
This version is available at https://doi.org/10.14279/depositonce-6965

Copyright applies. A non-exclusive, non-transferable and limited 
right to use is granted. This document is intended solely for 
personal, non-commercial use.

Terms of Use

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising 
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 
 
Winkler J.P., Vogelsang A. (2017): Automatic classification of requirements based on convolutional neural 
networks. In: Requirements Engineering Conference Workshops (REW), IEEE International.  
New York: IEEE. DOI: https://doi.org/10.1109/REW.2016.021.

Winkler, Jonas Paul; Vogelsang, Andreas

Automatic classification of requirements 
based on convolutional neural networks

Accepted manuscript (Postprint)Dokumententyp   |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/158840665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Automatic Classification of Requirements Based on
Convolutional Neural Networks

Jonas Winkler
Technische Universität Berlin, DCAITI, Germany

jonas.winkler@dcaiti.com

Andreas Vogelsang
Technische Universität Berlin, Germany

andreas.vogelsang@tu-berlin.de

Abstract—The results of the requirements engineering process
are predominantly documented in natural language requirements
specifications. Besides the actual requirements, these documents
contain additional content such as explanations, summaries, and
figures. For the later use of requirements specifications, it is
important to be able to differentiate between legally relevant
requirements and other auxiliary content. Therefore, one of our
industry partners demands the requirements engineers to manu-
ally label each content element of a requirements specification as
“requirement” or “information”. However, this manual labeling
task is time-consuming and error-prone. In this paper, we present
an approach to automatically classify content elements of a
natural language requirements specification as “requirement” or
“information”. Our approach uses convolutional neural networks.
In an initial evaluation on a real-world automotive requirements
specification, our approach was able to detect requirements
with a precision of 0.73 and a recall of 0.89. The approach
increases the quality of requirements specifications in the sense
that it discriminates important content for following activities
(e.g., which parts of the specification do I need to test?)

Index Terms—Requirements engineering, convolutional neural
networks, machine learning, quality assurance, classification

I. INTRODUCTION

Requirements specifications are used in many requirements

engineering (RE) processes to document results. The purpose of

these documents is to define the properties that a system must

meet to be accepted. Moreover, in contexts, where one company

or department acts as a customer and another company acts as

a supplier, the requirements specification also defines liability

between the partners (i.e., what must be achieved to fulfill the

contract). For this reason, requirements specifications should

undergo a rigorous quality assessment process especially in

industries where systems are created by a collaboration of

many suppliers (e.g., automotive).

Besides the actual and legally binding requirements, re-

quirements specifications usually contain auxiliary content

(e.g., explanations, summaries, examples, and references to

other documents). These content elements are not requirements,

which must be fulfilled by the supplier but they may facilitate

the process of understanding requirements and their context.

To distinguish these auxiliary information from legally binding

requirements, one of our industry partners annotates all content

elements in their requirements specifications with specific

labels for requirements and information. However, this manual

labeling task is time-consuming and error-prone. By analyzing a

set of requirements specifications from our partner, we observed

that labels (i.e., requirement and information) are often not

added when the content is created. This impedes the usage of

these documents for following activities, such as creating a test

specification based on a requirements specification. Adding the

labels at a later stage is expensive since every content element

has to be read and understood again.

In this paper, we present an approach to automatically

classify content elements of a natural language requirements

specification as requirement or information. This approach can

be used either to classify content elements in documents that

have not been classified before or to analyze already classified

documents and support the author in identifying incorrectly

classified content elements.

Our approach uses convolutional neural networks, a machine

learning approach that has recently gained attention in natural

language processing [1], [2]. To train the neural network,

we used a set of 10,000 content elements extracted from 89

requirements specifications of our industry partner. By using

90% of the content elements as training data and 10% as test

data, our approach is able to achieve a stable classification

accuracy of ≈ 81%.

In a preliminary evaluation we applied our approach to an

unknown requirements specification with 747 content elements.

Our approach was able to classify requirements with a precision

of 0.73 and a recall of 0.89 and information with a precision

of 0.90 and a recall of 0.75.

We argue that an explicit differentiation between require-
ments and information increases the quality of a requirements

specification because it facilitates the use of the document for

following activities (see also [3]). An accurate differentiation

between requirements and information is vital for these activi-

ties to be successful. For example, when a test specification is

derived from a requirements specification, this differentiation

defines for which content elements a test case has to be created.

Also, this differentiation defines which content elements have

to be implemented by a supplier.

II. BACKGROUND

A requirements specification is a document that contains

requirements and requirement related information for a specific

scope and on a specific level of abstraction. Requirements

specifications may serve different purposes, which influence

the type and representation of information contained in the

document. To cover all kinds of requirements specifications,

39



we characterize a requirements specification as a set of content

elements (see [4]). Content elements are atomic parts of a

requirements specification and usually contain a single sentence

or a figure. Content elements can be associated with different

attributes. For this paper, the following attributes are relevant:

• Text: This attribute contains the text body of the content

element.

• Type: This attribute defines whether the content element

is a requirement, which has to be satisfied by the supplier,

or an information, which provides additional content that

is legally not relevant. More types are used by our industry

partner for special-purpose content elements.

To better understand the different types of content con-

tained in a requirements specification, we examined a set

of requirements specifications from our industry partner, an

automotive manufacturer. Although the documents were written

by different people, the kind of content and the structure

of the documents are quite similar. We made the following

observations concerning the content:

• Most content elements contain natural language text. We

observed that phrasing tends to be more precise for

requirements compared with additional information.
• We identified unique phrasing and formatting within the

content elements of individual specification documents.

This is due to the fact that these documents are created

by different authors with slightly different understandings

about how these documents should be created.

• In addition to natural language content elements, many

content elements are created using structured and semi-

formal notations, such as enumerations, tables, diagrams,

equations, logical expressions, and key-value pairs (e.g.,

“Maximum Voltage: 10mV”).

• Certain content elements are always classified using

the same label. For example, elements that represent

references to external documents are always classified

as information, whereas voltage range specifications are

always classified as requirement.
• In some requirements specifications, the attribute type is

not defined consistently. Remarks, which obviously are

not requirements, are not labeled as information in some

cases. Sometimes a classification was completely missing

for the whole document.

In previous studies, we have shown that simple rule-based

approaches are sufficient to classify content elements that

follow a structured or semi-formal notation as the specific

label can be derived from the used notation [5]. The difficult

classification part resides in the content elements that contain

unstructured text. Therefore, in this paper, we focus on the

classification of content elements that contain unstructured

text. In the following, we provide some examples for content

elements of both categories.

• A reset counter must be implemented. (Requirement)
• The relay must not be deactivated in case of a voltage

drop. (Requirement)
• Additional information can be found in Chapter A.

(Information)

• The circuit diagram shows a schema of the component

and its parts. (Information)

III. CONVOLUTIONAL NEURAL NETWORKS FOR NLP

Classifying content elements of requirements specifications

as either requirement or information is a two-class classification

problem. Within the natural language processing community,

many popular techniques exist to solve such a problem, includ-

ing Naive Bayes [6] and support vector machines [7]. Although

these techniques have limitations, such as ignoring word order,

they have proved to be good enough for classification tasks

such as sentiment analysis [8] or authorship attribution.

Convolutional neural networks (CNN) are a variation of

classic feed-forward neural networks, which are widely used

within the image recognition community [9] but have recently

gained attention in natural language processing as well [1], [2].

These networks have several advantages compared with other

classification techniques:

• Techniques such as Naive Bayes and support vector ma-

chines often rely on the bag-of-words approach to convert

natural language sentences into machine understandable

feature vectors. Information about the order of words

in the sentence is lost in the process. CNNs for natural

language processing operate on a sentence representation

that keeps word order intact. Therefore, CNNs may learn

and recognize patterns consisting of word sequences

spanning multiple words in a sentence.

• To convert a natural language sentence into a machine

understandable format, a word vectorization technique

such as word2vec [10] or GloVe [11] is employed. This

allows the network to recognize patterns even if the words

used in the occurrences of the pattern vary slightly.

The organization and functionality of CNNs as applied in

this paper is illustrated in Fig. 1 and will be described briefly in

the following section. A more complete description of CNNs

for natural language processing is provided by Zhang and

Wallace [12]. For an introduction into the fundamentals of

neural networks, refer to the book by Nielsen [13].

The first step is to transform an input sentence into a vector

representation (1). This is called word embedding. We use

word2vec for this step. Word2vec maps a single word to a

vector v ∈ R
n, where n is called the embedding size. One

remarkable property of word2vec is that the vector distance of

two given words is small if these two words are used in similar

contexts whereas it is large if the words are not related at all.

Sentences are transformed into a matrix m ∈ R
n,l, where l is

the number of words in the sentence.

The first layer in the network applies a predefined set of

filters (2) to the sentence matrix m. Each filter is a matrix

f ∈ R
n,o of trainable parameters, where n is the embedding

size and o is the length of that particular filter. Number and

sizes of the filters are hyper parameters and as such manually

defined prior to training. In Fig. 1, two filters of length 3 and

two filters of length 2 are illustrated. Filters are applied to a

sentence matrix by moving them as a sliding window over

the sentence matrix, producing a single value at each position

40



requirement 
information 

(1) 
word embedding 

(2) 
filters 

(3) 
convolution 

(4) 
1-max-pooling 

(5) 
concatenation 

(6) 
fully connected layer 

n 

The 
function 
must 
be 
… 

m 

o 

n 

Fig. 1. Convolutional neural network architecture (simplified) as proposed by [12]

using an activation function such as a rectifier or sigmoid

function (3). This step is called convolution. Each filter learns

to recognize a specific word pattern (e.g., a filter of size 2

might learn to recognize the pattern “function must”).

All values produced by a filter are then reduced to a single

value by applying 1-max-pooling (4). The max-pooled values

indicate whether the pattern learned by a filter is present within

a sentence. All resulting values are concatenated and form a

feature vector (5). This vector is connected to the output layer

using a standard fully connected layer and an appropriate set

of trainable parameters (6). The fully connected layer is used

to associate certain patterns with an output class (e.g., the

network might learn to associate the pattern “must be” with

the class “requirement”). A softmax layer is finally used to

create a true probability distribution.

IV. APPROACH

To construct a classifier that is able to distinguish information

from requirements in natural language sentences, we employed

the Knowledge Discovery in Databases (KDD) process as

described by Maimon and Rokach [14]. This process describes

necessary steps and risks to be aware of when attempting to

create knowledge from raw data using data mining techniques.

The process contains the following 9 steps:

1) Understanding the application domain. We did a thor-

ough analysis of our data to gain a better understanding

about requirements and information (see Section II).

2) Creating a dataset. We have created a dataset using the

knowledge gained in the previous step. Details will be

described in Section IV-A.

3) Preprocessing and cleansing. We applied preprocessing

steps to the dataset to remove noise. Details will be

described in Section IV-A as well.

4) Data transformation. We transformed the data into a

format appropriate for training a machine learning algo-

rithm. We decided to use the word2vec word embedding

technique [12].

5) Choosing the appropriate data mining task. The prob-

lem of determining the type (requirements or information)
of a given content element is a classification problem.

6) Choosing the data mining algorithm. We selected CNNs

for approaching our problem due to their recent success

in many common natural language problems [12].

7) Employing the data mining algorithm. The procedure

of selecting hyper parameters and training of the model

is described in Section IV-B.

8) Evaluation. We evaluated our approach by applying it

to a requirements specification from industry. The results

are presented in Section V.

9) Using the knowledge. Possible ways to incorporate the

created model into a tool for quality assurance will be

discussed in Section VI.

A. Constructing the Dataset

The DOORS document database of our industry partner

contains all requirement documents of the company. For

training the convolutional neural network, we selected 89

documents from that database based on the following criteria:

• The document must be a specification describing a

single electronic vehicle component. We excluded multi-

component specifications and auxiliary documents because

these are written on a different level of abstraction

using different phrasing and terminology and thus might

negatively affect the training process.

• All documents must be written in the same language.

In our case, most documents were written in German.

Therefore, we only selected documents written in German.

• To be able to train the classifier, the content elements of

the selected documents must be classified as information
or requirement. Therefore, we selected only documents

where most content items were manually classified before.

• The classification of the content elements within the

document must be reliable. We inspected each document

and assessed the classification quality. We excluded

41



documents in which classification was questionable (e.g.,

all content elements classified as requirement)

We extracted all content elements from the resulting docu-

ment set that are either classified as information or requirement.
We ignored content elements copied from templates during this

process because the classification of these elements is specified

by the templates. We also ensured that the resulting set of

content elements does not include any duplicates.

Since we want to build a classifier that determines the class

of natural language sentences, we filtered the dataset to only

include content elements containing natural language sentences.

We specifically discarded content elements containing headings,

figures, tables, math expressions, logical expressions, item-

izations, and other structured content. We used the Stanford

Parser [15] to identify sentences.

To improve the quality of the dataset, we applied a single-

link text clustering algorithm [16] to the dataset. We identified

several groups of content elements with very similar content

(e.g., only component names, numbers or few individual words

varied) but inconsistent classification: most were classified as

requirement and some were classified information, or vice versa.

We manually adjusted the classification of wrongly classified

items within large clusters.

All content elements were preprocessed using standard

preprocessing steps such as converting text to lower case and

removing stop words.

The resulting dataset was imbalanced, containing approx-

imately 5 times more requirement content elements than

information content elements. This is a major problem, since

a classifier trained on an imbalanced dataset would be heavily

biased towards the majority class [17]. To deal with this

problem, undersampling was applied to the dataset. Instead of

using random undersampling, we decided to use a clustering

algorithm on the dataset again and repeatedly removed random

content elements from large clusters until the dataset was

balanced. This ensures that important content elements (i.e.,

elements with rarely used phrasing) are not removed from the

dataset. It also helps to reduce overfitting because only very

similar or even partially identical content elements are removed

from the dataset.

B. Building the Classifier

We built the convolutional neural network using the guide-

lines provided by Zhang and Wallace [12]. For implementing

the actual network, we used the Tensorflow1 library.

The word2vec word embedding was trained once using the

dataset created as described in the previous section. This created

both a dictionary of frequent words and a mapping of each

frequent word to a vector. These are used to convert sentences

into matrices.

The hyper parameters of the model such as embedding size,

filter sizes and filter count per size were chosen using an

iterative process. We started with small and few filters and

increased both the count and the size of the filters until the

1https://www.tensorflow.org/

0 500 1,000 1,500 2,000
0.4

0.6

0.8

1

training step

ac
cu

ra
cy

training set
test set

Fig. 2. Development of the accuracy of the CNN

performance of the network stopped to increase. We achieved

best performance using embedding size 128, filters of size 1,

2, and 3 and 64 filters per size (192 filters total).

To train the network, the dataset was randomly split into

90% training data and 10% test data. The network was trained

on the training data using stochastic gradient descent.

V. EVALUATION

We evaluated the performance of the trained network using

standard measures. This includes the network accuracy on the

training and test set, as well as precision, recall and f1-score

of both target classes on the test set.

Fig. 2 visualizes the performance on the training set and

test set during training. After roughly 1,000 training steps

(approx. 10 epochs), the network reaches 100% accuracy on

the training set. After training completes, test set performance

is 81%, meaning that about 4 out of 5 examples from the test

set were classified correctly.

TABLE I
PERFORMANCE EVALUATION

Class Precision Recall f1

Requirement 0.733 0.885 0.802

Information 0.896 0.754 0.819

The precision and recall values of both target classes in

Table I reflect this result. Overall, the network prefers to classify

elements as requirement. This is indicated by the low precision

and high recall of the class requirement. Precision on the

class information is relatively high, although only 75% of

all information elements within the test set were correctly

identified as such.

To further assess the quality of the predictions provided by

the network, we identified two indicators. The first indicator

uses the output values of the network. The network outputs

one value for each class, which are trained to be 0 for the

false class and 1 for the true class. The absolute difference

between both values before softmax application is correlated

42



0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

network output difference

fr
ac
ti
o
n
o
f
co

rr
ec
t
p
re
d
ic
ti
o
n
s

0

10

20

30

co
u
n
t
o
f
ex

am
p
le
s
p
er

se
g
m
en

t

count
correct

incorrect

Fig. 3. Network output difference to network accuracy correlation

to the probability of a correct prediction, i.e., a classification

result with an information value of -2.5 and a requirement
value of 2.2 is more likely to be correct than a classification

result with an information value of 0.3 and a requirement value
of 0.5.

Fig. 3 visualizes this correlation. We classified a set of

examples that have not been part of the training process

using a trained network and sliced the examples into multiple

segments. Each segment contains the examples whose output

difference is within a specified output difference interval.

We used an interval length of 0.5. The figure shows that

the higher the output difference, the higher the fraction of

correctly classified examples within that segment. The figure

also shows that only very few examples yielded a very high

output difference, whereas most of the examples (75%) yielded

an output difference of 4 or less.

Examples with a difference of 1 or less are very likely to be

classified incorrectly. Since the network produces incorrect

predictions for approximately half of these examples, we

assume that these examples do not contain any decisive features

correlated with either of the two output classes. On the other

hand, 25% of the examples yielded an output difference of 4

or more and were always classified correctly. This suggests the

definition of a threshold below which results will be regarded

as possibly incorrect. How such a threshold might be useful

will be discussed in Section VI.

The second indicator uses the fraction of known words

within an example. The word embedding part of the neural

network uses a dictionary to create sentence matrices. Words

not found in the dictionary are marked as unknown during

sentence matrix creation and as such do not contribute to the

classification process. We assume that the higher the amount

of known words within an example is, the higher the likeliness

of a correct prediction will be.

Fig. 4 visualizes this correlation. Each example is represented

by a dot, indicating its fraction of known words and its output

difference yielded by the network. The fraction of known words

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

fraction of known words

n
et
w
o
rk

o
u
tp
u
t
d
if
fe
re
n
ce

Fig. 4. Fraction of known words to network output difference correlation

is 0 if the example contains no known words and 1 if all words

of the example are known. A linear regression on the data

points (solid line) reveals that the higher the fraction of known

words, the higher the average output difference (and thus also

the likeliness of a correct prediction as shown in Fig. 3) of the

neural network.

Although there are very few examples with a fraction of

known words below 0.4 (due to the fact that the test data was

derived from the same source as the training data), the diagram

shows that a low fraction of known words leads to a smaller

output difference and thus is a cause for wrong classification of

a particular content element. A high fraction of known words

does not necessarily imply that a prediction is correct.

VI. DISCUSSION

Using the results gained during evaluation, we present some

notable examples from our test set to demonstrate the abilities

and limitations of the neural network. Table II shows a set

of example sentences, their respective true class, the fraction

of known words, and the output provided by the network.

Unknown words within the sentences are marked in gray.

The first row shows a requirement that was classified

correctly by the network. Since the difference between the

output values is reasonably high, it is relatively safe to assume

that the classification of the network is correct (Fig. 3 shows

that almost 90% of the examples with an output difference of

2.5 were classified correctly).

In sentence 2, all words are known and the output difference

is exceptionally high. This sentence contains words and

phrasings that are very common for information content

elements, such as “described in detail”.

Sentence 3 was classified incorrectly. The network was

simply unable to deal with this example, as indicated by the

low fraction of known words, the low output difference and

the fact that neither of the two output values is close to or

greater than 1.

Sentence 4 was classified incorrectly as well, although we

do not know why. The fraction of known words is reasonably

43



TABLE II
EXEMPLARY SENTENCES, THEIR RESPECTIVE TRUE CLASS, FRACTION OF KNOWN WORDS, AND THE OUTPUT PROVIDED BY THE NETWORK.

Sentence Class Known words2 Inf Req Diff

The transformer must switch to self-protection mode according to the derating strategy. req 0.727 -1.655 0.986 2.641

This function is described in detail in the trunk lid system description. inf 1 3.386 -4.359 7.745

Internal short-circuits due to willful intrusion are allowed to lead to destruction. inf 0.364 -0.919 -0.551 0.368

The contributions for the controller are described in the door opener system description. inf 0.727 -0.898 0.302 1.200

high and the sentence seems to be similar to sentence 2. Insight

into the network’s learned features would help to understand

this output.

A. Limitations of the Approach

The last example highlights a fundamental limitation of our

approach. The network does not provide any insight into what

it learns and why a certain output is produced. This problem is

well known within the neural network community [18]. Many

approaches have been proposed to deal with this problem, both

generic approaches such as fuzzy rule extraction from neural

networks [19] as well as domain specific approaches (i.e.,

visualizing weights of deep image recognition networks [20]).

A technique to trace back decisions through the network to

identify relevant patterns in the input sentence would certainly

be important to real users, especially when incorporating our

approach into a tool.

We also identified that the applicability of our approach

might be limited to the documents of the industry partner

whose documents we used to train the network. We used the

trained network to classify content elements of documents

provided by a different industry partner and received inferior

results. The most likely reason for that is that most of these

content elements had a fraction of known words below 0.4.

B. Threats to Validity

Although the dataset was created with great care towards

quality and common threats such as class imbalance and

leakage of information into the test set, the quality of the

dataset might still impact the presented results in a negative way.

During evaluation, we identified several examples in the dataset

that were either classified incorrectly or were poorly written.

These examples might affect the training process, restraining

the network from learning relevant patterns.

Another issue that commonly arises with machine learning

techniques is overfitting. Our network might be heavily biased

towards specific and often reoccurring words and patterns in

our training set and therefore might not be applicable to other

documents. We still need to analyze whether this is an issue

with our model.

C. Applications in Industry

To apply our approach in industry, we plan to integrate a pre-

trained CNN into a tool. This tool shall assist the requirements

engineer in three different scenarios:

2The values correspond to the German versions of the given examples since
the German version was actually analyzed by our approach.

The requirements engineer may use the tool to identify

misclassified content elements in a document in which content

elements were already classified. The tool will analyze each

content element and issue warnings if a misclassified item

is identified. We are considering to define thresholds on the

network output difference and the fraction of known words as

presented in Section V to prevent issuing false positives.

The tool may also be used to create an initial classification for

all content elements of a document in which content elements

were not classified.

We are currently investigating whether our approach is able to

detect content elements with low quality. Low output difference

values and low fractions of known words imply the use of

infrequent words and phrasing and thus could be indicators

for content elements which do not conform to established

guidelines and maybe need to be revised. The tool may issue

remarks for those content elements.

We argue that introducing a tool that supports these scenarios,

authors are able to identify misclassified items faster and are

encouraged to write higher quality (i.e., easier to classify) con-

tent elements. Ideally, the tool would also provide explanations

why a certain warning or remark is issued by highlighting

specific parts of a content element.

VII. RELATED WORK

Automatic requirements classification and application of

machine learning approaches in the context of RE has gained

attention since natural language processing and computing

power enables the automation of tasks that have traditionally

been performed manually.

Hayes et al. [21] introduced a tool for analyzing requirements,

which includes a set of components for automatic requirements

classification. The tool can, for example, differentiate between

temporal and non-temporal requirements. Huang et al. [22]

described an approach to detect and classify non-functional

requirements automatically. The approach iteratively trains a

classifier of non-functional requirements.

The successful use of machine learning techniques for

supporting RE tasks has been shown for many cases [21].

Several different machine learning techniques have been applied

for different purposes. Ott [23], for example, uses Naive-Bayes

and Support Vector Machines to classify requirements with

respect to a common topic to improve the review process.

Hayes et al. [24] use the C4.5 decision tree algorithm to predict

the testability of requirements based on a set of textual features.

Perini et al. [25] proposed an approach for deciding software

44



requirement priority using machine learning. This approach

takes into account both the requirements ordering generated

using machine learning techniques and the stakeholders’ prefer-

ence. The combination of both types of information facilitates

the task of requirements prioritization.

VIII. CONCLUSIONS

In this paper, we proposed an automatic approach for

classifying content elements of natural language requirements

specifications as requirement, which are legally relevant or

information, which only provide additional explanations or

references. The approach can be used to classify content

elements in documents that have not been classified before

or to analyze already classified documents and pinpoint the

author to possibly incorrect classifications of content elements.

The presented approach uses convolutional neural networks

that we trained on a set of existing requirements specifications.

After training the neural network, the approach is capable

of classifying new requirements documents with an accuracy

that is comparable to the accuracy of CNNs applied to other

tasks [12]. The accuracy of the network may be further

improved by increasing the amount of training data (i.e., by

including documents of other types as well, such as multi-

component system specifications) and by increasing the quality

through careful application of semi-automated techniques to

filter out bad and incorrectly classified content elements.

Besides improving the effectiveness of the approach, we

currently work on integrating a pre-trained network into a

requirements management tool with the goal to pinpoint the

requirements engineer to incorrectly classified content elements.

Despite the fact that precision and recall is not exceptionally

high, our evaluation showed that indicators exist which help

to minimize the amount of false positive warnings.

An additional challenge is to provide the user not only with

the actual findings but also with an explanation why a content

element is classified incorrect. Especially with neural networks,

it is not easy to provide these explanations since the learned

decision process within the network can be quite complex. We

are currently investigating ways to provide these explanations.

REFERENCES

[1] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746–1751.

[2] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A Convolutional
Neural Network for Modelling Sentences,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, 2014,
pp. 655–665.

[3] H. Femmer, J. Mund, and D. Méndez Fernández, “It’s the Activities,
Stupid!: A New Perspective on RE Quality,” in 2nd International
Workshop on Requirements Engineering and Testing (RET’15), 2015.

[4] D. Méndez Fernández, B. Penzenstadler, M. Kuhrmann, and M. Broy, “A
Meta Model for Artefact-Orientation: Fundamentals and Lessons Learned
in Requirements Engineering,” in Model Driven Engineering Languages
and Systems, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds. Springer
Berlin Heidelberg, 2010, pp. 183–197.

[5] J. P. Winkler, “Automatische Klassifikation von Anforderungen zur
Unterstützung von Qualitätssicherungsprozessen,” in INFORMATIK 2016.
Lecture Notes in Informatics (LNI)., H. C. Mayr and M. Pinzger, Eds.,
Bonn, 2016.

[6] C. C. Aggarwal and C. Zhai, “A Survey of Text Classification Algorithms,”
in Mining Text Data, C. C. Aggarwal and C. Zhai, Eds. Springer US,
2012, pp. 163–222.

[7] J. T. Y. Kwok, “Automated Text Categorization Using Support Vector
Machine,” in In Proceedings of the International Conference on Neural
Information Processing (ICONIP, 1998, pp. 347–351.

[8] V. Narayanan, I. Arora, and A. Bhatia, “Fast and Accurate Sentiment
Classification Using an Enhanced Naive Bayes Model,” in Intelligent
Data Engineering and Automated Learning – IDEAL 2013, H. Yin,
K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, and X. Yao, Eds.
Springer Berlin Heidelberg, 2013, pp. 194–201.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, Pereira, Fernando C. N., C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc,
2012, pp. 1097–1105.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estima-
tion of Word Representations in Vector Space,” arXiv preprint, vol.
abs/1301.3781, 2013.

[11] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors
for Word Representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

[12] Y. Zhang and B. C. Wallace, “A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification,”
arXiv preprint, vol. abs/1510.03820, 2015.

[13] M. A. Nielsen, Neural Networks and Deep Learn-
ing. Determination Press, 2015. [Online]. Available:
http://neuralnetworksanddeeplearning.com/

[14] O. Maimon and L. Rokach, “Introduction to Knowledge Discovery and
Data Mining,” in Data Mining and Knowledge Discovery Handbook,
O. Maimon and L. Rokach, Eds. Boston, MA: Springer US, 2010, pp.
1–15.

[15] D. Klein and C. D. Manning, “Accurate Unlexicalized Parsing,” in
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics - Volume 1, ser. ACL ’03. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2003, pp. 423–430.

[16] C. C. Aggarwal and C. Zhai, “A Survey of Text Clustering Algorithms,”
in Mining Text Data, C. C. Aggarwal and C. Zhai, Eds. Springer US,
2012, pp. 77–128.

[17] N. V. Chawla, “Data Mining for Imbalanced Datasets: An Overview:
Data Mining and Knowledge Discovery Handbook,” in Data Mining
and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds.
Boston, MA: Springer US, 2010, pp. 875–886.

[18] J. M. Benítez, J. L. Castro, and I. Requena, “Are Artificial Neural
Networks Black Boxes?” IEEE Transactions on Neural Networks, vol. 8,
no. 5, pp. 1156–1164, 1997.

[19] C. J. Mantas, J. M. Puche, and J. M. Mantas, “Extraction of similarity
based fuzzy rules from artificial neural networks,” International Journal
of Approximate Reasoning, vol. 43, no. 2, pp. 202–221, 2006.

[20] J. Yosinski, J. Clune, A. M. Nguyen, T. Fuchs, and H. Lipson,
“Understanding Neural Networks Through Deep Visualization,” arXiv
preprint, vol. abs/1506.06579, 2015.

[21] J. H. Hayes, W. Li, and M. Rahimi, “Weka meets TraceLab: Toward
Convenient Classification: Machine Learning for Requirements Engineer-
ing Problems: A Position Paper,” in 1st IEEE International Workshop on
Artificial Intelligence for Requirements Engineering, ser. AIRE, 2014,
pp. 9–12.

[22] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classifica-
tion of non-functional requirements,” Requirements Engineering, vol. 12,
no. 2, pp. 103–120, 2007.

[23] D. Ott, “Automatic Requirement Categorization of Large Natural
Language Specifications at Mercedes-Benz for Review Improvements,”
in Proceedings of the 19th International Conference on Requirements
Engineering: Foundation for Software Quality, ser. REFSQ. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 50–64.

[24] J. H. Hayes, W. Li, T. Yu, X. Han, M. Hays, and C. Woodson,
“Measuring Requirement Quality to Predict Testability,” in 2015 IEEE
Second International Workshop on Artificial Intelligence for Requirements
Engineering (AIRE), 2015, pp. 1–8.

[25] A. Perini, A. Susi, and P. Avesani, “A Machine Learning Approach to
Software Requirements Prioritization,” IEEE Transactions on Software
Engineering, vol. 39, no. 4, pp. 445–461, 2013.

45


