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A B S T R A C T

Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging
machine learning problems such as image recognition. Although these methods perform impressively well, they
have a significant disadvantage, the lack of transparency, limiting the interpretability of the solution and thus
the scope of application in practice. Especially DNNs act as black boxes due to their multilayer nonlinear
structure. In this paper we introduce a novel methodology for interpreting generic multilayer neural networks
by decomposing the network classification decision into contributions of its input elements. Although our focus
is on image classification, the method is applicable to a broad set of input data, learning tasks and network
architectures. Our method called deep Taylor decomposition efficiently utilizes the structure of the network by
backpropagating the explanations from the output to the input layer. We evaluate the proposed method
empirically on the MNIST and ILSVRC data sets.

1. Introduction

Nonlinear models have been used since the advent of machine
learning (ML) methods and are integral part of many popular
algorithms. They include, for example, graphical models [1], kernels
[2,3], Gaussian processes [4], neural networks [5–7], boosting [8], or
random forests [9]. Recently, a particular class of nonlinear methods,
Deep Neural Networks (DNNs), revolutionized the field of automated
image classification by demonstrating impressive performance on large
benchmark data sets [10–12]. Deep networks have also been applied
successfully to other research fields such as natural language proces-
sing [13,14], human action recognition [15–17], or physics [18,19].

Although these models are highly successful in terms of perfor-
mance, they have a drawback of acting like a black box in the sense that
it is not clear how and why they arrive at a particular classification
decision. This lack of transparency is a serious disadvantage as it
prevents a human expert from being able to verify, interpret, and
understand the reasoning of the system. In this paper, we consider the

problem of explaining classification decisions of a machine learning
model in terms of input variables. For instance, for image classification
problems, the classifier should not only indicate whether an image of
interest belongs to a certain category or not, but also explain what
structures (e.g. pixels in the image) were the basis for its decision.

Linear models readily provide explanations in terms of input variables
[20–22], however, due to their limited expressive power, they cannot be
applied to complex tasks such as explaining image classifications.
Explanation methods for complex nonlinear models such as convolutional
neural networks can be categorized as follows: (1) functional approaches
[23] where the explanation results from the local analysis of the prediction
function, for example, sensitivity analysis or Taylor series expansion, and
(2) message passing approaches [24,25] that view the prediction as the
output of a computational graph, and where the explanation is obtained
by running a backward pass in that graph.

A main goal of this paper is to reconcile in the context of deep
neural networks the functional and message passing approaches for
producing these explanations.1 Specifically, we view each neuron of a
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deep network as a function that can be expanded and decomposed on
its input variables. The decompositions of multiple neurons are then
aggregated or propagated backwards, resulting in a “deep Taylor
decomposition”. Furthermore, we will show how the propagation rules
derived from deep Taylor decomposition relate to those heuristically
defined by [25].

Because of the theoretical focus of this paper, we do not perform a
broader empirical comparison with other recently proposed methods
for explanation, however, we refer to [27] for that matter.

1.1. Related work

There has been a significant body of work focusing on the analysis
and understanding of nonlinear classifiers. Some methods seek to
provide a global understanding of the trained model, by measuring
important characteristics of it, such as the noise and relevant dimen-
sionality of its feature space(s) [28–30], its invariance to certain
transformations of the data [31], the role of particular neurons [32],
or its global decision structure [33,34]. Other methods focus instead on
the interpretation of individual predictions. The method proposed in
[35] explains predictions in terms of input variables by locally
evaluating the gradient of the decision function. Simonyan et al. [23]
incorporate saliency information into the explanation by multiplying
the gradient by the actual data point. To determine the importance of
input variables for a particular prediction, Landecker et al. [36]
proposed a contribution propagation approach for hierarchical net-
works, applying at each unit of the network a propagation rule that
obeys a conservation property.

Recent work has focused on the problem of understanding of state-
of-the-art GPU-trained convolutional neural networks for image clas-
sification [23–25,37], offering new insights into these highly complex
models. The deconvolution method proposed by Zeiler and Fergus [24]
was designed to visualize and understand the features of state-of-the-
art convolutional neural networks with max-pooling and rectified linear
units. The method performs a backpropagation pass on the network,
where a set of rules is applied uniformly to all layers of the network,
resulting in an assignment of values onto pixels. The method however
does not aim to attribute a defined meaning to the assigned pixel
values, except for the fact that they should form a visually interpretable
pattern. For the same convolutional neural network models, the layer-
wise relevance propagation method of Bach et al. [25] applies at each
neuron of the network a propagation rule with a conservative property,
resulting in an assignment of values onto pixels which is directly
interpretable as their importance for the classification decision. While
scoring high quantitatively [27], the choice of propagation rules was
mainly heuristic and lacked a strong theoretical justification.

A theoretical foundation to the problem of measuring the impor-
tance of input variables for a prediction, can be found in the Taylor
decomposition of a nonlinear function. The approach was described by
Bazen and Joutard [38] as a nonlinear generalization of the Oaxaca
method in econometrics [21]. The idea was subsequently introduced in
the context of image analysis [23,25] for the purpose of explaining
machine learning classifiers.

As an alternative to propagation methods, spatial response maps
[39] build heatmaps by looking at the neural network output while
sliding the neural network in the pixel space. Attention models based
on neural networks, trained to classify an image from only a few
glimpses of it [40], readily provide a spatial interpretation for the
classification decision. Similar models can also visualize what part of an
image is relevant at a given time in some temporal context [41].
However, these dynamical models can be significantly more complex to
design and train.

2. Pixel-wise decomposition of a function

In this section, we describe the general concept of explaining a

neural network decision by decomposing the function value (i.e. neural
network output) onto the input variables in an amount that matches
the respective relevance of these input variables to the function value.
After enumerating a certain number of desirable properties of a
decomposition, we will present in Sections 2.1 and 2.2 two simple
solutions to this problem. Because all subsequent empirical evaluations
focus on the problem of image recognition, we call the input variables
“pixels”, and use the letter p for indexing them. Also, we employ the
term “heatmap” to designate the set relevance scores assigned to pixels
of an image. Despite the image-related terminology, the concept is
applicable to other input domains such as vector spaces, time series, or
more generally any type of input domain whose elements can be
processed by a neural network2.

Let us consider a positive-valued function f : →d +  . In the
context of image classification, the input x ∈ d of this function is an
image. The image can be viewed as a set of pixel values x x= { }p where
p denotes a particular pixel. The function xf ( ) quantifies the presence
of a certain type of object(s) in the image. A function value xf ( ) = 0
indicates an absence of it. On the other hand, a function value xf ( ) > 0
expresses its presence with a certain degree of certainty, or in a certain
amount.

We would like to associate to each pixel p in the image a relevance
score xR ( )p , that indicates for an image x to what extent the pixel p
contributes to explaining the classification decision xf ( ). The relevance
of each pixel can be stored in a heatmap denoted by R x xR( ) = { ( )}p of
same dimensions as x and can be visualized as an image. A heatmap-
ping should satisfy properties that we define below:

Definition 1. A heatmapping R x( ) is conservative if the sum of
assigned relevances in the pixel space corresponds to the total
relevance detected by the model:

∑x x xf R∀ : ( ) = ( ).
p

p

Definition 2. A heatmapping R x( ) is positive if all values forming the
heatmap are greater or equal to zero, that is:

x xp R∀ , : ( ) ≥ 0p

The first property ensures that the total redistributed relevance
corresponds to the extent to which the object in the input image is
detected by the function xf ( ). The second property forces the heatmap-
ping to assume that the model is devoid of contradictory evidence (i.e.
no pixels can be in contradiction with the presence or absence of the
detected object in the image). These two properties can be combined
into the notion of consistency:

Definition 3. A heatmapping R x( ) is consistent if it is conservative
and positive. That is, it is consistent if it complies with Definitions 1
and 2.

In particular, a consistent heatmap is forced to satisfy
x R xf 0( ( ) = 0) ⇒ ( ( ) = ). That is, in absence of an object to detect, the

relevance is forced to be zero everywhere in the image (i.e. empty
heatmap), and not simply to have negative and positive relevance in
same amount. We will use Definition 3 as a formal tool for assessing
the correctness of the heatmapping techniques proposed in this paper.
It was noted by [25] that there may be multiple heatmapping
techniques that satisfy a particular definition. For example, we can
consider a heatmapping that assigns for all images the relevance
uniformly onto the pixel grid:

x xp R
d

f∀ : ( ) = 1 · ( ),p (1)

2 See [42,43] for the application of decomposition techniques to text and EEG data.
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where d is the number of input dimensions. Alternately, we can
consider a heatmapping where all relevance is assigned to the first
pixel:

⎧⎨⎩x xR f p( ) = ( ) if = 1st pixel
0 else.p

(2)

Both (1) and (2) are consistent in the sense of Definition 3, however
they lead to different relevance assignments. In practice, it is not
possible to specify explicitly all properties that a heatmapping techni-
que should satisfy. In the following, we give two meaningful examples
of decompositions that comply with the definitions above.

2.1. Natural decomposition

A natural decomposition can be defined as a decomposition that is
obtained directly from the structure of the prediction. Consider, for
example, the prediction function

∑xf σ x( ) = ( ),
p

p p
(3)

where σ{ }p is a set of positive nonlinear functions applying to each
pixel. The relevance of each input variable can be identified as elements
of the sum [22]:

xR σ x( ) = ( ).p p p

If there exists for each pixel a deactivated state x∼p such that σ x( ) = 0∼
p p ,

then, the relevance score xR ( )p can be interpreted as the effect on the
prediction of deactivating pixel p. A pixel whose deactivation would
cause a large drop in function value is therefore modeled as relevant.

Fig. 1 illustrates on a simple two-dimensional function the differ-
ence between this decomposition technique and another frequently
used explanation technique called sensitivity analysis [44], which
explains the prediction as locally evaluated squared partial derivatives.
We can observe that sensitivity analysis is not related to the function
value and is discontinuous in some regions of the input space. The
natural decomposition, on the other hand, is continuous and also
incorporates the function value, as evidenced by the continuously
varying size and direction of the arrows.

While this example motivates the importance of distinguishing
between decomposition and sensitivity, functions like the one of Eq. (3)
are typically not expressive enough to model the high complexity of
input-output relations observed in real data.

2.2. Taylor decomposition

Moving to the general case of arbitrary differentiable functions
xf ( ), we introduce a decomposition method based on the Taylor

expansion of the function at some well-chosen root point x∼. A root
point is a point where xf ( ) = 0∼ . The first-order Taylor expansion of

xf ( ) is given by

⎛
⎝⎜

⎞
⎠⎟ ∑x x

x
x xf f f ε f

x
x x ε( ) = ( ) + ∂

∂
·( − ) + = 0 + ∂

∂
·( − ) + ,∼∼ ∼

x x x x

x
p p

p p

R

=

⊤

=

( )

∼ ∼

p

(4)

where the sum ∑p runs over all pixels in the image, and x{ }∼
p are the

pixel values of the root point x∼. We identify the summed elements as
the relevances xR ( )p assigned to pixels in the image. The term ε denotes
second-order and higher-order terms. Most of them involve several
pixels and are therefore more difficult to redistribute. Thus, for
simplicity, only the first-order terms are considered. The heatmap
(composed of all identified pixel-wise relevances) can be written as the
element-wise product “⊙” between the gradient of the function xf∂ /∂ at
the root point x∼ and the difference between the image and the root
x x( − )∼ :

R x
x

x xf( ) = ∂
∂

⊙ ( − ).∼
x x=∼

(5)

For a given classification function xf ( ), the Taylor decomposition
approach has one free variable: the choice of the root point x∼ at which
the Taylor expansion is performed. A good root point is one that
removes what in the data point x causes the function xf ( ) to be positive
(e.g. an object in an image that is being detected), but that minimally
deviates from the original point x for the Taylor expansion to be still
valid. In mathematical terms, it is a point x∼ with xf ( ) = 0∼ that lies in
the vicinity of x under some distance metric, for example the nearest
root. If x x, ∈∼ d , one can show that for a continuously differentiable
function f the gradient at the nearest root always points to the same
direction as the difference x x− ∼, and their element-wise product is
always positive, thus satisfying Definition 2. Relevance conservation in
the sense of Definition 1 is however not satisfied for general functions f
due to the possible presence of non-zero higher-order terms in ε. The
nearest root x∼ can be obtained as a solution of an optimization problem
[37], by minimizing the objective

ξ x ξ ξfmin ∥ − ∥ subject to ( ) = 0 and ∈ ,
ξ

2

where is the input domain. The nearest root x∼ must therefore be
obtained in the general case by an iterative minimization procedure. It
is time consuming when the function xf ( ) is expensive to evaluate or
differentiate, although some fast approximations do exist [45]. It is also
not necessarily solvable due to the possible non-convexity of the
minimization problem. A further problem with the Taylor-based
approach comes from the observation in [37] that for large deep neural
networks, nearest root points x∼ are often imperceptibly different from
the actual data point x. In particular, the difference x x( − )∼ is hardly
interpretable visually, and thus, cannot properly play its role in Eq. (5)
for supporting a pixel-wise decomposition.

Relation to sensitivity analysis: Sensitivity analysis can be viewed
as a special instance of Taylor decomposition where one expands the
function xf ( ) not at a root point x∼, but at a point ξ, taken at an
infinitesimally small distance from the actual point x, in the direction
of maximum gradient (i.e. ξ x xδ f= − ·∂ /∂ with δ small). On these
infinitesimal scales, the function is locally linear and the gradient is
constant, and rewriting the Taylor expansion of xf ( ) at ξ in a way that
the first-order terms can be identified,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∑x ξ

x
x ξ ξf f f ε f δ f

x
( ) = ( ) + ∂

∂
·( − ) + = ( ) + ∂

∂
+ 0,x ξ

x

p p

R

=

⊤ 2

( )p

the direct relation between identified relevances and the squared local
derivatives used in sensitivity analysis becomes clear. The resulting
heatmap is positive, but not conservative since almost all relevance is
absorbed by the non-redistributed zero-order term.

3. Deep Taylor decomposition

In this section, we introduce the main contribution of this paper: a
novel method for explaining nonlinear predictions that we call “deep
Taylor decomposition”. It is applicable to a much larger class of
functions than those considered in Section 2.1. It also overcomes the
multiple technical limitations of the simple Taylor-based method
described in Section 2.2. We will assume that the function xf ( ) is
implemented by a deep neural network, composed of multiple layers of
representation, where each layer is composed of a set of neurons. Each
neuron performs on its input an elementary computation consisting of
a linear projection followed by a nonlinear activation function. Deep
neural networks derive their high representational power from the
interconnection of a large number of these neurons, each of them,
realizing a small distinct subfunction.

The deep Taylor decomposition method is inspired by the divide-
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and-conquer paradigm, and exploits the property that the function
learned by a deep network is decomposed into a set of simpler
subfunctions, either enforced structurally by the neural network
connectivity, or occurring as a result of training. These subfunctions
can, for example, apply locally to subsets of pixels, or they can operate
at a certain level of abstraction based on the layer at which they are
located in the deep network. An example of neural network mapping an
input image to some score indicating the presence of an object of a
certain class is given in Fig. 2 (top).

Let us assume that the function xf ( ) encoded by the output neuron
xf has been decomposed on the set of neurons at a given layer. Let xj be
one such neuron and Rj be its associated relevance. We would like to
decompose Rj on the set of lower layer neurons x{ }i to which xj is
connected. Assuming that x{ }i and Rj are related by a function R x({ })j i ,
such decomposition onto input neurons can be obtained by Taylor
decomposition. It should be noted, however, that the relevance
function may in practice depend on additional variables in the neural
network, for example, the relevances of upper-layer neurons x{ }k to
which xj contributes. These top-down dependencies include the
necessary information to determine whether a neuron xj is relevant,
not only based on the pattern it receives as input, but also based on its
context. For now, we will take for granted, that these top-down
dependencies in the relevance function are such, that one can always
decompose Rj exclusively in terms of x{ }i . Practical relevance models
that satisfy this property will be introduced in Section 5.

We define a root point x{ }∼
i

j( ) of this function. Note that we choose a
different root point for each neuron xj in the current layer, hence the
superscript j( ) to identify them. The Taylor decomposition of Rj is given
by:

⎛
⎝⎜

⎞
⎠⎟ ∑R

R
x

x x ε
R
x

x x ε=
∂

∂{ }
·({ } − { } ) + =

∂
∂

·( − ) + ,∼ ∼
j

j

i
x i i

j
j

i

j

i
x i i

j

R

j{ }

⊤
( )

{ }
( )

∼ ∼i
j

i
j

ij

( ) ( )

where εj denotes the Taylor residual, and where x{ }∼i
j( ) indicates that the

derivative has been evaluated at the root point x{ }∼
i

j( ). The identified
term Rij is the redistributed relevance from neuron xj to neuron xi in
the lower layer. To determine the total relevance of neuron xi, one
needs to pool relevance coming from all neurons x{ }j to which the
neuron xi contributes:

∑R R= .i
j

ij

Combining the last two equations, we get

∑R
R
x

x x=
∂
∂

·( − ).∼
i

j

j

i
x i i

j
{ }

( )
∼i

j( )

(6)

This last equation will be central for computing explicit relevance
redistribution formulas based on specific choices of root points x{ }∼

i
j( ).

It can be verified from the equations above that if R R∀ : ∑ =j i ij j, in
particular, when all residuals εj are zero, then R R∑ = ∑i i j j, i.e. the
propagation from one layer to another is conservative in the sense of
Definition 1. Moreover, if each layer-wise Taylor decomposition in the
network is conservative, then, the chain of equalities
R R R R=…= ∑ = ∑ =…= ∑f j j i i p p holds, and the global pixel-wise de-
composition is thus also conservative. This chain of equalities is referred
by [25] as layer-wise relevance conservation. Similarly, if Definition 2
holds for each local Taylor decomposition, the positivity of relevance
scores at each layer R R R R,…,{ }, { },…,{ } ≥ 0f j i p is also ensured. If all

Fig. 1. Difference between sensitivity analysis and decomposition for an exemplary two-dimensional function xf ( ). The function value is represented with contour lines. Explanations

are represented as a vector field.

G. Montavon et al. Pattern Recognition 65 (2017) 211–222

214



local Taylor decompositions are consistent in the sense of Definition 3,
then, the whole decomposition is consistent in the same sense.

Fig. 2 illustrates the procedure of layer-wise relevance propagation on
a cartoon example where an image of a cat is presented to a deep network.
If the neural network has been designed and trained successfully for the
detection task, it is likely to have a structure, where neurons are modeling
specific features at distinct locations. In such network, relevance redis-
tribution is not only easier in the top layer where it has to be decided
which neurons, and not pixels, are relevant for the object “cat”. It is also
easier in the lower layers where the relevance has already been redis-
tributed to the relevant neurons, and where the final redistribution step
only involves a few neighboring pixels.

4. Application to one-layer networks

As a starting point for better understanding deep Taylor decom-
position, in particular, how it leads to practical propagation rules, we
work through a simple example, with advantageous analytical proper-
ties. We consider a detection-pooling network made of one layer of
nonlinearity. The network is defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑x x w b x x= max 0, + and =j

i
i ij j k

j
j

(7)

where x{ }i is a d-dimensional input, x{ }j is a detection layer, xk is the
output, and θ w b= { , }ij j are the weight and bias parameters of the
network. The one-layer network is depicted in Fig. 3.

The mapping x x{ } →i k defines a function g ∈ , where denotes the
set of functions representable by this one-layer network. We will set an
additional constraint on biases, where we force b ≤ 0j for all j. Imposing
this constraint guarantees the existence of a root point x{ }∼

i of the function
g (located at the origin), and thus also ensures the applicability of
standard Taylor decomposition, for which a root point is needed. We

now perform the deep Taylor decomposition of this function. We start by
equating the predicted output to the amount of total relevance that must
be backpropagated, i.e.,Rk=xk. The relevance for the top layer can now be
expressed in terms of lower-layer neurons as:

∑R x=k
j

j
(8)

Having established the mapping between x{ }j and Rk, we would like to
redistribute Rk onto neurons x{ }j . Using Taylor decomposition (Eq. (4)),
redistributed relevances Rj can be written as:

R R
x

x x= ∂
∂

·( − ).∼
j

k

j
x j j{ }∼j

(9)

We still need to choose a root point x{ }∼
j . The list of all root points of this

function is given by the plane equation x∑ = 0∼
j j . However, for the root to

play its role of reference point, it should be admissible. Here, because of
the application of the function max(0, ·) in the preceding layer, the root
point must be positive. The only point that is both a root ( x∑ = 0∼

j j ) and

admissible ( j x∀ : ≥ 0∼
j ) is x 0{ } =∼

j . Choosing this root point in Eq. (9), and

Fig. 2. Computational flow of deep Taylor decomposition. A prediction for the class “cat” is obtained by forward-propagation of the pixel values x{ }p , and is encoded by the output

neuron xf. The output neuron is assigned a relevance score Rf = xf representing the total evidence for the class “cat”. Relevance is then backpropagated from the top layer down to the
input, where R{ }p denotes the pixel-wise relevance scores, that can be visualized as a heatmap.

Fig. 3. Detection-pooling network that implements Eqs. (7): the first layer detects
features in the input space, the second layer pools the detected features into an output
score.
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observing that the derivative = 1R
x

∂
∂

k
j

, we obtain the first rule for relevance

redistribution:

R x=j j (10)

In other words, the relevance must be redistributed on the neurons of the
detection layer in same proportion as their activation value. Trivially, we
can also verify that the relevance is conserved during the redistribution
process ( R x R∑ = ∑ =j j j j k) and positive (R x= ≥ 0j j ). Let us now
express the relevance Rj as a function of the input neurons x{ }i .
Because Rj=xj as a result of applying the propagation rule of Eq. (10),
we can write

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑R x w b= max 0, + ,j

i
i ij j

(11)

that establishes a mapping between x{ }i and Rj. To obtain redistributed
relevances R{ }i , we will apply Taylor decomposition again on this new
function. The identification of the redistributed total relevance R∑j j onto
the preceding layer was identified in Eq. (6) as:

∑R
R
x

x x=
∂
∂

·( − ).∼
i

j

j

i
x i i

j
{ }

( )
∼i

j( )

(12)

Relevances R{ }i can therefore be obtained by performing as many Taylor
decompositions as there are neurons in the hidden layer. We will
introduce below various methods for choosing a root x{ }∼

i
j( ) that consider

the diversity of possible input domains ⊆ d to which the data belongs.
Each choice of input domain and associated method to find a root will
lead to a different rule for propagating relevance R{ }j to R{ }i .

4.1. Unconstrained input space and the w2-rule

We first consider the simplest case where any real-valued input is
admissible ( = d ). In that case, we can always choose the root point
x{ }∼

i
j( ) that is nearest in the Euclidean sense to the actual data point x{ }i .

When R > 0j , the nearest root of Rj as defined in Eq. (11) is the
intersection of the plane equation x w b∑ + = 0∼

i i
j

ij j
( ) , and the line of

maximum descent wx x t{ } = { } + ·∼
i

j
i j

( ) , where wj is the vector of weight
parameters that connects the input to neuron xj and t ∈ . The
intersection of these two subspaces is the nearest root point. It is given
by x x x w b{ } = { − ( ∑ + )}∼

i
j

i
w

w i i ij j
( )

∑
ij

i ij
2 . Injecting this root into Eq. (12),

the redistributed relevance becomes:

∑R
w

w
R=

∑
i

j

ij

i i j
j

2

′ ′
2

(13)

The propagation rule consists of redistributing relevance according to
the square magnitude of the weights, and pooling relevance across all
neurons j. This rule is also valid for Rj=0, where the actual point x{ }i is
already a root, and for which no relevance needs to be propagated.

Proposition 1. For all g ∈ , the deep Taylor decomposition with
the w2-rule is consistent in the sense of Definition 3.

The w2-rule resembles the rule by [46,44] for determining the
importance of input variables in neural networks, where absolute
values of wij are used in place of squared values. It is important to
note that the decomposition that we propose here is modulated by the
upper layer data-dependent Rjs, which leads to an individual explana-
tion for each data point.

4.2. Constrained input space and the z-rules

When the input domain is restricted to a subset ⊂ d , the nearest
root of Rj in the Euclidean sense might fall outside of . Finding the
nearest root in this constrained input space can be difficult. An
alternative is to further restrict the search domain to a subset of
where nearest root search becomes feasible again. We first study the

case = d
+ , which arises, for example in feature spaces that follow the

application of rectified linear units. In that case, we restrict the search
domain to the segment x x({ 1 }, { }) ⊂i w i

d
< 0 +ij  , that we know contains

at least one root. The relevance propagation rule then becomes:

∑R
z

z
R=

∑i
j

ij

i i j
j

+

′ ′
+

(called z+-rule), where z x w=ij i ij
+ +, and where wij

+ denotes the positive
part of wij. This rule corresponds for positive input spaces to the
αβ-rule proposed by [25] with α = 1 and β = 0. The z+-rule will be used
in Section 5 to propagate relevances in higher layers of a neural
network where neuron activations are positive.

Proposition 2. For all g ∈ and data points x{ } ∈i
d
+ , the deep

Taylor decomposition with the z+ -rule is consistent in the sense of
Definition 3.

For image classification tasks, pixel spaces are typically subjects to
box-constraints, where an image has to be in the domain

x l x h= {{ }: ∀ ≤ ≤ }i i
d

i i i=1 , where l ≤ 0i and h ≥ 0i are the smallest
and largest admissible pixel values for each dimension. In that new
constrained setting, we can restrict the search for a root on the segment

l h x({ 1 + 1 }, { }) ⊂i w i w i> 0 < 0ij ij , where we know that there is at least
one root at its first extremity. Finding the nearest root on that segment
and injecting it into Eq. (12), we obtain the relevance propagation rule:

∑R
z l w h w
z l w h w

R=
− −

∑ − −i
j

ij i ij i ij

i i j i i j i i j
j

+ −

′ ′ ′
+

′
−

(called z -rule), where z x w=ij i ij, and where we note the presence of
data-independent additive terms in the numerator and denominator.
The idea of using an additive term in the denominator was formerly
proposed by [25] and called ϵ-stabilized rule. However, the objective of
[25] was to make the denominator non-zero to avoid numerical
instability, while in our case, the additive terms serve to enforce
positivity.

Proposition 3. For all g ∈ and data points x{ } ∈i , the deep
Taylor decomposition with the z -rule is consistent in the sense of
Definition 3.

Detailed derivations of the proposed rules, proofs of Propositions
1–3, and algorithms that implement these rules efficiently are given in
the supplement.

5. Application to deep networks

In order to represent efficiently complex hierarchical problems, one
needs deeper architectures. These architectures are typically made of
several layers of nonlinearity, where each layer extracts features at
different scale. An example of deep architecture is shown in Fig. 4 (left).
In this example, the input is first processed by feature extractors
localized in the pixel space. The resulting features are combined into
more complex mid-level features that cover more pixels. Finally, these
more complex features are combined in a final stage of nonlinear
mapping, that produces a score determining whether the object to
detect is present in the input image or not. A practical example of deep
network with similar hierarchical architecture, and that is frequently
used for image recognition tasks, is the convolutional neural network
[47]. In Section 3, we have assumed the existence and knowledge of a
functional mapping between the neuron activities at a given layer and
relevances in the higher layer. This was the case for the small network
of Section 4. However, in deeper architectures, the mapping may be
unknown (although it may still exist). In order to redistribute the
relevance from higher to lower layers, one needs to make this mapping
explicit. For this purpose, we introduce the concept of relevance model.

A relevance model is a function that maps a set of neuron
activations at a given layer to the relevance of a neuron in a higher
layer, and whose output can be redistributed onto its input variables,
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for the purpose of propagating relevance backwards in the network. For
the deep network of Fig. 4 (left), on can for example, try to predict Rk
from x{ }i , which then allows us to decompose the predicted relevance
Rk into lower-layer relevances R{ }i . The relevance models we will
consider borrow the structure of the one-layer network studied in
Section 4, and for which we have already derived a deep Taylor
decomposition.

Upper-layer relevance is not only determined by input neuron
activations of the considered layer, but also by high-level information
(i.e. abstractions) that have been formed in the top layers of the
network. These high-level abstractions are necessary to ensure a global
cohesion between low-level parts of the heatmap.

5.1. Min–max relevance model

We first consider a trainable relevance model of Rk. This relevance
model is illustrated in Fig. 4 (top right) and is designed to incorporate
both bottom-up and top-down information, in a way that the relevance
can still be fully decomposed in terms of input neurons. It is defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑y x v a R y= max 0, + and = .j

i
i ij j k

j
j

where a R v d= min(0, ∑ + )j l l lj j is a negative bias that depends on
upper-layer relevances, and where ∑l runs over the detection neurons
of that upper-layer. This negative bias plays the role of an inhibitor, in
particular, it prevents the activation of the detection unit yj of the
relevance model in the case where no upper-level abstraction in R{ }l
matches the feature detected in x{ }i .

The parameters v v d{ , , }ij lj j of the relevance model are learned by
minimization of the mean square error objective

R Rmin ( − ) ,k k
2

where Rk is the true relevance, Rk is the predicted relevance, and 〈·〉 is
the expectation with respect to the data distribution. Because the
relevance model has the same structure as the one-layer network
described in Section 4, in particular, because aj is negative and only
weakly dependent on the set of neurons x{ }i , one can apply the same set
of rules for relevance propagation. We compute

R y=j j (14)

for the pooling layer and

∑R
q

q
R=

∑i
j

ij

i i j
j

′ ′ (15)

for the detection layer, where q v=ij ij
2, q x v=ij i ij

+, or
q x v l v h v= − −ij i ij i ij i ij

+ − if choosing the w2-, z+-, z -rules respectively.
This set of equations used to backpropagate relevance from Rk to R{ }i ,

is approximately conservative, with an approximation error that is
determined by how much on average the output of the relevance model
Rk differs from the true relevance Rk.

5.2. Training-free relevance model

A large deep neural network may have taken weeks or months to
train, and we should be able to explain it without having to train a
relevance model for each neuron. We consider the original feature
extractor

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑x x w b x x= max 0, + and = ∥{ }∥j

i
i ij j k j q

where the Lq-norm can represent a variety of pooling operations such
as sum-pooling or max-pooling. Assuming that the upper-layer has
been explained by the z+-rule, and indexing by l the detection neurons
of that upper-layer, we can write the relevance Rk as

∑R
x w

x w
R=

∑
.k

l

k kl

k k k l
l

+

′ ′ ′
+

Taking xk out of the sum, and using the identity x x∑ = ∥{ }∥j j j 1 for
x ≥ 0j , we can rewrite the relevance as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑R x c d= · ·k

j
j k k

where c =k
x
x

∥ { } ∥
∥ { } ∥

j q

j 1
is a Lq/L1 pooling ratio, and d = ∑k l

w R
x w∑
kl l

k k k l

+

′ ′ ′
+ is a

top-down contextualization term. Modeling the terms ck and dk as
constant under a perturbation of the activities x{ }j , we obtain the
“training-free” relevance model, that we illustrate in Fig. 4 (bottom
right). We give below some arguments that support the modeling of ck
and dk as constants.

First, we can observe that ck is indeed constant under certain
transformations such as a homogeneous rescaling of the activations
x{ }j , or any permutation of neurons activations within the pool. More
generally, if we consider a sufficiently large pool of neurons x{ }j ,
independent variations of individual neuron activations within the
pool can be viewed as swapping activations between neurons without
changing the actual value of these activations. These repeated swaps
also keep the norms and their ratio constant. For the top-down term
dk, we remark that the most direct way it is influenced by x{ }j is
through the variable xk′ of the sum in the denominator of dk, when
k k′ = . As the sum combines many neuron activations, the effect of x{ }j
on dk can also be expected to be very limited. Modeling ck and dk as
constants enables us to backpropagate the relevance on the lower
layers: Because the relevance model Rk above has the same structure as
the network of Section 4 (up to a constant factor c dk k), it is easy to

Fig. 4. Left: Example of a 3-layer deep network, composed of increasingly high-level feature extractors. Right: Diagram of the two proposed relevance models for redistributing
relevance onto lower layers.
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derive its Taylor decomposition, in particular, we obtain the rules

R
x

x
R=

∑
,j

j

j j
k

′ ′

where relevance is redistributed in proportion to activations in the
detection layer, and

∑R
q

q
R=

∑
,i

j

ij

i i j
j

′ ′

where q w=ij ij
2, q x w=ij i ij

+, or q x w l w h w= − −ij i ij i ij i ij
+ −, corresponding to

thew2-, z+-, z -rules respectively. If we choose the z+-rule for that layer
again, the same training-free decomposition technique can be applied
to the layer below, and the process can be repeated until the input
layer. Thus, when using the training-free relevance model, all layers of
the network must be decomposed using the z+-rule, except for the first
layer to which other rules can be applied such as the w2-rule or the
z -rule.

6. Experiments

In this section, we would like to test how well deep Taylor
decomposition performs empirically, in particular, if the resulting
heatmaps are able to pinpoint the relevant information in the input
data. We first consider a neural network composed of two detection-
pooling layers applied on a simple MNIST-based task. Then, we test
our method on large convolutional neural networks for general image
classification. Table 1 lists the main technical properties of the various
methods used in the experiments.

6.1. Experiment on MNIST

The MNIST dataset consists of 60 000 training and 10 000 test
images of size 28×28 representing handwritten digits, along with their
label (from 0 to 9). We consider an artificial problem consisting of
detecting the presence of a digit with label 0–3 in an image of size
28×56 built as a concatenation of two MNIST digits. There is a virtually
infinite number of possible combinations.

A neural network with 28×56 input neurons and one output neuron
is trained on this task. The input values are coded between −0.5 (black)
and +1.5 (white). The neural network is composed of a first detection-
pooling layer with 400 detection neurons sum-pooled into 100 units
(i.e. we sum-pool non-overlapping groups of 4 detection units). A
second detection-pooling layer with 400 detection neurons is applied to
the 100-dimensional output of the previous layer, and activities are
sum-pooled onto a single unit representing the deep network output.
Positive examples are assigned target value 100 and negative examples
are assigned target value 0. The neural network is trained to minimize
the mean-square error between the target values and its output xf.
Treating the supervised task as a regression problem forces the

network to assign approximately the same amount of relevance to all
positive examples, and as little relevance as possible to the negative
ones. Weights of the network are initialized using a normal distribution
of mean 0 and standard deviation 0.05. Biases are initialized to zero
and constrained to be negative or zero throughout training. Training
data is extended with translated versions of MNIST digits. The deep
network is trained using stochastic gradient descent with minibatch
size 20, for 300 000 iterations, and using a small learning rate.

We compare four heatmapping techniques: sensitivity analysis, stan-
dard Taylor decomposition, and the min-max and training-free variants of
deep Taylor decomposition. Sensitivity analysis is straightforward to
apply. For standard Taylor decomposition, the root x∼ is chosen to be
the nearest point such that x xf f( ) < 0.1 ( )∼ . For the deep Taylor decom-
position models, we apply the z+-rule in the top layer and the z -rule in
the first layer. The z -rule is computed using as lower- and upper-bounds
l = −0.5p and hp=1.5. For the min-max variant, the relevance model in
the first layer is trained to minimize the mean-square error between the
relevance model output and the true relevance (obtained by application of
the z+-rule in the top layer). It is trained in parallel to the actual neural
network, using similar training parameters.

Fig. 5 shows the analysis for 12 positive examples generated from
the MNIST test set and processed by the deep neural network.
Heatmaps are shown below their corresponding example for each
heatmapping method. In all cases, we can observe that the heatmap-
ping procedure correctly assigns most of the relevance to pixels where
the digit to detect is located, and ignores the distracting digit.

Sensitivity analysis produces unbalanced and incomplete heatmaps,
with some examples reacting strongly, and others weakly. There is also
a non-negligible amount of relevance allocated to the border of the
image (where there is no information), or placed on the distractor digit.
Nearest root Taylor decomposition ignores irrelevant pixels in the
background but is still producing spurious relevance on the distractor
digit. On the other hand, deep Taylor decomposition produces rele-
vance maps that are less affected by the distractor digit and that are
also better balanced spatially. The heatmaps obtained by the trained
min-max model and the training-free method are of similar quality,
suggesting that the approximations made in Section 5.2 are also valid
empirically.

Fig. 6 quantitatively evaluates the heatmapping techniques of
Fig. 5. The scatter plots compare the total output relevance with the
sum of pixel-wise relevances. Each point in the scatter plot is a different
example drawn independently from the input distribution. These
scatter plots test empirically for each heatmapping method whether it
is conservative in the sense of Definition 1. In particular, if all points lie
on the diagonal line of the scatter plot, then R R∑ =p p f , and the
heatmapping is conservative. The histograms just below test empiri-
cally whether the studied heatmapping methods satisfy positivity in the
sense of Definition 2, by counting the number of times (shown on a log-
scale) pixel-wise contributions Rp take a certain value. Red color in the
histogram indicates positive relevance assignments, and blue color
indicates negative relevance assignments. Therefore, an absence of blue
bars in the histogram indicates that the heatmap is positive (the desired
behavior). Overall, the scatter plots and the histograms produce a
complete description of the degree of consistency of the heatmapping
techniques in the sense of Definition 3.

Sensitivity analysis only measures a local effect and therefore does
not conceptually redistribute relevance onto the input. However, we
can still measure the relative strength of computed sensitivities
between examples or pixels. The nearest root Taylor decomposition is
positive, but dissipates relevance. The deep Taylor decomposition with
the min-max relevance model produces near-conservative heatmaps,
and the training-free deep Taylor decomposition produces heatmaps
that are fully conservative. Deep Taylor decomposition spreads rele-
vance onto more pixels than competing methods, as shown by the
shorter tail of its relevance histogram. Both deep Taylor decomposition
variants shown here also ensures positivity, due to the application of

Table 1
Summary of the technical properties of neural network heatmapping methods described
in this paper.

Sensitivity Taylor Deep Taylor
(min–max)

Deep Taylor
(training-free)

Conservative No No Yesa Yes
Positive Yes Yesb Yes Yes
Consistent No No Yesa Yes
Unique solution Yes Noc Noc Yes
Training-free Yes Yes No Yes
Fast computation Yes No Yes Yes

a up to a fitting error between the redistributed relevance and the relevance model
output.

b using the differentiable approximation x t txmax(0, ) = lim log(0.5 + 0.5 exp( ))t→∞ −1 .
c root search and relevance model training are potentially nonconvex.
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the z - and z+-rule in the respective layers.

6.2. Experiment on ILSVRC

We now apply the fast training-free deep Taylor decomposition to
explain decisions made by large neural networks (BVLC Reference
CaffeNet [48] and GoogleNet [12]) trained on the dataset of the
ImageNet large scale visual recognition challenges ILSVRC 2012 [49]
and ILSVRC 2014 [50] respectively. We keep the neural networks
unchanged. We compare our decomposition method to sensitivity
analysis. Both methods perform a single backward pass in the network
and are therefore suitable for analyzing the predictions of these highly
complex models.

The methods are tested on a number of images from Pixabay.com
and Wikimedia Commons. The z -rule is applied to the first convolu-
tion layer. For all higher convolution and fully-connected layers, the
z+-rule is applied. Positive biases (that are not allowed in our deep
Taylor framework) are treated as neurons, on which relevance can be
redistributed (i.e. we add bmax(0, )j in the denominator of z - and
z+-rules). Normalization layers are bypassed in the relevance propaga-
tion pass. In order to visualize the heatmaps in the pixel space, we sum
the relevances of the three color channels, leading to single-channel
heatmaps, where the red color designates relevant regions.

Fig. 7 shows the heatmaps resulting from deep Taylor decomposi-
tion for four different images. For example, heatmaps identify as
relevant the dorsal fin of the shark and the head of the cat. The
heatmaps can detect two instances of the same object within a single
image, here, the two frogs. The heatmaps also ignore most of the
distracting structure, such as the horizontal lines above the cat's head.

Sometimes, the object to detect is shown in a less stereotypical pose or
is hard to separate from the background. For example, the sheeps are
overlapping and are superposed to a background of same color, leading
to a more diffuse heatmap.

Sensitivity analysis ignores or overrepresents some of the relevant
regions. For example, the leftmost frog in the first image is assigned
more importance than the second frog. Some of the contour of the
shark in the second image is ignored. On the other hand, deep Taylor
decomposition produces heatmaps that cover the explanatory features
in a more comprehensive manner and also better match the saliency of
the objects to detect in the input image. See [27] for a quantitative
comparison of sensitivity analysis and relevance propagation methods
similar to deep Taylor decomposition on this data.

Decompositions for CaffeNet and GoogleNet predictions have a
high level of similarity. It demonstrates a certain level of transparency
of the method to the choice of deep network architecture supporting
the prediction. We can however observe that GoogleNet heatmaps are
of higher quality, in particular, with better spatial resolution, and the
ability to detect relevant features even in cluttered scenes such as the
last image, where the characteristic v-shaped nose of the sheep is still
identified as relevant. Instead, AlexNet is more reliant on context for its
predictions, and uses more pixels to detect contours of the relevant
objects. The observation that more accurate predictions are supported
by better resolved input patterns is also in line with other studies
[51,52].

Fig. 8 studies the special case of an image of class “volcano”, and a
zoomed portion of it. On a global scale, the heatmapping method
recognizes the characteristic outline of the volcano. On a local scale, the
relevance is present on both sides of the edge of the volcano, which is

Fig. 5. Comparison of heatmaps produced by various decompositions and relevance models. Each input image is presented with its associated heatmap.

Fig. 6. Top: Scatter plots showing for each type of decomposition and data points the predicted class score (x-axis), and the sum-of-relevance in the input layer (y-axis). Bottom:
Histograms showing the number of times (on a log-scale) a particular pixel-wise relevance score occurs.

G. Montavon et al. Pattern Recognition 65 (2017) 211–222

219



consistent with the fact that the two sides of the edge are necessary to
detect it. The zoomed portion of the image also reveals different stride
sizes in the first convolution layer between CaffeNet (stride 4) and
GoogleNet (stride 2). Observation of these global and local character-
istics of the heatmap provides a visual feedback of the way relevance
flows in the deep network.

7. Conclusion

Nonlinear machine learning models have become standard tools in
science and industry due to their excellent performance even for large,
complex and high-dimensional problems. However, in practice it
becomes more and more important to understand the underlying
nonlinear model, i.e., to achieve transparency of what aspect of the
input makes the model decide. To achieve this, we have contributed by
novel conceptual ideas to deconstruct nonlinear models. Specifically,
we have proposed a novel approach to relevance propagation called
deep Taylor decomposition, and used it to assess the importance of
single pixels in image classification tasks. We were able to compute
heatmaps that clearly and intuitively allow to better understand the
role of input pixels when classifying an unseen data point. We have
shed light on theoretical connections between the Taylor decomposi-
tion of a function, and rule-based relevance propagation techniques,
showing a clear relationship between the two approaches for a
particular class of neural networks. We have introduced the concept
of relevance model as a mean to scale the analysis to networks with
many layers. Our method is stable under different architectures and
datasets, and does not require hyperparameter tuning. We would like
to stress, that we are free to use as a starting point of our framework
either an own trained and carefully tuned neural network model or we
may also download existing pre-trained deep network models (e.g. the
BVLC CaffeNet [48]) that have already been shown to achieve excellent
performance on benchmarks. In both cases, our method provides
explanation. In other words our approach is orthogonal to the quest
for enhanced results on benchmarks, in fact, we can use any bench-
mark winner and then enhance its transparency to the user.
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