
This version is available at https://doi.org/10.14279/depositonce-6975

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science (10753). The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-77243-1_4.

Winkler, Jonas Paul; Vogelsang, Andreas (2018). Using tools to assist identification of non-requirements
in requirements specifications. A controlled experiment. In: Lecture Notes in Computer Science (pp.
57-71). Cham: Springer. https://doi.org/10.1007/978-3-319-77243-1_4.

Winkler, Jonas Paul; Vogelsang, Andreas

Using tools to assist identification of non-
requirements in requirements
specifications
 A controlled experiment

Accepted manuscript (Postprint)Dokumententyp |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/158840659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Using Tools to Assist Identification of

Non-Requirements in Requirements

Specifications – A Controlled Experiment

Jonas Paul Winkler and Andreas Vogelsang

Technische Universität Berlin, Germany
{jonas.winkler,andreas.vogelsang}@tu-berlin.de

Abstract. [Context and motivation] In many companies, textual
fragments in specification documents are categorized into requirements
and non-requirements. This categorization is important for determin-
ing liability, deriving test cases, and many more decisions. In practice,
this categorization is usually performed manually, which makes it labor-
intensive and error-prone. [Question/Problem] We have developed a
tool to assist users in this task by providing warnings based on classifica-
tion using neural networks. However, we currently do not know whether
using the tool actually helps increasing the classification quality com-
pared to not using the tool. [Principal idea/results] Therefore, we
performed a controlled experiment with two groups of students. One
group used the tool for a given task, whereas the other did not. By com-
paring the performance of both groups, we can assess in which scenarios
the application of our tool is beneficial. [Contribution] The results
show that the application of an automated classification approach may
provide benefits, given that the accuracy is high enough.

Keywords: Requirements Engineering, Machine Learning, Convolutional
Neural Networks, Natural Language Processing

1 Introduction

Requirements specifications are used in many requirements engineering (RE)
processes to document results. The purpose of these documents is to define the
properties that a system must meet to be accepted. Moreover, in contexts, where
one company or department acts as a customer and another company acts as a
supplier, the requirements specification also defines liability between the partners
(i.e., what must be achieved to fulfill the contract). For this reason, requirements
specifications should undergo a rigorous quality assessment process especially in
industries where systems are created by a collaboration of many suppliers (e.g.,
automotive).

Besides actual and legally binding requirements, requirements specifications
usually contain auxiliary content (e.g., explanations, summaries, examples, and
references to other documents). These content elements are not requirements,
which must be fulfilled by the supplier but they may facilitate the process of

57

understanding requirements and their context. To distinguish this auxiliary in-
formation from legally binding requirements, one of our industry partners anno-
tates all content elements in their requirements specifications with specific labels
for requirements and information. However, this manual labeling task is time-
consuming and error-prone. By analyzing a set of requirements specifications
from our partner, we observed that labels (i.e., requirement and information)
are often not added when the content is created. This impedes the usage of these
documents for following activities, such as creating a test specification based on
a requirements specification. Adding the labels at a later stage is expensive since
every content element has to be read and understood again.

To assist requirements engineers in performing this task, we have created
a tool that automatically classifies the content elements of requirement specifi-
cations and issues warnings if the actual label deviates from the automatically
predicted one. This tool is used by requirements authors and reviewers for cre-
ating new requirements or inspecting already existing requirements.

The tool uses neural networks to classify content elements as either informa-
tion or requirement. This neural network is trained on a large corpus of reviewed
requirements taken from requirements specifications of our industry partner. As
with all neural networks, performance is not perfect and thus the tool will some-
times issue warnings on correctly labeled items and will sometimes ignore actual
defects. In earlier evaluations, the classifier achieved an accuracy of 81% [1]. This
might impede the usefulness of our tool. Thus, we currently do not know whether
using the tool actually helps increasing the classification quality compared to not
using the tool.

Therefore, we have conducted a controlled experiment with computer science
students trained on requirements engineering to evaluate the usefulness of our
tool for the given task. The students were split into two equally sized groups.
Both groups performed a given task independently. One group used our tool,
whereas the other did not. In this paper, we present the goals, setup, and results
of this experiment.

The results indicate that given high accuracy of the provided warnings, users
of our tool are able to perform slightly better than the users performing manual
review. They managed to find more defects, introduce less new defects, and did so
in shorter time. However, when many false warnings are issued, the situation may
be reversed. Thus, the actual benefit is largely dependent on the performance of
the underlying classifier. False negatives (i.e., defects with no warnings) are an
issue as well, since users tend to focus less on elements with no warnings.

2 Background

At our industry partner, documentation and review of requirements are inde-
pendent processes. After creation, requirements documents are reviewed during
quality audits. Each requirement is assessed as to whether it is necessary, conflict
free, well written, etc. Some assessments are automatically checked by a require-
ments specification analysis tool using predefined rule sets (e.g., is the require-

58

ment phrased using certain modal verbs, weak work analysis, are the required
attributes set). However, most of the assessments require context knowledge of
the requirements engineer and thus cannot be performed by such simple analysis
methods. The task of separating information and requirements is one example
of such an assessment.

In our previous works [2, 1], we have presented a method to perform this
task automatically. At its core, our approach uses a convolutional neural net-
work as presented in [3]. The network is trained on requirement content elements
and information content elements taken from requirements specifications of our
industry partner. The approach has been integrated in the aforementioned re-
quirements specification analysis tool.

Fig. 1: Screenshot of the tool

Fig.1 shows a screenshot of the tool. It closely resembles the requirements
engineering tool used at our industry partner (IBM Rational DOORS), featuring
a tree view on the left and a tabular view of the requirements in its center.
The tool issues warnings (yellow markers) and errors (red markers) on content
elements where the predicted classification differs from the actual one. On the
right hand side, an explanation of the error is provided: Words and groups of
words leading to the classification decision are identified and highlighted using
a back tracing technology [4]. Additionally, content elements for which no class
could be reliably detected are also marked. These might need to be rephrased.

By explicitly pointing out content elements with questionable phrasing and/or
classification, we expect that requirements engineers will identify more issues
within their documents and may do so in shorter time. This will shorten the
time spent during quality audits and hopefully reveal more issues compared to
fully manual reviews. However, using such a tool also bears the risk of hiding
actual errors. If requirements engineers start to trust the tool and rely on it, it
is less likely that they identify defects not found by our tool.

59

3 Research Methodology

In order to assess the impact of our tool on the task of reviewing require-
ments/information classification, we conducted a controlled experiment with stu-
dents. We followed the guidelines provided in Ko et al. [5] and Jedlitschka et al. [6].

3.1 Research Questions

The overall goal of our experiment is to examine whether and how the use
of a tool improves the process of finding defects in requirements documents
compared to completely manual review. In this paper, a defect is a misclassified
content element (i.e., requirement marked as information or information marked
as requirement). As there are various ways of improving this process, we aim to
analyze different aspects. Therefore, we followed five research questions.

RQ1: Does the usage of our tool enable users to detect more de-
fects? This is the primary goal of our tool. By focusing the attention of users
on possibly misclassified content elements, we assume they will be able to detect
more defects within their documents.

RQ2: Does the usage of our tool reduce the number of defects
introduced by users? Requirements engineers tend to make errors during
quality audits (e.g., dismissing a requirement as an information). By decreasing
the focus on possibly correctly classified content elements, we assume they will
less likely edit those elements and introduce less defects into their documents.

RQ3: Are users of our tool prone to ignoring actual defects because
no warning was issued? As our tool issues warnings to focus the attention
of users, it is possible that they will tend to skip elements with no warnings. If
these content elements contain defects, users are likely to miss them. Thus, we
need to analyze whether users miss more unwarned defects when using our tool.

RQ4: Are users of our tool faster in processing the documents? One
of our primary goals is to allow requirements engineers to work more efficiently.
Therefore, we analyze whether users of our tool are able to work faster.

RQ5: Does our tool motivate users to rephrase requirements and
information content elements? Our tool also shows explanations for each
issued warning, i.e., which words caused the internal neural network to decide
on either requirement or information. If an actual requirement was classified as
information by our tool due to bad phrasing, these explanations could lead users
into rethinking the phrasing and reformulating it, thus improving the quality of
the requirement.

3.2 Experiment Design

We utilized a two-by-two crossover design [7], using two sessions and two groups
of subjects (see Table 1). The treatment group worked within our tool environ-
ment that we described in Section 2, later referred to as the tool-assisted group
(TA), while the control group was working without the help of our tool. We refer
to the control group as the manual group (M). The difference between sessions

60

is the requirements specification that was used. In the first session, we used a
requirements specification of a wiper control system and in the second session,
we used a requirements specification of a window lift system.

Table 1: Experimental Design

Group 1 Group 2

Session 1 (Wiper Control) M TA
Session 2 (Window Lift) TA M

3.3 Participants

The experiment was conducted as part of a university masters course on automo-
tive software engineering at TU Berlin. The participants of this course were un-
dergraduate students in their last year. The majority was enrolled for the study
programs computer science, computer engineering, or automotive systems. The
course included lectures on basic principles of requirements and test engineering.
As a result, the students understood what requirements engineering is used for
and how requirements should be documented. They were especially aware of the
consequences of bad requirements engineering on subsequent development steps.

The experiment was announced beforehand. We especially emphasized that
a large number of participants would be crucial for acquiring useful results. We
motivated the students to take part in the experiment by telling them that
they would gain insight into real world requirements engineering. At the time of
the experiment, 20 students were present, which reflects about two-thirds of all
students enrolled in the course.

3.4 Experimental Materials

The experiment was conducted using real-world requirements documents avail-
able at our industry partner. We selected two documents describing common
systems in any modern car: the wiper control system and the window lift sys-
tem. The documents contain requirements in a tabular format. Each row contains
one content element, consisting of its identifier, the content text, and its object
type. Three object types were present in these documents: heading, requirement,
and information.

The documents are very long, containing about 3000 content elements each.
Since the students cannot possibly read, understand, and find defects in the en-
tire document within the time limit (see Sec. 3.7), the documents were truncated
to a reasonable size. Also, as per request of our industry partner, certain con-
fidential information such as the names of persons, signals, and other systems
were replaced by generic strings (e.g., “SIGNAL-1”, “SYSTEM-3”).

61

To assess whether the students with or without tool perform better, we cre-
ated a gold standard by identifying all defects the students had to find in the two
documents by ourselves. This gold standard serves as reference for comparing
the performance of the groups.

Each document was then prepared in two different formats: a csv like format
readable by our tool for assisted review and an MS Excel version for unassisted
review. Both formats contain exactly the same data. Colors and font sizes in the
Excel spreadsheet were selected to mimic the tool as close as possible.

Table 2 lists the relevant characteristics of the documents, such as number
of elements, number of defects, numbers about warnings issued by our tool, and
overall accuracy of the tool on this document. The Wiper Control document has
many obviously misclassified elements and many of the false warnings are easily
dismissible as such. On the Window Lift document, our tool issued many false
warnings due to an inconsistent writing style within the document.

Table 2: Characteristics of the used requirements specifications

Wiper Control Window Lift

Total Elements 115 261
Total Requirements 85 186
Total Information 30 75

Total Defects 20 17
Total Warnings 24 70
Correct Warnings 12 12
Unwarned Defects 8 5
Accuracy 82.6% 75.8%

3.5 Tasks

The task given to the students was designed to resemble the procedure taken
during actual quality audits. Each student had to read and understand the re-
quirements specifications and correct defects within these documents. The stu-
dents were instructed to search for the following defects:
– Requirement content elements incorrectly classified as information
– Information content elements incorrectly classified as requirements
– Badly phrased requirements (i.e., ambiguous, missing modal verb, ...)

The students were asked to fix the defects by either changing the object type,
the phrasing, or both.

3.6 Data Analysis Procedure

We perform the analysis of our research questions using metrics defined in this
section and formulate working hypotheses about what outcome we expect. The

62

independent variable in our experiment is the review method used by the student,
which is either Manual, or Tool-Assisted.
RQ1: Does the usage of our tool enable users to detect more defects?
We evaluate this question by calculating the Defect Correction Rate (DCR):

DCR =
DefectsCorrected

DefectsInspected

DefectsCorrected is the number of defects identified and corrected by a student,
DefectsInspected is the number of defects examined by the student. We do not
base this metric on the total number of defects in the document because a student
might not have had the time to review the whole document. For the DCR, we
are only interested in the likelihood that a defect is identified and corrected if
the respective object has at least been examined by a student. We expect that
the warnings issued by our tool help students to identify and correct defects.
Thus, we expect a higher DCR:

H1 : DCR(Tool-Assisted) > DCR(Manual)

RQ2: Does the usage of our tool reduce the number of defects intro-
duced by users? Similar to RQ1, we evaluate this question by calculating the
Defect Introduction Rate (DIR):

DIR =
DefectsIntroduced

ElementsInspected

where DefectsIntroduced is the number of modified elements that were originally
correct and ElementsInspected the total number of elements examined by the
student. We expect that

H2 : DIR(Tool-Assisted) < DIR(Manual)

RQ3: Are users of our tool prone to ignoring actual defects because no
warning was issued? For evaluating this question, we only consider elements
on which our tool issued no warnings. The Unwarned Defect Miss Rate (UDMR)
is defined as

UDMR =
UnwarnedDefectsMissed

UnwarnedDefectsInspected

where UnwarnedDefectsInspected is the number of examined defects for which
the tool did not give any warnings and UnwarnedDefectsMissed is the subset of
these that were not corrected. Since we suspect that the users of our tool will
be more focused on the elements with warnings, we expect the following (which
would be a negative property of using the tool):

H3 : UDMR(Tool-Assisted) > UDMR(Manual)

RQ4: Are users of our tool faster in processing the documents? This
question is answered by examining how much time the users spent on each
element. The Time Per Element (TPE) is calculated as follows:

63

TPE =
TotalTimeSpent

ElementsInspected

TotalTimeSpent is the time the students needed to complete the document or
the total time of the experiment if they did not finish. We suspect that users of
our tool will be faster in processing the documents:

H4 : TPE (Tool-Assisted) > TPE (Manual)

RQ5: Does our tool motivate users to rephrase requirements and in-
formation content elements?

ERR =
ElementsRephrased

ElementsInspected

This metric captures how many content elements are rephrased by users. We
did not inspect whether the change improved the requirement or not. We expect
that users of the tool may be more eager to rephrase content elements since
the tool points to linguistic weaknesses by providing visual explanations of its
decisions.

H5 : ERR(Tool-Assisted) > ERR(Manual)

3.7 Procedure

The experiment was scheduled to take 90 minutes. The time available was divided
into four segments:
1. Introduction, setup, data distribution, and group assignment (20

minutes): The session was started with a presentation on requirements
quality, how our industry partner performs quality audits, the importance of
differentiation between requirements and information, details on the struc-
ture of the experiment itself, and details on the documents necessary to
understand them.
After that, we randomly divided the students into two groups and distributed
the requirements documents to them. The tool was distributed to the stu-
dents a week before the experiment without any data to reduce the time
needed for setup.

2. Session 1: Wiper Control (20 minutes): During the experiment, stu-
dents worked through the document from top to bottom and made modifi-
cations where they thought it is necessary. We allowed them to form teams
of two or three students of the same group. This way, they were able to
discuss their opinions, much like requirements engineers will do during real
quality audits. We prohibited them from sharing information between teams
or groups. After time was up, the students were asked to mark the position
they were at.

3. Session 2: Window Lift (30 minutes): The second run was executed
exactly like the first but with switched groups and with a different document.

64

4. Conclusions (10 minutes): After the second run, we collected the modified
documents and presented how we are going to evaluate the data and what
kind of results we expect.

3.8 Piloting

Prior to performing the actual experiment, we simulated the experiment. Some of
our co-workers were briefed and performed the same tasks as the students in the
experiment. We used the results of the experiment to adjust certain parameters
of the experiment, such as the size of the documents and allocated time for
each session. The test run also allowed us to verify that our planned evaluation
methodology yields usable results.

4 Study Results

For the first document, we received a total of 14 reviews, 7 reviews with tool
usage and 7 reviews without tool usage. We received less reviews for the second
document (3 with tool usage and 4 without tool usage) because some students
had to leave. We also had to discard 2 reviews because one did not contain
any changes and the other was done by a student who had major difficulties in
understanding the documents due to language barriers.

An overview of all collected data is available online1. Fig. 2 shows boxplots of
the calculated metrics over all reviews and for each review document separately.
In the following, we discuss our research questions based on these results.

4.1 Discussion

In Fig. 2a, the Defect Correction Rate (DCR) is displayed for each document
and review method. Regarding the Wiper Control document, the students with
the tool performed better than the students without tool support. The average
correction rate is 11% higher. However, on the Window Lift document, results
were opposite: The students doing manual review corrected 61% of all examined
defects, whereas the students doing assisted review only corrected 45%. One
explanation for this could be the lower quality of the warnings issued by our
tool (see the difference in accuracy in Table 2) due to the low linguistic quality
of the Window Lift document. Therefore, it is possible that the students were
misled by the false warnings of the tool.

Fig. 2b shows the Defect Introduction Rate (DIR), i.e., how many new de-
fects were introduced per examined element by changing content elements with
no defect. The students doing the assisted review performed better on both doc-
uments, introducing only half as many new defects on average as the students
without tool. We assume that students refrained from changing content elements
if no warning was issued by the tool.

1 https://doi.org/10.6084/m9.figshare.5469343.v1

65

A
ll

−
 T

o
o
l

A
ll

−
 M

a
n
u
a
l

W
ip

e
r

C
o
n
tr

o
l
−

 T
o
o
l

W
ip

e
r

C
o
n
tr

o
l
−

 M
a
n
u
a
l

W
in

d
o
w

 L
if
t
−

 T
o
o
l

W
in

d
o
w

 L
if
t
−

 M
a
n
u
a
l

0.0

0.2

0.4

0.6

(a) Defect Correction Rate

A
ll

−
 T

o
o
l

A
ll

−
 M

a
n
u
a
l

W
ip

e
r

C
o
n
tr

o
l
−

 T
o
o
l

W
ip

e
r

C
o
n
tr

o
l
−

 M
a
n
u
a
l

W
in

d
o
w

 L
if
t
−

 T
o
o
l

W
in

d
o
w

 L
if
t
−

 M
a
n
u
a
l

0.00

0.05

0.10

0.15

0.20

(b) Defect Introduction Rate

A
ll

−
 T

o
o
l

A
ll

−
 M

a
n
u
a
l

W
ip

e
r

C
o
n
tr

o
l
−

 T
o
o
l

W
ip

e
r

C
o
n
tr

o
l
−

 M
a
n
u
a
l

W
in

d
o
w

 L
if
t
−

 T
o
o
l

W
in

d
o
w

 L
if
t
−

 M
a
n
u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

(c) Unwarned Defect Miss Rate

A
ll

−
 T

o
o
l

A
ll

−
 M

a
n
u
a
l

W
ip

e
r

C
o
n
tr

o
l
−

 T
o
o
l

W
ip

e
r

C
o
n
tr

o
l
−

 M
a
n
u
a
l

W
in

d
o
w

 L
if
t
−

 T
o
o
l

W
in

d
o
w

 L
if
t
−

 M
a
n
u
a
l

0

5

10

15

20

25

(d) Time Per Element

A
ll

−
 T

o
o
l

A
ll

−
 M

a
n
u
a
l

W
ip

e
r

C
o
n
tr

o
l
−

 T
o
o
l

W
ip

e
r

C
o
n
tr

o
l
−

 M
a
n
u
a
l

W
in

d
o
w

 L
if
t
−

 T
o
o
l

W
in

d
o
w

 L
if
t
−

 M
a
n
u
a
l

0.00

0.05

0.10

0.15

0.20

(e) Element Rephrase Rate

Fig. 2: Study results

66

An unwarned defect is a defect for which our tool did not issue a warning.
We analyzed how likely it is that these defects are missed by tool users. We
compare this with the performance of the manual review group on the same set
of defects (those without warnings). Of course, students in the manual group did
not know which defects had warnings in the tool. Fig. 2b shows that if the tool
is used, 90% of defects without a warning are not corrected. As expected, the
group doing manual review performed better, missing only 62% of all unwarned
defects. This is in line with our expectation that students with tool support will
focus less on elements without warnings.

The time spent by the students on each element is shown in Fig. 2d. Students
spent less time on each element in the Window Lift document (mean: 10.8 s)
than on the Wiper Control document (mean: 13.9 s). This may be the result
of a learning effect: Students became used to the task and learned for which
information they need to look. On the first document, the students performing
assisted review were considerably faster (11.2 s per element on average compared
to 16.6 s for the manual review). In addition, 4 out of 7 teams using the tool
completed their review, whereas only 1 out of 7 teams finished using manual
review. On the second document, the students using the tool were slower, most
likely because they analyzed the false warnings and tried to decide whether to
change or not to change a content element.

Fig. 2e shows how many content elements were rephrased. Overall, only 3.8%
of the examined content elements were changed. In 8 out of 21 reviews, no
element was changed at all. We expected more changes, considering that the
overall text quality of the documents was rather low. The students not working
with the tool changed more content elements, especially on the Wiper Control
document. We assume that the students working with the tool were more focused
on the warnings than changing the text of content elements.

To summarize the discussion, we provide answers to our research questions:
RQ1: Users of our tool may be able to detect and fix more defects than users

without the tool. However, this depends on the accuracy of our tool. Bad
accuracy may even have a negative effect on defect identification.

RQ2: If our tool is used, less new defects are introduced during a review.
RQ3: Our students missed more unwarned defects (i.e., false negatives) if warn-

ings were present.
RQ4: Given that the accuracy of the tool is high enough, users of our tool may

be able to complete the task much faster.
RQ5: In our experiment, usage of the tool did not motivate users to rephrase

more content elements.

5 Threats to Validity

In this section, we discuss the various threats to construct, internal and external
validity of our experiment.

Number of participants [construct]. A major threat to our results is the
low number of participants. Since we allowed students to work in teams, the

67

number of results is even smaller. This allowed them to engage in discussions
within the team, which, in our opinion, is more important for the experiment
setup than having a larger sample size. On the other hand, the small sample size
forbids making any statistical tests on the hypothesis described in this paper.
Therefore, we do not claim that we can reject or support any of the hypothesis
with our results. Our goal was to check and refine the working hypothesis that we
came up with to see which (additional) parameters might influence the results.

Definition of gold standard [construct]. We compared the results of the
two review methods with a gold standard that we created ourselves, i.e., we
defined what a defect is in the documents. This definition has an impact on the
performance assessment of the review methods. The authors of this article are
working on this classification problem for more than 3 years in close collaboration
with an industry partner. Therefore, we claim that the created gold standard is
close to what the industry partner would consider as truth.

Differences in knowledge between students [internal]. We assumed
that the students have no prior knowledge in requirements engineering apart
from what was taught during the lecture. Some students may have more knowl-
edge in requirements engineering than others and thus may perform better at
the task. We diminished the effects of this by having each students perform the
task with both review methods.

Maturation [internal]. Maturation is an effect that occurs over time and
may change a subject’s behavior due to learning, fatigue, or changes in moti-
vation. The students in our experiment may have learned from the first session
of the experiment and applied that knowledge in the second session. It is also
possible that students have lost motivation or performed worse due to fatigue
after completing the first session.

Communication between groups [internal]. We have especially stated
during the experiment that it is important not to share information about defects
between groups. However, since the experiment was conducted in a classroom
setting and students were able to discuss within the group, information may
have been shared between groups nonetheless. As such, not all reviews may be
independent.

Time limit [internal]. The time limit was set for two reasons: First, the
time in actual quality audits is limited as well, and second, we only had a total
of 90 minutes available. We told the students that it is not necessary to complete
a document within the time limit. However, the students could have aimed for
completing the review nonetheless and thus may have performed worse than
without a time limit.

Students are no RE experts [external]. Compared with people who
actually perform quality audits, students are no requirements engineering ex-
perts. They lack both general knowledge about the processes in which require-
ments specifications are involved in as well as special knowledge about the docu-
ments themselves. However, students may inspect the documents more carefully
whereas RE experts may tend to dismiss possible defects either due to them
being the authors or due to process constraints (changes may induce additional

68

costs). Falessi et al. state that controlled experiments with students are as valid
as experiments with experts [8].

The most relevant threat to validity is the number of participants. Our sam-
ple size is not sufficiently large to be used for statistical significance tests and
therefore, experiments on larger groups of participants may show different re-
sults. An experiment on a larger user base should be performed next.

6 Related Work

Machine learning techniques are applied for many requirements engineering
tasks, especially for classification. A few of these works are outlined here.

Hayes et al. [9] present a tool that integrates with Weka and provides a
convenient way for users to perform classification tasks. For example, their tool
is able to differentiate between temporal and non-temporal requirements.

Huang et al. [10] present and approach to classify different types of non-
functional requirements, achieving 81% recall and 12% precision on their dataset,
averaged above all classes.

Ott [11] presents an approach to increase the efficiency of requirements speci-
fication reviews by assigning requirements to topics (e.g., temperature, voltage).
He argues that a block of requirements belonging to the same topic may be re-
viewed faster than requirements of mixed topics. However, no validation of that
claim is provided.

Perini et al. [12] use a prioritization algorithm based on machine learning
techniques to sort software requirements by their importance. This allows stake-
holders to discern important and less important requirements more easily. Its
effectiveness is demonstrated using empirical evaluation methods.

There is currently a discussion in the community around the empirical in-
vestigation of the effectiveness of automated tools for RE tasks. In an earlier
paper, Berry et al. [13] claim that in some scenarios, for some tasks, any tool
with less than 100% recall is not helpful and the user may be better off doing the
task entirely manually. In fact, our experiment supports this claim by indicating
that the accuracy of the tool may have an effect on the observed performance.
In a follow-up paper [14], Berry relaxes his first claim by saying that a human
working with the tool on the task should at least achieve better recall than a
human working on the task entirely manually. Our experimental setup follows
this idea by comparing tool-assisted and manual reviews.

7 Conclusions

At our industry partner, each content element of a requirements specification
document needs to be classified as either requirement or non-requirement (“infor-
mation”). A requirement is legally binding and needs to be tested. This does not
apply to non-requirements. This classification is currently performed manually.
We have built a tool that classifies content elements of specification documents

69

as either information or requirement and issues warnings when the classification
seems to be wrong. We assume that by using our tool, RE experts will be able
to perform this classification more effectively and efficiently.

In this paper, we have presented the results of a controlled experiment, show-
ing the benefits and limitations of our tool. Two groups of students analyzed
requirements specification documents and were asked to fix any defects in them.
One group used the tool, whereas the other did not.

The results show that, given high accuracy of the provided warnings, users
of our tool are able to perform slightly better than the users performing man-
ual review. They managed to correct more defects, introduce less new defects,
and did so in shorter time. However, when many false warnings are issued, the
situation may be reversed. Thus, the actual benefit is largely dependent on the
performance of the underlying classifier. False negatives (i.e., defects with no
warnings) are an issue as well, since users tend to focus less on elements with no
warnings.

The sample size used in our experiment is not high enough to underpin our
conclusions with measures on statistical significance, as we were limited to the
students visiting the lecture. We plan to perform the experiment again with
more students. However, the results presented in this paper already show that
improvements can be achieved by using our tool.

Since the tool is based on machine learning algorithms, achieving perfect
accuracy, or at least perfect recall, is impossible. Therefore, our tool may not
be needed when a requirements engineer is doing a complete review of a speci-
fication document and is able to detect all defects. However, in the real world,
humans do errors due to various reasons such as fatigue and inattention. Our ap-
proach may help them to do fewer errors and achieve higher quality specification
documents (with regard to requirement vs. information classification) compared
with manual review.

To assess which accuracy or recall the tool must provide to outperform a
completely manual review is an interesting question that we want to follow in
future experimental setups.

References

1. Winkler, J.P., Vogelsang, A.: Automatic Classification of Requirements Based on
Convolutional Neural Networks. In: 3rd IEEE International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE). (2016) 39–45

2. Winkler, J.P.: Automatische Klassifikation von Anforderungen zur Unterstützung
von Qualitätssicherungsprozessen. In Mayr, H.C., Pinzger, M., eds.: INFOR-
MATIK 2016. Lecture Notes in Informatics (LNI), Bonn (2016) 1537–1549

3. Kim, Y.: Convolutional Neural Networks for Sentence Classification. In: Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). (2014) 1746–1751

4. Winkler, J.P., Vogelsang, A.: ”What Does My Classifier Learn?” A Visual Ap-
proach to Understanding Natural Language Text Classifiers. In: Proceedings of
the 22nd International Conference on Natural Language & Information Systems.
NLDB (2017) 468–179

70

5. Ko, A.J., LaToza, T.D., Burnett, M.M.: A practical guide to controlled experi-
ments of software engineering tools with human participants. Empirical Software
Engineering 20(1) (2015) 110–141

6. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting Experiments in Software
Engineering. In Shull, F., Singer, J., Sjøberg, D.I.K., eds.: Guide to Advanced
Empirical Software Engineering. Springer London, London (2008) 201–228

7. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering. Springer Science & Business Media (2012)

8. Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., Oivo,
M.: Empirical software engineering experts on the use of students and professionals
in experiments. Empirical Software Engineering (2017) 1–38

9. Hayes, J.H., Li, W., Rahimi, M.: Weka meets TraceLab: Toward Convenient Clas-
sification: Machine Learning for Requirements Engineering Problems: A Position
Paper. In: 1st IEEE International Workshop on Artificial Intelligence for Require-
ments Engineering (AIRE). AIRE (2014) 9–12

10. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-
functional requirements. Requirements Engineering 12(2) (2007) 103–120

11. Ott, D.: Automatic Requirement Categorization of Large Natural Language Spec-
ifications at Mercedes-Benz for Review Improvements. In Doerr, J., Opdahl, A.L.,
eds.: Requirements Engineering: Foundation for Software Quality: 19th Interna-
tional Working Conference, REFSQ 2013, Essen, Germany, April 8-11, 2013. Pro-
ceedings. Springer Berlin Heidelberg, Berlin, Heidelberg (2013) 50–64

12. Perini, A., Susi, A., Avesani, P.: A Machine Learning Approach to Software
Requirements Prioritization. IEEE Transactions on Software Engineering 39(4)
(2013) 445–461

13. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.F.: The Case for Dumb Requirements
Engineering Tools. In Regnell, B., Damian, D., eds.: 18th International Working
Conference on Requirements Engineering: Foundation for Software Quality. Lec-
ture Notes in Computer Science, Berlin Heidelberg, Springer (2012) 211–217

14. Berry, D.M.: Evaluation of Tools for Hairy Requirements and Software Engineering
Tasks. In: 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). (2017) 284–291

71

