
Linear-time algorithms for the subpath kernel
Kilho Shin1

Graduate School of Applied Informatics, University of Hyogo
Minatojima-Minamimachi, Chuo, Kobe, Japan
yshn@ai.u-hyogo.ac.jp

Taichi Ishikawa
Graduate School of Applied Informatics, University of Hyogo
Minatojima-Minamimachi, Chuo, Kobe, Japan
t.i.tkgw@gmail.com

Abstract
The subpath kernel is a useful positive definite kernel, which takes arbitrary rooted trees as
input, no matter whether they are ordered or unordered, We first show that the subpath kernel
can exhibit excellent classification performance in combination with SVM through an intensive
experiment. Secondly, we develop a theory of irreducible trees, and then, using it as a rigid
mathematical basis, reconstruct a bottom-up linear-time algorithm for the subtree kernel, which
is a correction of an algorithm well-known in the literature. Thirdly, we show a novel top-down
algorithm, with which we can realize a linear-time parallel-computing algorithm to compute the
subpath kernel.

2012 ACM Subject Classification Theory of computation → Kernel methods

Keywords and phrases tree, kernel, suffix tree

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.22

1 Introduction

Recently, designing efficient kernel functions for tree-type data has become more important
in various fields including bioinformatics, natural language processing (NLP) and so forth.
First of all, we have many applications where data are represented in the form of trees. For
instance, glycans are attracting wide attention of researchers as the third life molecule that
follows DNA and proteins, and their chemical structures are trees in contrast that DNA
and proteins are sequences. Also, results of syntactical analysis of natural languages and
documents created according to markup languages such as HTML/XML are all represented
as trees. In this paper, a tree always means a rooted tree.

To capture features of tree-type data, kernel functions are known useful. The basic nature
of kernel functions is a measure to evaluate similarity of data. Furthermore, when used with
various methods of multivariate analysis such as PCA and SVM, kernels are significantly
useful for the purposes of classification, clustering, regression and so forth.

Kernel functions applicable to tree-type data have been intensively studied in the literature.
In fact, since Haussler first introduced a generic class of positive definite kernels for semi-
structured data, named the convolution kernel [6], a variety of tree kernels have been proposed:
for example, Collins and Duffy designed the first tree kernel for the study of parse trees of
natural languages [3]; Kashima and Koyanagi relaxed application-specific constraints of the

1 This work was supported by JSPS KAKENHI Grant Number JP17H007623 and JP16K12491.

© Kilho Shin and Taichi Ishikawa;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:yshn@ai.u-hyogo.ac.jp
mailto:t.i.tkgw@gmail.com
http://dx.doi.org/10.4230/LIPIcs.CPM.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 The subpath kernel, a truly practical kernel for trees

parse tree kernel by Collins and Duffy and introduced the elastic tree kernel [8]. The idea
that underlies these kernels is to count shared sub-structures.

In parallel, Shin and Kuboyama [14] showed a method to derive kernel functions from
various tree edit distances such as Taï distance [16] and the constrained distance [18]. In
fact, these counting-up-based and distance-based tree kernels can be discussed within the
common generalized framework of the mapping kernel [14]. In [15], a wide variety of tree
kernels designed within the mapping kernel framework are investigated from the accuracy
performance point of view.

This paper focuses on the subpath kernel, which extends and generalizes the spectrum
kernel [11] and the all-sequences kernel for strings, and the spectrum kernel for trees [10].
We see that the subpath kernel outperforms the benchmark tree kernels in prediction
performance, and its superiority is statistically significant. Furthermore, we present linear-
time fast algorithms to compute it with mathematical proof for their correctness.

2 The Subpath Kernel (SPK) for Trees

The subpath kernel takes two rooted labeled trees T1 and T2 as an input and returns a real
value.

The idea of the subpath kernel dates back to the spectrum kernel for strings that Leslie
et al. proposed [11]. Leslie’s spectrum kernel counts up all the pairs of congruent substrings
of a fixed length such that one substring appears in the first input string, while the other
does in the second.

Kuboyama et al. [10] have extended Leslie’s idea to trees and introduced the spectrum
tree kernel, which counts up congruent subpaths instead of substrings.

Starting from an arbitrary vertex v, a subpath of length q is the sequence of vertices
π = (v, p(v), p2(v), . . . , pq−1(v)), where p(w) denotes the parent of a vertex v.
From π, we obtain a string `(π) = `(v)`(p(v)) . . . `(pq−1(v)) ∈ Σq, where Σ is an alphabet
of labels and `(w) is the label of a vertex w.
For a tree T and s ∈ Σq, we let c(s;T) denote the number of subpaths π with `(π) = s.
Finally, the q-spectrum kernel Kq is define by

Kq(T1, T2) =
∑
s∈Σq

c(s;T1) · c(s;T2).

I Definition 1. With a decay factor λ ∈ (0, 1) and spectrum tree kernels Kq, the subpath
kernel is defined by SPK(T1, T2) =

∑
q∈N λ

qKq(T1, T2).

The subpath kernel is positive definite and the yields an inner product function in the
reproducing kernel Hilbert space [1].

3 High accuracy performance as a similarity measure.

We first see that the subpath kernel has prediction accuracy superior to major tree kernels
known in the literature through an intensive experiment.

3.1 Datasets
In the experiment, we use ten datasets, which cover three different areas of applications:
bioinformatics (three), natural language processing (six) and web access analysis (one). Three
(Colon, Cystic and Leukemia) are retrieved from the KEGG/GLYCAN database ([5])
and contain glycan structures annotated relating to colon cancer, cystic fibrosis and leukemia

K. Shin and T. Ishikaw 22:3

Table 1 Datasets: Number of examples, averaged sizes and averaged heights of trees.

Dataset AIMed BioInfer Colon Cystic Hprd50 Iepa Leukemia Lll Syntactic Web

Examples 100 70 134 160 100 100 442 100 225 500

Size 94.4 116.4 8.4 8.3 84.4 105.2 13.5 106.4 19.7 12.0
Height 13.5 14.1 5.6 5.0 12.7 13.6 7.4 14.3 6.5 4.3

Table 2 Accuracy scores, averaged ranks, and p-values in Hommel test

Kernel AIMed BioInf. Colon Cystic Hprd50 Iepa Leuk. Lll Syn. Web Av. Rnk. p-Val.

Spk 0.75 0.84 0.91 0.79 0.70 0.71 0.90 0.65 0.87 0.82 1.1 –

Prs 0.75 0.81 0.77 0.60 0.64 0.60 0.89 0.63 0.65 0.77 3.75 0.0031
Els 0.74 0.81 0.82 0.67 0.60 0.64 0.88 0.60 0.68 0.77 3.95 0.0020
Cdk 0.75 0.81 0.83 0.66 0.57 0.59 0.87 0.59 0.68 0.77 4.65 0.0001
Ctk 0.73 0.78 0.88 0.72 0.60 0.60 0.88 0.59 0.76 0.78 4.0 0.0016
Stk 0.72 0.79 0.90 0.73 0.61 0.59 0.88 0.60 0.82 0.78 3.55 0.0034

Figure 1 Hommel test: p < 0.01.

cells. One (Syntactic) is the dataset PropBank provided in [12]. This dataset includes parse
trees labeled with two syntactic role classes for modeling the syntactic/semantic relation
between a predicate and the semantic roles of its arguments in a sentence. Five (AIMed,
BioInfer, HPRD50 IEPA and LLL) are the corpora that include parse trees obtained by
analyzing documents regarding protein-protein interaction (PPI) extraction ([13]). PPI is an
intensively studied problem of the BioNLP field. The remaining one (Web), used in [17],
consists of trees representing web-page accesses by users, and the annotation is based on
whether the user is from a .edu site or not. Table 1 describes the basic features of these
datasets.

3.2 Kernels to compare
The benchmark kernels to compare with are the parse tree kernel (Prs) [3], the elastic tree
kernel (Els) [8], the sparse path kernel (STK) and the contiguous kernel (Crs). The Stk
and Ctk are two kernels that performed the best in an intensive experiment in [15]. Each
kernel includes two adjustable parameters α and β with 1 ≥ α ≥ β > 0.

3.3 Experimental results
Table 2 shows the results of the experiments. We run ten-fold cross validation with a
libSVM classifier [2] and measure accuracy scores by the accuracy index, determined by
Acc = TP+TN

TP+TN+FP+TN . The accuracy values in Table 2 are the best values obtained through
grid search changing the parameters. The subpath kernel includes one adjustable parameter
to tune, a decay factor λ, while the others include two, α and β.

Remarkably, for all of the datasets tested, the subtree kernel is ranked top. Also, Table 2
specifies the p-values obtained when we perform the Hommel multiple comparison test as
recommended by [4]. With a significance level 0.01, we can conclude that the exhibited
superiority of the subpath kernel is statistically significant (Figure 1).

CPM 2018

22:4 The subpath kernel, a truly practical kernel for trees

4 Linear-time algorithms for the subpath kernel

The subpath kernel “is known” to be one of a few tree kernels that have linear-time complexity
in the size of the input trees. In fact, [9] presented a linear-time algorithm but at the same
time reported not so good accuracy performance. For example, the accuracy scores the
subpath kernel with Leukemia was the lowest of the five tree kernels tested. This could
not help raising a question with us, and we have found the reason for this. The algorithm
proposed in [9] was wrong.

In this section, we reconstruct the algorithm based on the mathematically rigid ground,
a theory of irreducible trees (Section 4.1) and further, introduce a novel algorithm for the
subpath kernel, which realizes parallel computation of the subpath kernel in combination
with the corrected algorithm.

4.1 A theory of irreducible trees
An irreducible tree is rooted, ordered and labeled. A rooted tree T is a partially ordered set
(poset) with respect to an generation order : v < w means that a vertex v is an ancestor of
another vertex w, and hence, the root rT of T is the unique minimum vertex. Furthermore,
we let p(v) denote the parent of a vertex v, and pk(v) does the ancestor of v for k > 0 such
that there are exactly k − 1 intermediate vertices between v and pk(v). If a vertex is not
the parent of any other vertices, we call it a leaf. From the generation order, the nearest
common ancestor of a pair vertices (v, w) can be naturally introduced.

I Definition 2. For any {v, w} ⊆ T , v ` w = max≤{u ∈ T | u ≤ v, u ≤ w} is the nearest
common ancestor of v and w.

To define an ordered tree T , it is common to introduce a sibling order, but we deploy the
following definition, since we are only interested in a numbering of the leaves of T .

I Definition 3. When the entire leaves of a rooted tree T is numbered as (l1, . . . , ln), T is
said to be ordered, if, and only if, li ` lk = li ` lj ` lk holds for any 1 ≤ i < j < k ≤ n.

I Proposition 4. For a vertex v of an ordered tree, {i | li ≥ v} = [a, b] holds for some a and
b in {1, . . . , n}. We say that [a, b] is the span of v.

Proof. We let a = min{i | li ≥ v} and b = max{i | li ≥ v}. For any i ∈ (a, b), li ` la ≥ la `
lb ≥ v holds. In particular, we have li ≥ v. J

Finally, we define an irreducible tree in Definition 5.

I Definition 5. A rooted and ordered tree is irreducible, iff no vertex has only one child.

For study of irreducible trees, αi defined below plays a crucial role.

I Definition 6. For i ∈ {1, 2, . . . , n− 1}, αi denotes li ` li+1.

The rightmost (leftmost) leaf of a vertex v is lb (la), when v spans [a, b]. The rightmost
leaf of v can be characterized by αi as follows.

I Proposition 7. We assume v < li. li is the rightmost leaf of v, if, and only if, v > αi.

Proof. If li is the rightmost leaf, αi 6≥ v holds, since li+1 ≥ v holds, otherwise; If αi < v,
li ` lk ≤ αi < v, and therefore, lk 6≥ v holds for any k > i. J

Any non-leaf vertex v has at least one i such that v = αi. We have

K. Shin and T. Ishikaw 22:5

Figure 2 An irreducible tree.

I Proposition 8. For a non-leaf vertex v, we let w be the leftmost child of v and li be the
rightmost leaf of w. Then, i = min{j | αj = v} holds.

Proof. By Proposition 7, αi < w holds. On the other hand, since li is not the rightmost leaf
of v, αi ≥ v holds. αi = v immediately follows. J

I Definition 9. For an intermediate vertex v, γ(v) denotes min{i | αi = v}.

For example, in Figure 2, α4 and α5 are identical, and γ(α5) = 4 holds. Corollary 10
will play a central role when we introduce a top-down algorithm for the subpath kernel
in Section 4.5. For the convenience of explanation, without loss of generality, we add an
imaginary root ⊥ on top of rT and let αn =⊥.

I Corollary 10. If a non-leaf vertex v that spans [a, b] has children w1, . . . , wt, their rightmost
leaves are li1 , . . . , lit with {i1, . . . , it} = {j | j ∈ [a, b], αj ≤ v}.

Proof. We assume i1 < · · · < it. it = b follows from Proposition 7. li1 is the rightmost leaf
of w1 by Proposition 8. To verify that lii is the rightmost leaf of wi for 1 < i < t, we have
only to eliminate w1, . . . , wi−1 and their subordinates and then to apply Proposition 8. J

Theorem 14 and 16 stated below will be a theoretical basis to justify the correctness of
the bottom-up traversal algorithm introduced in [7] and to correct errors of the algorithm to
compute the subpath kernel proposed in [9]. We start with defining Γi and Γ̂i.

I Definition 11. Γi and Γ̂i are the subsequences of the subpath (p1(li), p2(li), . . . , p`i(li) =
rT) consisting of the vertices pj(li) such that γ(pj(li)) < i and pj(li) > αi, respectively.

I Example 12. In Figure 2, Γi and Γ̂i for i = 1, . . . , 10 are determined as follows.

i Γi Γ̂i i Γi Γ̂i

1 () () 6 (α4, α3, α2, α1) (α4, α3, α2)
2 (α1) () 7 (α6, α1) ()
3 (α2, α1) () 8 (α7, α6, α1) (α7, α6, α1)
4 (α3, α2, α1) () 9 (α8) (α8)
5 (α4, α3, α2, α1) () 10 (α9) (α9)

I Proposition 13. Any v ∈ Γ̂i has γ(v) < i. Hence, Γ̂i ⊆ Γi holds.

CPM 2018

22:6 The subpath kernel, a truly practical kernel for trees

Proof. li ` lk ≤ αi < v holds for k > i, and hence, lk 6≥ v holds. J

I Theorem 14. The sequence
∏n
i=1

[
(li) · Γ̂i

]
yields the bottom-up traversal of the vertices

of T . Given two sequences s and t, s · t denotes their concatenation.

Proof. Since every vertex v has a unique leftmost leaf, it appears in the sequence exactly
once. On the other hand, for a vertex w with w > v, the span of w is a subset of the span of
v, and hence, w appears before v in the sequence. J

I Example 15. In Figure 2, (li) · Γ̂i for i = 1, . . . , 10 is determined as follows.

i Γ̂i (li) · Γ̂i i Γ̂i (li) · Γ̂i

1 () (l1) 6 (α4, α3, α2) (l6, α4, α3, α2)
2 () (l2) 7 () (l7)
3 () (l3) 8 (α7, α6, α1) (l8, α7, α6, α1)
4 () (l4) 9 (α8) (l9, α8)
5 () (l5) 10 (α9) (l10, α9)

In fact, their concatination (l1, l2, l3, l4, l5, l6, α4, α3, α2, l7, l8, α7, α6, α1, l9, α8, l10, α9) gives
the bottom-up traversal of the vertices of the tree.

I Theorem 16. For i = 1, . . . , n− 1, the following hold.
1. If αi ∈ Γi, Γi+1 = Γi \ Γ̂i.
2. If αi 6∈ Γi, Γi+1 = (αi) ·

(
Γi \ Γ̂i

)
.

Proof. If j with j < i meets αj < li+1, αj ≤ αi holds. In fact, since αj ≥ lj ` li+1, we have
αj = lj ` li+1 ≤ αi, and hence, αj ∈ Γi \ Γ̂i. If αi ∈ Γi \ Γ̂i, Γi+1 = Γi \ Γ̂i holds. Otherwise,
we prepend αi to Γi \ Γ̂i to obtain Γi+1. J

I Example 17. In Figure 2, αi ∈ Γi holds only for i = 5. In fact, Γ6 = (α4, α3, α2, α1) is
identical to Γ5 \ Γ̂5 = (α4, α3, α2, α1) \ (). For the other i, Γi+1 = (αi) ·

(
Γi \ Γ̂i

)
holds. For

example, Γ̂5 = (α4, α3, α2) and (α6) ·
(

Γ5 \ Γ̂5

)
= (α6, α1) = Γ7 hold.

I Definition 18. h : T → N is a height function, if h(v) > h(w) holds for any (v, w) ∈ T 2

with v > w, and if h(rT) = 0.

A height function can be defined for an arbitrary rooted tree, which is not necessarily
irreducible.

I Example 19. For a rooted tree T and a vertex v in T , we let hv denote the number of
ancestors of v: that is, hv = |{w ∈ T | w < v}|. Evidently, hv is a height function.

4.2 Suffix arrays and suffix trees
The well known suffix tree is an example of irreducible trees.

Consider two rooted labeled trees T1 and T2, which are not necessarily ordered. For each
vertex v ∈ Ti, its entire path is the sequence of vertices

(
v, p(v), p2(v), . . . , phv (v) = rT

)
, and

the suffix of v is the string “L(v)L(p(v)) . . . L(phv (v))”, where L(v) denotes the label of a
vertex v. To determine the suffix array for T1 and T2, we collect all the suffices across all
the vertices of T1 and T2, and then sort them in the lexicographical order as strings. The
suffix array includes n = |T1|+ |T2| entries. In Figure 3, the first column of the right table
describes the suffix array for T1 and T2 depicted by the same figure.

K. Shin and T. Ishikaw 22:7

T1

A1

A3 B6

T2

A2

A4

A5

α5

α1

α3l1 l2

l3 l4 l5

l6

A

A

A

BA
Suffix LCP (h) c1 c2

A1 1 1 0
A2 1 0 1
A3A1 2 1 0
A4A2 2 0 1
A5A4A2 0 0 1
B6A1 −1 1 0

Figure 3 A suffix array (right) and the associated suffix tree (middle).

The suffix tree ST for T1 and T2 is derived from the suffix array. The leaf vertices
l1, l2, . . . , l|T1|+|T2| of the suffix tree uniquely correspond to the entries of the suffix array in
the order in which they appear in the array: the leaf li represents the suffix si, which is the
entry of the suffix array at position i. Because there is a one-to-one correspondence between
the entries of the suffix array and the vertices of T1 and T2, each leaf of the suffix tree also
uniquely represents a vertex in T1 or T2. Furthermore, each edge of ST is labeled with a
string of vertex labels so that the following conditions are met:
1. The concatenation of the edge labels of the path from the root rST to li is identical to si.
2. The labels of two downward edges from the same vertex of the suffix tree have no common

prefix.
Combined with the condition that the suffix tree is irreducible, these conditions uniquely
determine the suffix tree ST .

The center tree displayed in Figure 3 describes the suffix tree derived from T1 and T2
depicted in the same figure. Note that an edge label is omitted, if it is an empty string. For
example, l5 corresponds to the fifth entry of the suffix array, and therefore, represents the
vertex A5 in T2. In fact, the downward concatenation of the labels for the entire path of l5 is
identical to s5 = AAA.

An LCP value h(i) for an entry at the position i in a suffix array gives the length of
the longest common prefix between si and si+1. For example, in Figure 3, we have s2 = A
and s3 = AA, and therefore, the LCP value h(2) turns out to be 1. For the last entry of
the suffix array, we define its LCP value to be −1 for convenience of computation. In the
corresponding suffix tree, h(i) determines a height of the intermediate vertex αi.

Finally, we introduce two arrays c1 and c2 in addition to the LCP array h. c1(i) and c2(i)
for the entry at position i of a suffix array describes to which the suffix si belongs, T1 or T2:
c1(i) = 1, if si is a subpath of T1, and c2(i) = 1, if si is a subpath of T2.

To compute the subpath kernel, we have only to input these three arrays h, c1 and c2
into algorithms.

In [9], an algorithm to generate suffix arrays and suffix trees whose time complexity is
linear to the size of trees is proposed.

4.3 Reconstruction of the bottom-up traversal algorithm of [7]

We first reconstruct a linear-time bottom-up traversal algorithm based on the theory shown
in Section 4.1, which is equivalent to the one introduced in [7]. Algorithm 1 shows the
algorithm Theorem 14 and 16 clearly explain the algorithm and at the same time give a
mathematical justification for its correctness.

CPM 2018

22:8 The subpath kernel, a truly practical kernel for trees

Algorithm 1 A bottom-up traversal algorithm of an irreducible tree.
Require: (h(α1), . . . , h(αn)) ∈ Nn . h(αi): the height of αi

Ensure: A sequence (v1, . . . , v|T |) of vertices of T in the bottom-up traversal order.
1: Clear a stack Γ . popΓ, pushΓ(·), topΓ are operations on Γ
2: for i = 1, 2, . . . , n do
3: Write li
4: while Γ 6= ∅ ∧ h(topΓ) > h(αi) do . topΓ > αi ⇔ h(topΓ) > h(αi)
5: Write topΓ
6: Do popΓ
7: end while
8: if Γ = ∅ ∨ h(topΓ) 6= h(αi) then . αi ∈ Γ⇔ αi = topΓ
9: Do pushΓ(αi)
10: end if
11: end for

1. The first-in-last-out stack Γ holds Γi for each i of the for loop. If Γi = (v1, . . . , vk) with
v1 > · · · > vk, v1 is stored at the top, and vk is stored at the bottom of Γ.

2. Note that, if αi and αj are comparable with respect to the generation order, we have
αi < αj ⇔ h(αi) < h(αj). Therefore, the exit condition of the while loop is for
h(topΓ) ≤ h(αi) to hold.

3. The while loop outputs the elements of Γ̂i in the decreasing direction of the generation
order. Hence, Theorem 14 asserts that the algorithm outputs the vertices of T in the
bottom-up traverse order.

4. The while loop also eliminates Γ̂i from Γi in the stack Γ. This is done by performing
popΓ. By Theorem 16, this updates Γi to Γi+1, if αi ∈ Γi.

5. If αi 6∈ Γi, by Theorem 16, αi is to be prepended to Γi \ Γ̂i to obtain Γi+1. In fact, this
is done by performing pushΓ(αi).

6. To know whether αi ∈ Γi, we have only to examine whether topΓ = αi, equivalently,
whether h(topΓ) = h(αi).

4.4 A linear-time bottom-up algorithm for the subpath kernel
In [9], the key formula to compute SPK(T1, T2) is given as

SPK(T1, T2) =
∑
v∈ST

(w(h(v))− w(h(p(v)))) · c1(v) · c2(v). (1)

The function w is determined by w(h) =
∑h
i=1 λ

i and ci(v) is the number of leaves below v

that belong to Ti. Algorithm 2 computes SPK(T1, T2) by Eq. (1) and is also a correction to
the algorithm exhibited in [9].

The steps commented with “. For bottom-up traversal” are to perform bottom-up
traversal of vertices of the suffix tree ST derived from T1 and T2, the following are added to
Algorithm 1.

The stack Γ stores a triplet (αi, c1, c2) (Step 13) instead of αi. The second and third
components store intermediate values to compute c1(v) and c2(v).
The value (w(h(v))− w(h(p(v)))) ·c1(v) ·c2(v) computed for each vertex v is accumulated
in the variable kernel (Step 9).
When αi ∈ Γi (Step 14), the triplet (v, c′1, c′2) is updated so that leaves found during
eliminating Γ̂i from Γi are counted (Step 16).

K. Shin and T. Ishikaw 22:9

Algorithm 2 A bottom-up algorithm for SPK (correction to [9]).
Require: (h(α1), . . . , h(αn)) ∈ Nn; (c1(l1), . . . , c1(ln)) ∈ Zn

2 ; (c2(l1), . . . , c2(ln)) ∈ Zn
2 . h(αi): the

height of αi; ci(lj): belonging of lj to Ti

Ensure: SPK(T1, T2)
1: procedure SPKBU(h(α1), . . . , h(αn); c1(l1), . . . , c1(ln); c2(l1), . . . , c2(ln))
2: Clear a stack Γ . For bottom-up traversal
3: Let kernel = 0
4: for i = 1, 2, . . . , n do . For bottom-up traversal
5: Let c1 = c1(li) and c2 = c2(li)
6: while Γ 6= ∅ ∧ h(topΓ[0]) > h(αi) do . For bottom-up traversal
7: Let (v, c′1, c′2) = topΓ
8: Do popΓ . For bottom-up traversal
9: Let c1 = c1 + c′1 and c2 = c2 + c′2 . ci = ci(v)
10: if h(v) 6= 0 then
11: Let kernel = kernel + (w(h(v))− w(h(p(v)))) · c1 · c2
12: end if . Eq. (1)
13: end while . For bottom-up traversal
14: if Γ = ∅ ∨ h(topΓ[0]) 6= h(αi) then . For bottom-up traversal
15: Do pushΓ(αi, c1, c2) . For bottom-up traversal
16: else
17: Let (v, c′1, c′2) = topΓ
18: Let topΓ = (v, c′1 + c1, c

′
2 + c2)

19: end if . For bottom-up traversal
20: end for . For bottom-up traversal
21: end procedure

Algorithm 3 Computation of p(v).

Require: (h(α1), . . . , h(αn)) ∈ Nn; Γ = Γi \ {v1, . . . , vj}; v = vj . {v1, . . . , vj} ⊆ Γ̂i

Ensure: p(v)
1: if Γ = ∅ ∨ h(topΓ[0]) < h(αi) then . topΓ[0] < αi ⇔ h(topΓ[0]) < h(αi)
2: return αi

3: else
4: return topΓ[0]
5: end if

We should be careful when computing p(v) in Step 10. Proposition 13 asserts that, when
(v, c′1, c′2) is the last element eliminated from Γ, p(v) = topΓ[0] holds, if topΓ[0] > αi, and
p(v) = αi holds, otherwise.

The most important error of the algorithm of [9] was that it wrongly assumed p(v) =
topΓ[0] unconditionally. For example, for two trees T1 and T2 and the suffix tree derived
from them depicted by Figure 4, the subpath kernel value for T1 and T2 turns out to
be λ2 + 3λ, because the subpaths of T1 are {A1,B3,B3A1}, while the subpaths of T2 are
{A2,B4,B5,B4A2,B5B4,B5B4A2}.

In Algorithm 1, the bottom-up traversal visits α3, when i = 4. Since p(α3) is α4, the
value (w(h(α3)) − w(h(α4))) · 1 · 1 = λ2 + λ − λ = λ2 is added to the variable kernel
at Step 10. On the other hand, since Γ4 = (α3, α2) holds, the algorithm of [9] adds
(w(h(α3))− w(h(α2))) · 1 · 1 = λ2 + λ, instead. By this, the kernel value that the algorithm
of [9] computes becomes λ2 + 4λ.

CPM 2018

22:10 The subpath kernel, a truly practical kernel for trees

T1

B3

A1

T2

B5

B4

A2

α2

α1

α4

α3

1 2 3 4 5

A

B

BA

A

Figure 4 A counter example.

Algorithm 4 Decomposition into child trees.
Require: a; h(v); {h(α1), . . . , h(αn)} ⊂ Nn . la: the leftmost leaf of v
Ensure: ((i1, h1), . . . , (it, ht))
1: . (w1, . . . , wt): the children of v; lij is the rightmost leaf of wj ; hj = h(wj)
2: Let i = a

3: while true do
4: minh = h(αi)
5: while h(αi) > h(v) do . αi > v ⇔ h(αi) > h(v)
6: minh = min{h(αi),minh}
7: Let i = i+ 1
8: end while
9: Write (i,minh)
10: if h(αi) < h(v) then . αi < v ⇔ h(αi) < h(v)
11: return
12: end if
13: Let i = i+ 1
14: end while

4.5 A Top-Down Algorithm for the subpath kernel
We introduce a novel algorithm that computes the subpath kernel leveraging recursive
function calls. Algorithm 4 below is the key component of the algorithm, which decomposes
a tree into a sequence of child trees. Corollary 10 guarantees the correctness of Algorithm 4.

Algorithm 5 defines the function SPKTD that computes the subpath kernel. For con-
venience of explanation, we simply assume that we call the function SPKTD specifying an
interval of leaves as an input to obtain three values: the number of leaves that belong to T1
in the interval; the number of leaves that belong to T2 in the interval; and the kernel value
computed for the interval. To be specific, SPKTD(I) is formulated by

SPKTD(I) =

|STL1 ∩ I|, |STL2 ∩ I|,
∑

i∈STL1∩I

∑
j∈STL2∩I

w(h(li ` lj))

 , (2)

where STLi = {j | lj ∈ Ti} for i = 1, 2 and I = [a, b] for 1 ≤ a ≤ b ≤ n. Evidently,
SPKTD([1, n]) = SPK(T1, T2) holds.

The function first performs Algorithm 4 to decompose the input interval of leaves, spanned
by an intermediate vertex v in ST , into more than one intervals, each of which is spanned by
a child of v (Step 5). Then, the function recursively applies itself to each interval obtained
(Step 10).

The time complexity of computing SPKTD(I) can be estimated to be O
(
|I| · dp(v)

)
,

where the depth function dp(v) gives the longest length of downward paths in the suffix tree

K. Shin and T. Ishikaw 22:11

Algorithm 5 A top-down algorithm for SPK
Require: a; b; h(v); (h(α1), . . . , h(αn)) ∈ Nn; (c1(l1), . . . , c1(ln)) ∈ Zn

2 ; (c2(l1), . . . , c2(ln)) ∈ Zn
2 .

v: a vertex that spans (la, . . . , lb) in ST
Ensure: c′1; c′2; kernel′ . c′i: the number of leaves of Ti in [a, b]; kernel′: the kernel value for [a, b]
1: procedure SPKTD(a; b; h(v); h(αa), . . . , h(αb); c1(la), . . . , c1(lb); c2(la), . . . , c2(lb))
2: if a = b then
3: return (c1(la), c2(lb), 0.0)
4: end if
5: Compute ((i1, h1), . . . , (it, ht)) by Algorithm 4
6: . (w1, . . . , wt): the children of v; lij : the leftmost leaf of wj ; hj = h(wj)
7: Let i0 = a− 1
8: Let c1, c2, kernel = 0, 0, 0.0
9: for j = 1, . . . , t do
10: Let (c′1, c′2, kernel′) = SPKTD(ij−1 + 1; ij ;hj ;h(αij−1+1), . . . , h(αij);
11: c1(lij−1+1), . . . , c1(lij); c2(lij−1+1), . . . , c2(lij))
12: Let kernel = kernel + w(h(v)) · (c1 · c′2 + c2 · c′1) + kernel′

13: . w(h) = λ+ λ2 + · · ·+ λh, where λ is a decay factor
14: Let c1, c2 = c1 + c′1, c2 + c′2
15: end for
16: return (c1, c2, kernel)
17: end procedure

that start at the vertex v. This can be proven by mathematical induction as follows. Since
Algorithm 4 scans all the leaves in I exactly one time for each, its time complexity is O(|I|).
As a result of running Algorithm 4, I is partitioned to intervals I1, . . . , It. Since a suffix tree
is irreducible, t > 1 holds. By the hypothesis of mathematical induction, we suppose that
the time complexity to execute Algorithm 5 for Ii is O

(
|Ii| · dp(wi)

)
, where wi is a child of v

in the suffix tree and spans Ii. Hence, the time complexity to execute Algorithm 5 for I is
bounded above by

O(|I|) +
t∑
i=1

O
(
|Ii| · dp(wi)

)
≤ O(|I|) +

t∑
i=1

O
(
|Ii| · (dp(v)− 1)

)
= O

(
|I| · dp(v)

)
In particular, the time complexity of Algorithm 5 for two trees T1 and T2 is bounded above
by O

(
(|T1|+ |T2|) ·max{dp(T1),dp(T2)}

)
, where dp(Ti) is the depth of the root of Ti in Ti.

Although this top-down algorithm is not linear with respect to the size of trees, it leads
us to a hybrid parallel-computing linear-time algorithm as shown in the next section.

4.6 A hybrid parallel-computing linear-time algorithm
The top-down algorithm (Algorithm 5) enables us to compute the subpath kernel within the
parallel computing framework. The idea is:
1. Apply the decomposition algorithm of Algorithm 4 until the entire tree is decomposed

into an appropriate number of subtrees;
2. Use the bottom-up subpath kernel algorithm of Algorithm 2 to compute the kernel values

for the subtrees obtained in Step 1;
3. Call the SPKTD function of Algorithm 5 recursively until reaching the subtrees precom-

puted in Step 2.

Since the time complexity of Step 1 and Step 3 is linear to |T1|+ |T2|, since the parallelism
is a constant number. On the other hand, the time complexity of Step 2 is evidently linear,
and hence, the total time complexity of the hybrid algorithm is linear.

CPM 2018

22:12 The subpath kernel, a truly practical kernel for trees

Figure 5 Runtime to compute 20 kernel values.

We conducted an experiment to compare the run-time of
For the experiment, we used a Mac Book Pro with 2.9GHz Quad Core Intel Core™ i7

CPU and ran the program written in Scala on macOS High Sierra 10.13.4. For parallel
computation, we used the ParArray collection class.

The dataset used in the experiment consists of 20 pairs of randomly generated synthetic
trees, each of which consists of 107−1

9 = 1, 111, 111 vertices and uniformly has degree 10 and
height 7. The size of the alphabet of vertex lables is 100.

Figure 5 shows the run-time sores in milliseconds to compute the 20 kernel values, when
we change the parallelism from 1 to 8. Since the CPU includes four cores, the runtime rapidly
decreases until the parallelism reaches three. For the parallelism greater than three, although
the gradient of the curve becomes gentler, the runtime steadily decreases.

5 Conclusion

We have shown superiority of the subpath kernel to other benchmark tree kernels in clas-
sification performance. The superiority has proven to be statistically significant through
Hommel multiple comparison test with the significance level 0.01. In addition, we presented
a linear-time bottom-up algorithm for the subpath kernel as well as a top-down algorithm.
We have given mathematical proofs for the correctness of these algorithms based on a theory
that we have developed. By combining the bottom-up and top-down algorithms, we can build
hybrid linear-time parallel-computing algorithm, which has proven to improve the run-time
performance through experiments. Considering all the above, we conclude that the subpath
kernel should be the best kernel for analyzing tree data. As future studies, we will investigate
their performance for other purposes of data analysis such as clussification and regression.

References

1 Christensen Berg, C. and R. J. P. R., Ressel. Harmonic analysis on semigroups. theory of
positive definite and related functions. Springer, 1984.

2 C. C. Chang and C. J. Lin. Libsvm: a library for support vector machines, 2001. URL:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

3 M. Collins and N. Duffy. Convolution kernels for natural language. Neural Information
Processing Systems, 2001.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

K. Shin and T. Ishikaw 22:13

4 J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Theory, 7:1–30, 2006.

5 K. Hashimoto, S. Goto, S. Kawano, K. F. Aoki-Kinoshita, and N. Ueda. KEGG as a
glycome informatics resource. Glycobiology, 16:63R–70R, 2006.

6 D. Haussler. Convolution kernels on discrete structures. UCSC-CRL 99-10, 1999.
7 T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-

prefix computation in suffix arrays and its applications. the 12th Annual Symposium on
Combinatorial Pattern Matching. pp., 2001.

8 H. Kashima and T. Koyanagi. Kernels for semi-structured data. in: the 9th international
conference on machine learning. ICML, 2002.

9 D. Kimura and H. Kashima. Fast computation of subpath kernel for trees. ICML, 2012.
10 T. Kuboyama, K. Hirata, H. Kashima, K.F. Aoki-Kinoshita, and H. Yasuda. A spectrum

tree kernel. JSAI, 2007.
11 C. S. Leslie, E. Eskin, and W. Stafford Noble. The spectrum kernel: A string kernel for

SVM protein classification. Pacific Symposium on Biocomputing, 2002.
12 Alessandro Moschitti. Example data for TREE KERNELS IN SVM-LIGHT. URL: http:

//disi.unitn.it/moschitti/Tree-Kernel.htm.
13 S. Pyysalo, A. Airola, J. Heimonen, J. Bjorne, F. Ginter, and T. Salakoski. Comparative

analysis of five protein-protein interaction corpora. BMC Bioinformatics, 9(S-3), 2008.
14 K. Shin and T. Kuboyama. A generalization of Haussler’s convolution kernel - mapping

kernel. ICML, 2008.
15 K. Shin and T. Kuboyama. A comprehensive study of tree kernels. in: Jsai-isai post-

workshop proceedings. Lecture Notes in Articial Intelligence, 2014.
16 K. C. Taï. The tree-to-tree correction problem. journal of the ACM, 1979.
17 M. J. Zaki and C. C. Aggarwal. XRules: An effective algorithm for structural classification

of XML data. Machine Learning, 62:137–170, 2006.
18 K. Zhang. Algorithms for the constrained editing distance between ordered labeled trees

and related problems. Pattern Recognition, 1995.

CPM 2018

http://disi.unitn.it/moschitti/Tree-Kernel.htm
http://disi.unitn.it/moschitti/Tree-Kernel.htm

	Introduction
	The Subpath Kernel (SPK) for Trees
	High accuracy performance as a similarity measure.
	Datasets
	Kernels to compare
	Experimental results

	Linear-time algorithms for the subpath kernel
	A theory of irreducible trees
	Suffix arrays and suffix trees
	Reconstruction of the bottom-up traversal algorithm of [Kasai, 2001]
	A linear-time bottom-up algorithm for the subpath kernel
	A Top-Down Algorithm for the subpath kernel
	A hybrid parallel-computing linear-time algorithm

	Conclusion

