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Functional consequences of inh
ibitory plasticity:
homeostasis, the excitation-inhibition balance and
beyond
Henning Sprekeler
Computational neuroscience has a long-standing tradition of

investigating the consequences of excitatory synaptic

plasticity. In contrast, the functions of inhibitory plasticity are

still largely nebulous, particularly given the bewildering diversity

of interneurons in the brain. Here, we review recent

computational advances that provide first suggestions for the

functional roles of inhibitory plasticity, such as a maintenance

of the excitation-inhibition balance, a stabilization of recurrent

network dynamics and a decorrelation of sensory responses.

The field is still in its infancy, but given the existing body of

theory for excitatory plasticity, it is likely to mature quickly and

deliver important insights into the self-organization of inhibitory

circuits in the brain.
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Introduction
The notion that synaptic plasticity is the underpinning of

learning and memory has become an accepted standard in

neuroscience [1]. The overwhelming majority of research

on synaptic plasticity has focused on the plasticity of

excitatory synapses, a large number of which display

long-term potentiation and/or depression [2]. The smaller

sibling — plasticity of inhibitory synapses — has

attracted less attention, mostly for technical reasons.

Inhibitory cells are smaller and less numerous and hence

harder to access physiologically. Moreover, they present a

confusing variety of cell types [3] that is laborious to

control for in classical paired recordings.
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Despite their smaller numbers, inhibitory cells play an

essential role in shaping the dynamics, response proper-

ties and plasticity of neural circuits [4]. In recurrent

networks, inhibition is thought to stabilize excitatory

feedback loops and support the generation of oscillations

[4], as well as mediate neural competition [5], decorrela-

tion [6] and normalization [7]. Inhibition can also act as a

gate for neural signal propagation [8], dendritic computa-

tion [9,10] and learning [11,12], and sharpen the stimulus

selectivity and temporal profile of sensory responses [4].

Many of these functions require a suitably titrated

amount of inhibition. It is hence likely that the nervous

system possesses homeostatic mechanisms that keep the

inhibitory tone on a functional level. An obvious candi-

date for this job is plasticity of inhibitory synapses, or

potentially excitatory synapses onto inhibitory neurons.

This review is limited to the former, that is, to plasticity in

GABAergic synapses, and specifically to recent computa-

tional work. Recent advances in the experimental char-

acterization of inhibitory synaptic plasticity (ISP) have

been reviewed elsewhere [13–15].

Traditional neural network models mostly ignored Dale’s

law and contained inhibition in the form of either nega-

tive ‘neural activations’ or negative synaptic weights.

Synaptic plasticity could freely turn excitatory into inhib-

itory synapses and back, so that excitatory and inhibitory

plasticity were inextricably intertwined. The transfer of

classical neural network concepts to Dalian networks

gained momentum in the 1990s, with a series of studies

on Dalian attractor networks [16] and the emerging

concept of balanced networks [17]. Inhibitory connec-

tions in these networks were typically hand-wired, and

often required tiresome parameter adjustments, at least in

networks with complex structure. The idea that these

adjustments could be done in a self-organized way — by

reserving an independent role for inhibitory plasticity —

has gained popularity only relatively recently.

Inhibitory plasticity for network stabilization and

homeostasis

A classical function of recurrent inhibition is to counteract

the instability that arises from recurrent excitation

[17,18�� [1_TD$DIFF]]. This stabilizing inhibitory feedback loop has

led to the notion of a balanced network state, in which

excitation and inhibition compensate each other on aver-

age and spikes are driven primarily by fluctuations.
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Functional roles of inhibitory plasticity. (a) When recurrent excitatory connections get stronger than a critical value, spiking recurrent networks

undergo a sudden transition from a low-rate, often asynchronous irregular regime (AI state) into a hyperactive, synchronous state [19]. Inhibitory

synaptic plasticity (ISP) can stabilize these networks by a suitable potentiation (iLTP) or depression (iLTD) [3_TD$DIFF] of the inhibitory negative feedback loop

[18��,25,28,34], thereby ensuring stability even in the presence of network heterogeneities or changes in recurrent excitation [20��,30��,31–33].

(b) Input-specific long-term potentiation or long-term depression allows a pathway-specific, stimulus-specific or context-specific homeostatic

control of neural activity, if specialized inhibitory neurons are available. In a given context A, a neuron that has a higher activity than its target can

be inhibited by potentiating a context-specific inhibitory input. In a different context B, the activity of the same, but now overly quiet neuron is

increased by a depression of inhibitory connections [25], such that the neuron eventually reaches the target rate in both contexts. (c) In traditional

neural networks, a decorrelation of neural responses can be achieved by Hebbian plasticity in recurrent inhibitory connections. Recurrent inhibition

among two neurons is potentiated as long as they are positively correlated, thereby gradually removing the correlation [50]. Hebbian plasticity in

feedforward connections from sensory inputs can then permanently imprint the resulting decorrelated representation. If sensory representations

reside in excitatory cells, the applicability of this mechanism is not obvious, because inhibition is disynaptic and inhibitory cells receive input from

many excitatory cells. Modeling studies suggest that Hebbian inhibitory plasticity tends to decorrelate sensory responses nevertheless [32].
A consequence is an asynchronous and irregular network

state [17] that is similar to observed cortical activity. In

random networks, this state is quite robust, as long as

recurrent inhibition is sufficiently strong [19]. The situa-

tion is more complicated in structured networks, for

example, in the presence of embedded Hebbian assem-

blies [20��,21], feedforward chains [22] or other hetero-

geneities [23]. In inhomogeneous networks, different

neurons can receive a drastically different amount of

excitatory drive and hence require an individualized level

of inhibition to be in a balanced state.

Such a cell-specific balance can be achieved by a synaptic

plasticity rule in inhibitory synapses that depends on the

postsynaptic firing rate [24–26]. The core idea is that an

excess or lack of inhibition manifests itself in the activity

of the neuron. High activity indicates a lack of inhibition,

which can be counteracted by a potentiation of inhibitory

synapses (Figure 1a). Low activity indicates an overshoot

of inhibition (or a lack of excitation), which can be

reduced by a depression of inhibitory synapses. A side

effect of such a plasticity rule is a homeostatic mainte-

nance of the activity level at the point where potentiation

and depression compensate each other precisely. If this

maintained activity level is much lower than what the cell
www.sciencedirect.com
would show in the absence of inhibition, the homeostasis

effectively balances the incoming excitatory drive by

inhibition. This balance of excitation and inhibition

can be tailored to different input conditions or stimuli,

by limiting plasticity to those synapses that deliver inhi-

bition at the respective moment [25] (Figure 1b). High-

jacking the terminology of excitatory plasticity, I will call

such inhibitory plasticity rules that require coincident

presynaptic and postsynaptic activity Hebbian in the sense

of ‘fire together, wire together’, although this is at odds

with Hebb’s original causality condition that the presyn-

aptic cell ‘takes part in firing’ the postsynaptic cell [27].

The biophysical machinery for the required coincidence

detection is not yet fully resolved [15].

Variants of Hebbian inhibitory plasticity have recently

been used in many studies to stabilize network dynamics,

both in networks where the excitatory connectivity is

static [18��,25,28,29], and where excitation is itself plastic

[20��,30��,31–33]. In the simplest applications, inhibitory

plasticity is merely used to ensure a relatively homoge-

neous ‘background state’ in spite of heterogeneities in the

form of assemblies [25] or feedforward chains [34]. The

resulting inhibition-stabilised networks display interest-

ing transient dynamics [35], which have, for example,
Current Opinion in Neurobiology 2017, 43:198–203
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been interpreted as a dynamical ‘reservoir’ from which

complex sequences (e.g. motor commands) can be gen-

erated by a simple linear read-out [18��]. Network stabi-

lization by Hebbian inhibitory plasticity is relatively

robust in the sense that it can be achieved by a variety

of learning rules. Recent studies have shown that excita-

tion and inhibition can be balanced not only by the simple

Hebbian rule sketched above [25,28,30��,33,36], but also

by rules that depend in an asymmetric way on the precise

timing of presynaptic and postsynaptic spikes [26,37,38�],
by rules that switch between potentiation and depression

depending on global population activity [20��] or by an

optimal update rule derived explicitly for the purpose of

stabilization [18��].

Interactions of excitatory and inhibitory plasticity

An appealing aspect of GABAergic plasticity is that it

could maintain network stability in the presence of

excitatory plasticity. Modeling work has shown, for ex-

ample, that a carefully chosen combination of excitatory

and inhibitory plasticity allows to imprint stable Hebbian

assemblies online by external stimulation [20��,30��,39],

without risking their decay due to background activity

[40] or a destabilization of the network. A number of

recent modeling studies have also shown that recurrent

networks with combined Hebbian excitatory and inhibi-

tory plasticity have a tendency to develop synfire chains

[59] or a state of self-organised criticality [28,37,41].

Unfortunately, the interplay of excitatory and inhibitory

plasticity is hard to understand in recurrent networks,

because the two are coupled through their dependence on

the statistics of network activity, which they in turn

shape, often in a rather nonlinear way. A solid theoretical

foundation for the evolution of such doubly plastic recur-

rent networks is still missing. In fact, the interaction of

even a single form of synaptic plasticity with recurrent

network dynamics is not fully understood, although this

field is currently advancing rapidly [42,43� [4_TD$DIFF]]. The crux is a

required analytical link between the structure of a net-

work and the statistics of its activity [e.g. 44,45]. Steps

towards a theory for the interaction of excitatory and

inhibitory plasticity have so far only been taken in feed-

forward networks [38�,46�,47], which do not suffer from a

mutual coupling of the input statistics and plasticity.

Inhibitory plasticity can shape sensory representations

Models of inhibitory plasticity have also been used to

reproduce aspects of sensory responses. In particular, it

has been suggested that Hebbian plasticity of stimulus-

specific inhibitory inputs can account for the correlated

stimulus tuning of excitation and inhibition observed in

sensory cortices [11,25,48,49], and for the sharpening of

neural responses in time [25,38�,48]. Moreover, it has

been argued that the development of stimulus selectivity

in sensory neurons is supported by a cooperation of

excitatory and inhibitory synaptic plasticity [38�,46�,47].
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Hebbian plasticity of recurrent inhibition, in combination

with plasticity of feedforward sensory inputs, is a standard

method to achieve a decorrelation or sparse activation of

neurons, and thereby reduce the redundancy in the

resulting sensory representation [50] (Figure 1c). Al-

though there is ample evidence for an inhibitory reduc-

tion of noise correlations in Dalian networks [6], it is not

clear how to generalize this to correlations arising from

similarities in sensory tuning, that is, signal correlations.

Dale’s law requires that inhibition between two excitato-

ry cells is mediated disynaptically via an inhibitory inter-

neuron, and these interneurons will usually receive inputs

from more than a single excitatory cell. Hence, there is no

single synapse that could measure the correlation be-

tween two excitatory cells locally and suitably adjust

the inhibition to reduce it. Nevertheless, computational

work indicates that inhibitory plasticity can mediate a

signal decorrelation even in Dalian networks, when both

excitatory and inhibitory recurrent connections are plastic

[32,51,52,53�].

An interesting problem of signal decorrelation is the

conflict between the apparent existence of assemblies

with many neurons that encode similar features, and the

idea of a decorrelation of features. How could a decorr-

elating mechanism know which cells to decorrelate and

which to leave correlated? One option is that inhibition

decorrelates cells only if their sensory tuning is sufficient-

ly distinct, and leaves them correlated if their correlation

exceeds a critical value. In neural terms, this could be

mediated by a learning rule that potentiates activated

inhibitory synapses when the postsynaptic neurons are

depolarized (‘the postsynaptic cell has a similar, but not

identical stimulus tuning’), but not when it spikes (‘the

postsynaptic cell seems to belong to the same assembly’).

Inhibitory plasticity with these characteristics was ob-

served in visual cortex [54] and later also used in a

computational model for the formation of neural assem-

blies [53�].

Inhibitory gating of signal propagation and plasticity

An emerging theme in recent years is that central functions

of the nervous system such as signal transmission or

plasticity are by default switched off during a state of

balanced excitation and inhibition, and that they can be

unleashed by targeted disruptions of this balance [8,12,55].

A gating of signal transmission, in particular, requires a

subtle, signal-specific ‘detailed balance’ of excitation and

inhibition [8,55]. Modeling work suggests that if this

balance is perpetually maintained by inhibitory plasticity,

new associations formed by excitatory plasticity are grad-

ually compensated by an emerging inhibitory counter-

association, and that this compensation can be undone

by a reduction in inhibitory tone [56��]. In the same article,

Barron et al. also provided support for this idea, using fMRI

recordings to track neuronal activations during the retrieval

of previously learned object associations, and perturbing
www.sciencedirect.com
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inhibitory tone by transcranial direct current stimulation

[56��].

Inhibition also seems to gate learning and plasticity [12],

through mechanisms that are not fully resolved and

potentially diverse. One possibility is that inhibitory

inputs disrupt dendritic calcium signals that are required

for synaptic plasticity [2], for example, by blocking active

dendritic processes such as backpropagating action poten-

tials, calcium spikes [10] and/or NMDA spikes. Such a

gating would again profit from a well chosen level and

timing of inhibition, so that plasticity can be switched on

and off by reasonably sized disinhibitory manipulations.

Computational modeling suggests that both strength and

timing of inhibition could be suitably adjusted by a spike-

timing dependent variant of inhibitory plasticity [57].

Discussion and outlook
In recent years, computational neuroscientists have in-

creasingly included inhibitory plasticity in network mod-

els that obey Dale’s law. The core advantage is that

Hebbian inhibitory plasticity provides a convenient tool

to stabilize these networks and achieve a balance of

excitation and inhibition in a self-organized way. In

structured networks, this can save a significant amount

of time otherwise spent on parameter tweaking. The

resulting networks have interesting behavior, particularly

when they also express excitatory plasticity, but it is still

early days and we are currently lacking a comprehensive

theoretical foundation for these networks.

The probably strongest hypothesis from recent computa-

tional work is that inhibitory plasticity can prevent a

destabilization of recurrent networks by excitatory plas-

ticity (or other changes). Although it is likely that a

balance of excitation and inhibition is re-established by

inhibitory plasticity [11], it is not clear if inhibitory

plasticity occurs rapidly enough. Network models typi-

cally remain stable only if homeostatic mechanisms act

faster than their destabilizing counterplayers [58], so that

they can adapt swiftly and stop any instability in its tracks.

It remains open if the relatively slow time scales of

inhibitory adjustments [11] leave inhibitory plasticity

up to this task. It cannot be excluded that other mecha-

nisms serve this role, and that inhibitory plasticity (also)

serves a variety of other functions, particularly given the

diversity of inhibitory cell types.

The phenomenological characterization of inhibitory

plasticity is presently considerably less complete than

that of excitatory plasticity, and most current models

are only weakly constrained by data. Although this situa-

tion bears the obvious risk that the models are utterly

wrong, it also presents a nice opportunity for modelers. A

catalogue of which characteristics of inhibitory plasticity

support (or hinder) which network functions will come in

handy for the interpretation of future data, particularly
www.sciencedirect.com
because different cell types are likely to express different,

maybe even target-dependent forms of long-term plas-

ticity.
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