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Abstract
We revisit the problem of computing the Lyndon factorization of a string w of length N which is
given as a straight line program (SLP) of size n. For this problem, we show a new algorithm which
runs in O(P (n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P (n,N),
S(n,N), Q(n,N) are respectively the pre-processing time, space, and query time of a data
structure for longest common extensions (LCE) on SLPs. Our algorithm improves the algorithm
proposed by I et al. (TCS ’17), and can be more efficient than the O(N)-time solution by Duval
(J. Algorithms ’83) when w is highly compressible.
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1 Introduction

A string w is said to be a Lyndon word if w is lexicographically smaller than any of its
proper suffixes. For instance, abb is a Lyndon word, but bba and aba are not. The Lyndon
factorization of a string w is the sequence of strings `p1

1 , . . . , `
pm
m such that w = `p1

1 · · · `pm
m , `i
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24:2 Lyndon Factorization of Grammar Compressed Texts Revisited

is a Lyndon word, pi ≥ 1(1 ≤ i ≤ m), and `i � `i+1(1 ≤ i < m) [4]. Lyndon factorizations
are used, for example, in a bijective variant of Burrows-Wheeler transform [13, 7] and an
algorithm to check digital convexity [2].

Let LFw denote the Lyndon factorization of a string w. Given a string w of length
N , LFw can be computed on-line in O(N) time [6]. When the length N of the string w
is huge, even the O(N)-time solution may not be efficient enough. I et al. [10] showed an
efficient Lyndon factorization algorithm when the string w is given as a straight line program
(SLP), which is a compressed representation of the string based on a context free grammar
that derives only w. The algorithm runs in O(n2 + P (n,N) + Q(n,N)n logn) time and
O(n2 + S(n,N)) space where P (n,N), S(n,N), Q(n,N) are respectively the pre-processing
time, space, and query time of a data structure for longest common extensions (LCE) on
SLPs. This algorithm can be more efficient than the O(N)-time solution when w is highly
compressible.

In this paper, we revisit the Lyndon factorization problem on SLPs and give a more
efficient solution. Given an SLP S of size n representing a string w of length N , our new
algorithm runs in O(P (n,N) + Q(n,N)n log logN) time and O(n logN + S(n,N)) space.
If we use the LCE data structure of [8], we can compute the Lyndon factorization in
O(n logN log logN) time and O(n logN) space. This improves the previous algorithm since
logN ≤ n holds.

We note that the previous algorithm [10] computes the Lyndon factorization in a bottom-
up manner, which requires us to store the Lyndon factorization for every variable of a given
SLP. This implies that we must use Ω(n2) space (and thus time) in total because the size of
each Lyndon factorization can be Ω(n). We show that the Lyndon factorization of w can be
computed without computing the Lyndon factorization of each variable.

2 Preliminaries

2.1 Strings and model of computation
Let Σ be an ordered finite alphabet. An element of Σ∗ is called a string. The length of a
string w is denoted by |w|. The empty string ε is a string of length 0. Let Σ+ be the set of
non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called a prefix,
substring, and suffix of w, respectively. A prefix x of w is called a proper prefix of w if x 6= w.
The i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w and
two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at position
i and ends at position j. For convenience, let w[i..j] = ε when i > j. For any string w let
w1 = w, and for any integer k ≥ 2 let wk = wwk−1, i.e., wk is a k-time repetition of w.

If character a is lexicographically smaller than another character b, then we write a ≺ b.
For any strings x, y, let lcp(x, y) be the length of the longest common prefix of x and y. We
write x ≺ y iff either x[lcp(x, y) + 1] ≺ y[lcp(x, y) + 1] or x is a proper prefix of y.

Our model of computation is the word RAM. We assume the computer word size is at
least dlog2 |w|e, and hence, standard operations on values representing lengths and positions
of string w can be manipulated in O(1) time. Space complexities will be determined by the
number of computer words (not bits).

2.2 Lyndon words and Lyndon factorization of strings
Two strings x and y are conjugates, if x = uv and y = vu for some strings u and v. A
string w is said to be a Lyndon word, if w is lexicographically strictly smaller than all of
its conjugates. Namely, w is a Lyndon word, if for any factorization w = uv, it holds that
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uv ≺ vu. An equivalent definition of Lyndon words is: a string w is a Lyndon word, if w ≺ v
for any non-empty proper suffix v of w.

The Lyndon factorization of a string w, denoted LFw, is the factorization `p1
1 , . . . , `

pm
m

of w, such that each `i ∈ Σ+ is a Lyndon word, pi ≥ 1, and `i � `i+1 for all 1 ≤ i < m.
The size of LFw is m and denoted by |LFw|. LFw can be represented by the sequence
(|`1|, p1), . . . , (|`m|, pm) of integer pairs, where each pair (|`i|, pi) represents the i-th Lyndon
factor `pi

i of w. Note that this representation requires O(m) space.
In the literature, the Lyndon factorization is sometimes defined to be a sequence of

lexicographically non-increasing Lyndon words, namely, each Lyndon factor `p is decomposed
into a sequence of p `’s. In this paper, each Lyndon word ` in the Lyndon factor `p is called
a decomposed Lyndon factor.

For any string w, let LFw = `p1
1 , . . . , `

pm
m . Let lfbw(i) denote the position where the

i-th Lyndon factor begins in w, i.e., lfbw(1) = 1 and lfbw(i) = lfbw(i − 1) + |`pi−1
i−1 | for any

2 ≤ i ≤ m. For any 1 ≤ i ≤ m, let lfsw(i) = `pi

i `
pi+1
i+1 · · · `pm

m and lfpw(i) = `p1
1 `

p2
2 · · · `

pi

i . For
convenience, let lfsw(m+ 1) = lfpw(0) = ε.

I Example 1. Let w = abcabcabababcbabababcababa. Then,
LFw = (abc)2, abababcb, abababc, (ab)2, a;
the decomposed Lyndon factorization of w is abc, abc, abababcb, abababc, ab, ab, a.

Moreover, lfbw(2) = 7, lfsw(3) = abababcababa, and lfpw(2) = abcabcabababcb.

The following is a useful lemma concerning Lyndon factorizations.

I Lemma 2 (Lemma 4 of [11]). Let LFw = `p1
1 , . . . , `

pm
m and 1 ≤ i, j ≤ m. Assume that

`pi

i · · · `
pj

j has an occurrence to the left in w. Then,
1. the leftmost occurrence of `pi

i · · · `
pj

j is a prefix of `k for some k < i;
2. `pi

i · · · `
pj

j is a prefix of every `h with k ≤ h < i.

2.3 Straight line programs (SLPs)

A straight line program (SLP) is a set of productions S = {Xi → expri}ni=1, where each
Xi is a variable and each expri is an expression of the form expri = a (a ∈ Σ), or expri =
XlXr (i > l, r). Let val(Xi) denote the string derived by Xi. Also let val(a) = a for
a ∈ Σ. We will sometimes associate val(Xi) with Xi and denote |val(Xi)| as |Xi|. An SLP S
represents the string w = val(Xn). The size of the program S is the number n of productions
in S. If N is the length of the string represented by SLP S, then N can be as large as 2n−1.

The derivation tree TS of SLP S is a labeled ordered tree obtained by recursively applying
the productions of variable Xi, starting from Xn, i.e., the root node has label Xn, and for
each internal node labeled Xi, if Xi → XlXr, then its left child is labeled Xl and its right
child is labeled Xr, if Xi → a, then its single child is labeled a.

The height of SLP S is the height of TS . We associate to each leaf of TS the corresponding
position in string w = val(Xn). An example of the derivation tree of an SLP is shown in
Figure 1.

It is known that the size of the Lyndon factorization of w is a lower bound of the size of
smallest SLP which derives w.

I Lemma 3 (Lemma 17 of [10]). For any string w, let m = |LFw|, and n be the size of an
SLP which derives w. Then m ≤ n holds.
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Figure 1 The derivation tree of SLP S = {X1 → a, X2 → b, X3 → X1X2, X4 → X1X3,
X5 → X3X4, X6 → X4X5, X7 → X6X5}, representing string w = val(X7) = aababaababaab.

2.4 Longest common extension problem on SLPs
The longest common extension (LCE) problem on SLPs is to preprocess an SLP so that we
can efficiently answer LCE queries that ask to compute lcp(val(Xi)[k1..|Xi|], val(Xi)[k2..|Xi|])
for any variable Xi and 1 ≤ k1, k2 ≤ |Xi|. Currently, the best known deterministic solution
to this problem is the following.

I Lemma 4 (Theorem 2 of [8]). Given an SLP of size n representing a string of length N ,
we can preprocess in O(n log(N/n)) time and O(n+ t log(N/t)) space to support LCE queries
in O(logN) time where t is the size of non-overlapping LZ77 factorization.

In order to describe the complexity of our algorithm independent from the choice of
LCE data structures, the preprocessing time, space and query time of the chosen LCE data
structure are denoted by P (n,N), S(n,N) and Q(n,N), respectively.

3 Lyndon factorization algorithm for SLP

In this paper, we propose a new Lyndon factorization algorithm for an SLP compressed text.
More formally, we are given an SLP S which derives a string w, and we compute LFw.

Firstly, we explain the idea of our algorithm. We compute the Lyndon factorization of w
from left to right based on G-factorization defined as follows. The G-factorization of a string
w that is derived by an SLP S is defined by the Partial Parse Tree of S.

I Definition 5 (Partial Parse Tree [14]). The partial parse tree of an SLP S is a subtree of
the derivation tree of S such that each variable occurs exactly once as a label of an internal
node and the occurrence is the leftmost possible.

I Definition 6 (G-factorization [14]). The G-factorization of a string w that is derived by an
SLP S is GF (w,S) = val(leaf 1), . . . , val(leaf g), where leaf 1, leaf 2, . . . , leaf g is the sequence of
leaf labels of the partial parse tree of an SLP S.

Figure 2 shows the partial parse tree and the G-factorization of SLP S which was shown
in Figure 1. Since the number of internal nodes of the partial parse tree of S is exactly the
same as the number of variables of S, it is clear that |GF (w,S)| as well as the size of the
partial parse tree is O(n), where n is the size of SLP S.
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Figure 2 The partial parse tree of SLP S which was shown in Figure 1. The G-factorization of
this string is shown by dash lines on the string.

Let GF (w,S) = val(leaf 1), . . . , val(leaf g) and wj = val(leaf 1) · · · val(leaf j) for any 1 ≤
j ≤ g. Our algorithm consists of the following two parts.
1. Compute the set of significant suffixes of Xi for all 1 ≤ i ≤ n.
2. Compute the Lyndon factorization and the significant suffixes of wj+1.
Here, significant suffixes of a string are suffixes of the string, as defined in [9, 10] (also used
in [12]), closely related to Lyndon factorizations, and will be explained in detail in Section 3.1.

The second part of our algorithm consists of g steps: In the (j+1)-th step of our algorithm,
we compute LFwj+1 by using information computed for wj and leaf i. More precisely, we
compute LFwj+1 by using:

the Lyndon factorization of wj ,
the significant suffixes of wj , and
the significant suffixes of leaf i.

The rest of this section is organized as follows. In Section 3.1, we explain what significant
suffixes are. We also show properties on significant suffixes which are used in our algorithm.
In Section 3.2 and 3.3, we describe respectively, the first part and the second part of our
algorithm.

3.1 Significant suffix
Assume that LFu = up1

1 , . . . , u
pm
m . lfsu(i) is said to be a significant suffix of u if lfsu(i+ 1) is

a prefix of lfsu(i) for any 1 ≤ i ≤ m. It is clear that lfsu(m) (i.e., the last Lyndon factor) is
always a significant suffix of u.

I Lemma 7. Assume that lfsu(i + 1) is a prefix of lfsu(i) for some 1 ≤ i ≤ m. Then
lfsu(j + 1) is a prefix of lfsu(j) for any i < j ≤ m.

Proof. Assume that lfsu(i+ 1) is a prefix of lfsu(i) for some 1 ≤ i ≤ m. Let i < j ≤ m. By
the definition, lfsu(j) and lfsu(j + 1) are suffixes of lfsu(i+ 1). Thus, lfsu(j) and lfsu(j + 1)
are proper substrings of lfsu(i). By Lemma 2, lfsu(j) and lfsu(j + 1) have to be proper
prefixes of lfsu(i). Since |lfsu(j)| > |lfsu(j + 1)|, then lfsu(j + 1) is a prefix of lfsu(j). J

Let λu be the minimum integer such that lfsu(i+ 1) is a prefix of ui for any λu ≤ i ≤ m.
We define the set of significant suffixes Λu of u as Λu = {lfsu(i) | λu ≤ i ≤ m}.

CPM 2018
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I Example 8. Let w = abcabcabababcbabababcababa (same as Example 1). Then, λw = 3
and Λw = {abababcababa, ababa, a} since lfsw(3) is not a prefix of lfsw(2), but lfsw(4) is a
prefix of lfsw(3).

It is clear from the definition of Lyndon factorization and λu that for any λu ≤ i ≤ m,
ui = lfsu(i + 1)yi for some non-empty string yi. We will represent Λu by the sequence
(lfbu(λu), pλu), . . . , (lfbu(m), pm) of integer pairs. Note that this representation requires
O(log |u|) space by the following lemma.

I Lemma 9 (Lemma 12 of [10]). For any string u, |Λu| = O(log |u|).

3.2 Computing significant suffixes
For any strings u, v, let LFu = up1

1 , . . . , u
pm
m = U1, . . . , Um where Ui = upi

i and LFv =
vq1

1 , . . . , v
qm′
m′ = V1, . . . , Vm′ where Vi = vqi

i . Our idea of computing significant suffixes is
based on the following lemma used in [10].

I Lemma 10 ([1, 5]). LFuv = U1, . . . , Uc, z
k, Vc′ , . . . Vm′ for some 0 ≤ c ≤ m, 1 ≤ c′ ≤ m′+1

and LF lfsu(c+1)lfpv(c′−1) = zk.

This lemma says that LFuv can be obtained from LFu and LFv by computing the medial
Lyndon factor zk since the other Lyndon factors remain unchanged in uv.

Let Xi = X`Xr(1 ≤ `, r < i ≤ n). Assume that we have computed ΛX`
and ΛXr . Then

we compute ΛXi
from this information. The following lemmas are useful for our algorithm.

I Lemma 11 (Lemma 16 of [10]). λu ≤ c+ 1.

I Lemma 12. lfbuv(λuv) ∈ {lfbu(i) | λu ≤ i ≤ c+ 1} ∪ {|u|+ lfbv(max{c′, λv})}.

Proof. By Lemma 10, Vj is a Lyndon factor of uv for any c′ ≤ j ≤ |LFv|. Hence, lfsv(k) is
a significant suffix of uv for any max{c′, λv} ≤ k ≤ m. Let 1 ≤ j < λu. By Lemma 11, Uj is
a Lyndon factor of uv. By the definition of significant suffix and Lemma 7, lfsu(j + 1) is
not a prefix of lfsu(j). From this fact, it is easy to see that lfsu(j + 1)v is not a prefix of
lfsu(j)v, i.e., lfsuv(j + 1) is not a prefix of lfsuv(j). Thus, lfbuv(λuv) ≥ lfbu(λu). Therefore,
this lemma holds. J

From Lemma 10 and the definition of Lyndon factorization, there exists exact one z
which begins in u and ends in v (if um ≺ v1). We refer to this z as crossing factor. By the
next lemma, we can determine the lexicographic order between um and v1 using a single
LCE query lcp(umv, v). We remark that we do not have to know |v1| as well as the Lyndon
factorization of v.

I Lemma 13. Let α = lcp(umv, v). Then,
1. um � v1 if α < |um| and umv � v;
2. um = v1 if α ≥ |um| and umv � v;
3. um ≺ v1 if umv ≺ v.

Proof.
1. If α < |um| and umv � v, then the prefix of v of length α is not a prefix of any Lyndon

words. This implies that the longest prefix of v which is a Lyndon word is shorter than α.
Thus, um � v1 holds.

2. If α ≥ |um| and umv � v, then the prefix of v of length α + 1 can be represented as
uimu

′
mc such that i ≥ 1, u′m is a prefix of um, and um[|u′m| + 1] � c ∈ Σ. This implies

that um is the longest prefix of v which is a Lyndon word. Thus, um = v1 holds.
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3. If α ≥ |um| and umv ≺ v, then the prefix of v of length α + 1 can be represented as
uimu

′
mc such that i ≥ 1, u′m is a prefix of um, and um[|u′m| + 1] ≺ c ∈ Σ. This implies

that the prefix of v of length α + 1 is a Lyndon word which has um as a prefix. Thus,
um ≺ v1. If α < |um| and umv ≺ v, then the prefix of v of length α+ 1 is a Lyndon word
which is lexicographically larger than um. Thus, um ≺ v1. J

Due to the following lemma, we can compute the crossing factor efficiently.

I Lemma 14 (Lemma 16 of [10]). Assume that um ≺ v1. Let i, j be the beginning position
and the ending position of the crossing factor z, respectively. Then

i = lfbu(i′) for some λu ≤ i′ ≤ m,
lfsu(1)v � . . . � lfsu(i′)v ≺ . . . ≺ lfsu(m+ 1)v,
j = lfbu(j′) such that lfsv(j′ − 1) � lfsu(i′)v � lfsv(j′).

The following lemma is the main result of this section.

I Lemma 15. We can compute all significant suffixes for each variable of an SLP S by
O(n log logN) lexicographical string comparisons.

Proof. Let i ≤ n. Assume that we have computed all significant suffixes of variable Xj for
any j < i. We show how to compute all significant suffixes of variable Xi = X`Xr(`, r < i).
Let LFX`

= U1, . . . , Um and LFXr = V1, . . . , Vm′ . Firstly, we compute the lexicographic
order between um and v1 by Lemma 13. This can be done by one LCE query.

Suppose that um � v1. Then LFXi = U1, . . . , Um, V1, . . . , Vm′ by the definition of Lyndon
factorization. Since we have all significant suffixes ofX` andXr, we can compute all significant
suffixes of Xi by O(log log |val(X`)|+ log log |val(Xr)|) lexicographical string comparisons
from Lemmas 7 and 12. It is clear that the last decomposed Lyndon factor of Xi is the same
as Xr.

Suppose that um = v1. Then LFXi
= U1, . . . , Um−1, UmV1, V2, . . . , Vm′ by the definition

of Lyndon factorization. We can compute all significant suffixes of Xi in a similar way.
Suppose that um ≺ v1. We can compute the beginning position of the crossing factor

z by O(log |Λu|) lexicographic string comparisons from Lemma 14. Let b = lfbu(j) be this
position. Next, we check whether b is also the beginning position of zk or not. We can do
this with one LCE query as follows. If j = λu, then b is the beginning position of zk (since
uj−1 does not have lfsu(j) as a prefix). If the length of the longest common prefix between
uj−1 and lfsu(j)v is |uj−1|, then uj−1 = z and lfbu(j − 1) is the beginning position of zk.
Suppose that uj−1 = z. Then we can compute zk by a constant number of lexicographic
string comparisons. Thus we can also compute all significant suffixes by Lemma 12 from
significant suffixes of X` and Xr. Suppose that uj−1 6= z. Firstly, we check whether the
ending position of z which begins in u and ends in v is larger than |u| + lfbv(λv) or not.
We can do this by O(log |Λv|) lexicographic string comparisons from Lemma 14. If so, by
Lemmas 7 and 12, we can compute all significant suffixes of Xi by additional O(log |Λu|)
lexicographic string comparisons. Otherwise, Λuv ⊆ Λv holds.

Therefore, we can compute all significant suffixes of Xi by O(log logN) lexicographical
string comparisons. J

3.3 Computing Lyndon factorization
Let GF (w,S) = val(leaf 1), . . . , val(leaf g) and wj = val(leaf 1) · · · val(leaf j) for any 1 ≤ j ≤ g.
We consider computing the Lyndon factorization and the significant suffixes of wj+1 assuming
that we have computed the Lyndon factorization and the significant suffixes of wj , and

CPM 2018
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also computed the significant suffixes for each variable of S by Section 3.2. Notice that for
wj+1 = wjval(leaf j+1), val(leaf j+1) has already occurred in wj at least once if leaf j+1 is a
variable. The following lemma is very useful for our algorithm.

I Lemma 16 (Lemma 21 of [10]). Let w be non-empty string such that w = xvyvz with v ∈ Σ+

and x, y, z ∈ Σ∗. If |xvy| < lfbw(k) ≤ |xvyv| for some k, then lfbw(k) ∈ {|xvy| + lfbv(j) |
λv ≤ j ≤ m′}, where m′ = |LFv|.

This lemma implies that the ending position of zk is restricted by significant suffixes of v.
Below, we change this lemma for the ending position of the crossing factor rather than the
ending position of zk.

I Lemma 17. Let i − 1 be the ending position of the crossing factor. Assume that v is a
substring of u. Then i ∈ {|u|+ lfbv(j) | λv ≤ j ≤ m′}, where m′ = |LFv|.

Proof. Assume for a contradiction that i < |u|+ lfbv(λv). From Lemma 16, i = lfbv(λv − 1)
and vλv−1 = z holds. Moreover, Vλv

, . . . , Vm′ are also Lyndon factors of uv. Since v is a
substring of u, Vλv

· · ·Vm′ has a left occurrence. By Lemma 2, vλv−1 = z has Vλv
· · ·Vm′ as

a prefix. This contradicts that lfsv(λv − 1) is not a significant suffix of v. J

Thus, we can compute the ending position of the crossing factor by significant suffixes of
an added string v (i.e., we do not need the whole Lyndon factorization of v).

I Lemma 18. Given an SLP S of size n representing string w of length N , we can compute
LFw in O(n log logN) lexicographic string comparisons.

Proof. Let GF (w,S) = val(leaf 1), . . . , val(leaf g) and wj = val(leaf 1) · · · val(leaf j) for any
1 ≤ j ≤ g.

Firstly we compute significant suffixes for all variables in S. By Lemma 15, it can be
done in O(n log logN) lexicographical string comparisons.

Next we consider computing LFwj+1 and significant suffixes of wj+1 assuming that we
have computed LFwj = U1, . . . , Um. Suppose now that leaf j+1 is a variable (otherwise
leaf j+1 ∈ Σ). Let leaf j+1 = Xi and LFXi

= V1, . . . , Vm′ (remark that we do not actually
have LFXi). According to the lexicographic order between Um and V1, which can be checked
using a single LCE query by Lemma 13, we proceed as follows:

Um � V1. This implies that LFwj+1 = U1, . . . , Um, V1, . . . , Vm′ . By Lemma 16, λXi
= 1

holds, which means that the significant suffixes of Xi hold the whole information of LFXi .
Thus we can get LFwj+1 without string comparisons. Finally, we can compute significant
suffixes of wj+1 by O(log |Λwj

|) string comparisons (same as Lemma 15).
Um = V1. This implies that LFXi

= U1, . . . , Um−1, UmV1, V2, . . . , Vm′ . We can compute
LFwj+1 without string comparisons in a similar way to the previous case. We can also
compute Λwj+1 by O(log |Λwj

|) string comparisons in a similar way to the previous case.
Um ≺ V1. Firstly, we compute the crossing factor z of wjXi by O(log |Λwj

|+ log |ΛXi
|)

string comparisons from Lemmas 14 and 17. Next we compute zk by checking consecutive
Lyndon factors, which can be done using two LCE queries. Then we can obtain LFwj+1 =
U1, . . . , Uc, z

k, Vc′ , . . . , Vm′ because Vc′ , . . . , Vm′ are part of the significant suffixes of Xi

due to Lemma 17. Finally, we can compute significant suffixes of wj+1 by O(log |Λwj
|)

string comparisons (same as Lemma 15).
In either case, we can compute LFwj+1 and the significant suffixes of wj+1 by O(log |Λwj

|+
log |ΛXi |) = O(log logN) string comparisons from Lemma 9.
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Now suppose that leaf j+1 ∈ Σ. Since leaf j+1 = c is a new character that does not appear
in wj , the situation does not directly match with the condition of Lemma 17. Still it is easy
to see that LFc = c, and thus, we can compute LFwj+1 and the significant suffixes of wj+1
in a similar way to the case that leaf j+1 is a variable.

Note that we do not have to “rebuild” the whole Lyndon factorization of wj+1 (which
would take O(n) time) because each Lyndon factor of LFwj+1 whose beginning position is in
[lfbwj

(λwj ), lfbwj+1(λwj+1)) remains as a Lyndon factor while appending strings to it, and
thus, it is a Lyndon factor of LFw to output. Hence, we can compute LFw while treating
only the last O(logN) Lyndon factors that are corresponding to the significant suffixes of
the current wj+1’s.

Therefore, we can compute LFw = LFwg
by O(n log logN) string comparisons. J

Here, we analyze the space requirement. We need O(n logN) space for all significant
suffixes. In each step, the size of the Lyndon factorization is less than n by Lemma 3. Thus
we need O(n) space for storing the Lyndon factorization. Finally, we get the following result
by using an LCE data structure for string comparisons.

I Theorem 19. Given an SLP of size n representing string w of length N , we can compute
LFw in O(P (n,N) +Q(n,N)n log logN) time and O(n logN + S(n,N)) space.

When we use an LCE data structure of Lemma 4, we can get the following (since the size
of LZ factorization is a lower bound on the smallest grammar [3]).

I Corollary 20. Given an SLP of size n representing string w of length N , we can compute
LFw in O(n logN log logN) time and O(n logN) space.

4 Conclusion

We revisited the problem of computing the Lyndon factorization on SLPs. Given an SLP
G of size n representing a string w of length N , our new algorithm runs in O(P (n,N) +
Q(n,N)n log logN) time and O(n logN + S(n,N)) space where P (n,N), S(n,N), Q(n,N)
are respectively the pre-processing time, space, and query time of a data structure for longest
common extensions (LCE) on SLPs. If we use the LCE data structure of [8], we can compute
the Lyndon factorization in O(n logN log logN) time and O(n logN) space.

The paper [10] also proposed an algorithm to compute in O(s log s) time and space the
Lyndon factorization of a string that is compressed by LZ78 in s size. Future work would
include improving this result and/or deriving new algorithms working on other compression
schemes.
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