
This version is available at https://doi.org/10.14279/depositonce-7079

© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Göbel, M., Elhossini, A., & Juurlink, B. (2017). A Methodology for Predicting Application-Specific
Achievable Memory Bandwidth for HW/SW-Codesign. In 2017 Euromicro Conference on Digital System
Design (DSD). IEEE. https://doi.org/10.1109/dsd.2017.40

Göbel, M.; Elhossini, A.; Juurlink, B.

A Methodology for Predicting Application-
Specific Achievable Memory Bandwidth for
HW/SW-Codesign

Accepted manuscript (Postprint)Conference paper |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/158840606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Methodology for Predicting Application-specific Achievable Memory Bandwidth

for HW/SW-Codesign

Matthias Göbel, Ahmed Elhossini and Ben Juurlink

Embedded Systems Architecture Group

Technische Universität Berlin

Berlin, Germany

Email: {m.goebel, ahmed.elhossini, b.juurlink}@tu-berlin.de

Abstract—The trend of using heterogeneous computing and
HW/SW-Codesign approaches allows increasing performance
significantly while reducing power consumption. One of the
main challenges when combining multiple processing devices
is the communication, as an inefficient communication configu-
ration can pose a bottleneck to the overall system performance.
To address this problem, we present a methodology that assists
the designer in making good design decisions for systems using
shared DDR memory for communication. Our methodology
analyzes a software implementation of the application and
subsequently predicts the memory accesses of a functionally
equivalent hardware implementation of the selected function.
We furthermore propose an IP core that can perform these
predicted memory accesses to estimate the achievable mem-
ory bandwidth between a functionally equivalent hardware
implementation and shared memory. The resulting achievable
memory bandwidth estimations differ by less than 2% from the
actual achievable memory bandwidth of a functionally equiv-
alent hardware implementation, demonstrating the feasibility
of the presented methodology.

Keywords-Memory access; FPGA-SoC; Memory bandwidth;
HW/SW-Codesign; Memory estimation; Memory prediction

I. INTRODUCTION AND RELATED WORK

HW/SW-Codesign approaches consisting of a processor

and an FPGA can often be found in embedded systems

today. In order to achieve maximum performance, it is neces-

sary to not only optimize their software and hardware parts,

but also to keep the shared memory bandwidth in mind.

As processor and FPGA often use it for communication, it

can pose a bottleneck to the overall system. Modern FPGA

systems usually use external DDR memory for this task

(e.g. FPGA-SoCs like Xilinx’s Zynq-7000). The latency of

a memory transaction can vary significantly, depending on

the requested address and length as well as previous memory

transactions. Therefore, it is almost impossible to estimate

the available memory bandwidth for a specific application

without a thorough analysis.

We present a novel approach to encounter the challenge

of memory bandwidth estimation. Our approach is based on

deriving information about a hardware component’s memory

access behavior from a software implementation offering the

same functionality. In most cases, such software implemen-

tation is already available, either because an existing soft-

ware project should be accelerated using HW/SW-Codesign

or because a software implementation has been written for

verification of the hardware components to be implemented.

The derived information can be used to approximate the

memory access behavior of a potential hardware component

before implementation. We also present an IP core that can

use the gathered information to actually simulate the mem-

ory access behavior of the potential hardware component

on an FPGA and measure the available application-specific

memory bandwidth. By comparing the available memory

bandwidth with the memory bandwidth of a software so-

lution, the designer can make the decision of whether to

follow a HW/SW-Codesign approach before starting the

actual implementation.

Various work is available that discusses the memory

bottleneck on FPGA systems [1], [2]. With the emerge of

FPGA-SoCs, these devices have been increasingly used as a

platform for HW/SW-Codesign. Multiple authors analyzed

modern FPGA-SoCs and focused on measuring memory

bandwidth for accesses from software as well as hardware

under various scenarios [3]–[5]. Using their results, it is pos-

sible to roughly estimate the available memory bandwidth

for a specific hardware implementation by comparing its

memory access behavior to one of the evaluated scenarios.

However, this requires a detailed knowledge about the mem-

ory access behavior of the specific application. Furthermore,

as the memory bandwidth of DDR memory depends strongly

on previous memory accesses (e.g. due to row precharging),

the value of these studies is limited. Finally, High-Level

Synthesis (HLS) tools [6] can be used to rapidly prototype a

design. However, as the resulting HDL models are often less

powerful and efficient than those involving handwritten HDL

code, they do not actually solve the problem of memory

bandwidth estimation for HW/SW-Codesign approaches.

The paper is organized as follows: Section II describes

the involved challenges and our methodology to solve these.

Furthermore, we present a workflow that implements our

methodology. Section III discusses the models that are used

by our approach to simulate the memory access behavior of

an actual design following a HW/SW-Codesign approach. In

Section IV, our implemented workflow is applied to different

1

Source Code Preprocessing ISource Code Trace Generation

Disassembling

Postprocessing Block Accesses Execution on FPGA HW Bandwidth

Preprocessing II Execution SW Bandwidth

Figure 1: An overview of the workflow for estimating the hardware memory bandwidth and measuring the software memory

bandwidth for a given function.

use cases and the results are analyzed. Section V concludes

the paper and presents future work.

II. METHODOLOGY AND WORKFLOW

Estimating the potential memory bandwidth of a hardware

implementation by analyzing a software implementation

poses several challenges. First of all, the memory access

behavior of both implementations will differ a lot. As proces-

sor cores typically do not contain large memory buffers but

only small registers, data processing in software is usually

based on the idea of loading small amounts of data into a

processor, processing them and storing the results back to

memory. Small memory accesses to DDR memory, how-

ever, are expensive in terms of latency and therefore limit

the overall performance. Hardware implementations, on the

other hand, often contain memory buffers that allow storing

large amounts of data locally. Therefore, larger memory

accesses can be performed between DDR memory and these

buffers than between DDR memory and a processor, thus

increasing the potential overall performance.

In the following we present our methodology by describ-

ing an actual workflow that implements our methodology

based on this discussion. An overview of the workflow

can be seen in Figure 1. It accepts the source code of

a software implementation of the application as an input

and provides the memory bandwidth of the software im-

plementation of a given function as well as the estimated

memory bandwidth of a hardware implementation of the

same function. By comparing these results to each other,

a well-founded decision can be made whether to follow a

HW/SW-Codesign approach. The designer has to specify

that function in the software implementation that should be

implemented in hardware as well as those data structures

that are shared between this function and the rest of the

application.

The estimation of the hardware memory bandwidth basi-

cally consists of three steps:

• Generating a memory trace of the function that should

be moved to hardware

• Converting this trace to an equivalent trace of a hard-

ware implementation of the same function

• Executing this trace on an FPGA and measuring the

available memory bandwidth

These steps will be discussed in the following.

A. Generating memory trace

The estimation of the hardware bandwidth starts with the

preprocessing of the source code. This involves inserting

instructions into the source code that gather information

about those data structures that should be shared between

hardware and software components. In particular, the ad-

dresses and sizes of all such data structures are gathered.

The identification of such data structures must be performed

by the designer as it poses a major design decision.

After the code preprocessing is complete, the actual

memory trace of the application is generated. For this task,

we use the Valgrind instrumentation framework [7].

Once this full trace has been generated, it is necessary

to extract only those memory accesses that belong to the

function that should actually be moved to hardware. This

task can be performed by disassembling the compiler-

generated executable and comparing the resulting assembly

code with the full trace: Only those load and store operations

that belong to instructions from the specified function must

be analyzed. Also, all instruction fetch accesses can be

discarded because a hardware implementation with the same

functionality would not fetch any instructions from memory.

B. Converting the memory trace to an equivalent hardware

memory trace

After these memory accesses have been extracted, multi-

ple postprocessing steps are required in order to get those

memory accesses that would be performed by a correspond-

ing hardware implementation as described previously. First

of all, only memory accesses to data structures shared be-

tween software and hardware must be considered. Accesses

to internal data structures of the selected function can be

omitted as such structures can be implemented as local

memory inside a hardware implementation of the function.

Furthermore, the granularity of the memory accesses

has to be changed: As discussed before, while the mem-

ory accesses of a software implementation will be very

fine-grained, a hardware implementation can buffer large

amounts of data in local buffers and therefore use larger,

burst-capable memory accesses. Finally, the virtual ad-

dresses of the memory trace have to be converted into

physical addresses and long data accesses have to be split

to obey 4K boundaries and the maximum size of bursts

supported by the memory controller.

2

Read

Request

Read

Data

Write

Request

Write

Data

tproc

(a) Aggressive model

Read

Request

Read

Data

Write

Request

Write

Data

tproc

(b) Conservative model

Read

Request

Read

Data

Write

Request

Write

Data

tproc

(c) Ultra conservative model

Read

Request

Read

Data

Write

Request

Write

Data

tproc

(d) High-level synthesis model

Figure 2: The timing behavior of the models used in the

presented approach with tproc describing the processing

latency.

C. Performing memory accesses on FPGA and measuring

bandwidth

The resulting list of memory accesses can be used to

simulate the memory access behavior of a hardware imple-

mentation of the specified function. An IP core has been

designed that contains a buffer that stores the trace as well

as all the necessary functionality to actually perform these

memory accesses and measure the resulting bandwidth.

D. Measuring the memory bandwidth of the software imple-

mentation

The estimated memory bandwidth for a hardware compo-

nent can only be assessed in relation to a baseline. For this

reason, the presented workflow also measures the memory

bandwidth for the original software implementation. An

overview of the required steps can also be seen in Figure 1.

The preprocessing stage (Preprocessing II in the figure) in-

volves adding time measurement functionality to the original

source code. Using the elapsed time and the total amount

of data that is stored or loaded to/from main memory, the

resulting memory bandwidth can be calculated.

III. TIMING BEHAVIOR OF MEMORY TRANSACTIONS

The list of memory accesses that is generated when using

the workflow and written to the aforementioned buffer in the

IP core does not contain any timestamps or other information

about the timing behavior of the memory accesses. However,

the order in which the memory accesses are executed is not

negligible as the latency of a DDR memory access depends

on previous accesses: Two consecutive accesses to the same

row in DDR memory will result in a higher bandwidth than

two consecutive accesses to different rows.

The following assumptions are employed in the presented

work flow:

• All data to be written depends on some previously read

data, i.e. writing data cannot start before data has been

read

• Data can be stored inside the hardware component of

the design in a temporary buffer consisting of block

RAMs

As these assumptions are rather general, they hold for a

large range of applications.

Based on these assumptions, we defined four models for

the timing behavior of the HW memory accesses. They are

illustrated in Figure 2. As current FPGA-SoCs mainly use

the AXI protocol, they are designed for such busses. How-

ever, similar busses can be employed as well. The designer

has to pick one model that suites his application best. The

Aggressive model assumes that all read and write requests

can already be issued at the beginning, i.e. before reading or

writing any data. In order for this to work, all addresses and

access lengths must be static and therefore independent of

the data. It also assumes that reading and writing data can

overlap, i.e. a single result does not depend on all input

samples. A huge variety of typical data processing steps

can be implemented in such a way, e.g. one-dimensional

FIR filters. The Conservative model also assumes that all

requests can be issued at the beginning. However, in this

model the writing of the results only starts after all input

samples have been read. Therefore, the results can depend

on all input samples. An example for such a behavior would

be two-dimensional FIR filters which first process a block

of data horizontally and afterwards vertically. The Ultra

Conservative model makes the same assumptions regarding

data dependency as the conservative model. However, in this

model the write requests are not issued until all data has been

read thus allowing the write request to depend on the the

input data. Compression algorithms like Huffman Coding

can be considered a use-case for this model. The High-

level Synthesis model resembles the timing behavior of IP

cores generated with Xilinx’s Vivado HLS suite. While being

similar to the Ultra Conservative model, it issues a single

request and then waits until the required data has been read

or written before issuing the next request.

Besides choosing one of these general models, the de-

signer also has to define four model parameters. The defi-

nition of the Processing Latency depends on the selected

model and can be seen in Figure 2 as tproc. It describes the

latency that is required to actually process the input data

and may depend on the number of input samples. The Read

and Write Widths, i.e. the maximum numbers of input

samples that can be read or written in one cycle depends on

the sample depth and the width of the AXI bus. However,

a hardware component might not provide a sufficient data

3

pread = 1 pread = 2 pread = 4

1 2 4 1 2 4 1 2 4
50

100

150

200

pwrite

B
W

in
M

B
/s

(a) Black Scholes

pread = 1 pread = 2 pread = 4

1 2 4 1 2 4 1 2 4
200

400

600

800

1,000

pwrite

B
W

in
M

B
/s

(b) JPEG IDCT

2 10 50 100

Aggressive Conservative Ultra Conservative

Figure 3: The results for Black Scholes and JPEG IDCT with the colors indicating tproc and the marks indicating the selected

model. The required software bandwidths according to our workflow (visualized as a dashed line) are 167 (Black Scholes)

and 727 (JPEG IDCT) MB/s, respectively. Note that the bandwidth axis does not start at 0 for clarity.

pread = 1 pread = 2 pread = 4

1 2 4 1 2 4 1 2 4

500

1,000

pwrite

B
W

in
M

B
/s

0.125 ·H ·W 0.25 ·H ·W
0.5 ·H ·W 1 ·H ·W
Aggressive Conservative

Ultra Conservative

Figure 4: The results for HEVC Motion Compensation with

the colors indicating tproc and the marks indicating the

selected model. The required software bandwidth according

to our workflow (visualized as a dashed line) is 616 MB/s.

Note that the bandwidth axis does not start at 0 for clarity.

processing throughput to utilize the full memory bandwidth.

Therefore, the designer has to provide parameters pread and

pwrite. For example, a value of pread = 4 can be interpreted

as reading data only every fourth cycle. Finally, for the HLS

model the designer also has to provide the Data-to-Request

latency, i.e. the latency between reading/writing data and

issuing the next read/write request.

IV. EVALUATION

In this section, an implementation of the presented work-

flow is first applied to three different data processing al-

gorithms to show how to actually use the workflow. Af-

terwards, the bandwidth estimations are verified by actually

implementing them following a HW/SW-Codesign approach

and measuring their memory bandwidths.

A. Application of the workflow

The workflow has been applied to three different appli-

cations that are representatives for a huge variety of data

processing algorithms:

• Fast integer IDCT of the JPEG reference decoder [8]

• Black Scholes option pricing from the PARSEC bench-

mark suite [9]

• Horizontal motion compensation of a commercial

HEVC decoder [10]

For the evaluation, an Intel i7-4770 CPU has been used for

running the workflow and a Xilinx Zynq-7045 for estimating

the actual memory bandwidth for HW/SW-Codesign. For

memory accesses, a single 64-bit High-Performance AXI

port has been chosen. In order to evaluate the maximum

bandwidths possible for the chosen parameters, the highest

frequency possible with the Zynq have been used, i.e. 250

MHz. Different values have been chosen for the parameters

discussed in Section III. Figures 3 and 4 show the results.

The processing latency tproc has been chosen to be fixed

for Black Scholes and JPEG IDCT as both work on fixed

block sizes. On the other hand, the block size can vary from

8 ·4 samples up to 64 ·64 samples for motion compensation.

Therefore, different degrees of parallelism depending on the

block height and width have been evaluated. For the read

and write widths, all possible combinations of one data beat

every cycle, every second cycle and every fourth cycle has

been chosen.

The results can be interpreted as follows:

• Black Scholes

pread and pwrite have only a minor influence on the

bandwidth for this application. This suggests that the

4

Black
Scholes

JPEG
IDCT

HEVC

tproc 425 159 4 · (W − 7) ·H+
4 · (H − 1) + 121

pread 1 8 1

pwrite 1 1 4

Measurement (MB/s) 15.12 180.45 29.18

Estimation (MB/s) 15.09 177.78 29.00

Error (%) 0.2 1.5 0.6

Table I: An overview of the verification process

application is not memory-bound for most configura-

tions. However, tproc must be less than 10 cycles and

the aggressive model should be chosen, if possible, to

achieve the bandwidth of the software implementation.

• JPEG IDCT

In this case, pread and pwrite influence the bandwidth

significantly. In fact, pread must be lower than 4 to

be able to achieve the bandwidth of the software

implementation. Furthermore, tproc should be less than

50 cycles. For pread = 1 and tproc = 2, all three models

can achieve the required bandwidth.

• HEVC Motion Compensation

The estimations show that low values for pread and

pwrite, i.e. an efficient memory interface inside the

hardware implementation, are important. Furthermore,

the estimations indicate that a degree of parallelism of

4 (0.25 ·H ·W) or 8 (0.125 ·H ·W) and the aggressive

model should be used to meet the required bandwidth.

B. Verification of the methodology

In order to verify the accuracy of the estimated band-

widths, all three use-cases have been implemented using

Vivado HLS. The designs have been analyzed to derive the

parameters for the workflow and the memory bandwidths

have been estimated using the HLS mode (see Section III).

Furthermore, the memory bandwidths of the actual design

have been measured. The results are presented in Table I.

As the estimation error is rather small (less than 2% for all

three applications), it can be concluded that the proposed

methodology is feasible and the workflow can indeed be

used to estimate the achievable memory bandwidth of a de-

sign following a HW/SW-Codesign approach before actually

starting the implementation.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for estimating the avail-

able memory bandwidth for hardware components used in a

HW/SW-Codesign approach. It analyzes a software imple-

mentation with the same functionality, generates a memory

trace of this implementation when processing real workloads

and creates a list of corresponding memory accesses that

would be performed by a hardware implementation. A

provided IP core can be instantiated on a target device,

e.g. an FPGA-SoC, and perform these memory accesses to

finally estimate the available memory bandwidth. In order

to support a broad range of applications, different models

for memory access behavior have been presented that can

be used to match the actual behavior of the application

to be analyzed. An evaluation has been performed that

presents the use of the workflow implementing our approach

for different representative applications. Furthermore, the

estimations have been compared to an HLS implementation

of these applications for verification. It shows that the

estimation error is less than 2% for all applications, thus

indicating the feasibility of our approach.

A sufficient memory bandwidth is only one aspect that has

to be considered in a design space exploration. Other aspects

include device utilization and power consumption as well as

the throughput inside a hardware component. Future work

could include an analysis of such aspects to allow for a full

design space exploration for HW/SW-Codesign.

REFERENCES

[1] H. Fu and R. Clapp, Eliminating the Memory Bottleneck:
An FPGA-based Solution for 3D Reverse Time Migration,
19th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA), Monterey, USA, 2011.

[2] Y. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman and P. Wei, A
Quantitative Analysis on Microarchitectures of Modern CPU-
FPGA Platforms, 53rd ACM/EDA/IEEE Design Automation
Conference (DAC), Austin, USA, 2016.

[3] M. Göbel, A. Elhossini, C. C. Chi, M. Alvarez-Mesa and
B. Juurlink, A Quantitative Analysis of the Memory Architec-
ture of FPGA-SoCs, 13th International Symposium on Applied
Reconfigurable Computing (ARC), Delft, Netherlands, 2017.

[4] M. Sadri, C. Weis, N. Wehn and L. Benini, Energy and
Performance Exploration of Accelerator Coherency Port Using
Xilinx ZYNQ, 10th ACM FPGAWorld Conference, Copen-
hagen/Stockholm, Denmark/Sweden, 2013.

[5] V. Sklyarov, I. Skliarova, J. Silva and A. Sudnitson, Analysis
and Comparison of Attainable Hardware Acceleration in All
Programmable Systems-on-Chip, 2015 Euromicro Conference
on Digital System Design (DSD), Funchal, Portugal, 2015.

[6] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson and K. Bertels, A
Survey and Evaluation of FPGA High-Level Synthesis Tools,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Volume 35, Issue 10, 1591-1604, 2015.

[7] N. Nethercote and J. Seward, Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation, 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), San Diego, USA, 2007.

[8] Independent JPEG Group, http://www.ijg.org/

[9] C. Bienia, S. Kumar, J. Singh and K. Li, The PARSEC Bench-
mark Suite: Characterization and Architectural Implications,
17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Toronto, Canada, 2008.

[10] Spin Digital Video Technologies, http://www.spin-digital.com

5

