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Abstract

A characterization of the tree T ∗ such that BP(T ∗) =
←−−−−−−→
DFUDS(T ), the reversal of DFUDS(T ) is

given. An immediate consequence is a rigorous characterization of the tree T̂ such that BP(T̂ ) =
DFUDS(T ). In summary, BP and DFUDS are unified within an encompassing framework, which
might have the potential to imply future simplifications with regard to queries in BP and/or
DFUDS. Immediate benefits displayed here are to identify so far unnoted commonalities in
most recent work on the Range Minimum Query problem, and to provide improvements for the
Minimum Length Interval Query problem.
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1 Motivation

Given an array A[1, n] with elements from a totally ordered set, the Range Minimum Query
(RMQ) problem is to provide a data structure that on input positions 1 ≤ i ≤ j ≤ n returns

rmqA(i, j) := min{A[k] | i ≤ k ≤ j}. (1)

In [9], Fischer and Heun presented the first data structure that uses 2n + o(n) bits and
answers queries in O(1) time (in fact, without accessing A). They first construct a tree T [A]
(the 2D-Min-Heap of A). Then they observe that in a certain parenthesis representation of
T [A] (DFUDS), the following query leads to success for computing rmqA(i, j) (where 0 and
1 refer to closing and opening parentheses in DFUDS(T [A]), respectively):

w1 ← rmqD(select0(i + 1), select0(j)) (2)
if rank0(open(w1)) = i then return i (3)

else return rank0(w1) (4)

where rmqD refers to performing a range minimum query on the array D[x] := rank1(x)−
rank0(x) where x indexes parentheses in DFUDS(T [A]), and 1 and 0 represent opening and
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18:2 Tree Representation Duality

closing parentheses, respectively. open(w1) returns the position of the opening parenthesis
matching the one closing at position w1. Note that D[x] − D[x − 1] ∈ {−1, +1} for all
x ∈ {2, ..., 2N}, which turns rmqD into an easier problem (±1-RMQ), as was shown in [1].

Most recently, Ferrada and Navarro suggested an alternative approach which leads to a
shorter, hence faster query procedure [8]. They construct a tree T̂ [A] that results from a
systematic while non-trivial transformation of the edges of T [A] (the number of non-root
nodes N remains the same). They observed that in BP(T̂ [A]) the following simpler query
computes rmqA(i, j):

w2 ← rmqD(select0(i), select0(j)) (5)
return rank0(w2) (6)

The major motivation of our treatment is the observation – which passes unnoted in both
[8, 9] – that

DFUDS(T [A]) = BP(T̂ [A]) (7)

So, the shorter query raised by Ferrada and Gonzalez would have worked for Fischer and
Heun as well. It further raises the question whether there are principles by which to transform
trees T into trees T̂ such that

DFUDS(T ) = BP(T̂ ) (8)

and, if so, what these principles look like. Here, we thoroughly investigate related questions
so as to obtain conclusive insight. We will show that the respective trees and their possible
representations can be juxtaposed in terms of a new duality for tree representations. In doing
so, we will obtain a proof for (7) as an easy corollary (to consolidate our findings, we also
give a direct proof that [8]’s query also would have worked for [9] in the Appendix of the full
version [4]). In summary, our treatment puts BP and DFUDS into a unifying context.

1.1 Related Work

RMQ’s. The RMQ problem has originally been anchored in the study of Cartesian trees
[21], because it is related to computing the least common ancestor (LCA) of two nodes
in a Cartesian tree derived from A [10], further complemented by the realization that any
LCA computation can be cast as an ±1-RMQ problem [3] for which subsequently further
improvements were raised [15, 19]. Fischer and Heun finally established the first structure
that requires 2n + o(n) space and O(1) time (without accessing A) [9], establishing an anchor
point for many related topics (e.g. [16, 17]), which justified to strive for further improvements
[8, 11].

Isomorphisms. For their latest (and likely conclusive) improvements, [8] made use of an
isomorphism between binary and general ordinary trees, presented in [15], and successfully
experiment with certain variations on the ground theme of this isomorphism, to finally obtain
the above-mentioned T̂ [A]. Here, we provide an explicit treatment of these trees, which [8]
are implicitly making use of. From this point of view, we provide a rigorous re-interpretation
of the treatments [8, 9] and the links drawn with [15] therein. Finally, note that [5] further
expands on [15].
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BP and DFUDS. The BP representation was first presented in [13] and developed further
in many ways (e.g. [15]). Since neither the BP nor the LOUDS [6, 13] representations allow
for a few basic operations relating to children and subtrees, the DFUDS representation was
presented as an improvement in this regard [2, 14]. A tree-unifying approach different to
ours was proposed by Farzan et al [7]. [5] observes relationships between BP and DFUDS
and proves them via the (above-mentioned) isomorphism by [15]. Since our treatment avoids
binary trees altogether, it establishes a more direct approach to identifying dualities between
ordinal trees than [5].

1.2 Notation
Trees. Throughout, we consider rooted, ordered trees T = (V, E) (with nodes V = V [T ]
and (directed) edges E = E[T ]) with root r. For the sake of notational convenience (following
standard abuse of tree notation), we will write v ∈ T instead of v ∈ V [T ] and T1 ⊂ T2 for
V [T1] ⊂ V [T2]; note that induced subgraphs do not play a relevant role in this treatment.
By definition of ordered trees, siblings, that is nodes sharing their parent node are ordered,
implying the notions of left, right, immediate right, immediate left siblings. By rmcT (v), we
denote the rightmost child of a node v in T if it exists (if T is understood, we write rmc(v)).
Similarly, we denote by ilsT (v) (or ils(v) if T is understood) the immediate left sibling of
v in T if it exists. For two siblings, u < v means that u is left of v. As usual, the partial
order on siblings can be extended to a full order, ordering all v ∈ T , by depth-first-traversal
(or breadth-first-traversal) logic, for example; here, by default, we write u <T v (or u < v if
T is understood) if u comes before v in the depth-first traversal of T . We write u = pa(v)
indicating that u is the parent of v, that is (u, v) is a directed edge in T .

Parenthesis Based Tree Representations. In the following, we will deal with parenthesis
based representations for trees, which are vectors of opening parentheses ’(’ and closing
parentheses ’)’. The number of opening parentheses will match the number of closing
parentheses, thereby for a tree T , each node v ∈ T will be represented by a pair of opening
and closing parentheses, for which we write OP(v) and CP(v), respectively.

The Balanced Parenthesis (BP) representation BP(T ) (e.g. [13, 15]) is built by traversing
T in depth-first order, writing an opening parenthesis when reaching a node for the first time,
and writing a closing parenthesis when reaching a node for the second time. By depth-first
order logic, this yields a balanced representation, meaning that the number of opening
matches the number of closing parentheses (see Figure 1). By default, a node is identified
with its opening parenthesis OP(v).

The Depth-First Unary Degree Sequence (DFUDS) representation DFUDS(T ) [2] is again
obtained by traversing T in depth-first order, but, when reaching a node with d children for
the first time, writing d opening parentheses and one closing parenthesis (and writing no
parentheses when reaching it for the second time). This sequence of parentheses becomes
balanced when appending an opening parenthesis at the beginning. It is further convenient
to identify a node with the parenthesis preceding the block of opening parentheses that
represent its children1, which for all non-root nodes is a closing parenthesis. In other words, in
DFUDS, the i-th closing parenthesis reflects the i-th non-root node in DFT order. Note that,

1 Literature references are ambiguous about the exact choice of parenthesis. None of the alternative
choices, like the first opening parenthesis or the closing parenthesis following the block of opening
parentheses, would lead to any real complications also in our treatment.

CPM 2018



18:4 Tree Representation Duality

according to this definition, when matching opening parentheses with closing parentheses in
a balanced manner, the opening parentheses in one block refer to the children of the closing
parenthesis preceding the block from right to left.

Rank/Select/Open/Close. In the following, we will treat parenthesis vectors as bitvectors,
where opening and closing parentheses are identified with 1 and 0. Let B ∈ {0, 1}n be a
bitvector and x ∈ {1, ..., n} (for enhanced exposition, running indices run from 1 to n). Then
rankB,0(x), rankB,1(x) are defined to be the number of 0’s or 1’ in B up to (and including)
B[x]. Further, selectB,0(i), selectB,1(i) are defined to be the position of the i-th 0 or 1 in
B (if this exists). We omit the subscript B and write rank0(x), rank1(x), select0(i), select1(i)
if the choice of B is evident. As a relevant example (see (5)), for DFUDS(T ) and v ∈ T ,
we have CP(v) = select0(i) if and only if DFT(v) = i + 1, that is v is the i + 1-th node in
depth-first traversal order, also counting the root. We further write open(x) and close(x) to
identify the matching partner in a (balanced parenthesis) bitvector, that is open(x) for a
position x in B with B[x] = 0 is the position of the 1 matching x and vice versa for close(x).

1.3 Outline of Sections
We will start with the definition of a dual tree T ∗ of T in section 2; according to this
definition, T ∗ is a directed graph, so we still have to prove that T ∗ is a tree, which we
will do immediately afterwards. We proceed by proving (T ∗)∗ = T , arguably necessary for
a well-defined duality. In section 2.1, we then show how to decompose our duality into
subdualities by introducing the definition of a reversed tree ←→T . We conclude by providing
the definition of T̂ as the reversed dual tree; without being able to provide a proof at this
point, note that T̂ will turn out to be the tree from (8).

In section 3, we provide the definition of a primal-dual ancestor, which is crucial for
re-interpreting RMQ’s in terms of the notions of duality provided here. Upon having proven
the unique existence of the primal-dual ancestor in theorem 13, we re-interpret RMQ’s, and
beyond that not only re-interpret, but also improve on running minimal length interval
queries (MLIQ’s) both in terms of space requirements and query counts.

We will finally prove our main theorem in section 4.

I Theorem 1. Let T be a tree and let the reversal ←→B of a bitvector B be defined by←→
B [x] := 1−B[n− x + 1], ∀x ∈ {1, . . . , n}. Then

BP(T ) =
←−−−−−−−→
DFUDS(T ∗). (9)

Returning to [8], we will finally demonstrate that (7), our motivating insight, indeed
holds.

2 Tree Duality: Definition

I Definition 2 (Dual tree). Let T be a tree. The dual tree T ∗ of T is a directed graph that
has the same vertices as T . Edges and order (among nodes sharing a parent) are given by
the following rules, where we write pa∗(v) for the parent of v in T ∗:

Rule 1a: The root r of T is also the root of T ∗, that is r has no parent also in T ∗.
Rule 1b: If v = rmcT (r) then also v = rmcT ∗(r), implying in particular that pa∗(v) = r.
Rule 2: If v = rmcT (u) with u 6= r, then v = ilsT ∗(u), implying that pa∗(v) = pa∗(u).
Rule 3: If v = ilsT (u), then v = rmcT ∗(u), implying that pa∗(v) = u.
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Figure 1 A tree and its dual, along with the BP and DFUDS representations. A subtree T [u] is
also highlighted, along with the corresponding nodes in the dual.

I Remark. Rules 1a, 1b, 2 and 3 immediately imply that T ∗ is a directed graph where each
node other than r has one parent. Note that the existence of a parent due to Rule 2 is
guaranteed by induction on the depth of a node in T , where Rule 1b makes the start.

I Remark. It is similarly immediate to observe that there is a well-defined order among
nodes that share a parent. It suffices to notice that in T ∗ each node either is a rightmost
child (Rules 1b, 3), or it is the (unique) immediate left sibling of another node (Rule 2).

All nodes but r have exactly one (incoming) edge, which implies |E|= |V |−1. To conclude
that T ∗ is a tree, it remains to show that T ∗ contains no cycles, which we immediately do:

I Theorem 3. T ∗ is a well-defined, rooted, ordered tree.

We do this by explicitly specifying the parents of nodes in T ∗, by making use of the
depth-first traversal order < in T . For this, let T [v] be the subtree of T that hangs off (and
includes) v ∈ T , i.e. T [v] contains v and all its descendants in T . Let further

R[v] := {u ∈ T \ T [v] | v < u}

be all nodes “right of” v according to depth-first traversal order. For two nodes u, v where u

is an ancestor of v, we immediately note that

T [v] ⊂ T [u], R[u] ⊂ R[v] and R[v] ⊂ T [u] ∪ R[u] (10)

For a node v ∈ T \ {r}, we then obtain the following lemma:

I Lemma 4.

pa∗(v) =
{

min R[v] R[v] 6= ∅
r R[v] = ∅

We refer to the Appendix of the full version [4] for the proof of Lemma 4. Using Lemma 4, a
proof of theorem 3 can be immediately given:

Proof of Theorem 3. Lemma 4 implies that v <T pa∗(v) for all v ∈ T \ {r}. Therefore, T ∗

can contain no cycles and we obtain that T ∗ is a tree as a corollary. Furthermore, lemma 4
reveals that T ∗ is unique. J

See again the Appendix of [4] for immediate corollaries which point out how parents and
subtrees in T ∗ relate with one another.

CPM 2018
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Figure 2 (left) An array A along with the 2D-Min-Heap T [A]. Arcs above array indices indicate
tree paths. (middle) The dual tree (T [A])∗. (right) The reversed array ←→A along with the 2D-Min-
Heap T [←→A ].

I Remark. An intuitive guideline for describing T ∗ in comparison to T is that parent- and
siblinghood, as well as left and right are exchanged. In other words (and as will become
clearer explicitly later) the duality describing T ∗ can be decomposed into two subdualities,
one of which turns parents into siblings and vice versa, and the other one of which exchanges
left and right.

This remark had left us with some choices for characterizing tree duality. Our choice is
motivated by [9], arguably a cornerstone in RMQ theory development. To understand this,
let A = A[1, n] be the array, on which RMQ’s are to be run, and let ←→A be its reversal, given
by ←→A [i] = A[n− i + 1]. Let T [A] be the 2D-Min-Heap constructed from A, as described in
[9] (a definition is provided in the Appendix of [4],

to which RMQ’s refer (see (2),(3),(4)). An immediate question to ask is what RMQ’s
would look like when performing RMQ’s on ←→A instead of A. Here is the answer.

I Theorem 5. Let A[1, N ] be an array and let ←→A := [A[N ], ..., A[1]] its reversal. Then

(T [A])∗ = T [←→A ] (11)

An illustration of the Theorem is provided in Figure 2. See the Appendix of [4] for a more
detailed treatment of this motivating example, including proofs. Thanks to theorem 5, the
definition of T ∗ can arguably be considered a most natural choice, at least when relating
tree duality with RMQ’s.

Before proceeding with results on succinct tree representations, we provide the following
intuitive lemma about the depth-first traversal order of T ∗ as a rooted, ordered tree. This
lemma, in combination with lemma 4, supports the (intended) intuition that in T ∗ up and
down, as well as left and right, are exchanged, properties that are characteristic for rooted,
ordered tree duality. It also provides motivation beyond theorem 5 in the Introduction why
T ∗ is the possibly canonical choice of the dual of a tree.

Therefore, let <∗ denote the depth-first traversal order in T ∗ (well-defined by theorem 3)
while < denotes the depth-first traversal order in (the primal tree) T .

I Lemma 6. Let u, v ∈ T \ {r}. Then

u <∗ v if and only if v < u
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The proof of lemma 6 makes use of the following technical lemmata 7 and 8, which are of use
also elsewhere. We therefore state these technical lemmata here. The proofs for all lemmata
6, 7 and 8 can finally be found in the Appendix of [4].

I Lemma 7. Let w := pa∗(v) and v2 ∈ T [v] \ v such that pa∗(v2) = w. Then v2 <∗ v.

I Lemma 8. Let v1 be a sibling left of u1 in T . Then T [v1] ⊂ T ∗[u1].

With lemma 6 proven, we can conclude with proving a main theorem of this treatment. It
states that the dual of the dual is the primal tree, arguably a key property for a sensibly
defined duality. Despite all lemmata raised so far, the proof still entails a few technically
more demanding arguments.

I Theorem 9. (T ∗)∗ = T

Proof. It suffices to show that pa∗∗(v) = pa(v), since lemma 6 establishes that the order in
(T ∗)∗ agrees with that of T . Let u = pa(v). In the Appendix of [4], we provide a (heavily
technical) proof that

u =
{

min<∗ R∗[v] R∗[v] 6= ∅
r R∗[v] = ∅

which completes the proof by applying lemma 4. J

2.1 Tree Reversal
We bring in another, simpler notion of tree duality, namely that of reversing trees. We will
further elucidate what the trees are like when combining tree reversal with the tree duality
(T ∗) raised earlier.

I Definition 10 (Reversed tree). Let T be a tree. The reversed tree ←→T of T is the tree
resulting from reversing the order among the children of each node.

I Proposition 11. Let ←→T be the reversed tree of T and
←→
T ∗ be the reversed dual of T . We

define irs (immediate right sibling) and lmc (left-most child) similarly as in Section 1.2.
(a) The root r of T is also the root of ←→T .
(b) Let u = paT (v). Then also u = pa←→

T
(v).

(c) Let u = ilsT (v). Then u = irs←→
T

(v).
(d) The root r of T is also the root of

←→
T ∗ .

(e) If v = lmcT (r) then also v = lmc←→
T ∗ (r), implying in particular that pa←→

T ∗ (v) = r.
(f) If v = lmcT (u) with u 6= r, so v = ils←→

T ∗ (u), implying that pa←→
T ∗ (v) = pa←→

T ∗ (u).
(g) If v = ilsT (u), then v = lmc←→

T ∗ (u), implying that pa←→
T ∗ (v) = u.

(h)
←→
T ∗ =←→T

∗
, that is the reversed dual tree of T is the dual of the reversed tree of T .

All of those are, in comparison with statements referring to the definition of the dual
tree, rather obvious observations. See the Appendix of [4] for the proof.

Since ←→T
∗
plays a particular role in the context of our introductory motivation, we give it a

particular name: T̂ .

I Definition 12 (Reversed dual tree). Let T be a tree. The tree T̂ :=←→T
∗
of T is the dual of

the reversed (or the reversed dual) tree of T .

CPM 2018



18:8 Tree Representation Duality

Based on proposition 11, we realize that T̂ can be described as turning leftmost children into
immediate left siblings.
I Remark. Following the arguments provided in [8], it becomes evident that the tree T in
use there, on which BP(T ) is constructed, turns indeed out to be T̂ [A] =

←−−→
T [A]∗.

3 The Primal-Dual Ancestor

The following theorem points out that pairs of nodes have a unique primal-dual ancestor.
We will further point out properties of that node.

I Theorem 13. Let v1, v2 ∈ T \ {r} be two nodes where v1 ≤ v2. Then there is a unique
node v ∈ T \ {r} such that v1 ∈ T ∗[v] and v2 ∈ T [v].

We henceforth refer to this unique node as primal-dual ancestor of v1 and v2, written
pda(v1, v2).

Proof. Let

v := max
<T

{v1 ≤ x ≤ v2 | v1 ∈ T ∗[x]} (12)

be, relative to depth-first traversal order in T , the largest ancestor of v1 in T ∗ that precedes
v2. We claim that v is the unique primal-dual ancestor of v1 and v2.

By definition, we immediately obtain that v1 ∈ T ∗[v]. To prove v2 ∈ T [v], consider pa∗(v),
for which, by choice of v, we have that v2 < pa∗(v). By lemma 4, however, pa∗(v) is the
first node in R[v], relative to depth-first traversal order in T . Hence, for any y such that
v ≤ y < pa∗(v), which includes v2, it holds that y ∈ T [v].

It remains to show that v is the only possible primal-dual ancestor. By definition of the
primal-dual ancestor, v must be an ancestor of v1 in T ∗.

First, consider an ancestor y of v1 in T ∗ such that y < v. By choice of v, it holds that
pa∗(y) ≤ v2, while pa∗(y) ∈ R[y]. This implies that also v2 ∈ R[y], and not v2 ∈ T [y], hence
y cannot be a primal-dual ancestor of v1 and v2.

Second, consider an ancestor y of v1 in T ∗ such that v < y. Because v is an ancestor of
v1 in T ∗, and y is larger than v, y is also an ancestor of v in T ∗. By lemma 4, we know that
y ∈ R[v]. This, in combination with v2 ∈ T [v] implies that v2 < y, hence, y cannot be an
ancestor of v2 in T . J

For the following theorem, let

depthT (v1, v2) := min{depthT (y) | v1 ≤ y ≤ v2}

be the minimal depth of nodes between (and including) v1 and v2.

I Theorem 14. Let v1, v2 ∈ T \ {r} such that v1 < v2. It holds that

pda(v1, v2) = max
<
{v1 ≤ x ≤ v2 | depthT (x) = depthT (v1, v2)} (13)

That is, according to depth-first traversal order in T , the primal-dual ancestor is the greatest
node whose T -depth is minimal among all nodes between (and including) v1 and v2.

The proof is based on the following lemma:

I Lemma 15. Let v < w such that w ∈ T [pa∗(v)]. Then it holds that

depthT (v, w) = depthT (pa∗(v)) (14)



R. Chikhi and A. Schönhuth 18:9

See the Appendix of [4] for a proof of lemma 15 and then theorem 14.

Note immediately that theorem 14 implies that v can be found in O(1) runtime, by performing
a range minimum query on the excess array D of BP(T ), defined by D[x] := rank1(x)−rank0(x)
where rank refers to BP(T ). Since D[x + 1] − D[x] ∈ {−1, +1}, an RMQ on D means
performing a ±1-RMQ, for which convenient solutions exist [1].

Re-interpretation of RMQ’s. Because it was shown [9], that the node in the 2D-Min-Heap
T [A] that corresponds to the solution of rmqA(i, j) is given by the right hand side of (13),
theorems 13 and 14 allow for a reinterpretation of an RMQ query rmqA(i, j) on an array A

(without going into details here, because the proof is an easy exercise based on collecting
facts from here, [9] and [8]).
1. Determine the node v in T [A] corresponding to i.
2. Determine the node w in T [A] corresponding to j.
3. Determine pda(v, w) in T [A]; return the corresponding index io.

Re-interpretation and improvement of Minimal Length Interval Queries (MLIQ). To
illustrate the potential practical benefits of our treatment, we further revisit the problem of
minimal length interval queries (MLIQ). The improvements we will be outlining are similar
in spirit to the ones delivered in [8]. However, based on our results, they are considerably
more convenient to obtain.

I Problem 16 (MLIQ). Let ([ai, bi])i∈{1,...,n}, ai, bi ∈ N such that ai ≤ bi for all i ∈ {1, ..., n}
and ai < aj and bi < bj for i < j.

Input: (a, b) such that a < b

Output: The index i0 such that [ai0 , bi0 ] is the shortest interval that contains [a, b], if
such an interval exists.

This problem makes part of other relevant problems, for example the shortest unique
interval problem. In this context, a solution for the MLIQ problem was presented in [12]
that requires O(bn log bn) space to answer the query in O(1) time. Therefore, the following
strategy was suggested.

Let li := |bi − ai + 1| be the length of the i-th interval, A := [l1, ..., ln] and T [A] the
corresponding 2D-Min-Heap.

1. imin := min{i | bi > b}, imax := max{i | ai < a}; if imax < imin output ’None’.
2. Determine nodes v, w ∈ T [A] corresponding to imin, imax.
3. Determine pda(v, w) ∈ T [A]; output its index.

The solution presented in [12] can immediately be improved by employing bitmaps for
the first step (which, according to [18], requires O(n log(bn/n)) + o(bn) space). Steps 2 and
3 then reflect an ordinary RMQ, which can be dealt with following [8]. In terms of query
counts, Step 1 reflects two rank queries, while the resulting RMQ, following [8], requires two
select’s, one ±1-rmq, and one rank.

If |ai− ai−1|, |bi− bi−1| are in O(log n) (which applies for several important applications),
further improvements can be made based on suggestions made in [20] for BP representations
of trees with weighted parentheses. For that, we construct Ta = T [A] and Tb =

←−→
T [A]. We

then assign weights wa,i := |ai− ai−1| to i + 1-st opening parenthesis in Ta, whereas in Tb we
assign wb,i := |bi− bi−1| to the i-th closing parentheses (where a0 = b0 = 0; we recall that the
number of non-root nodes in T [A] is n). When aiming at running queries presented in [20],
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this requires 2n log log n + o(n) bits of space, an improvement over O(n log(bn/n)) + o(bn)
for the above, naive approach. Following [20], let bpselectwa,0(a), bpselect0,wb

(b) be defined
by selecting the largest index in the balanced parenthesis vector such that adding up all
weights attached to opening parentheses (wa) is at most a, or adding up all weights attached
to closing parentheses (wb) is at most b. We can then run
1. w := bpselectwa,0(a) in Ta and v := 2n−bpselect0,wb

(b) + 3 in Tb; if v > w output ’None’
2. Determine pda(v, w) ∈ Ta; output its index.

In comparison to the naive approach from above, this makes two bpselect queries, instead
of two rank’s and two select’s. The decisive trick is to place a and b directly into T [A], which
avoids determining indices imin, imax first, which subsequently need to be placed. Beyond
the improvements in terms of space and query counts, we argue that this solution reflects all
symmetries inherent to the MLIQ problem in a particularly compact manner.

4 Relating BP and DFUDS representations

We will use the following construction to set up a tree induction for proving our main theorem.

I Definition 17 (Tree joining operation). Let T1 and T2 be two trees, let r2 be the root of T2,
rmcT2(r2) needs to exist and be a leaf. The notation T1 y T2 will denote a new tree formed by
taking T2 and inserting the children of the root of T1 as children of the rightmost child of the
root of the new tree. Extend this operation to n trees T1, . . . , Tn where T2, . . . , Tn all satisfy
the same property as T2 above, in the following way: T1 y T2 y T3 = (T1 y T2) y T3 and
so on,

T1 y T2 . . . y Tn = ((. . . ((T1 y T2) y T3) y . . .) y Tn).

I Observation 18. Let T be a tree such that its root r has a single child c (that may or may
not be a leaf). Then in T ∗, by Rule 1b, rmcT ∗(r) = c and is a leaf.

The following Lemma (proven in the Appendix of [4])
relates the dual tree to the tree joining operation. We will use the r → T notation to

denote a new tree formed by adding a new root r as a parent of the root of T .

I Lemma 19. Let T be a tree consisting of a root r and n ≥ 1 subtrees A1, A2, . . . , An as
children. When n = 1, T ∗ is (r → A1)∗. When n ≥ 2, T ∗ is (r → A1)∗ y (r → A2)∗ y
. . . y (r → An)∗.

We are now ready to prove Theorem 1. Parentheses in BP and DFUDS representations
will be denoted by ( and ) to avoid confusion with usual mathematical parentheses. Recall
that we use ←→s to mirror a string s of parentheses, e.g.

←→
(() = ()) and

←→
)() = ()(.

Proof of Theorem 1. Let T be a tree with n subtrees A1, . . . , An. It is clear that BP(T ) =
(BP(A1)BP(A2) . . . BP(An)). Observe that for two trees T1 and T2 with roots v1 and v2,
and where rmcT1(v1), rmcT2(v2) both exist and are leaves,

DFUDS(T1 y T2) = (DFUDS(T2 \ rmcT2(v2))DFUDS(T1 \ rmcT1(v1))).

In fact, one can show recursively that such a decomposition can be extended to T1 y
. . . y Tn. We will now prove the theorem with a tree structural induction. Observe that for
a tree T of depth 1 (a single root node),

BP(T ) = () = DFUDS(T ∗) =
←−−−−−−−→
DFUDS(T ∗).
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Now, assume the theorem equality is true for trees of depth i and we will show it for
trees of depth i + 1. A tree T of depth i + 1 can be decomposed into a root node r and n

subtrees A1, . . . , An that are all of of depth ≤ i with roots a1, . . . , an. Using Lemma 19,

DFUDS(T ∗) = DFUDS((r → A1)∗ y (r → A2)∗ y . . . y (r → An)∗).

By the recursive decomposition that we observed above, and using Observation 18 stating
that the rightmost child of r in (r → Ai)∗ is a leaf,

DFUDS(T ∗) = (DFUDS((r → An)∗ \ {an}) . . . DFUDS((r → A1)∗ \ {a1})).

Observe that we can take each DFUDS term in the expression above and wrap it around
parentheses, i.e. (DFUDS((r → Ai)∗ \ {ai}) which is equal to DFUDS((r → Ai)∗). Further-
more, note the following identity: DFUDS((r → Ai)∗) = (DFUDS(A∗i )). And by inductive
hypothesis, DFUDS(A∗i ) =

←−−−→
BP(Ai), thus DFUDS((r → Ai)∗ \ {ai}) =

←−−−→
BP(Ai). Hence,

←−−−−−−−→
DFUDS(T ∗) = (BP(A1) . . . BP(An)) = BP(T ). J

Proving (7) from the Introduction. Eventually, we also realize that BP(←→T ) =
←−−→
BP(T )

and also DFUDS(←→T ) =
←−−−−−−→
DFUDS(T ), both of which is straightforward [?]. Using this in

combination with theorems 9 and 1, we obtain

DFUDS(T [A]) [?]=
←−−−−−−−−→
DFUDS(

←−→
T [A]) T h.9=

←−−−−−−−−−−−→
DFUDS((

←−→
T [A]

∗
)∗) T h.1= BP(

←−→
T [A]

∗
) D.12= BP(T̂ [A])

which establishes equation (7) from the introduction.

Conclusive Remarks. In summary, we have provided a framework that unifies BP and
DFUDS. From a certain point of view, we have pointed out that neither should BP based
approaches have advantages over DFUDS based approaches, nor vice versa. As an exemplary
perspective of our framework, BP based treatments such as [17, 20] might have an easier
grasp of the advantages that DFUDS based approaches bring along. Finally, we consider
it interesting future work to also characterize trees that put BP and/or DFUDS based
representations into context with LOUDS based representations.
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