
Linear-Time Algorithm for Long LCF
with k Mismatches
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

https://orcid.org/0000-0002-6024-1557

Maxime Crochemore
Department of Informatics, King’s College London, London, UK
maxime.crochemore@kcl.ac.uk

https://orcid.org/0000-0003-1087-1419

Costas S. Iliopoulos
Department of Informatics, King’s College London, London, UK
costas.iliopoulos@kcl.ac.uk

Tomasz Kociumaka
Institute of Informatics, University of Warsaw, Warsaw, Poland
kociumaka@mimuw.edu.pl

https://orcid.org/0000-0002-2477-1702

Solon P. Pissis
Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

https://orcid.org/0000-0002-1445-1932

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Warsaw, Poland
jrad@mimuw.edu.pl

https://orcid.org/0000-0002-0067-6401

Wojciech Rytter
Institute of Informatics, University of Warsaw, Warsaw, Poland
rytter@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Warsaw, Poland
walen@mimuw.edu.pl

https://orcid.org/0000-0002-7369-3309

Abstract
In the Longest Common Factor with k Mismatches (LCFk) problem, we are given two strings
X and Y of total length n, and we are asked to find a pair of maximal-length factors, one of X
and the other of Y , such that their Hamming distance is at most k. Thankachan et al. [27] show
that this problem can be solved in O(n logk n) time and O(n) space for constant k. We consider
the LCFk(`) problem in which we assume that the sought factors have length at least `. We
use difference covers to reduce the LCFk(`) problem with ` = Ω(log2k+2 n) to a task involving
m = O(n/ logk+1 n) synchronized factors. The latter can be solved in O(m logk+1m) time, which
results in a linear-time algorithm for LCFk(`) with ` = Ω(log2k+2 n). In general, our solution to
the LCFk(`) problem for arbitrary ` takes O(n+ n logk+1 n/

√
`) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

© Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń;
licensed under Creative Commons License CC-BY

29th Annual Symposium on Combinatorial Pattern Matching (CPM 2018).
Editors: Gonzalo Navarro, David Sankoff, and Binhai Zhu; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/158841477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-6024-1557
mailto:maxime.crochemore@kcl.ac.uk
https://orcid.org/0000-0003-1087-1419
mailto:costas.iliopoulos@kcl.ac.uk
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-2477-1702
mailto:solon.pissis@kcl.ac.uk
https://orcid.org/0000-0002-1445-1932
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:rytter@mimuw.edu.pl
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Linear-Time Algorithm for Long LCF with k Mismatches

Keywords and phrases longest common factor, longest common substring, Hamming distance,
heavy-light decomposition, difference cover

Digital Object Identifier 10.4230/LIPIcs.CPM.2018.23

Related Version A full version of the paper is available at http://arxiv.org/abs/1802.06369.

Funding Jakub Radoszewski is supported by the “Algorithms for text processing with errors and
uncertainties” project carried out within the HOMING programme of the Foundation for Polish
Science co-financed by the European Union under the European Regional Development Fund.
Wojciech Rytter and Tomasz Waleń are supported by the Polish National Science Center, grant
no. 2014/13/B/ST6/00770.

1 Introduction

The longest common factor (LCF) problem is a classical and well-studied problem in
theoretical computer science. It consists in finding a maximal-length factor of a string
X occurring in another string Y . When X and Y are over a linearly-sortable alphabet, the
LCF problem can be solved in the optimal O(n) time and space [17, 15], where n is the total
length of X and Y . Considerable efforts have thus been made on improving the additional
working space; namely, the space required for computations, not taking into account the
space providing read-only access to X and Y . We refer the interested reader to [25, 21].

In many bioinformatics applications and elsewhere, it is relevant to consider potential
alterations within the pair of input strings (e.g. DNA sequences). It is thus natural to define
the LCF problem under a distance metric model. The problem then consists in finding a pair
of maximal-length factors of X and Y whose distance is at most k. In fact, this problem
has received much attention recently, in particular due to its applications in alignment-free
sequence comparison [29, 22].

Under the Hamming distance model, the problem is known as the Longest Common
Factor with at most k Mismatches (LCFk) problem. The restricted case of k = 1 was
first considered in [4], where an O(n2)-time and O(n)-space solution was given. It was later
improved by Flouri et al. [12], who built heavily on a technique by Crochemore et al. [11] to
obtain O(n logn) time and O(n) space.

For a general value of k, the problem can be solved in O(n2) time and space by a dynamic
programming algorithm, but more efficient solutions have been devised. Leimeister and
Morgenstern [22] first suggested a greedy heuristic algorithm. Flouri et al. [12] proposed
an O(n2)-time algorithm that uses O(1) additional space. Grabowski [13] presented two
algorithms with running times O(n((k + 1)(`0 + 1))k) and O(n2k/`k), where `0 and `k are,
respectively, the length of an LCF of X and Y and the length of an LCF of X and Y with
at most k mismatches. Thankachan et al. [27] proposed an O(n logk n)-time and O(n)-space
algorithm (for any constant k).

Abboud et al. [1] employed the polynomial method to obtain a k1.5n2/2Ω(
√

log n
k)-time

randomized algorithm. Kociumaka et al. [20] showed that a strongly subquadratic-time
algorithm for the LCFk problem, for binary strings and k = Ω(logn), refutes the Strong
Exponential Time Hypothesis [19, 18]. Thus, subquadratic-time solutions for approximate
variants of the problem have been developed [20, 24]. The average-case complexity of this
problem has also been considered [28, 2, 3].

http://dx.doi.org/10.4230/LIPIcs.CPM.2018.23
http://arxiv.org/abs/1802.06369

P. Charalampopoulos et al. 23:3

1.1 Our Contribution
We consider the following variant of the Longest Common Factor with at most k

Mismatches problem in which the result is constrained to have at least a given length. Let
LCFk(X,Y) denote the length of the longest common factor of X and Y with at most k
mismatches.

LCF of Length at Least ` with at most k Mismatches (LCFk(X,Y, `))
Input: Two strings X and Y of total length n and integers k ≥ 0 and ` ≥ 1
Output: LCFk(X,Y) if it is at least `, and “NONE” otherwise.

We focus on a special case of this problem with ` = Ω(log2k+2 n). Apart from its theoretical
interest, solutions to the LCFk(X,Y, `) problem may prove to be useful from a practical
standpoint. The LCFk length has been used as a measure of sequence similarity [29, 22]. It
is thus assumed that similar sequences share relatively long factors with k mismatches.

We show an O(n)-time algorithm for the LCFk(X,Y, `) problem with ` = Ω(log2k+2 n).
Moreover, we prove that the LCFk(X,Y, `) problem can be solved in O(n+ n logk+1 n/

√
`)

time for arbitrary ` and constant k. In the final section we discuss the complexity for
k = O(logn). This unveils that the O(·) notation hides a multiplicative factor that is actually
subconstant in k.

For simplicity, we only describe how to compute the length LCFk(X,Y). It is straightfor-
ward to amend our solution so that it extracts the corresponding factors of X and Y .

Toolbox. We use the following algorithmic tools:
Difference covers (see, e.g., [23, 8]) let us reduce the LCFk(X,Y, `) problem to searching
for longest common prefixes and suffixes with at most k mismatches (LCPk, LCSk) at
positions belonging to sets A in X and B in Y such that |A|, |B| = O(n/

√
`).

We use a technique of recursive heavy-path decompositions by Cole et al. [9], already
applied in the context of the LCFk problem by Thankachan et al. [27], to reduce
computing LCPk, LCSk to computing LCP, LCS in sets of modified prefixes and suffixes
starting at positions in A and B. Modifications consist in at most k changes and increase
the size of the problem by a factor of O(logk n). We adjust the original technique of Cole
et al. [9] so that all modified strings are stored in one compacted trie.
Finally we apply to the compacted trie a solution to a problem on colored trees that is
the cornerstone of the previous O(n logn)-time solution for the LCF1 problem by Flouri
et al. [12] (and originates from efficient merging of AVL trees [7]).

In total we arrive at O(n+ n logk+1 n/
√
`) time complexity for the LCFk(X,Y, `) problem.

2 Preliminaries

Henceforth we denote the input strings by X and Y and their common length by n.
The i-th letter of a string U , for 1 ≤ i ≤ |U |, is denoted by U [i]. By [i . . j] we denote

the integer interval {i, . . . , j} and by U [i . . j] we denote the string U [i] . . . U [j] that we call a
factor of U . For simplicity, we denote U [. . i] = U [1 . . i] and U [i . .] = U [i . . |U |]. By UR we
denote the mirror image of U .

For a pair of strings U and V such that |U | = |V |, we define their Hamming distance as
dH(U, V) = |{1 ≤ i ≤ |U | : U [i] 6= V [i]}|. For two strings U, V and a non-negative integer d,
we define

LCPd(U, V) = max{p ≤ |U |, |V | : dH(U [1 . . p], V [1 . . p]) ≤ d}.

CPM 2018

23:4 Linear-Time Algorithm for Long LCF with k Mismatches

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

h(3, 10) = 5 h(3, 10) = 5

Figure 1 An example of a 6-cover S20(6) = {2, 3, 5, 8, 9, 11, 14, 15, 19, 20}, with the elements
marked as black circles. For example, we may have h(3, 10) = 5 since 3 + 5, 10 + 5 ∈ S20(6).

Let T be the trie of a collection of strings F . The compacted trie of F , T (F), contains
the root, the branching nodes, and the terminal nodes of T . Each edge of the compacted trie
may represent several edges of T and is labeled by a factor of one of the strings Fi, stored in
O(1) space. The edges outgoing from a node are labeled by the first letter of the respective
strings. The size of a compacted trie is O(|F|). The best-known example of a compacted
trie is the suffix tree of a string; see [10].

2.1 Difference covers
We say that a set S(d) ⊆ Z+ is a d-cover if there is a constant-time computable function h
such that for i, j ∈ Z+ we have 0 ≤ h(i, j) < d and i+h(i, j), j+h(i, j) ∈ S(d) (see Figure 1).
The following fact synthesizes a well-known construction implicitly used in [8], for example.

I Fact 1 ([23, 8]). For each d ∈ Z+ there is a d-cover S(d) such that Sn(d) := S(d)∩ [1 . . n]
is of size O(n√

d
) and can be constructed in O(n√

d
) time.

2.2 Colored Trees Problem
As a component of our solution we use the following problem for colored trees:

Colored Trees Problem
Input: Two trees T1 and T2 containing blue and red leaves such that each internal node
is branching (except for, possibly, the root). Each leaf has a number between 1 and m.
Each tree has at most one red leaf and at most one blue leaf with a given number. The
nodes of T1 and T2 are weighted such that children are at least as heavy as their parent.
Output: A node v1 of T1 and a node v2 of T2 with maximum total weight such that v1
and v2 have at least one blue leaf of the same number and at least one red leaf of the
same number in their subtrees.

This abstract problem lies at the heart of the algorithm of Flouri et al. [12] for the
Longest Common Factor with 1 Mismatch problem. They solve it in O(m logm) time
applying a solution inspired by an algorithm of Crochemore et al. [11] finding the longest
repeat with a block of k don’t cares, which, in turn, is based on the fact that two AVL trees
can be merged efficiently [7].

I Fact 2 ([11, 12]). Colored Trees Problem can be solved in O(m logm) time.

In our solution we actually use the following problem related to families of strings
represented on a compacted trie. It reduces to the Colored Trees Problem.

Two String Families LCP Problem
Input: A compacted trie T (F) of a family of strings F and two sets P,Q ⊆ F2

Output: The value maxPairLCP(P,Q), defined as
maxPairLCP(P,Q)=max{LCP(P1, Q1)+LCP(P2, Q2) : (P1, P2) ∈ P and (Q1, Q2) ∈ Q}

P. Charalampopoulos et al. 23:5

T1

v1

44323121

T2

2431

v2

2431

Figure 2 Example instance for Colored Trees Problem. Assuming that each node has weight
equal to the distance from the root, the optimal solution is a pair of nodes (v1, v2) as shown in the
figure. Both v1 and v2 have as a descendant a blue leaf with number 4 and a red leaf with number 2.

I Lemma 3. The Two String Families LCP Problem can be solved in O(|F|+N logN)
time, where N = |P|+ |Q|.

Proof. First, we create two copies T1 and T2 of the tree T (F), removing the edge labels but
preserving the node weights w(v) equal to the sum of lengths of edges on the path to the
root.

Next, for each (P1, P2) ∈ P we attach a blue leaf to the terminal node of T1 representing
P1 and to the terminal of T2 representing P2. We label these two blue leaves with a unique
label, denoted here LP(P1, P2). Similarly, for each (Q1, Q2) ∈ Q, we attach red leaves to the
terminal node of T1 representing Q1 and the terminal node of T2 representing Q2. We label
these two red leaves with a unique label LQ(Q1, Q2). Finally, in both T1 and T2 we remove
all nodes which do not contain any colored leaf in their subtrees and dissolve all nodes with
exactly one child (except for the roots). This way, each tree Ti contains O(|P|+ |Q|) nodes,
including |P|+ |Q| leaves, each with a distinct label.

Observe that for (P1, P2) ∈ P , (Q1, Q2) ∈ Q, and j ∈ {1, 2}, the value LCP(Pj , Qj) is the
weight of the lowest common ancestor (LCA) in Tj of the two leaves with labels LP(P1, P2)
and LQ(Q1, Q2). Consequently, our task can be formulated as follows: Find a pair of internal
nodes v1 ∈ T1 and v2 ∈ T2 of maximal total weight w(v1) +w(v2) so that the subtrees rooted
at v1 and v2 contain blue leaves with the same label and red leaves with the same label. This
is exactly the Colored Trees Problem that can be solved in O(m logm) time, where
m = |T1|+ |T2| = O(|P|+ |Q|) (Fact 2). J

3 Reduction of LCFk(`) problem to multiple synchronized LCPk’s

Let U be a string of length n. We denote:

Pairs`(U) = {((U [. . i− 1])R, U [i . .]) : i ∈ Sn(`)}.

Observe that |Pairs`(U)| = |Sn(`)| = O(n/
√
`).

I Lemma 4. If LCFk(X,Y) ≥ `, then

LCFk(X,Y) =
max

p+q=k
{LCPp(U1, V1) + LCPq(U2, V2) : (U1, U2) ∈ Pairs`(X), (V1, V2) ∈ Pairs`(Y)}.

Proof. First, assume that (U1, U2) ∈ Pairs`(X), (V1, V2) ∈ Pairs`(Y), and k = p+ q. Let Ũ1
and Ṽ1 be prefixes of U1 and V1 (respectively) of length LCPp(U1, V1), and let Ũ2 and Ṽ2 be

CPM 2018

23:6 Linear-Time Algorithm for Long LCF with k Mismatches

X :

a

U1 U2

LCPp(U1, V1) LCPq(U2, V2)

Y :

b

V1 V2

LCPp(U1, V1) LCPq(U2, V2)

Figure 3 If LCFk(X, Y) ≥ `, then there exist (U1, U2) ∈ Pairs`(X) and (V1, V2) ∈ Pairs`(Y) such
that LCFk(X, Y) = LCPp(U1, U2) + LCPq(V1, V2) for some p + q = k.

prefixes of U2 and V2 (respectively) of length LCPq(U2, V2). Observe that ŨR
1 Ũ2 is a factor

of X = UR
1 U2 and Ṽ R

1 Ṽ2 is a factor of Y = V R
1 V2. Moreover,

dH(ŨR
1 Ũ2, Ṽ

R
1 Ṽ2) = dH(Ũ1, Ũ2) + dH(Ṽ1, Ṽ2) ≤ p+ q = k.

Consequently,

LCFk(X,Y) ≥ |ŨR
1 Ũ2| = |Ũ1|+ |Ũ2| = LCPp(U1, V1) + LCPq(U2, V2).

This concludes the proof of the lower bound on LCFk(X,Y).
Next, let X[i . . i′] and Y [j . . j′] be an optimal pair of factors; see Figure 3. They satisfy

|X[i . . i′]| = |Y [j . . j′]| = LCFk(X,Y) ≥ ` and dH(X[i . . i′], Y [j . . j′]) ≤ k.

Denote a = i+ h(i, j) and b = j + h(i, j), where h is the shift function associated with the
l-cover S(`). Note that a ∈ [i . . i′] ∩ S(`) and b ∈ [j . . j′] ∩ S(`). Consequently, (U1, U2) :=
((X[. . a − 1])R, X[a . .]) ∈ Pairs`(X) and (V1, V2) := ((Y [. . b − 1])R, Y [b . .]) ∈ Pairs`(Y).
Moreover,

k ≥ dH(X[i . . i′], Y [j . . j′]) = dH(X[i . . a− 1], Y [j . . b− 1]) + dH(X[a . . i′], Y [b . . j′]).

Therefore, for p = dH(X[i . . a− 1], Y [j . . b− 1]) and q = k − p, we have

LCPp(U1, V1) + LCPq(V2, U2) ≥ |X[i . . a− 1]|+ |X[a . . i′]| = |X[i . . i′]| = LCFk(X,Y).

This concludes the proof. J

4 The case of k = 0 and of k = 1 and σ = 2

In this section, as a warm-up, we show how the Two String Families LCP Problem
can be used to solve two special cases of the LCFk(X,Y, `) problem. Then in Section 6 we
explain how it can be used to solve the problem in full generality.

In order to solve the LCFk(X,Y, `) problem for k = 0, we observe that, by Lemma 4,
if LCF0(X,Y) ≥ `, then LCF0(X,Y) = maxPairLCP(Pairs`(X),Pairs`(Y)). Thus, we simply
build the joint suffix tree T of X, Y , XR, and Y R, and we solve the appropriate instance of
Two String Families LCP Problem.

The preprocessing time is clearly O(n), while solving the Two String Families LCP
Problem takes O(n+ n logn/

√
`) time, which is O(n) provided that ` = Ω(log2 n).

P. Charalampopoulos et al. 23:7

For k ≥ 1, we would ideally like to extend the family Pairs`(S) to Pairs(k)
` (S) replacing

the suffixes and reversed prefixes of S with their approximate copies so that

LCFk(X,Y) = maxPairLCP(Pairs(k)
` (X),Pairs(k)

` (Y)).

A very naive solution would be to extend the alphabet Σ to Σ$ adding a symbol $ /∈ Σ, and
for each (S1, S2) ∈ Pairs`(S) to replace an arbitrary subset of k symbols with $’s. However,
this results in

(
n
k

)
copies of each (S1, S2) ∈ Pairs`(S), which is by far too much.

Our approach is therefore based on the technique of Cole et al. [9], which has already
been used in the context of the Longest Common Factor with at most k Mismatches
problem by Thankachan et al. [27]. It allows us to reduce the number of approximate copies
of each (S1, S2) ∈ Pairs`(S) to O(logk n). However, the sets Pairs(k)

` (X) and Pairs(k)
` (Y)

cannot be constructed independently, and we actually have to build several pairs of such sets
rather just one.

Below, we explain the main points for k = 1 and σ = 2.
Let F be a family consisting of the suffixes of X, XR, Y , and Y R, appearing in Pairs`(X)

or Pairs`(Y). We apply the heavy-light decomposition on the compacted trie T (F); this
technique can be summarized as follows:

I Fact 5 (Tarjan [26]). If T is a rooted tree, then in linear time we can mark some edges in
T as light so that:

each node has at most one outgoing edge which is not light,
each root-to-leaf path contains O(log |T |) light edges.

Next, for each string F ∈ F , we construct a set N(F) consisting of F and any string
which can be obtained from F by flipping the first symbol on one of the light edges on the
path representing F in T (F). By Fact 5, we have |N(F)| = O(log |F|) = O(logn).

Let us introduce two subsets of N(F): N0(F) = {F} and N1(F) = N(F). These sets
have been constructed so that they enjoy the following crucial property:

I Lemma 6. If F,G ∈ F , then

LCP1(F,G) = max
d1+d2=1

{LCP(F ′, G′) : F ′ ∈ Nd1(F), G′ ∈ Nd2(G)}.

Proof. First, let us bound LCP1(F,G) from below. Let p = LCP(F ′, G′) be the maximum
on the right-hand side, We have

dH(F [. . p], G[. . p]) = dH(F [. . p], F ′[. . p]) + dH(G′[. . p], G[. . p]) ≤
≤ dH(F, F ′) + dH(G′, G) ≤ d1 + d2 = 1.

Consequently, LCP1(F,G) ≥ p as claimed.
To bound LCP1(F,G) from above, let us consider terminal nodes vF and vG in T (F)

representing F and G, respectively, and their LCA v. If v = vF or v = vG, then LCP1(F,G) =
LCP(F,G) and the claimed bound holds due to F ∈ N0(F) and G ∈ N1(G) (and vice versa).
Otherwise, the edge from v towards vF or the edge from v towards vG has to be light (according
to Fact 5). If the former edge is light, then N1(F) contains a string F ′ obtained from F by
flipping the first letter on that edge. Such a string F ′ satisfies LCP1(F,G) = LCP(F ′, G), so
the claimed bound holds due to G ∈ N0(G). Symmetrically, if the edge towards vG is light,
then LCP1(F,G) = LCP(F,G′) for some G′ ∈ N1(G). J

CPM 2018

23:8 Linear-Time Algorithm for Long LCF with k Mismatches

For S ∈ {X,Y } and d ∈ {0, 1}, let us define

Pairs(d)
` (S) =

⋃
(U1,U2)∈Pairs`(S)

d1+d2=1

{(U ′1, U ′2) : U ′1 ∈ Nd1(U1), U ′2 ∈ Nd2(U2)}.

Observe that Pairs(0)
` (S) = Pairs`(S), whereas the set Pairs(1)

` (S) satisfies |Pairs(1)
` (S)| =

O(|Pairs`(S)| log |F|) = O(n logn/
√
`). Lemmas 4 and 6 yield the following

I Corollary 7. If LCF1(X,Y) ≥ `, then

LCF1(X,Y) = max
k1+k2=1

maxPairLCP(Pairs(k1)
` (X),Pairs(k2)

` (Y)).

Proof. By Lemma 4, we have LCF1(X,Y) = LCPp(U1, V1)+LCPq(U2, V2) for some (U1, U2) ∈
Pairs`(X), (V1, V2) ∈ Pairs`(Y), and p + q = 1. Lemma 6 yields that LCPp(U1, V1) =
LCP(U ′1, V ′1) for some U ′1 ∈ Np1(U1) and V ′1 ∈ Np2(V1) such that p = p1 + p2. Similarly,
LCPq(U2, V2) = LCP(U ′2, V ′2) for some U ′2 ∈ Nq1(U2) and V ′2 ∈ Nq2(V2). Observe that
(U ′1, U ′2) ∈ Pairs(p1+q1)

` (X) and (V ′1 , V ′2) ∈ Pairs(p2+q2)
` (Y), so

LCF1(X,Y) ≤ maxPairLCP(Pairs(k1)
` (X),Pairs(k2)

` (Y))

for ki = pi + q1 (which satisfy k1 + k2 = p+ q = 1, as claimed).
Next, suppose that (U ′1, U ′2) ∈ Pairs(k1)

` (X) and (V ′1 , V ′2) ∈ Pairs(k2)
` (Y). We shall prove

that LCF1(X,Y) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2). Note that U ′1 ∈ Np1 and U ′2 ∈ Nq1(U2) for
some p1 + q1 = k1 and (U1, U2) ∈ Pairs`(X); symmetrically, V ′1 ∈ Np2 and V ′2 ∈ Nq2(V2) for
some p2 + q2 = k2 and (V1, V2) ∈ Pairs`(Y). By Lemma 6, LCP(U ′1, V ′1) ≤ LCPp1+p2(U1, V1)
and LCP(U ′2, V ′2) ≤ LCPq1+q2(U2, V2). Hence, the claimed bound holds due to Lemma 4:

LCF1(X,Y) ≥ LCPp1+p2(U1, V1) + LCPq1+q2(U2, V2) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2).

This concludes the proof. J

Consequently, it suffices to solve two instances of Two String Families LCP Problem,
with (P,Q) equal to (Pairs(0)

` (X),Pairs(1)
` (Y)) and (Pairs(1)

` (X),Pairs(0)
` (Y)), respectively.

I Proposition 8. The LCFk(X,Y, `) problem for k = 1 and binary alphabet can be solved
in O(n+ n log2 n/

√
`) time. If ` = Ω(log4 n), this running time is O(n).

Proof. First, we build the sets Pairs`(X) and Pairs`(Y). Next, we construct the joint suffix
tree of strings X, Y , XR, Y R (along with a component for constant-time LCA queries [5])
and we extract the compacted trie T (F) of the family F . Then, we process light edges on
T (F) (determined by Fact 5) to construct the sets N(F) as defined above for each F ∈ F .
We initialize each set N(F) with F ; then, for every light edge e, we traverse the subtree
below e and for each terminal node (representing F ∈ F), we insert to N(F) a string F ′
obtained from F by flipping the first letter represented by e. Technically, in N(F) we just
store the set of positions for which F should be flipped to obtain F ′.

To compute the compacted trie T (F ′) of a family F ′ =
⋃

F∈F N(F), we sort the strings
in F ′ ∈ F ′ using a comparison-based algorithm. Next, we extend the representation of N(F)
so that each F ′ ∈ N(F) stores a pointer to the corresponding terminal node in T (F ′). This
way, we can generate sets Pairsd

` (S) for d ∈ {0, 1} and S ∈ {X,Y } with strings represented
as pointers to terminal nodes of T (F ′). Finally, we solve two instances of Two String
Families LCP Problem according to Corollary 7.

P. Charalampopoulos et al. 23:9

We conclude with the running-time analysis. In the preprocessing, we spend O(n) time
construct the joint suffix tree. Then, applying Fact 5 to build the sets N(F) for F ∈ F takes
O(|F| log |F|) = O(n logn/

√
`) time. We spend further O(|F ′| log |F ′|) = O(n log2 n/

√
`)

time to construct T (F ′). Since |Pairs(d)
` (S)| = O(|F| log |F|) for d ∈ {0, 1} and S ∈ {X,Y },

the time to solve both instances of the Two String Families LCP Problem is also
O(n log2 n/

√
`) (see Lemma 3). Hence, the overall time complexity is O(n+n log2 n/

√
`). J

5 Arbitrary k and σ

In this section, we describe the core concepts of our solution for arbitrary number of
mismatches k and alphabet size σ. They depend heavily on the ideas behind the O(n logk n)-
time solution to the LCFk problem [27], which originate in approximate indexing [9].

I Definition 9. Consider strings U, V ∈ Σ∗ and an integer d ≥ 0. We say that strings
U ′, V ′ ∈ Σ∗$ form a (U, V)d-pair if
|U ′| = |U | and |V ′| = |V |;
if i > LCPd(U, V) or U [i] = V [i], then U ′[i] = U [i] and V ′[i] = V [i];
otherwise, U ′[i] = V ′[i] ∈ {U [i], V [i], $}.

For a string S ∈ Σ∗$ let us define #$(S) = |{1 ≤ i ≤ |S| : S[i] = $}|. The following
observation specifies key properties of (U, V)d pairs.

I Observation 10. Consider strings U, V ∈ Σ∗ and an integer d ≥ 0. If strings U ′, V ′ ∈ Σ∗$
form a (U, V)d-pair, then the following conditions hold:
(a) LCP(U ′, V ′) = LCPd(U, V),
(b) #$(U ′) = #$(V ′),
(c) d = dH(U,U ′)− 1

2#$(U ′) + dH(V, V ′)− 1
2#$(V ′).

I Definition 11. Consider a finite family of strings F ⊆ Σ∗. We say that sets N(F) ⊆ Σ∗$
for F ∈ F form a k-complete family if for every U, V ∈ F and 0 ≤ d ≤ k, there exists a
(U, V)d-pair U ′, V ′ with U ′ ∈ N(U) and V ′ ∈ N(V).

I Remark. A simple (yet inefficient) way to construct a k-complete family is to include in
N(F) all strings which can be obtained from F by replacing up to k letters with $’s. An
example of a more efficient family is shown in Table 1.

The following lemma states a property of k-complete families that we will use in the
algorithm. For F ∈ F and 0 ≤ d ≤ k, let us define Nd(F) = {F ′ ∈ N(F) : dH(F, F ′) ≤ d}.
Moreover, for a half integer1 d′, 0 ≤ d′ ≤ d, let

Nd,d′(F) = {F ′ ∈ Nd(F) : dH(F, F ′)− 1
2#$(F ′) ≤ d′},

I Lemma 12. Let N(F) for F ∈ F be a k-complete family. If F1, F2 ∈ F and 0 ≤ d ≤ k,
then

LCPd(F1, F2) = max
d1+d2=d

F ′
i∈Nd,di

(Fi)

LCP(F ′1, F ′2) = max
d1+d2<d+1

F ′
i∈Nk,di

(Fi)

LCP(F ′1, F ′2).

1 Here, a half integer is a number of the form a
2 , where a is an integer.

CPM 2018

23:10 Linear-Time Algorithm for Long LCF with k Mismatches

Table 1 A sample 1-complete family for F = {abacb, bacb, acb, cb, b} (the suffixes of abacb)
is N(b) = {a, b, $}, N(cb) = {ab, cb, $b}, N(acb) = {abb, acb}, N(bacb) = {aacb, bacb, $acb},
and N(abacb) = {abacb}. The (U, V)1-pairs for all U, V ∈ F are illustrated in the table above.
Observe that LCP1(U, V) = LCP(U ′, V ′) for the corresponding (U, V)1-pair (U ′, V ′). Also, note that
LCP1(acb, cb) = 1 even though abb ∈ N(acb), ab ∈ N(cb), and LCP(abb, ab) = 2.

b cb acb bacb abacb

abacb
a
abacb

ab
abacb

abb
abacb

aacb
abacb

abacb
abacb

bacb
b
bacb

$b
$acb

acb
aacb

bacb
bacb

abacb
aacb

acb
a
acb

ab
acb

acb
acb

aacb
acb

abacb
abb

cb
$
$b

cb
cb

acb
ab

$acb
$b

abacb
ab

b
b
b

$b
$

acb
a

bacb
b

abacb
a

Proof. We shall prove that

max
d1+d2=d

F ′
i∈Nd,di

(Fi)

LCP(F ′1, F ′2) ≥ LCPd(F1, F2) ≥ max
d1+d2<d+1

F ′
i∈Nk,di

(Fi)

LCP(F ′1, F ′2).

This is sufficient due to the fact that Nd,d′(F) is monotone with respect to both d and d′.
For the first inequality, observe that (by definition of a k-complete family) the sets N(F1)

and N(F2) contain an (F1, F2)d-pair (F ′1, F ′2). By Observation 10, we have

d ≥ dH(F1[. . |P |], F2[. . |P |]) = dH(F1, F
′
1)− 1

2#$(F ′1) + dH(F2, F
′
2)− 1

2#$(F ′2).

Consequently, F ′i ∈ Nd,di
(Fi) for di = dH(Fi, F

′
i)− 1

2#$(F ′i). If d > d1 + d2, we may increase
d1 or d2.

For the second inequality, suppose that F ′i ∈ Nk,di
(Fi) for d1 + d2 < d+ 1. Let P be the

longest common prefix of F ′1 and F ′2. Then

dH(F1[. . |P |], F2[. . |P |]) ≤ dH(F1[. . |P |], P) + dH(F2[. . |P |], P])−#$(P) ≤
≤ dH(F1, F

′
1)−#$(F ′1) + dH(F2, F

′
2)−#$(F ′2) + #$(P) ≤ d1 + d2.

Consequently, dH(F1[. . |P |], F2[. . |P |]) ≤ d1 + d2 < d+ 1, i.e., dH(F1[. . |P |], F2[. . |P |]) ≤ d,
as claimed. J

In the algorithms, we represent a k-complete family using the compacted trie T (F ′) of
the union F ′ =

⋃
F∈F N(F). Its terminal nodes F ′ are marked with a subset of strings

F ∈ F for which F ′ ∈ N(F); for convenience we also store #$(F ′) and dH(F, F ′). Each edge
is labeled by a factor of F ∈ F , perhaps prepended by $.

Our construction of a k-complete family is based on the results of [9, 27], but below we
provide a self-contained proof.

I Proposition 13 (see also [9, 27]). Let F ⊆ Σ∗ be a finite family of strings and let k ≥ 0
be an integer. There exists a k-complete family N such that |Nd(F)| ≤ 2d

(log |F|+d
d

)
for

each F ∈ F and 0 ≤ d ≤ k. Moreover, the compacted trie T (F ′) can be constructed in
O(2k|F|

(log |F|+k+1
k+1

)
) time provided constant-time LCP queries for suffixes of the strings

F ∈ F .

P. Charalampopoulos et al. 23:11

Algorithm 1: A recursive procedure inserting strings with prefix P to sets N(F).
Function Generate(P,FP) is

h := a most frequent element of {S[1] : (S, F, b) ∈ FP and S 6= ε};
foreach (S, F, b) ∈ FP do // b = k − dH(F, PS) ≥ 0

if S = ε then N(F) := N(F) ∪ {P};
else

c := S[1];
FP c := FP c ∪ { (S[2 . .], F, b) };
if c 6= h and b > 0 then
FP h := FP h ∪ { (S[2 . .], F, b− 1) };
FP $:= FP $ ∪ { (S[2 . .], F, b− 1) };

foreach c ∈ Σ ∪ {$} such that FP c 6= ∅ do
Generate(Pc,FP c);

Proof. We apply a recursive procedure that builds the subtree rooted at the node representing
P . The input FP consists of tuples (S, F, b) such that F ∈ F , S is a suffix of F of length
|S| = |F | − |P |, and b = k − dH(F, PS) ≥ 0. Intuitively, the parameter b can be seen as a
“budget” of remaining symbol changes in the string that prevents exceeding the number k of
mismatches. In the first call we have P = ε and FP = {(F, F, k) : F ∈ F}.

In the pseudocode below we state this procedure in an abstract way; afterwards we
explain how to implement it efficiently. The 1-complete family from Table 1 is a subset of
the family constructed by that procedure.

Correctness of Algorithm 1 is relatively easy to derive. Due to space constrains, the proof
of the following claim can be found in the full version.

I Claim 14. For every S, T ∈ F and 0 ≤ d ≤ k, there exists an (S, T)d-pair (S′, T ′) with
S′ ∈ N(S) and T ′ ∈ N(T).

We also refer to the full version for a complete proof of the following bound on Nd(F).

I Claim 15. For each F ∈ F , we have |Nd(F)| ≤ 2d
(log |F|+d

d

)
.

The idea is to define Nd,P (F) = {F ′ ∈ Nd(F) : P is a prefix of F ′} for each P ∈ Σ∗$ and to
prove the following bound by induction on decreasing |P |:

|Nd,P (F)| ≤
{

2b
(log |FP |+b

b

)
if (S, F, b+ k − d) ∈ FP and b ≥ 0,

0 otherwise.

Below, we show that the k-complete family N represented as a trie TN can be constructed
in O(|F|2k

(log |F|+k+1
k+1

)
) time provided constant-time LCP queries for suffixes of strings

F ∈ F .
To a tuple (S, F, b) ∈ FP we assign a number of tokens:

TokensP (S, F, b) = C(2b+1 − 1)
(log |FP |+b+1

b+1
)

where C is a sufficiently large constant. We shall inductively prove that Generate (P,FP)
can be implemented in time

∑
(S,F,b)∈FP

TokensP (S, F, b).
In the implementation of the procedure we use finger search trees [14], which maintain

subsets of a linearly-ordered universe supporting constant-time queries. Among many
applications (see [6] for a survey), they support the following two operations [16, 6]:

CPM 2018

23:12 Linear-Time Algorithm for Long LCF with k Mismatches

insert an element into a set A, which takes O(log |A|) time,
for a given key t, split the set A into A≤t = {a ∈ A : a ≤ t} and A>t = {a ∈ A : a > t},
which takes O(log min(|A≤t|, |A>t|)) time.

We are now ready to specify how the arguments to the procedure Generate (P,FP) are
given. The string P is represented by the corresponding node of the constructed trie TN ; we
also explicitly store |P | and #$(P). The set FP is stored in a finger search tree with tuples
(S, F, b) ordered by S. However, S is not stored itself as it is uniquely specified as a suffix of
F of length |F | − |P |. Thus each element in the tree is stored in O(1) space.

First, we process tuples (S, F, b) with S = ε, conveniently located at the beginning of FP .
We remove these tuples from FP and store F at the current node of TN . This simulates
inserting P to N(F); we also store auxiliary values dH(P, F) = k − b and #$(P).

Next, we compute the length of longest common prefix P ′ of non-empty strings S with
(S, F, b) ∈ FP . For this, we make an LCP query for the smallest and the largest of these
suffixes. If the longest common prefix P ′ is non-empty, we observe that FP P ′ = FP (with
the stored representation unchanged) and Algorithm 1 does not explore any other branch.
Hence, we immediately call Generate (PP ′,FP P ′) which corresponds to creating a complete
compacted edge of the resulting trie. This step takes O(1) time, but it guarantees that
Generate (PP ′,FP P ′) outputs or branches. Hence, this time gets amortized.

If P ′ = ε, we partition FP into at most σ finger search trees FP,c each storing tuples
sharing the letter S[1] = c, and we identify the heavy letter h by choosing the largest FP,c.
For this, we iteratively split out the tree with the smallest unprocessed S[1], which takes
time proportional to

∑
c 6=h log |FP,c|.

The sets FP c for c 6= h already represented by FP,c (note that the order does not change,
and the tuples need not be altered since the “budget” b remains the same and S is stored
implicitly). Similarly, we can build FP h by inserting new tuples into FP,h.

Thus, we define LP := {(S, F, b) ∈ FP : S 6= ε and S[1] 6= h} and insert to FP h and
FP $ tuples (S[2 . .], F, b− 1) for (S, F, b) ∈ LP with b > 0, which takes O(log |FP |) time per
element.

In total, the processing time is O(1) for each element of LP with b = 0, and O(log |FP |)
when b > 0. Additionally, we may spend O(1) time for a tuple with S = ε. Let us check
that the difference in the number of tokens is sufficient to cover the running time of these
operations.

The tuples with S = ε do not appear in future computations. Hence, we spend all their
tokens on the computations related to them. It is indeed sufficient:

TokensP (ε, F, b) = C(2b+1 − 1)
(log |FP |+b+1

b+1
)
≥ C

(log |FP |+1
1

)
= C(log |FP |+ 1) ≥ C.

We don’t spend any time on tuples with S[1] = h, and number of tokens for such a tuple
does not increase:

TokensP (S, F, b)− TokensP h(S, F, b) =

C(2b+1 − 1)
(log |FP |+b+1

b+1
)
− C(2b+1 − 1)

(log |FP h|+b+1
b+1

)
≥ 0.

Finally, for a tuple with S[1] 6= h (i.e., in Lp) the difference in the number of tokens is

TokensP (S, F, b)−TokensP c(S′, F, b)−TokensP h(S′, F, b− 1)−TokensP $(S′, F, b− 1)=

= C(2b+1 − 1)
(log |FP |+b+1

b+1
)
− C(2b+1 − 1)

(log |FP c|+b+1
b+1

)
− C(2b − 1)

(log |FP h|+b
b

)
− C(2b − 1)

(log |FP $|+b
b

)
≥ C

(log |FP |+b
b

)

P. Charalampopoulos et al. 23:13

where c = S[1] and S′ = S[2 . .]. It is sufficient since we spend constant time for b = 0 and
O(log |FP |) time for b ≥ 1.

The claimed bound on the overall running time follows. J

6 Main Result

Let F be a family of suffixes and reverse prefixes of X and Y occurring in Pairs`(X) or
Pairs`(Y), and let us fix a k-complete family N(F) : F ∈ F . For a half integer k′, 0 ≤ k′ ≤ k,
and a string S ∈ {X,Y } let us define

Pairs(k,k′)
` (S) =

⋃
(U1,U2)∈Pairs`(S)

{(U ′1, U ′2) : U ′i ∈ Ndi,d′
i
(Ui), k = d1 + d2, k

′ = d′1 + d′2}.

Intuitively, we extend (U1, U2) ∈ Pairs`(S), arbitrarily splitting the budgets k and k′ between
U1 and U2. To bound the size of Pairs(k,k′)

` (S), we observe that for d1 + d2 = k and
k = O(logn)

|Nd1(U1)| · |Nd2(U2)| ≤ 2k
(log |F|+d1

d1

)(log |F|+d2
d2

)
= 2O(k) logk |F|

kk .

Hence, |Pairs(k,k′)
` (S)| = 2O(k)|F| logk |F|

kk
√

`
. Combining Lemmas 4 and 12, we obtain the

following.

I Corollary 16. If LCFk(X,Y) ≥ `, then

LCFk(X,Y) = max
k1+k2=k

maxPairLCP(Pairs(k,k1)
` (X),Pairs(k,k2)

` (Y)).

Proof. By Lemma 4, there exist (U1, U2) ∈ Pairs`(X), (V1, V2) ∈ Pairs`(Y), and p + q = k

such that LCFk(X,Y) = LCPp(U1, V1)+LCPq(U2, V2). Lemma 12 further yields the existence
of half integers p′1+p′2 ≤ p and q′1+q′2 ≤ q such that LCFk(X,Y) = LCP(U ′1, V ′1)+LCP(U ′2, V ′2)
for some U ′1 ∈ Np,p′

1
(U1), V ′1 ∈ Np,p′

2
(V1), U ′2 ∈ Nq,q′

1
(U2), and V ′2 ∈ Nq,q′

2
(V2).

We set k′1 = p′1 + q′1 and k′2 = k − k′1 ≥ p′2 + q′2 so that (U ′1, U ′2) ∈ Pairs(k,k′
1)

` (X) and
(V ′1 , V ′2) ∈ Pairs(k,p′

2+q′
2)

` (Y) ⊆ Pairs(k,k′
2)

` (Y). Consequently,

LCFk(X,Y) ≤ maxPairLCP(Pairs(k,k′
1)

` (X),Pairs(k,k′
2)

` (Y)),

which concludes the proof of the upper bound on LCFk(X,Y).
For the lower bound, we shall prove that LCFk(X,Y) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2)

for all (U ′1, U ′2) ∈ Pairs(k,k′
1)

` (X) and (V ′1 , V ′2) ∈ Pairs(k,k′
2)

` (Y) such that k′1 + k′2 ≤ k. By
definition of Pairs(k,k′

1)
` , there exist (U1, U2) ∈ Pairs`(X) such that U ′1 ∈ Nk,p′

1
(U1) and

U ′2 ∈ Nk,q′
1
(U2) for half integers p′1 + q′1 ≤ k′1. Similarly, there exist (V1, V2) ∈ Pairs`(Y)

such that V ′1 ∈ Nk,p′
2
(V1) and V ′2 ∈ Nk,q′

2
(V2) for half integers p′2 + q′2 ≤ k′2. We set

p = bp′1 + p′2c and q = bq′1 + q′2c, and observe that LCPp(U1, V1) ≥ LCP(U ′1, V ′1) as well
as LCPq(U2, V2) ≥ LCP(U ′2, V ′2) due to Lemma 12. Now, Lemma 4 yields LCFk(X,Y) ≥
LCPp(U1, V1) + LCPq(U2, V2) ≥ LCP(U ′1, V ′1) + LCP(U ′2, V ′2), as desired. J

I Theorem 17. For k = O(logn), the LCFk(X,Y, `) problem can be solved in time O(n+
2O(k)n logk+1 n

kk
√

`
). For k = O(1), this running time becomes O(n+ n logk+1 n√

`
).

Proof. First, we build the joint suffix tree of X, XR, Y , and Y R, as well as the family F . A
component for the LCA queries on the suffix tree lets us compare any suffixes of F ∈ F in
constant time [5]. This allows us to build the k-complete family N(F) : F ∈ F , represented

CPM 2018

23:14 Linear-Time Algorithm for Long LCF with k Mismatches

as a compacted trie of F ′ :=
⋃
{N(F) : F ∈ F} using Proposition 13. Next, we construct the

sets Pairs(k,k′)
` (X) ⊆ (F ′)2 and Pairs(k,k′)

` (Y) ⊆ (F ′)2 for k′ = 0, 1
2 , . . . , k −

1
2 , k, and solve

the 2k + 1 instances of Two String Families LCP Problem, as specified in Corollary 16.
We conclude with running-time analysis. Preprocessing takes O(n) time, and the pro-

cedure of Proposition 13 runs in O(2k|F|
(log |F|+k+1

k+1
)
) = 2O(k)n logk+1 n

kk
√

`
time. We have

Pairsk,k′

` (X) = 2O(k)n logk n

kk
√

`
, so solving all instances of Two String Families LCP Prob-

lem also takes 2O(k)n logk+1 n

kk
√

`
time (Lemma 3). The overall running time is therefore as

claimed. J

In particular, for k = O(logn), there exists `0 = 2O(k) log2k+2 n
k2k such that the LCFk(X,Y, `)

problem can be solved in O(n) time for ` ≥ `0. For k = O(1), we have `0 = O(log2k+2 n),
while for k = o(logn), we have `0 = no(1). We arrive at the main result.

I Corollary 18. The LCFk(X,Y, `) problem with ` = Ω(log2k+2 n) can be solved in O(n)
time.

References
1 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polyno-

mial method to algorithm design. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 218–230. SIAM, 2015. doi:10.1137/1.9781611973730.17.

2 Hayam Alamro, Lorraine A. K. Ayad, Panagiotis Charalampopoulos, Costas S. Iliopoulos,
and Solon P. Pissis. Longest common prefixes with k-mismatches and applications. In AMin
Tjoa, Ladjel Bellatreche, Stefan Biffl, Jan van Leeuwen, and Jirí Wiedermann, editors,
SOFSEM 2018: Theory and Practice of Computer Science - 44th International Conference
on Current Trends in Theory and Practice of Computer Science, Krems, Austria, January
29 - February 2, 2018, Proceedings, volume 10706 of Lecture Notes in Computer Science,
pages 636–649. Springer, 2018. doi:10.1007/978-3-319-73117-9_45.

3 Lorraine A. K. Ayad, Panagiotis Charalampopoulos, Costas S. Iliopoulos, and Solon P.
Pissis. Longest common prefixes with k-errors and applications. CoRR, abs/1801.04425,
2018. arXiv:1801.04425.

4 Maxim A. Babenko and Tatiana A. Starikovskaya. Computing the longest common
substring with one mismatch. Probl. Inf. Transm., 47(1):28–33, 2011. doi:10.1134/
S0032946011010030.

5 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

6 Gerth Stølting Brodal. Finger search trees. In Dinesh P. Mehta and Sartaj Sahni, editors,
Handbook of Data Structures and Applications. Chapman and Hall/CRC, 2004. doi:10.
1201/9781420035179.ch11.

7 Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. ACM, 26(2):211–
226, 1979. doi:10.1145/322123.322127.

8 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and
checking. In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors,
Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán,
Mexico, June 25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science,
pages 55–69. Springer, 2003. doi:10.1007/3-540-44888-8_5.

http://dx.doi.org/10.1137/1.9781611973730.17
http://dx.doi.org/10.1007/978-3-319-73117-9_45
http://arxiv.org/abs/1801.04425
http://dx.doi.org/10.1134/S0032946011010030
http://dx.doi.org/10.1134/S0032946011010030
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1201/9781420035179.ch11
http://dx.doi.org/10.1201/9781420035179.ch11
http://dx.doi.org/10.1145/322123.322127
http://dx.doi.org/10.1007/3-540-44888-8_5

P. Charalampopoulos et al. 23:15

9 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In László Babai, editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 91–100.
ACM, 2004. doi:10.1145/1007352.1007374.

10 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
Cambridge University Press, 2007.

11 Maxime Crochemore, Costas S. Iliopoulos, Manal Mohamed, and Marie-France Sagot.
Longest repeats with a block of k don’t cares. Theor. Comput. Sci., 362(1-3):248–254,
2006. doi:10.1016/j.tcs.2006.06.029.

12 Tomás Flouri, Emanuele Giaquinta, Kassian Kobert, and Esko Ukkonen. Longest common
substrings with k mismatches. Inf. Process. Lett., 115(6-8):643–647, 2015. doi:10.1016/
j.ipl.2015.03.006.

13 Szymon Grabowski. A note on the longest common substring with k-mismatches problem.
Inf. Process. Lett., 115(6-8):640–642, 2015. doi:10.1016/j.ipl.2015.03.003.

14 Leonidas J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. A
new representation for linear lists. In John E. Hopcroft, Emily P. Friedman, and Michael A.
Harrison, editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
May 4-6, 1977, Boulder, Colorado, USA, pages 49–60. ACM, 1977. doi:10.1145/800105.
803395.

15 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, 1997.

16 Kurt Hoffman, Kurt Mehlhorn, Pierre Rosenstiehl, and Robert Endre Tarjan. Sorting
jordan sequences in linear time using level-linked search trees. Information and Control,
68(1-3):170–184, 1986. doi:10.1016/S0019-9958(86)80033-X.

17 Lucas Chi Kwong Hui. Color set size problem with application to string matching. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Combinat-
orial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April
29 - May 1, 1992, Proceedings, volume 644 of Lecture Notes in Computer Science, pages
230–243. Springer, 1992. doi:10.1007/3-540-56024-6_19.

18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

20 Tomasz Kociumaka, Jakub Radoszewski, and Tatiana A. Starikovskaya. Longest common
substring with approximately k mismatches. CoRR, abs/1712.08573, 2017. arXiv:1712.
08573.

21 Tomasz Kociumaka, Tatiana A. Starikovskaya, and Hjalte Wedel Vildhøj. Sublinear space
algorithms for the longest common substring problem. In Andreas S. Schulz and Dorothea
Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer
Science, pages 605–617. Springer, 2014. doi:10.1007/978-3-662-44777-2_50.

22 Chris-André Leimeister and Burkhard Morgenstern. kmacs: the k-mismatch average
common substring approach to alignment-free sequence comparison. Bioinformatics,
30(14):2000–2008, 2014. doi:10.1093/bioinformatics/btu331.

23 Mamoru Maekawa. A square root N algorithm for mutual exclusion in decentralized systems.
ACM Trans. Comput. Syst., 3(2):145–159, 1985.

24 Tatiana A. Starikovskaya. Longest common substring with approximately k mismatches. In
Roberto Grossi and Moshe Lewenstein, editors, 27th Annual Symposium on Combinatorial
Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs,

CPM 2018

http://dx.doi.org/10.1145/1007352.1007374
http://dx.doi.org/10.1016/j.tcs.2006.06.029
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://dx.doi.org/10.1016/j.ipl.2015.03.006
http://dx.doi.org/10.1016/j.ipl.2015.03.003
http://dx.doi.org/10.1145/800105.803395
http://dx.doi.org/10.1145/800105.803395
http://dx.doi.org/10.1016/S0019-9958(86)80033-X
http://dx.doi.org/10.1007/3-540-56024-6_19
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://arxiv.org/abs/1712.08573
http://arxiv.org/abs/1712.08573
http://dx.doi.org/10.1007/978-3-662-44777-2_50
http://dx.doi.org/10.1093/bioinformatics/btu331

23:16 Linear-Time Algorithm for Long LCF with k Mismatches

pages 21:1–21:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/
LIPIcs.CPM.2016.21.

25 Tatiana A. Starikovskaya and Hjalte Wedel Vildhøj. Time-space trade-offs for the longest
common substring problem. In Johannes Fischer and Peter Sanders, editors, Combinatorial
Pattern Matching, 24th Annual Symposium, CPM 2013, Bad Herrenalb, Germany, June
17-19, 2013. Proceedings, volume 7922 of Lecture Notes in Computer Science, pages 223–
234. Springer, 2013. doi:10.1007/978-3-642-38905-4_22.

26 Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM,
26(4):690–715, 1979. doi:10.1145/322154.322161.

27 Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. A provably efficient al-
gorithm for the k-mismatch average common substring problem. Journal of Computational
Biology, 23(6):472–482, 2016. doi:10.1089/cmb.2015.0235.

28 Sharma V. Thankachan, Sriram P. Chockalingam, Yongchao Liu, Alberto Apostolico, and
Srinivas Aluru. ALFRED: A practical method for alignment-free distance computation.
Journal of Computational Biology, 23(6):452–460, 2016. doi:10.1089/cmb.2015.0217.

29 Igor Ulitsky, David Burstein, Tamir Tuller, and Benny Chor. The average common
substring approach to phylogenomic reconstruction. Journal of Computational Biology,
13(2):336–350, 2006. doi:10.1089/cmb.2006.13.336.

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.21
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.21
http://dx.doi.org/10.1007/978-3-642-38905-4_22
http://dx.doi.org/10.1145/322154.322161
http://dx.doi.org/10.1089/cmb.2015.0235
http://dx.doi.org/10.1089/cmb.2015.0217
http://dx.doi.org/10.1089/cmb.2006.13.336

	Introduction
	Our Contribution

	Preliminaries
	Difference covers
	Colored Trees Problem

	Reduction of LCF_k(ell) problem to multiple synchronized LCP_k's
	The case of k=0 and of k=1 and sigma=2
	Arbitrary k and sigma
	Main Result

