroctaw, Poland
bartlomiej.dudek@cs.uni.wroc.pl

Pawel Gawrychowski
Institute of Computer Science, University of Wroctaw, Poland
gawry@cs.uni.wroc.pl

—— Abstract

We consider the top tree compression scheme introduced by Bille et al. [ICALP 2013] and
construct an infinite family of trees on m nodes labeled from an alphabet of size o, for which

the size of the top DAG is @(log': —loglog, n). Our construction matches a previously known
upper bound and exhibits a weakness of this scheme, as the information-theoretic lower bound
is Q(ﬁ) This settles an open problem stated by Lohrey et al. [arXiv 2017], who designed
a more involved version achieving the lower bound. We show that this can be also guaranteed

by a very minor modification of the original scheme: informally, one only needs to ensure that
different parts of the tree are not compressed too quickly. Arguably, our version is more uniform,
and in particular, the compression procedure is oblivious to the value of o.

2012 ACM Subject Classification Theory of computation — Data compression
Keywords and phrases top trees, compression, tree grammars

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.16

Funding Work supported under National Science Centre, Poland, project number
2014/15/B/ST6/00615.

1 Introduction

Labeled trees are fundamental data structures in computer science. Generalizing strings,
they can be used to compactly represent hierarchical dependencies between objects and have
multiple applications. In many of them, such as XML files, we need to operate on very
large trees that are in some sense repetitive. Therefore, it is desirable to design compression
schemes for trees that are able to exploit this. Known tree compression methods include
DAG compression that uses subtree repeats and represents a tree as a Directed Acyclic
Graph [3,7,13], compression with tree grammars that focuses on the more general tree
patterns and represents a tree by a tree grammar [4,8,11,12], and finally succinct data
structures [6, 10].

In this paper we analyze tree compression with top trees introduced by Bille et al. [2]. Tt
is able to take advantage of internal repeats in a tree while supporting various navigational
queries directly on the compressed representation in logarithmic time. At a high level, the
idea is to hierarchically partition the tree into clusters containing at most two boundary nodes
that are shared between different clusters. A representation of this hierarchical partition is
called the top tree. Then, the top DAG is obtained by identifying isomorphic subtrees of
the top tree. Bille et al. [2] proved that the size of the top DAG is always O(n/log>'? n)
for a tree on n nodes labeled with labels from ¥ where ¢ = max{2, |X|}. Furthermore, they

© Bartlomiej Dudek and Pawel Gawrychowski;

licensed under Creative Commons License CC-BY
29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 16; pp. 16:1-16:8

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/158841483?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bartlomiej.dudek@cs.uni.wroc.pl
mailto:gawry@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2

Slowing Down Top Trees for Better Worst-Case Compression

showed that top DAG compression is always at most logarithmically worse than the classical
DAG compression (and Bille et al. [1] constructed a family of trees for which this logarithmic
upper bound is tight). Later, Hiibschle-Schneider and Raman [9] improved the bound on
the size of the top DAG to O(—2— loglog, n) using a more involved reasoning based on the

log, n
heavy path decomposition. This should be compared with the information-theoretic lower
bound of Q).
g, 1L
A natural question is to close the gap between the information-theoretic lower bound of
Q(ﬁ) and the upper bound of O(log’fr —loglog, n). We show that the latter is tight for
the top tree construction algorithm of Bille et al. [2].

» Theorem 1. There exists an infinite family of trees on n nodes labeled from an alphabet
for which the size of the top DAG is Q15" loglog, n) where o = max{2, [X[}.

This answers an open question explicitly mentioned by Lohrey et al. [14], who developed
a different algorithm for constructing a top tree which guarantees that the size of the top
DAG matches the information-theoretic lower bound. A crucial ingredient of their algorithm
is a partition of the tree T into O(n/k) clusters of size at most k, where k = ©(log, n). As a
byproduct, they obtain a top tree of depth O(logn) for each cluster. Then they consider a
tree T” obtained by collapsing every cluster of T and run the algorithm of Bille et al. [2] on
T’. Finally, the edges of T" are replaced by the top trees of their corresponding clusters of T'
constructed in the first phase of the algorithm to obtain the top tree of the whole T. While
) its disadvantage is

log, n
that the resulting procedure is non-uniform, and in particular needs to be aware of the value

this method guarantees that the number of distinct clusters is O(

of o and n.

We show that a slight modification of the algorithm of Bille et al. [2] is, in fact, enough
to guarantee that the number of distinct clusters, and so also the size of the top DAG,
matches the information-theoretic lower bound. The key insight actually comes from the
proof of Theorem 1, where we construct a tree with the property that some of its parts are
compressed much faster than the others, resulting in a larger number of different clusters.
The original algorithm proceeds in iterations, and in every iteration tries to merge adjacent
clusters as long as they meet some additional conditions. Surprisingly, it turns out that the
information-theoretic lower bound can be achieved by slowing down this process to avoid
some parts of the tree being compressed much faster than the others. Informally, we show
that it is enough to require that in the t*" iteration adjacent clusters are merged only if their
size is at most o, for some constant o > 1. The modified algorithm preserves nice properties
of the original method such as the O(logn) depth of the obtained top tree.

A detailed description of the original algorithm of Bille et al. [2] can be found in Section 2.
In Section 3 we prove Theorem 1 and in Section 4 describe the modification.

2 Preliminaries

In this section, we briefly restate the top tree construction algorithm of Bille et al. [2]. To
construct trees that can be used to show the lower bound and present our modification of
the original algorithm we need to work with exactly the same definitions. Consequently, the
following description closely follows the condensed presentation from Bille et al. [1] and can
be omitted if the reader is already familiar with the approach.

Let T be a (rooted) tree on n nodes. The children of every node are ordered from left
to right, and every node has a label from an alphabet . T'(v) denotes the subtree of v,
including v itself, and F(v) is the forest of subtrees of all children vy, vs, ..., v; of v, that is,

B. Dudek and P. Gawrychowski

F)=T(v1)UT(v2)U...UT(vg). For 1 < s <r <k we define T'(v, vs,v,) to be the tree
consisting of v and a contiguous range of its children starting from the s and ending at the
r that is, T(v,vs,v,) = {0} UT(vs) UT (vs31) U ... UT(vy.).

We define two types of clusters. A cluster with only a top boundary node v is of the form
T(v,vs,vp). A cluster with a top boundary node v and a bottom boundary node w is of the
form T'(v,vs,v,) \ F(u) for a node u € T(v,vs,v,) \ {v}.

If edge-disjoint clusters A and B have exactly one common boundary node and C = AUB
is a cluster, then A and B can be merged into C'. Then one of the top boundary nodes of
A and B becomes the top boundary node of C' and there are various ways of choosing the
bottom boundary node of C. See Figure 2 in [2] for the details of all five possible ways of
merging two clusters.

A top tree T of T is an ordered and labeled binary tree describing a hierarchical decom-
position of T into clusters.

The nodes of T correspond to the clusters of T.
The root of 7 corresponds to the whole T

The leaves of T correspond to the edges of T'. The label of each leaf is the pair of labels
of the endpoints of its corresponding edge (u,v) in T. The two labels are ordered so that
the label of the parent appears before the label of the child.

Each internal node of T corresponds to the merged cluster of the clusters corresponding
to its two children. The label of each internal node is the type of merge it represents (out
of the five merging options). The children are ordered so that the left child is the child
cluster visited first in a preorder traversal of T'.

The top tree T is constructed bottom-up in iterations, starting with the edges of T" as
the leaves of 7. During the whole process, we maintain an auxiliary ordered tree T, initially
set to T. The edges of T correspond to the nodes of T, which in turn correspond to the
clusters of T. The internal nodes of T correspond to the boundary nodes of these clusters
and the leaves of T correspond to a subset of the leaves of T.

On a high level, the iterations are designed in such a way that each of them merges a
constant fraction of edges of T'. This is proved in Lemma 1 of [2], and we describe a slightly
stronger property in Lemma 2. This guarantees that the height of the resulting top tree is
O(logn). Each iteration consists of two steps:

Horizontal merges. For each node v € T with k > 2 children v1, ..., vy, for i = 1 to L%J,
merge the edges (v,v9;—1) and (v, ve;) if vo;_1 or vy; is a leaf. If k is odd and vy, is a leaf and
both v,_o and vi_; are non-leaves then also merge (v,v;_1) and (v, vy).

Vertical merges. For each maximal path vy,...,v, of nodes in T such that vit1 is the
parent of v; and vs, ..., v,—1 have a single child: If p is even merge the following pairs of edges
{(v1,v2), (v2,v3)}, ..., {(vp—3,vp—2), (Vp—2,vp—1)}. If p is odd merge the following pairs of
edges {(v1,v2), (v2,v3)}, ..., {(vp—a,Vp—3), (Vp—3, Up—2)}, and if (v,_1,v,) was not merged in
the previous step then also merge {(vp—2,vp—1), (Vp—1,vp)}.

See an example of a single iteration in Figure 1. Finally, the compressed representation
of T is the so-called top DAG 7D, which is the minimal DAG representation of 7 obtained
by identifying identical subtrees of 7. As every iteration shrinks T by a constant factor, T
can be computed in O(n) time, and then 7D can be computed in O(|7]) time [5]. Thus, the
entire compression takes O(n) time.

16:3

CPM 2018

16:4

Slowing Down Top Trees for Better Worst-Case Compression

horizontal vertical
—

Figure 1 Tree T after two steps of a single iteration. Dotted lines denote the merged edges
(clusters) and thick edges denote the results of merging. Note that one edge does not participate in
the vertical merge due to having been obtained as a result of a horizontal merge.

Sk Sk Sk 3k steps
P, —> Cg C Cy Cp
te’

Figure 2 Gadget G}, consists of 28 — 1 = O(tel) trees Sk and one path Py. After 3k iterations it
gets compressed to a tree with 2% nodes connected to the root.

3 A lower bound for the approach of Bille et al.

In this section, we prove Theorem 1 and show that the O(log" —loglog, n) bound from [9]
on the number of distinct clusters created by the algorithm described in Section 2 is tight.
We first consider labeled trees for which [X| > 1 and ¢ = |¥|. Then we show how to modify

our construction and apply it to unlabeled trees.

For every k € N we will construct a tree T}, with n = G(Jgk) nodes for which the
corresponding top DAG is of size @(mgzn loglog, n). Let t = 8% = ©(log, n). In the
beginning, we describe a gadget Gy, that is the main building block of T}. It consists of O(t)
nodes: a path of ¢ nodes and 28 — 1 = O(¢¢') full ternary trees of size O(t) connected to the
root, where € + ¢’ < 1. See Figure 2. The main intuition behind the construction is that
full ternary trees are significantly smaller than the path, but they need the same number of

iterations to get compressed.

More precisely, let P, be the path of length 8% = t. Clearly, after 3 iterations it gets
compressed to P,_1, and so after 3k iterations becomes a single cluster. Similarly, let Sy be
the full ternary tree of height k& with 3% leaves, so 3k+21*1 = O(3F) = O(t°53) nodes in total.
Observe that after 3 iterations Sy becomes Si_1, and so after 3k iterations becomes a single
cluster. To sum up, the gadget G consists of path Py of ¢ nodes and 2¥ — 1 = O(t'/?) trees

of size O(t%??), so in total O(t) nodes. After 3k iterations G consists of 2¥ — 1 clusters Cg

B. Dudek and P. Gawrychowski

(1) (2) (n/t)
k k o o . k

(1) (2) (n/t)
Gk Gk Gk
Figure 3 T consists of O(n/t) gadgets G,(:), where the i*" of them contains a unique path P,ii).
corresponding to Sy and one cluster Cp corresponding to Py, as shown in Figure 2. In each

of the subsequent k iterations, the remaining clusters are merged in pairs.
Recall that the top DAG contains a node for every distinct subtree of the top tree, and

every node of the top tree corresponds to a cluster obtained during the compression process.
Our next step will be to create many almost identical gadgets connected to a common root.

In order to ensure that they are distinct, we assign labels on the nodes on paths Py so that no
two paths are equal. Then the cluster Cp obtained after the first 3k iterations corresponds
to a distinct subtree of the top tree. Consequently, so does the cluster obtained from Cp
in each of the subsequent k iterations. Note that during all the subsequent iterations only
horizontal merges are performed and each of them halves the number of clusters.

Finally, the tree T}, consists of ©(n/t) gadgets connected to a common root as in Figure 3.

The it gadget G,(j) is a copy of G}, with the labels of P,gi) chosen as to spell out the i*" (in
the lexicographical order) word of length ¢ over X. For all the remaining nodes (nodes of
trees S, roots of gadgets and the common root of Ty) it is enough to choose the same label,
e.g. the smallest in 3. Note that o* > n/t, so there are more possible words of length ¢ than
the number of gadgets that we want to create. Then each C’I()i) and the clusters obtained

from it during the subsequent k iterations correspond to distinct subtrees of the top tree.

Thus, overall the top DAG contains Q(n/t - k) = Q(n/t - logt) = Q(n/log, n - loglog, n)
nodes, which concludes the proof of Theorem 1 for labeled trees with non-unary alphabet.

Unlabeled trees. Now we modify the above construction so that it works for unary alphabets.

Recall that we set ¢ =logn and k = loggt. We cannot use the earlier approach directly, as
we cannot distinguish the gadgets Gl(f) by modifying labels on the path P,gi). To address this
we extend the gadgets GS) with distinct unlabeled binary trees in such a way that after 3k
steps the new gadgets get compressed to the same trees as before (shown in Figure 2) that is
the i*® gadget is compressed to ¢ clusters C's and a cluster C}(,i). Again Cg represents the
cluster of full ternary tree Sy and clusters C’gi) correspond to distinct subtrees.

More precisely, now the i*" gadget G;C(i) consists of ¢ trees Sj, connected to the root, a
path P of length 4 - 8#=1 + 1 and the *" binary tree T,Si) on t = logn nodes (we consider
an arbitrary ordering on all such trees). Intuitively, the construction of path P} guarantees
that no matter how fast the tree T,gi) gets compressed, during the first 3k steps it does not
interact with subtrees S;. Without the path Pj, it might happen that the single cluster
obtained from T,Ei) participates in a horizontal step with the (partially compressed) rightmost
tree Sy within the first 3k steps. Next, the sizes of each component of G;C(i) are chosen in
such a way that again G;c(i) consists of O(t) nodes and after 3k steps the obtained tree is
exactly the same as in the case of non-unary alphabets. See Figure 4.

16:5

CPM 2018

16:6

Slowing Down Top Trees for Better Worst-Case Compression

3k steps i
E— Cyg Cs CP(Z)

Figure 4 The modified gadget G;C(i) for unlabeled trees.

Note that path P; gets compressed to path P/_; in 3 steps. Furthermore, the first edge
of P} does not take part in any vertical merge unless the path consists of only two edges, that
is in the (3k)*™" step. Observe that trees T,Ei) are compressed with different speeds depending
on their shape and at some moment they become a single cluster that will be merged in the
next horizontal step. As pointed earlier, the first edge of P} does not take part in vertical
merges before the (3k)™" step, so eventually it can participate in a horizontal merge with the
cluster of T,Ei) without affecting the compression of the remaining edges of Pj. As all the
merges inside T,Ei) are independent from the rest of the tree, Lemma 1 of [2] guarantees that
after every step of the compression the tree T,gi) shrinks at least by a factor of 8/7. Thus
T,Ei) becomes a single cluster in at most logg,7logn < 9loglogn = 3k steps, and so after 3k

steps the gadget G;C(i) gets compressed to the tree described in Figure 4.
Finally, in order to further apply the reasoning from the case of labeled trees, it remains
to show that there are Q(n/t) distinct binary trees on ¢ nodes. From the folklore properties

of Catalan numbers, there are t_%l(it) distinct binary trees on ¢ nodes. Applying the bound
(}) = ()" we obtain that there are at least t% = Q(n/t) distinct binary trees T,gi), which

is sufficient for our construction. It concludes the case of unlabeled trees and thus ends the
proof of Theorem 1.

4 An optimal tree compression algorithm

Let « be a constant greater than 1 and consider the following modification of algorithm [2].
Our algorithm works in the same way for both labeled and unlabeled trees. As mentioned
in the introduction, intuitively we would like to proceed exactly as the original algorithm,
except that in the t'" iteration we do not perform a merge if one of the participating clusters
is of size larger than of. However, this would require a slight modification of the original
charging argument showing that that after every iteration the tree T shrinks by a constant
factor. To avoid adapting the whole proof of [2] to our new approach, we proceed slightly
differently. In each iteration we first generate and list all the merges that would have been
performed in both steps of a single iteration of the original algorithm. Then we apply only
the merges in which both clusters have size at most of.

We run the algorithm until the tree T becomes a single edge. Clearly, there are O(logn)
iterations, because after log, n iterations the algorithm is no longer constrained and can
behave not worse than the original one. Thus the depth of the obtained DAG is O(logn) as
before. In the following lemma we show that even if there are some clusters that cannot be

B. Dudek and P. Gawrychowski

Algorithm 1 A modified top tree construction algorithm of Bille et al. [2] for a tree T
1: T =T
2: initialize leaves of T with edges of T
3: fort =1,...,0(logn), as long as T is not a single edge do
4: list all the merges that would have been made by one iteration of the original algorithm
5
6
7

filter out the merges that use a cluster of size bigger than o
modify T" and T by applying the remaining merges
: construct DAG 7D of T > TD is the top DAG of T

merged in one step, the tree still shrinks by roughly a constant factor.

» Lemma 2. Suppose that there are m = p + q clusters in T after t — 1 iterations of
Algorithm 1, where q is the number of clusters of size larger than of. Then, after t iterations
there are at most 7/8m + q clusters.

Proof. The proof is a generalization of Lemma 1 from [2]. There are m + 1 nodes in 7,
so at least m/2 + 1 of them have degree smaller than 2. Consider m/2 edges from these
nodes to their parents and denote this set as M. Then, from a charging argument (see the
details in [2]) we obtain that at least half of the edges in M would have been merged in a
single iteration of the original algorithm. Denote these edges by M’, where |M'| > m/4 and
observe that at least |M'|/2 > m/8 pairs of edges can be merged.

Now, ¢ clusters (edges) are too large to participate in a merge and in the worst case
each of them would have participated in a different merge of the original algorithm. Thus,
Algorithm 1 performs at least m/8 — ¢ merges and after a single iteration the number of
clusters decreases to at most m — (m/8 —q) =7/8m +q. <

Our goal will be to prove the following theorem.

» Theorem 3. Let T be a tree on n nodes labeled from an alphabet of size o. Then the size
of the corresponding top DAG obtained by Algorithm 1 with « = 10/9 is O(=—2—).

log, n

In the following we assume that o = 10/9, but do not substitute it to avoid clutter.
» Lemma 4. After t iterations of Algorithm 1 there are O(n/at*Y) clusters in T.

Proof. We prove by induction on ¢ that after ¢ iterations T contains at most cn /ot clusters,
where ¢ = 113. The case t = 0 is immediate. Let ¢ > 0. From the induction hypothesis,
after ¢t — 1 iterations there are at most cn/a® clusters, p of them having size at most a! (call
them small) and ¢ of them having size larger than of that cannot be yet merged in the ¢!
iteration (call them big). We know that p < cn/a! and, as the big clusters are pairwise
disjoint, ¢ < n/at.

We need to show that the total number of clusters after ¢ iterations is at most cn/at!.
There are two cases to consider:

q< ﬁp: We apply Lemma 2 and conclude that the total number of clusters after the

' jteration is at most 7/8(p + q) + ¢ < 9/10p < en/at*t.

p < 100q: In the worst case no pair of clusters was merged and the total number of

clusters after the #'!' iteration is p + ¢ < 101qg < 101n/at < 113n/a!*™! = cn/attt. <

Proof of Theorem 3. Clusters are represented with binary trees labeled either with pairs of
labels from the original alphabet or one of the 5 labels representing the type of merging, so
in total there are |X|? + 5 < 02 + 5 possible labels of nodes in 7. From the properties of

16:7

CPM 2018

16:8

Slowing Down Top Trees for Better Worst-Case Compression

Catalan numbers, it follows that the number of different binary trees of size x is bounded
by 4%. Thus there are at most Y ;_, (4(0? +5))" < >, (1202)" < (1202)"! distinct labeled
trees of size at most x, since o > 2. Even if some of them appear many times in TV, they will
be represented only once in 7D.

Consider the situation after ¢t — 1 iterations of the algorithm. Then, from Lemma 4 there
are at most O(n/at) clusters in T. Setting t to be the maximal integer number such that
o' +1 < 3/4logy,2 n we obtain that there are at most n3/4 distinct subtrees of 7 of size
at most af. As identical subtrees of T are identified by the same node in the top DAG, all
clusters created during the first ¢ — 1 iterations of the algorithm are represented by at most
n3/* nodes in TD. Next, the remaining O(n/at) clusters can introduce at most that many
new nodes in the DAG.

Finally, the size of the DAG obtained by Algorithm 1 on a tree T of size n is bounded by
n3/* 4+ 0(n/at) = O(n/log 9,2 1), which is O(n/log, n) as o > 2. <

—— References

1 Philip Bille, Finn Fernstrgm, and Inge Li Ggrtz. Tight bounds for top tree compression. In
SPIRFE, volume 10508 of Lecture Notes in Computer Science, pages 97-102. Springer, 2017.
2 Philip Bille, Inge Li Ggrtz, Gad M. Landau, and Oren Weimann. Tree compression with
top trees. Inf. Comput., 243:166-177, 2015.
3 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.
In VLDB, pages 141-152. Morgan Kaufmann, 2003.
4 Giorgio Busatto, Markus Lohrey, and Sebastian Maneth. Efficient memory representation
of XML document trees. Inf. Syst., 33(4-5):456-474, 2008.
5 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subex-
pression problem. J. ACM, 27(4):758-771, 1980.
6 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1):4:1-4:33, 2009.
7 Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees
(extended abstract). In LICS, page 188. IEEE Computer Society, 2003.
8 Pawel Gawrychowski and Artur Jez. LZ77 factorisation of trees. In FSTTCS, volume 65
of LIPIcs, pages 35:1-35:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
9 Lorenz Hiibschle-Schneider and Rajeev Raman. Tree compression with top trees revisited.
In SEA, volume 9125 of Lecture Notes in Computer Science, pages 15-27. Springer, 2015.
10 Guy Jacobson. Space-efficient static trees and graphs. In FOCS, pages 549-554. IEEE
Computer Society, 1989.
11 Artur Jez and Markus Lohrey. Approximation of smallest linear tree grammar. Inf. Com-
put., 251:215-251, 2016.
12 Markus Lohrey and Sebastian Maneth. The complexity of tree automata and xpath on
grammar-compressed trees. Theor. Comput. Sci., 363(2):196-210, 2006.
13 Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML compression via dags. In ICDT,
pages 69-80. ACM, 2013.
14 Markus Lohrey, Carl Philipp Reh, and Kurt Sieber. Optimal top dag compression. CoRR,
abs/1712.05822, 2017. arXiv:1712.05822.

http://arxiv.org/abs/1712.05822

	Introduction
	Preliminaries
	A lower bound for the approach of Bille et al.
	An optimal tree compression algorithm

