7 RBOE™

Learning Robotic Perception
Through Prior Knowledge

vorgelegt von
M.Sc.
Rico Jonschkowski
geb. in Havelberg

von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitdt Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Manfred Opper
Gutachter: Prof. Dr. Oliver Brock
Gutachter: Prof. Dr. George Konidaris
Gutachter: Prof. Dr. Marc Toussaint

Tag der wissenschaftlichen Aussprache: 02. Mai 2018

Berlin 2018

Thesis advisor: Professor Oliver Brock Rico Jonschkowski

Learning Robotic Perception
Through Prior Knowledge

ABSTRACT

Intelligent robots must be able to learn; they must be able to adapt their behavior
based on experience. But generalization from past experience is only possible based on
assumptions or prior knowledge (priors for short) about how the world works.

I study the role of these priors for learning perception. Although priors play a central
role in machine learning, they are often hidden in the details of learning algorithms. By
making these priors explicit, we can see that currently used priors describe the world
from the perspective of a passive disinterested observer. Such generic Al priors are useful
because they apply to perception scenarios where there is no robot, such as image clas-
sification. These priors are still useful for learning robotic perception, but they miss an
important aspect of the problem: the robot.

Robots are neither disinterested nor passive. They are trying to achieve tasks by inter-
acting with the world around them, which adds structure to the problem and affords new
kinds of priors, which I call robotic priors. The questions are: What are the right robotic
priors and how can they be used to enable learning?

I investigate these questions in three different perception problems based on raw visual
input: 1. learning object segmentation for picking up objects in the Amazon picking
challenge, 2. learning state estimation for localization and tracking, and 3. unsupervised
learning of state representations that facilitate reinforcement learning.

To solve these problems, I propose three sources of prior knowledge—1. the robot’s
task, 2. robotic algorithms, and 3. physics—and develop ways to encode these priors
for the corresponding learning problems. Some of these priors are best encoded as hard
constraints that restrict the space of hypotheses considered during learning. Other priors
are more suitable to be encoded as preferences for certain hypotheses in the form of
learning objectives.

My experiments across these problems consistently show that robotic-specific prior
knowledge leads to more efficient learning and improved generalization. Based on these
results, I propose to take a prior-centric perspective on machine learning, from which
follows that we need robotics-specific machine learning methods that incorporate appro-
priate priors.

i

Doktorvater: Professor Oliver Brock Rico Jonschkowski

Lernen von robotischer Wahrnehmung
durch Vorwissen

ZUSAMMENFASSUNG

Intelligente Roboter miissen in der Lage sein zu lernen, um ihr Verhalten auf Basis von
Erfahrung anzupassen. Um aus spezifischen Erfahrungen allgemeine Schliisse zu ziehen,
bedarf es jedoch Annahmen oder Vorwissen iiber die Welt.

Ich untersuche die Bedeutung dieses Vorwissens fiir das Lernen von Wahrnehmung.
Obwohl Vorwissen eine zentrale Rolle im maschinellen Lernen spielt, ist es oft in den
Details der Lernalgorithmen verborgen. Wenn wir dieses Vorwissen explizit machen,
wird deutlich, dass aktuell benutztes Vorwissen die Welt aus der Sicht eines passiven
ziellos Beobachters beschreibt. Solche allgemeinen KI-Annahmen sind hilfreich, weil sie
auf Wahrnehmungsprobleme wie Bildklassifizierung anwendbar sind, bei denen es keinen
Roboter gibt. Solche Annahmen sind auch fiir das Lernen robotischer Wahrnehmung
hilfreich, aber sie tibersehen einen wichtigen Aspekt des Problems: den Roboter.

Roboter sind weder ziellos noch passiv. Sie versuchen bestimmte Aufgaben zu ldsen,
indem sie mit der Welt interagieren. Dadurch ergibt sich zusétzliche Problemstruktur,
die in anderen Arten von Vorwissen genutzten werden kann. Es stellen sich daher die
Fragen was die richtigen Robotik-Annahmen sind und wie diese genutzt werden kénnen,
um Lernen zu ermoglichen.

Ich beschéftige mich mit diesen Fragen in drei unterschiedlichen Wahrnehmungsprob-
lemen auf Basis von visuellen Eingaben: 1. Lernen von Objektsegmentierung die es
ermoglicht bestimmte Objekte in der Amazon Picking Challenge zu greifen, 2. Lernen
von Zustandsschatzung fiir Lokalisierung und Nachfithrung und 3. uniiberwachtes Lernen
von Zustandsrepréisentationen, die bestéarkendes Lernen ermoglichen.

Um diese Probleme zu l6sen, schlage ich drei Quellen fiir Vorwissen vor — 1. die Aufgabe
des Roboters, 2. Algorithmen aus der Robotik, 3. physikalische Gesetze — und entwickle
Moglichkeiten Annahmen aus diesen Quellen in den entsprechenden Lernproblemen zu
nutzen. Manche dieser Annahmen lassen sich am besten als harte Bedingungen kodieren,
die den Raum der moglichen Hypothesen einschranken die beim Lernen in Betracht gezo-
gen werden. Andere Annahmen sind besser dazu geeignet mit ihnen konsistente Hypothe-
sen zu bevorzugen, indem diese Annahmen als Lernzielen implementiert werden.

Meine Experimente in den drei untersuchten Problemen stimmen darin iiberein, dass
robotikspezifische Annahmen Lernen effizienter machen und Generalisierung verbessern.
Aufgrund dieser Ergebnisse argumentiere ich fiir eine Sicht auf maschinelles Lernen, die
Vorwissen ins Zentrum der Untersuchung stellt. Aus dieser Sicht folgt, dass wir robotik-
spezifische Lernmethoden mit entsprechenden Annahmen bendtigen.

il

THIS TEXT IS DEDICATED TO THOSE WHO CHALLENGE BELIEFS,
SEARCH FOR THE TRUTH, AND INSPIRE OTHERS TO DO THE SAME.

iv

Acknowledgments

These last five and a half years have been a fantastic experience. They were exciting,
challenging, fun, and rewarding. I am grateful to everyone who has helped me walk this
path and happy about everyone I have met on that journey.

First of all, I want to wholeheartedly thank my family who have been nothing but
supportive and kind to me. In particular, I want to thank my grandma who has taught
me reading, which was not an easy task; I want to thank my dad and my brother for
always being there for me without hesitation, and I want to thank my mom who has
taught me gratitude and boldness and who has nudged me—more than anyone else—in
directions that in hindsight turned out to be right.

I also want to thank my friends for making this time so enjoyable: Anna-Lena, thank
you for making me happy through your kindness and your wits, thank you for going out of
your way to support me in these past weeks and for watching Star Wars with me—I love
you. Daniel, you have been the best flatmate anyone could ever hope for. Hannes, I am
always enthusiastic when we meet, unless we talk about politics of course. Dave, without
our early RoboCup project in school, I might never have studied computer science. Thank
you for that!

I am also extremely grateful to every member of the RBO lab for the creating an
inspiring, supportive, honest, and friendly atmosphere. Thank you, Alexander, Antonin,
Arne, Armin, Can, Clemens, Divyam, El6d, Eveline, Florian, Gabriel L., Gabriel Z.,
Henrietta, Ingmar, Ines, Janika, Jessica, Johannes, José, Kolja, Lizzy, Mahmoud, Malte,
Manuel, Marianne, Melinda, Michael, Oliver, Philipp, Raphael, Robert, Roberto, Roman,
Sebastian H., Sebastian K., Stanimir, Steffen, Tim, Thomas, Vincent, and Wolf. I could
not have dreamed up a better research lab for doing my PhD. Thank you Clemens for 30
cakes, thank you Arne for being relaxed—always, thank you Manuel for the annoyotron,
thank you Johannes and Robert for not being mad about me placing the annoyotron
in your office, thank you Janika for having held the lab together, thank you Can and
Jessica for Tango, thank you Sebastian for great discussions about machine learning and
fierce foosball games, thank you Vincent for always being friendly and helpful, thank you
Ines for your pep talks during our bouldering sessions, thank you Roberto for last-minute
emergency tips for printing this thesis ...

I want to thank the folks from DeepMind—Alistair, Andrei, Andrew, Cosmin, Dan,
David, Diego, Fran, Fumin, Gabe, Hayley, Igor, Jon, Kayleigh, Martin, Mateusz, Nicolas,
Roland, Tobi, Thomas, Thomas, Tom, Yuval, and many others—for the amazing intern-
ship that I was able to spend there. This time showed showed me that inspiring and fun
academic research is possible outside of a university. I also want to thank Mike, Erich,
and Karol for important advice about which path to take next.

Lastly, I want to thank my committee members, not just for being on my committee
but for having been my mentors along the way. Thank you Marc for introducing me
to machine learning research. In our weekly discussions during my Master’s thesis, you
infected me with your enthusiasm about learning which planted the seed for my PhD
topic. Thank you George for our meetings at conferences, via skype, and at Brown. You

gave me plenty of helpful advice throughout this journey. And lastly, thank you Oliver, I
have learned so much from you about teaching, research, and about being rigorous. You
taught me to question everything and to not be afraid of the state of confusion which this
approach regularly leads to. You have taught me to restructure my thoughts over and
over and over again until it finally all makes sense.

Again, a big thanks to everyone of you and all those that I did not mention here
personally. Since this thesis could not have come about without your help, it is dedicated
to you.

vi

PREPUBLICATION AND STATEMENT OF CONTRIBUTION

Parts of this thesis have been previously published in the following articles:

[A] Rico Jonschkowski, Clemens Eppner*, Sebastian Hofer*, Roberto Martin-Martin®,
and Oliver Brock. Probabilistic Multi-Class Segmentation for the Amazon Picking
Challenge. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2016.

[B] Clemens Eppner*, Sebastian Hofer*, Rico Jonschkowski*, Roberto Martin-Martin®,
Arne Sieverling®, Vincent Wall*, and Oliver Brock. Lessons from the Amazon Picking
Challenge: Four Aspects of Building Robotic Systems. In Proceedings of Robotics:
Science and Systems (RSS), 2016.

[C] Rico Jonschkowski and Oliver Brock. End-To-End Learnable Histogram Filters. In
Workshop on Deep Learning for Action and Interaction at NIPS, 2016.

[D] Rico Jonschkowski and Oliver Brock. Learning State Representations with Robotic
Priors. Autonomous Robots, 39(3):407-428, 2015.

[E] Antonin Raffin*, Sebastian Hofer*, Rico Jonschkowski, Oliver Brock, and Freek Stulp.
Unsupervised Learning of State Representations for Multiple Tasks. In NIPS 2016
Workshop on Deep Learning for Action and Interaction, Barcelona, Spain, 2016.

[F] Rico Jonschkowski, Roland Hafner, Jonathan Scholz, and Martin Riedmiller. PVEs:
Position-Velocity Encoders for Unsupervised Learning of Structured State Representa-
tions. In New Frontiers for Deep Learning in Robotics Workshop at RSS, 2017.

[G] Rico Jonschkowski*, Sebastian Hofer*, and Oliver Brock. Patterns for Learning with
Side Information. arXiv:1511.06429, 2015.

* contributed equally.

OWwWN CONTRIBUTIONS

[A] (©2016 IEEE) I am the sole first author of this paper. I conceived and evaluated the
algorithm presented in the paper and made the main contributions to algorithm design,
implementation, and paper writing. The next three authors (CE, SH, RMM) contributed
to algorithm design, implementation, data collection, evaluation, and paper writing. The
last author (OB) gave scientific advice and contributed to paper writing.

[B] I share the first authorship with the indicated authors, all of which contributed equally
to system design, implementation, and evaluation as well as paper writing. The last au-
thor (OB) conceived the project, gave scientific advice, and contributed to paper writing.

[C] T am the sole first author of this paper. I conceived, designed, implemented, and

evaluated the algorithm presented in the paper and made the main contribution to pa-
per writing. The last author (OB) gave scientific advice, and contributed to paper writing.

vii

[D] T am the sole first author of this paper. I conceived, designed, implemented, and
evaluated the algorithm presented in the paper and made the main contribution to pa-
per writing. The last author (OB) gave scientific advice and contributed to paper writing.

[E] T am the third author of this paper. I contributed code based on [D] and was involved
in proposing the two new priors and formulating them as learning objectives. I also gave
scientific advice and contributed to paper writing. The first two authors (SH and AR)
share the first authorship. Both were involved in designing, implementing, and evaluating
the algorithm and made the main contributions to paper writing. The fourth author (OB)
gave scientific advice and contributed to paper writing. The last author (FS) together
with SH conceived the project idea. FS also gave scientific advice and contributed to
paper writing.

[F] T am the sole first author of this paper. I conceived, designed, implemented, and
evaluated the algorithm presented in the paper and made the main contribution to paper
writing. The second author (RH) contributed code to evaluate the learned representations
for reinforcement learning and helped with running the experiments. The third author
(JS) gave scientific advice and contributed to paper writing. The last author (MR) pro-
posed experiments, gave scientific advice, and contributed to paper writing.

[G] T share the first authorship with SH. We contributed equally to the project idea, lit-
erature survey, implementation, experiments, and paper writing. The last author (OB)
gave scientific advice and contributed to paper writing.

APPEARANCE IN THIS THESIS

Chapters 1 and 2 are original to this thesis.

Chapter 3 contains parts that were previously published in [A] and [B], in particular the
description of the segmentation method, the experiments, and the results.

Chapter 4 contains parts that were published in [C], which introduced differentiable
histogram filters.* The work on differentiable particle filters is original to this thesis.

Chapter 5 contains parts that were previously published in [D], [E], [F], and [G]. [D]
proposed the original algorithm, [E] and [F] introduced the extension discussed in Sec-
tion 5.6 and 5.7, and [G] generalized insights from this work as discussed in Section 5.8.

Chapters 3-5 extend the publications above by providing additional background infor-
mation, an extended treatment of task-specific, algorithmic, and robotic priors, and by

relating these separate lines of work to each other.

Chapter 6 is original to this thesis.

*They were originally referred to as end-to-end learnable histogram filters.

viii

Contents

1 Introduction 1
1.1 Robotics-Specific Machine Learning 2
1.2 This Thesis: Robotics-Specific Machine Learning for Perception . 3

2 Background: Machine Learning and Prior Knowledge 7
2.1 Priors in Bayesian Statistics and Machine Learning 7
2.2 Machine Learning Needs Priors 8
2.2.1 Example 1: Find the Rule 8
2.2.2 There is No Free Lunch 9
2.2.3 The Universal Prior—Is Occam’s Razor Sufficient? 9
2.24 Relation to Cognitive Science and Psychology 10
2.3 Encoding Priors into Machine Learning 11
2.3.1 Example 2: Logistic Regression 11
2.3.2 Four Machine Learning Components 13
2.3.3 Overfitting and the Bias/Variance Dilemma 14
2.34 Encoding Priors in the Four Components 15
2.4 Machine Learning Problems and Methods 17
2.4.1 Supervised Learning oo 18
2.4.2 Unsupervised Learning 000 20
2.4.3 Reinforcement Learning 21
244 Machine Learning Problems in This Thesis 22
2.5 Priors in Machine Learning 22
2.5.1 Ubiquitous ML Priors 22

Vector Representation 23
IID Data o o o 23
Smoothness 23
Simplicityo 24
Good Local Optima 24
2.5.2 Generic AT Priors 25
Independent Properties 25
Hierarchy 26
Symmetry 26
Locality 27
2.5.3 The Missing Priors 27

3 Learning Object Segmentation Through Task-Specific Priors 29
3.1 Introduction 29
3.1.1 Contributions 31
3.1.2 Outline o 32
3.2 Related Work 33

ix

3.3 Task-Specific Priors 34

3.3.1 Task Analysis: The Amazon Picking Challenge 35
3.4 Task-Specific Object Perception 37
3.4.1 Object Perception Pipeline 37
3.4.2 Features 39
3.4.3 Object Segmentation L oo 40
Learning Phaseo 40
Segmentation Phase oo 0oL 41
3.5 Experiments and Results 43
3.5.1 Performance Evaluations 0oL 43
Performance at Amazon Picking Challenge 43
Performance by Object 45
Increasing the Number of Objects per Bin 46
3.5.2 Comparison to CRF o 46
3.5.3 Variants of our Method oL 47
Features 47
Pixel Labeling and Selection 48
Re-labeling and Post-processing 49
Random Forest for Pixel Probability Estimation 49
3.6 Conclusion 50
3.6.1 SUMMATY o o 50
3.6.2 Machine Learning and Task-Generality 51
Learning State Estimation Through Algorithmic Priors 53
4.1 Introduction 53
4.1.1 Contributions Lo 5}
4.1.2 Outline 56
4.2 Background 57
4.2.1 The State Estimation Problem o7
4.2.2 Bayes Filters o7
4.2.3 End-to-End Learning and Differentiability 60
4.3 Algorithmic Priors. 60
4.4 Related Work 62
4.5 Differentiable Histogram Filters 63
4.5.1 Implementation 63
Belief 63
Prediction 64
Measurement Update 65
Learning 65
4.5.2 Experiments and Results 67
Experiment: Learning State Estimation in Unknown Environments 68
Result: Improved Data-Efficiency 68
Result: Optimization of End-to-End Performance 69
Result: Enabling Unsupervised Learning 70
4.5.3 Limitations 70
4.6 Differentiable Particle Filters 72

4.6.1 Implementation 73

Belief 73
Prediction 73
Measurement Update 74
Particle Proposal and Resampling 74
Supervised Learningo 75
4.6.2 Experiments and Results 75
Experiment: Learning Global Localization 76
Result: Algorithmic Priors Enable Explainability 7
Result: End-to-End Learning Improves Performance 80
Result: Algorithmic Priors Improve Performance 81
Result: Algorithmic Priors Lead to Policy Invariance 81
Experiment: Learning Visual Odometry 83
Result: Sample-Based Representations Outperform Gaussians . . . 84
4.7 Conclusion 85
4.7.1 SUMMAry 85
4.7.2 Alternatives to End-to-End Learning 85
Learning State Representations Through Physics-based Priors 87
5.1 Introduction. 87
5.1.1 Contributions 89
5.1.2 Outline 90
5.2 Background and Related Work 91
5.2.1 The State Representation Learning Problem 91
5.2.2 Approaches to State Representation Learning 92
5.3 Robotic Priors 95
5.3.1 Priors About Interacting with the Physical World 95
5.3.2 Five Robotic Priors 96
5.3.3 Additional Priors in Extensions 1 and 2 97
5.4 Optimizing Consistency with Robotic Priors 98
5.4.1 Formulation as Optimization Problem 98
5.4.2 Learning with Robotic Priors (LRP) 100
5.5 Experiments and Results, 103
5.5.1 Learning Process oo 104
5.5.2 Invariance to Perspective 108
5.5.3 Ignoring Distractorso 110
5.5.4 Mapping to a Higher-Dimensional State Space 115
5.5.5 Improved Performance in Reinforcement Learning 116
5.5.6 Transfer Learningo 121
5.5.7 Verification on a Real Robot 124
5.6 Extension 1: Learning State Representations for Multiple Tasks . 125
5.6.1 Multi-Task Learning with Robotic Priors (MT-LRP) 127
5.6.2 Experiments and Results 129
Result: Extracts Better State Representations 130
Result: Detects All Tasks 130
Result: Task-Consistency Prior is Necessary 131

X1

5.7 Extension 2: Adding Position-Velocity Structure to the State . .
5.7.1 Position-Velocity Encoders (PVEs)
Modelo
Robotic Priors and Learning Objectives
Training Procedure
5.7.2 Experiments and Results
Tasks
Result: PVEs Learn Position-Velocity Representations

Result: Learned States Allow Regression to True Positions and
Velocities

Result: Learned Representations Enabling Reinforcement Learning
5.8 Relation to Learning with Side Information
5.8.1 Definition of Learning with Side Information.
Training Procedures
5.8.2 Patterns for Learning with Side Information

Direct Pattern
Multi-Task Patterno
Multi-View Pattern
Pairwise Patterns
5.9 Conclusion
5.9.1 SUMMATY o
5.9.2 Future Directions: Structured State Representations

6 Conclusion
6.1 Machine Learning Research
6.1.1 Learning Is a Means, Notan End
6.1.2 Problems and Data Sets Are Not the Same
6.1.3 Reinforcement Learning Requires Instrumented Environments
6.1.4 Simulation Is Useful But No Silver Bullet
6.2 The Role of Priors in Machine Learning
6.2.1 Combining Supervised, Unsupervised, and Reinforcement Learning . .
6.2.2 Prior-Centered Machine Learning
6.2.3 The True Potential of Deep Learning
6.2.4 Robotics-Specific Machine Learning
6.3 This Thesis
6.3.1 What: Tasks, Algorithms, Physics
6.3.2 How: Hypothesis Spaces and Learning Objectives
6.4 Research Vision: A Robot-Learning System
6.5 Final Thoughtso

Appendix A
A.1 Derivatives of Learning Objectives
A.2 Learning with Side Information
A21 Patterns as Probabilistic Graphical Models
A22 Overview of Related Work

References

xii

131

142
143
145

INTRODUCTION

Versatile robots need to react to their environment. Instead of executing their movements
blindly, they need to sense their surroundings and act according to their sensory input.
Imagine a robot fetching an object; if the object slips out of its hand, the robot should
not continue as if the object was still there, but recognize this failure and react to it.
Such reactive short-term adaptations are important for intelligent robots but they are not

sufficient.

Robots not only need to react, they also need to adapt how they react to adjust their
behavior long-term: If a robot fails to grasp an object many times in a row, it should try
to grasp it differently next time; and it should remember what worked and what did not
work in order to improve with experience. This long-term adaptation is what I refer to

as learning. And learning is what this thesis is about.

More specifically, my thesis is about how robots can learn perception, which for this
thesis I define as learning to extract task-relevant information from sensory input. This
definition is consistent with Marr (1982) who describes vision as “a process that produces
from images of the external world a description that is useful to the viewer and not

cluttered with irrelevant information”.

Our working hypothesis is that robots need to learn perception in order to learn new
tasks. The main argument is the following: Different tasks require information about
different aspects of the environment. As a result, versatile robots must have task-general
sensors that provide the union of the information required by these tasks. But the high
dimensionality of the sensory input and the “clutter” in the form of task-irrelevant infor-
mation makes learning any specific task very difficult. Therefore, robots need to learn to

extract from that high-dimensional input only the relevant information.

The key insight that I am going to present in this thesis is that the robotic domain

Chapter 1. INTRODUCTION

affords large amounts of prior knowledge that we can leverage to learn perception more
efficiently. 1 will refer to these bits of prior knowledge as priors (Bengio et al., 2013).
Priors are things that robots do not need to learn either because they are universally
true, like the laws of physics, or because they represent heuristics that are useful for the
problem domain. By incorporating such priors into the learning process, we can generate

learning methods that are specifically tailored to robotics.

1.1 ROBOTICS-SPECIFIC MACHINE LEARNING

Before going into more detail, I will present additional background information. In the
context of artificial intelligence, the subject of learning is called machine learning and the
main paradigm is the following: Instead of solving a problem directly, e.g. by writing
an algorithm, we solve it indirectly by gathering data from the problem and applying a
learning algorithm on that data, which then produces a solution for the problem.

The promises of this indirect approach to problem solving are: 1) it can outperform
directly engineered solutions, such as in the computer vision domain (Krizhevsky et al.,
2012), and 2) it can automate the process of problem solving, which is what we need for
intelligent robots. Without humans in the loop, robots could apply learning algorithms
as they go and learn from experience. But this second promise requires the learning meth-
ods to be general enough to find solutions to all problems that a robot might encounter.
Therefore, the goal of most machine learning research is to find algorithms that are maxi-
mally general so that they produce a wide range of useful solutions for different problems
based on data from the problem at hand.

However, it is important to understand that machine learning can never be completely
general. Learning from a blank slate is impossible because learning algorithms can only
generalize from observed data points to new cases using additional assumptions, priors,
or inductive biases (I use these terms interchangeably). This insight directly follows from
the no-free-lunch theorem (Wolpert, 1996) which proves that no machine learning method
works better than random guessing when averaged over all possible problems. The only
way to improve over random guessing is to restrict the problem space and incorporate
prior knowledge about this space into the learning method. This view is also reflected
in the need for prior probabilities in Bayesian statistics, the need for biases in machine
learning (Mitchell, 1980; Geman et al., 1992), and the effectiveness of heuristics (Tversky
and Kahneman, 1974; Gigerenzer and Brighton, 2009).

Of course, there are machine learning methods that apply to a wide range of real world
problems by incorporating fairly general priors, e.g. smoothness, simplicity, or hierarchical
structure (Bengio et al., 2013). These priors are so general because they describe the world

from the perspective of a disinterested passive observer, which makes them applicable to

1.2. THis THESIS: ROBOTICS-SPECIFIC MACHINE LEARNING FOR PERCEPTION

many learning problems in machine learning that do not include a robot, such as image
classification. The same priors are still useful for robotic perception but they do not
exploit the additional problem structure of robotics. Since robots do have to solve certain
tasks, task-irrelevant information can be ignored in perception. And since robots can
perform actions and examine the result, they can reveal additional information about the
environment (Bohg et al., 2017). This problem structure affords new priors about the
world from the perspective of a task-driven and active robot.

Our hypothesis is that, in order to achieve efficient learning for robots, we need to
encode such robotic priors to generate robotic-specific machine learning methods. We
must give up generality and commit to the restricted problem space of robotics. We must
assume invariant properties of robotic problems that do not need to be learned. And we
must find ways to incorporate those as prior knowledge into learning algorithms.

For robotics-specific machine learning, we need to answer two fundamental questions:
1. What are the right priors for robotics?
2. How can we best incorporate these priors into machine learning?

Although my thesis certainly cannot provide final answers to these profound questions,
it proposes answers for three specific perception problems in robotics and presents some
general insights based on these.

1.2 THIs THESIS: ROBOTICS-SPECIFIC MACHINE LEARN-
ING FOR PERCEPTION

My thesis investigates these two fundamental questions—the what and how of priors in
robotics-specific learning—in the context of robotic perception. It consists of three main
chapters that each present a perception problem, a set of priors (what), and a way of
using these priors for efficient learning (how). In each of these three chapters, I propose a
sources for prior knowledge in robotics: the robot’s task, robotic algorithms, and physics.

These chapters are ordered such that their problems and solutions increase in generality.
The first perception problem is the most narrow one, and it is solved using priors that
are specific to the task at hand. The perception problems in the later chapters are more
general, as are the priors that I encoded in their solutions. Since these priors are based
on robotic algorithms and the laws of physics, the resulting methods are applicable to a
wide range of robotic tasks. Taken together, these chapters span a spectrum of perception
problems and appropriate priors of different generality and demonstrate multiple ways of

incorporating priors into machine learning. The three main chapters are the following:

Chapter 1. INTRODUCTION

o Chapter 3 Learning Object Segmentation Through Task-Specific Pri-
ors addresses the problem of object segmentation in the Amazon picking chal-
lenge (APC), where the goal is to find the segment of an image that shows the
target object, such that the robot can locate that object and pick it up. This task
was challenging because the number of manually annotated training images was
limited to a handful per object while the resulting method had to be robust to con-
ditions that deviated from the lab setting, e.g. lighting that could not be controlled

in the challenge venue.

I solved this problem using prior knowledge about the task (what), for example the
fact that the objects were placed in a known shelf and that every shelf bin only
contained a small number of known objects. I encoded these task-specific priors
in the segmentation method by defining a set of useful features such as position in
the shelf and by ignoring other objects during segmentation (how). The resulting
method only has a small number of learnable parameters and a highly restricted

hypothesis space.

o Chapter 4 Learning State Estimation Through Algorithmic Priors focuses
on the problem of learning to estimate a latent state from a sequence of actions and
observations, for example learning to localize in a maze based on camera images and
odometry. The difficulty in this task comes from the fact that single observations
are insufficient to estimate the state, which is why the method needs to learn how

to integrate information from observations and actions over time.

For this problem, I used the Bayes’ filter algorithm as prior knowledge (what) be-
cause it makes useful assumptions about the structure of the problem by recursively
estimating a probability distribution over states using prediction and measurement
update. By implementing this algorithm in a differentiable way, the parameters
of the motion model and measurement model can be learned end-to-end by back-
propagation (how). Thus, the algorithmic prior is encoded as a restriction of the

hypothesis space to only consider valid Bayes filters during learning.

o Chapter 5 Learning State Representations Through Physics-based Priors
addresses the problem of unsupervised learning of state representations for a given
reinforcement learning task. Here, the robot needs to learn to extract from its
observations the relevant information for learning a policy that maximizes long
term reward. The challenge of this problem is that the robot does not receive any

supervision about what information is relevant for the task.

To solve this problem, I formulated prior knowledge about interacting with the
physical world (what). The intuition behind these physics-based priors is the follow-

ing: Since internal state representations must reflect properties of the world, the

1.2. THis THESIS: ROBOTICS-SPECIFIC MACHINE LEARNING FOR PERCEPTION

same physical laws that apply to the real world must also apply to these internal
representations. Therefore, knowledge about physical laws can help to find use-
ful state representations. I implemented this idea by formulating consistency with

physics-based priors as learning objectives (how).

Before coming to these three main chapters, the next chapter will first discusses the
most relevant concepts for this thesis. This does not only provide background information
about machine learning basics, but also presents the a certain perspective on the topic

that motivates my work and underlies the following chapters.

Chapter 1. INTRODUCTION

BACKGROUND: MACHINE LEARNING
AND PRIOR KNOWLEDGE

In this chapter, I will introduce machine learning concepts from a perspective that focuses
on the central role of prior knowledge. This perspective forms the foundation of my thesis.
It builds on inductive biases (Mitchell, 1980), the bias-variance dilemma (Geman et al.,
1992), the no-free-lunch theorem (Wolpert, 1996), and Al priors (Bengio et al., 2013).

The main idea is simple:

Machine learning combines prior knowledge and experience in order to gener-

alize to new situations.

I will refer to different bits of prior knowledge as priors and I will call gathered experi-
ence data. Machine learning fuses priors and data to generate a function that can predict
properties of new unseen test data. Making accurate predictions about these test data is

the goal and measure of success in machine learning.

2.1 PRIORS IN BAYESIAN STATISTICS AND MACHINE LEARN-
ING

But what do I really mean by prior? In Bayesian statistics, the word “prior” refers to
the prior probability distribution p(H) that is multiplied by the data likelihood p(D | H)
and then normalized to compute the posterior p(H | D).

p(H|D)=npD|H)p(H),

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

where 1 denotes the normalization and the random variables D and H represent data and
the inferred hypothesis. In this way, priors represent knowledge, before taking the data
into account, as probability distributions.

In machine learning, the word prior is used more broadly in an analogous fashion
(Bengio et al., 2013). In the context of my thesis, a prior represents knowledge about a
class of learning problems that is available before taking into account data from a specific
problem instance. I do not restrict the representation of these priors to be probability
distributions.

Priors are the basis on which we interpret data. In this sense, machine learning methods
are the implementation of prior knowledge about a learning problem. From this fact
follows that machine learning methods cannot be general because the prior knowledge they
encode restricts the space of problems for which they are useful. Without this restriction,
machine learning is impossible because data can be interpreted in prohibitively many

(usually infinite) ways, as we will see in the next section.

2.2 MACHINE LEARNING NEEDS PRIORS

2.2.1 EXAMPLE 1: FIND THE RULE

Let me illustrate why we need prior knowledge to generalize from data using a simple
math puzzle from Pierce (2017). Suppose you are the machine learning method; you
receive a set of data and you need to infer a predictive function. How would you continue
this sequence of numbers: z14 = 1,2,4,77 What is your best guess for x57 Please take
a few moments and try to solve this problem before reading on. It will make this point
more perspicuous.

How can you find the rule? Omne approach might be to look at the differences from
each element to the next. If you do that, you will find that xo = 1 + 1, x3 = x5 + 2 and
x4 = x3 + 3. From these examples you can induce the rule that z; = x;_1 + ¢ — 1 with
the base case x1 = 1. Using this rule, you would predict x5 to be x4y +4 =7+ 4 = 11.
This is a reasonable solution but not the only one. Another rule that is consistent with
the observations is x; = x;_1 + x;_o + 1 with xy = 1 and x5 = 2, according to which zj
should be 12. Equally plausible is the rule xz; = z;_1 + x;_o + x;_3 with base cases for
¢ < 3. This rule predicts x5 to be 13. Now, we have three different functions that explain
the data perfectly but that all make different predictions about new data. And how can
we be certain that the underlying process that generates the sequence corresponds to a
deterministic recursive formula? This sequence could be something entirely different. For
example, the numbers 1, 2, 4, 7 also happen to be a sequence of digits in 7 starting with the
16,992nd decimal place, m = 3.1415...1247679.... If that is the rule which generated

2.2. MACHINE LEARNING NEEDS PRIORS

the sequence, then x5 should be 6 because it is the next digit in line. And we could find

endless other explanations for this sequence that lead to yet different predictions.

2.2.2 THERE 1S NO FREE LUNCH

Without knowing anything about this sequence, we have no way of deciding which of
these rules is the right one and we cannot confidently make any predictions about how
the sequence continues. I have illustrated this principle with a simple example, but the
same arguments apply to every machine learning problem from image classification to
learning autonomous helicopter flight.

Wolpert (1996) formulated the need for prior knowledge mathematically as the no free
lunch theorem and proved it for supervised learning. The no free lunch theorem roughly
states that no machine learning method outperforms random guessing when averaged
over all possible learning problems. The only way to improve over random guessing is to
restrict the problem space and incorporate prior knowledge about this problem space into

the learning method.

2.2.3 THE UNIVERSAL PRIOR—ISs OccAaM’S RAZOR SUFFICIENT?

The no free lunch theorem proves that we need some prior knowledge. But maybe there
is a universal prior that applies to all problems we are interested in. For example, would
it be sufficient to always choose the simplest rule that is consistent with the data? The
simplicity prior, also called Occam’s razor, states that simpler rules are more likely than
complex ones and should be preferred. Is this prior sufficient?

Unfortunately, the simplicity prior alone does not solve our problem because it does
not specify how to measure complexity. In the example above: Which of the rules is the
most complex one? Is the digit sequence of m a more or less complex rule than a recursive
formula? There is no objective answer to this question without specifying a common
measure of complexity.

One attempt to resolve this dilemma is Solomonoff induction or Kolmorogov complexity
(Solomonoff, 1964; Kolmogorov, 1965). These mathematical formulations of Occam’s razor
force rules into a common representation—in this case the shortest computer program that
represents the rule—and then compare the length of these programs. Shorter programs
are simpler and therefore more likely. However, this complexity measure depends on the
programming language and is therefore not objective either (Leike and Hutter, 2015). A
rule that is simple to express in one language might be arbitrarily complex in another one.
Finding the right programming language such that the shortest programs are the most
likely explanations for the data is simply another way of searching for useful priors. It

might be an interesting route to express prior knowledge in the form of a programming

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

language that serves as a generative model for the world around us, but the need for prior

knowledge remains.

2.2.4 RELATION TO COGNITIVE SCIENCE AND PSYCHOLOGY

There is an interesting link between this topic and cognitive science. The argument
that learning requires prior knowledge does not only apply to machine learning, it also
applies to learning in biological organisms, including humans. The fact that humans are
remarkable at generalizing from very small amounts of data suggests that the human mind
exploits large amounts of prior knowledge (Gigerenzer and Brighton, 2009). Research in
this area has identified a number of priors, which are usually called cognitive biases and
heuristics (Tversky and Kahneman, 1974; Gigerenzer and Brighton, 2009; Baron, 2000).
Haselton et al. (2015) suggests that these priors might have been incorporated into our
learning mechanism by natural selection because they helped to solve evolutionary relevant
problems.

Dubey et al. (2018) investigated human priors in video games by testing humans in
systematically altered game versions that are inconsistent with these priors, e.g. because
object semantics are masked or because the direction of gravity was changed. They found
that, while state of the art reinforcement learning methods perform equally poorly in
each of these variants, human performance is substantially better in the original game
that does not restrict the use of their priors.

This topic is also related to the nature vs. nurture debate in psychology, a debate about
the degree to which human traits are determined by genetics (nature) or shaped by the
environment (nurture). We can rephrase this question to “How much is human behavior
innate vs. learned from individual experience?”. If we view human behavior as a result
of learning throughout life, the innate properties correspond to prior knowledge in the
“human learning algorithm”.

Recently, there has been a very comprehensive meta-study that should finally settle
the nature vs. nurture debate. Polderman et al. (2015) presented a meta-analysis of the
heritability of human traits that summarizes 50 years of twin studies (17,804 traits from
2,748 publications that include 14,558,903 twin pairs) and comes to the conclusion that
“across all traits, the reported relative contribution of genes and environment is equal”
(49% genes and 51% environment).

This result does not only show that both nature and nurture (or priors and data)
contribute to human behavior, it also demonstrates that their relative contribution is of
very limited help to understand how human behavior emerges from nature and nurture.
The most relevant question to gain this understanding seems to be how nature and nur-
ture interact. In machine learning, we must analogously study how we can encode prior

knowledge into learning algorithms to improve generalization.

10

2.3. ENCODING PRIORS INTO MACHINE LEARNING

T
1
1
1
1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
IV\
1%
1
1
1
1
1

T
1
1
1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

X 0 < 0
-2 4 -2 4
-4 - —4 -
-4 -2 0 2 4 -4 -2 0 2 4
x0 x0
(a) Training (b) Test

Figure 2.1: Logistic regression. Colors denote the true classes for (a) and the predicted classes for (b). The
dashed lines denote the learned decision boundary. Prediction errors in (b) are shown as red crosses.

2.3 ENCODING PRIORS INTO MACHINE LEARNING

2.3.1 EXAMPLE 2: LOGISTIC REGRESSION

So far, I have discussed priors in machine learning on a very abstract level. Now, I would
like to ground our discussion in a simple example using logistic regression. Please bear
with me while I walk through the technicalities. The example should illuminate how prior

knowledge can be incorporated in different machine learning components.

Let us look at a supervised learning problem with data from two classes A and B. From
each class we have n = 5 samples, where each sample is described by a binary class label
y and an input vector x, which contains two features x = (1, 25)7. Our training data

consists of a set of these samples D = {x(®, y®}r_

Using these data and prior knowledge about the problem, we want to infer a function
f :x — y that can correctly predict the label for new samples. If our prior is that A and
B are separated by a line in input space, we can find such a line using logistic regression
(see Fig. 2.1).

In logistic regression, f has the following form § = f(x) = o(x?0), where § is the
predicted class, 0 is the weight vector that is being learned, and o is the sigmoid function
o(z) = H% If we apply f to the whole data set, we get y = o(X6), where X is the

matrix of input features. To construct X, we append the feature vector for each sample

11

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

with a constant 1 and stack these vectors such that row i represents the input x®:

1 1)

1z’
1 22 O
X — 1 2
1 x&”) xé")

The weight vector consists of three parameters, § = (g, 6;,602)T, where 6, is the bias
term that multiplies the constant 1 and 6; and 0y are the weights for the corresponding
features z; and z,. For each sample i, f computes 2V = x®"9 and then applies the
logistic function to produce a value p® between zero and one: p' = a(z(i)). We use this
value as the probability of the sample belonging to class A, such that 1 — p(denotes the
probability of class B.

The sigmoid function maps 0 to a probability of 0.5,

1.0
negative values to lower probabilities and positive values

to higher probabilities (see Fig. 2.2). Since the input T o051

to the sigmoid function is linear in x, f defines a line,

0 =2z =0y + x101 + 2265, on which the classes A and B 0'0__'10 : "
are equally likely. This line splits the input space into a z
part where z > 0, p > 0.5, and therefore class A is more Figure 2.2: Sigmoid function

likely and a part where z < 0, p < 0.5, and therefore
class B is more likely.

With logistic regression, we can estimate the parameters of this line from data (see
Fig. 2.1a). After training, we can use the learned f to predict the class label for new
samples that were not seen during training. The goal is to minimize the expected error
on the test data; the function learned in this example makes one prediction error (see
Fig. 2.1b).

After having introduced this learning setting, the parameters, and the result, I will
next describe how logistic regression estimates the line parameters from data. Using this
example, I will introduce the four main components of machine learning and how priors

can be encoded into each of them.

12

2.3. ENCODING PRIORS INTO MACHINE LEARNING

Data Machine Learning
Optimization
Method Data + Learning Algorithm
Objective Data + Hypothesis Space + Search Method
Function

. Data + Hypothesis Space + Objective Function + Optimization Method
Hypothesis Space

(a) Learni (b) Factorization of machine learning
a) Learning process

Figure 2.3: The components of machine learning. (a) shows how these components interact to fit a hypothesis
to data: Starting at some point in the hypothesis space, we estimate the loss with respect to our objective
function based on the training data (green dot at the top). Using an optimization method such as gradient
descent, we update our hypothesis, evaluate it again and repeat these steps until we find an optimum of the
objective function. (b) depicts this factorization of machine learning which applies to most modern machine
learning methods.

2.3.2 FoOUR MACHINE LEARNING COMPONENTS

To understand the mechanics of machine learning, we must look at the different machine
learning components and their interaction (see Fig. 2.3), as proposed by Domingos (2012).
On the coarsest level, machine learning feeds data into a machine learning algorithm (e.g.
logistic regression). The learning algorithm often factorizes into a hypothesis space, which
is the space of all functions that this algorithm can learn (e.g. linear functions) and a
method to search that space for a good hypothesis that is consistent with the data. Usually,
the search method can be factorized into an objective function (e.g. correctly classifying
the training samples) and an optimization method that moves through the hypothesis

space in order to optimize the objective (e.g. gradient descent).

For the logistic regression example, we have talked about the data and its representa-
tion as a matrix X and the hypothesis space that includes all linear class boundaries by
representing f as o(X6). Accordingly, each hypothesis is represented by a vector 6, where
all possible vectors span the hypothesis space. We will now look at how we search for
the right hypothesis by defining an objective function and an optimization method. The
objective function measures the fit of a hypothesis to the data. The optimization method

changes 0 in order to optimize the objective.

We cannot directly use classification error as the objective function (also called loss
function) for gradient-based learning because it is not differentiable with respect to the
parameters 6. Therefore, we optimize data likelihood instead, which allows us to compute

how to change 0 to improve the learning objective.

The data likelihood is the product of the probability of all samples according to the
learned function p(D;0) = [T, p(y?|2D;w) = [,y — f(2?). For numerical stability
and well-behaved gradients, we maximize the logarithm of the data likelihood. And since

objectives are typically formulated as loss functions that are minimized during learning,

13

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

logistic regression uses the negative log likelihood as a loss function,
L(D,0) = = log (y — f(x";6)).

We minimize this loss function using gradient descent. After initializing the parameters
0, we repeat the following steps until convergence: Using our current parameters #, we
predict the class probabilities of our training samples and compare this prediction to the
ground truth to compute the loss L. We then change our parameters by taking a small
step in the direction of steepest descent of the loss function with respect to the parameters
of our hypothesis VyL. The step size is controlled by the gradient magnitude and the

learning rate «, which is a small positive number e.g. 0.001:
0:=60-— CYVQL.

Following this procedure, logistic regression fits a hypothesis 6 by repeatedly updating
it based on data in order to optimize the objective function (see Fig. 2.3a). The final
hypothesis (a point in the hypothesis space) corresponds to a line in feature space that

separates the two classes.

2.3.3 OVERFITTING AND THE BIAS/VARIANCE DILEMMA

Although the parameters are optimized for the training set, the goal of machine learning
is to achieve good performance, not on the training set, but on an unseen test set. A
common problem is overfitting, where the learned parameters work well on the training
set but do not generalize to the test set.

One way to remedy overfitting is to collect more training data, which reduces the need
for generalization—infinite training data from the same distribution as the test data would
cover all test samples. Unfortunately, training and test distributions can be different and
the amount of training data is limited. Therefore, we need to regularize learning by
incorporating assumptions, which can reduce the test error—if they are correct.

Geman et al. (1992) introduced the bias/variance dilemma which states that the test
error can be decomposed into two parts, bias and variance, where incorrect assumptions
lead to high bias and too few assumptions lead to high variance. While methods with high
variance overfit to the data (low training error, high test error), biased methods underfit
the data (high training error, high test error).

The authors conclude that “the bias/variance dilemma can be circumvented if one is
willing to give up generality, that is, purposefully introduce bias”, where the bias they
refer to in this statement must be “harmless for the problem at hand”. To avoid confusion

from using the term “bias” for a component of the test error as well as for a correct

14

2.3. ENCODING PRIORS INTO MACHINE LEARNING

x1
o

¥
x1
o

¥

T T T T T T T
-4 -2 0 -4 -2 0 2
x0 x0

(a) 100 training samples (b) 100 training samples + prior

H 1
H 1
4+ H 44 1
H 1
Hl 1
i 1
N 1
o) :
29 il 24
! LY
E:' ga P
] a
1 '
- o A q = o - ai 4
= 1 = ;#-‘
o 3 o
] g
i Pg® gUeEe
27 i -2 1
i 1
i 1
I 1
i i
13
—41 13 =41 1
r 1
13 1
T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
x0

X0

(c) 1000 training samples (d) 1000 training samples + prior

Figure 2.4: Effect of training set size and prior knowledge that x; is irrelevant on learned hypothesis (dashed
line) vs. true hypothesis (dotted line)

assumption about the problem, I refer to such harmless biases as priors.

2.3.4 ENCODING PRIORS IN THE FOUR COMPONENTS

Let us return to the logistic regression example and assume that we know that the class
label only depends on feature xy while feature x; is irrelevant. In other words, we know
that the correct hypothesis must be a wertical line in feature space (see Fig. 2.1). By
injecting this prior into our logistic regression approach, we can reduce overfitting and
learn a hypothesis that is much closer to the true one. This difference is strongest with
small amounts of training data (see Fig. 2.4).

But how can we encode this prior into logistic regression? Priors can be encoded in any
of the four components that we have identified earlier: data, hypothesis space, optimiza-
tion method, and learning objective. Depending on the prior, some of the components

might be more suitable than others. In this case we can indeed incorporate the prior “x;

15

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

Data
Optimization
Method

Objective -) s —

Function

Hypothesis Space
(b) Restricted hypoth- (c) Constrained opti- (d) Regularized learn-

(a) Machine learning compo- esis space mization ing objective

nents

Figure 2.5: Every machine learning ingredient can be used to incorporate prior knowledge.

is irrelevant” into any of these four components:

1. Data: We can preprocess the data by removing feature x; and only learn the weight

for feature zoy and the bias term.

2. Hypothesis space: We can restrict the hypothesis space to fix weight 6, = 0 (see
Fig. 2.5Db).

3. Optimization method: We can constrain the optimization method such that it ini-

tializes 6; as 0 and only updates 6y during optimization (see Fig. 2.5¢).

All three ways of encoding this prior lead to exactly the same result. The final implemen-

tation is different.

4. Learning objective: We can add a regularization term to the learning objective that
discourages high values of 01, e.g. Lyeg(D,6) = L(D, 8)+\0?, where X is the weight of
the regularization term (see Fig. 2.5d). Note how this implementation of the prior is
not a hard constraint but a soft objective, which allows for some flexibility to violate
our assumption that 6; should be 0 if it leads to a better fit to the training data.
The parameter A\ controls the relative importance of the regularization compared to

fitting the training data.

These approaches of encoding priors fit into the categorization of inductive biases (Mitch-
ell, 1980) into restriction biases and preference biases. Restriction biases (1.-3.) are hard
constraints that restrict the hypothesis space. Preference biases (4.) express preferences

for certain hypotheses, e.g. in the form of learning objectives (Mitchell, 1997, p. 64).

16

2.4. MACHINE LEARNING PROBLEMS AND METHODS

2.4 MACHINE LEARNING PROBLEMS AND METHODS

So far, this chapter has focused on the role of prior knowledge in machine learning and
presented a perspective on machine learning that forms the foundation of my thesis. This
section provides additional machine learning concepts that play a role in this thesis. This
section can of course only give a very rough overview of machine learning. My goal is to
explain how different machine learning concepts relate to each other. For a more detailed
introduction, I would like to point the reader to the excellent books that were written on
this topic, which are also the source for the content of this section (Mitchell, 1997; Sutton
and Barto, 1998; Friedman et al., 2001; Bishop, 2006; Goodfellow et al., 2016).

Machine learning generally considers three different categories of learning problems:
supervised, unsupervised, and reinforcement learning. I will first provide some intuition
about these categories and then describe in detail each problem category and mention
standard machine learning methods that are applied to problems in those categories.
The main difference between these three categories is the available data and the general
learning objective.

Supervised learning, which is the problem category for the example we have discussed,
assumes data in the form of input/output pairs and aims to learn a function that can
predict the correct output for new inputs. This category is referred to as “supervised”
because the outputs used for training, which are also called labels or targets, can be
thought of as being provided by a supervisor that knows the function that we want to
learn. To give an illustrative example, supervised learning is like learning to pass a
written drivers license test from a stack of practice tests that were correctly filled out by
a supervisor.

Unsupervised learning differs from this by not assuming any labels in the data. To
reuse the written test analogy, in unsupervised learning, the learner would only receive
the practice tests but not the correct answers. Since these unlabeled data do not provide
enough information to learn how to pass the test, unsupervised learning has a different
objective. The goal here is to learn something about the structure of the data, for example
that each test question consists of a picture, a short text, and a list of possible answers
or that there are clusters of questions that appear similar to each other.

Reinforcement learning is in some sense in between these two categories because the data
for reinforcement learning includes a reward signal that provides more learning feedback
than in unsupervised learning but not as much as in supervised learning. Returning to
our driving test example for the last time, here the learner could fill out practice tests and
receive feedback about how many points she received—but not what the correct answer
would have been. The learner’s goal is to maximize the sum of rewards, which in this
case is the test score. But from incorrect answers she does not learn which answer would

have been the right one and therefore needs to learn from trial and error. This also means

17

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

that the training data in reinforcement learning is generated through the interaction of
the learner (also called agent) and its environment.*

Note how these categories relate to the four machine learning components. They cat-
egorize machine learning in terms of data and learning objectives, but not in terms of
the hypothesis space and the optimization method. I will now discuss each category in
more detail and provide an overview of machine learning methods that are applied in each

category.

2.4.1 SUPERVISED LEARNING

As stated in Section 2.3.1, the objective of supervised learning is to infer a function
f:x +— y from a set of labeled training data D = {x®, ¢y} . Supervised learning
with continuous labels, y € R, is called regression. Supervised learning with discrete
labels, y € N, is called classification. Labels in classification are also called classes. For
classification, f typically first computes a probability for each discrete class y, which I will
denote as p,(x), and then returns the class that is most likely, f(x) = argmax, p,(z). To
learn classification using gradient-based approaches, we optimize the probability rather
than the choice based on it.

The objective in supervised learning is to make predictions that are close to the true
labels. The most common objective functions are mean squared error between the pre-
diction and the label for regression and the log likelihood (also cross-entropy) loss for

classification, which represents the likelihood of the true label.
. . 2
Linse(D, 0) = Z (y(l) - fG(X(l)»)

Liogin(D, 6) = = " log (p, o(x1)) ,

where the 6 denotes the learnable parameters. We fit 6 to the data D by minimizing the

appropriate loss function,
0" = arg mein L(D,9),
using gradient descent (as described in Section 2.3.2),
0:=60—aVyl.

Depending on the hypothesis space that we want to consider, f can have many forms,

leading to different learning methods.

*For didactic reasons, this example oversimplifies some aspects of reinforcement learning, which I
cover in more detail below.

18

2.4. MACHINE LEARNING PROBLEMS AND METHODS

If we define f to be a linear function f(x) = x7@ and train the parameters by minimizing
mean squared error, we get linear regression, which is the basis for many other learning
methods. Replacing the linear function with a polynomial function leads to polynomial
TeGression.

As demonstrated in the example, we can also learn linear functions to separate two

classes in a binary classification problem. This approach extends linear regression by

1
1+e—=

results in a method called logistic regression. We can generalize this idea to more than

applying a sigmoid nonlinearity o(z) = to the result of the linear function z, which
two classes by replacing the sigmoid with a softmax nonlinearity oy(z) = %, which is
called softmax regression.

Methods that used to be called artificial neural networks and are now called deep learn-
ing (LeCun et al., 2015) are another generalization the ideas above. Standard feedforward
networks are stacks of alternating linear functions and nonlinearities (such as sigmoid or
piece-wise linear functions).

The idea of gradient-based learning can be applied to arbitrary hypothesis spaces as
long as the output of f is differentiable with respect its parameters. As a result, neural
network research has constructed a wide range of architectures that define different hy-
pothesis spaces, including convolutional neural networks (CNNs, LeCun et al., 1989), and
recurrent neural networks such as long short-term memory networks (LSTMs, Hochreiter
and Schmidhuber, 1997). Recently, the field has focused on training networks which are
many layers “deep” and renamed itself to deep learning to emphasize that the depth of the
new networks is the reason for improved performance. The intuition behind this claim is
that depth introduces hierarchy as a prior by allowing the network to learn many layers
of representations that decompose the problem hierarchically.

There are of course many other supervised learning algorithms. I will briefly mention
three particularly common methods for classification. First, support vector machines
(SVMs, Boser et al., 1992) can also be viewed as an extension of linear regression that
replaces the learning objective above with a mazimum-margin loss and applies the kernel
trick to learn non-linear functions.

Second, there is a very simple learning algorithm that does not use gradient-based
optimization: The k-nearest neighbors method (KNN, Fix and Hodges Jr., 1951) “learns”
by storing all training samples. It makes predictions for new inputs by finding the £ stored
samples that are nearest to the new input and returning the label that is most common
among these k neighbors.

Third, we can also learn decision trees (Breiman et al., 1984) without using gradient
information. Decision trees recursively partition the input space into different regions. To
make a prediction with a decision tree, we find the region of the new input and report
the class probability of the training samples that fell in that same region. Decision trees

are learned greedily one partition at a time by choosing the partition that minimizes

19

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

the expected classification error. We can also train an ensemble of randomly perturbed

decision trees and average their result, which is called random forests.

2.4.2 UNSUPERVISED LEARNING

Unsupervised learning only has access to unlabeled data D = {x(i) ? 1. The goal of
unsupervised learning is to find some description of the data, e.g. by compressing the
data set. Similar to supervised learning, compression in unsupervised learning can also be
split into a continuous case, which is called dimensionality reduction, and a discrete case,
which is called clustering. Dimensionality reduction aims to produce a lower-dimensional
continuous representation of the data, while clustering partitions the data into multiple
discrete clusters.

Dimensionality reduction can be applied to high-dimensional data assuming that it does
not span the entire space but lies on a lower-dimensional manifold. Dimensionality reduc-
tion methods attempt to find that manifold and project the data onto it. If we restrict the
hypothesis space to orthogonal linear transformations and define the learning objective to
maximize the variance along the manifold, we get principal component analysis (Hotelling,
1933). This approach can be generalized to non-linear hypothesis spaces in the form of
neural networks using an auto-encoder architecture that projects the data non-linearly
onto a manifold, projects it back into the original space, and is trained minimizing the
reconstruction error (Bengio et al., 2007). Instead of maximizing variance or reconstruc-
tion, we can also change the learning objective in a way that the manifold should consist
of dimensions (or features) that change slowly over time, which gives us the slow feature
analysis (SFA, Wiskott and Sejnowski, 2002).

Clustering aims to group training samples into multiple clusters such that similar sam-
ples are assigned to the same group. The simplest clustering method is k-means (Jain
and Dubes, 1988), which iteratively assigns samples to the nearest cluster-mean and then
recomputes the mean based on all assigned samples. We use this method in Chapter 5 to
generate features for reinforcement learning.

Instead of compressing the data, we sometimes want to estimate the probability density
p(z) from the training samples. We can do this using kernel density estimation (Rosen-
blatt, 1956), which represents p(x) as a mixture of Gaussians with one Gaussian at every
data point. Rather than learning an explicit representation of the probability distribu-
tion, we can also learn a generative model that we can sample from & ~ p(z), which is
called generative modeling. Generative adversarial networks (GANs, Goodfellow et al.,
2014) approach this problem by jointly training a generator and a discriminator. The
generator generates samples and the discriminator classifies samples into “samples from
the training set” and “samples from the generator”. The generator is trained to minimize

the discriminator accuracy and the discriminator is trained to maximize it.

20

2.4. MACHINE LEARNING PROBLEMS AND METHODS

2.4.3 REINFORCEMENT LEARNING

Reinforcement learning (RL, Sutton and Barto, 1998) is the problem of learning how to
maximize future rewards by interacting with the environment. The standard formalization
of this problem is a Markov decision process (MDP, Bellman, 1957), which is a tuple
(S, A, T, R,~) that describes the state space S, the action space A, the transition function
T, the reward function R, and the discount factor . The term “Markov” in MDPs refers
to the following property of the state: given the current state, all future state transitions
and rewards are independent of past interactions. In other words: the state summarizes
all information from past interactions that the robot needs to select the best action.

Based on the current state s € S, the agent chooses and executes an action a € A,
obtains a new state s’ € S according to the transition function 7" : S x A — S and
collects a reward r € R based on the reward function R : S — R. The agent’s goal is to
learn a policy 7 : S — A that maximizes the expected return E(Y".° ~'r;), with r, being
the reward collected at time ¢ and 0 < v < 1 the discount factor.

There are a number of different approaches to reinforcement learning that differ, for
example, a) in their representation of the policy 7 and b) in an explicit model of the
environment, i.e. whether they learn T" and R.

a) Policies can be represented ezplicitly as a function that maps states to actions or
implicitly as the action choices that maximize a value function. Methods that operate
on these representations are called policy-based methods and value-based methods, re-
spectively. Value based methods are able to exploit the recursive definition of the op-
timal value function (Bellman equation) by performing dynamic programming (Sutton
and Barto, 1998). Policy-based methods, on the other hand, allow to include certain
priors in an intuitive way by specifying the policy representation. Methods that use both
representations are called actor-critic methods, where actor refers to the explicit policy
representation and critic refers to the value function.

b) Policies can be learned model-based or model-free. In model-based learning, the agent
has or learns a model that predicts which reward and next state result from taking an
action in a given state. It then samples from this model to plan the policy. In model-
free learning, the robot uses the experienced samples directly to learn the policy, without
building a model first. The main advantage of explicitly learning a model is that it can
be used for different tasks (different reward functions but same state transitions), while
the policy is only valid for the task it was learned for. Having explicit models also allows
to directly include priors about the world by restricting the hypothesis space accordingly.

The reinforcement learning framework can be generalized to partially observable Markov
decision processes (POMDPs, Kaelbling et al., 1998), where the agent cannot directly per-
ceive its state s; but only an observation o; that depends on s;. To determine which actions

to choose, the agent must take the entire history of observations, actions, and rewards

21

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

into account. The MDP and POMDP frameworks are able to describe the interactive loop
between the agent and the physical world. They are, therefore, well-suited for formalizing

many learning problems in robotics.

2.4.4 MACHINE LEARNING PROBLEMS IN THIS THESIS

My thesis approaches perception problems in robotics based on all three problem settings.

Chapter 3 Learning Object Segmentation Through Task-Specific Priors em-
ploys the supervised learning setting. The goal is to learn to segment objects in images
based on training data of correct segmentations.

Chapter 4 Learning State Estimation Through Algorithmic Priors adopts the
POMDP setting from reinforcement learning but is not concerned with learning a policy.
Instead, it is about learning to estimate the state from a sequence of observations and
actions using supervised learning based on state labels.

Chapter 5 Learning State Representations Through Physics-based Priors
has the same goal of estimating the state in a POMDP setting, with a particular focus
on enabling reinforcement learning. But unlike the previous chapter, it does not assume

any state labels and applies an unsupervised learning approach instead.

2.5 PRIORS IN MACHINE LEARNING

We have now seen why machine learning needs priors, how they can be encoded, and what
classes of machine learning problems and methods exist. In the beginning of this chapter,
I stated that such methods are the implementation of priors. So far, I have not discussed
which priors they are implementing.

This section will categorize the most important priors in machine learning. These priors
are often used implicitly. Making them explicit is the goal of this section. I divided these
priors into two groups, although this division is not clear-cut: ubiquitous machine learning
priors, which form the basis of machine learning, and generic Al priors, which are encoded

by a smaller fraction of machine learning methods.

2.5.1 UBIQuiTOUS ML PRIORS

Ubiquitous ML priors are so deeply ingrained in the machine learning approach that it is
difficult to imagine machine learning without some of them. I will formulate these priors

in terms of machine learning components.

22

2.5. PRIORS IN MACHINE LEARNING

VECTOR REPRESENTATION

Inputs and outputs are represented as vectors.

Virtually all machine learning methods require the data to be represented as vectors,
such that a sample is denoted by a fixed number of real values. Based on this represen-
tation, they learn a function from a fixed length input vector to a fixed length output
vector.

In order to apply the machine learning machinery to a problem, we need to force this
problem into a vector representation—e.g. represent text by a bag of words, represent
graphs by a fixed number of properties, and represent classes by a one-hot vector. These
transformations into vector space can add information, e.g. by choosing which graph
properties are important features, or it can remove information, e.g. the word order in
bag of words or inter-class relations in one-hot representations. But only through this

representation can we apply machine learning.

IID DATA

Data samples are independent and identically distributed (I1ID).

Most machine learning methods assume data samples to be IID, that is each sample is
assumed to be drawn from an identical unknown distribution independently of the other
data points (Friedman et al., 2001).

In particular the assumption that training and test set are identically distributed is
crucial to machine learning. Machine learning methods degrade quickly when test data
is drawn from a different distribution p(z) than during training. This assumption is also

essential in how we assess generalization of our machine learning methods.

SMOOTHNESS

Similar inputs produce similar outputs.

The smoothness prior is the basis of learning because it allows us to generalize from the
observed data to new inputs, which have not been seen before, based on training samples
that are similar to those. The opposite of smoothness is chaos. In a chaotic system, slight
changes in the initial conditions can have large impact on the system behavior, which
makes prediction very difficult.

The smoothness prior is encoded in the hypothesis spaces of common machine learning
methods. Nearest neighbor and kernel methods predict the test labels from labels of
the most similar training examples. Decision trees partition the input space into convex
regions with associated labels. Linear functions and neural networks interpolate in the

input space or some nonlinear representation of it.

23

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

SIMPLICITY

Simpler hypotheses are preferable over complex ones.

The simplicity prior, also called the law of parsimony or Occam’s razor, is another
central prior in machine learning. It controls the complexity of the hypothesis that is
induced from a limited amount of data. The prior assumes that simpler hypotheses
generalize better than unnecessarily complex ones to new data.

As discussed earlier, there is no objective measure for simplicity. Simplicity has been
defined in terms of number of parameters, parameter magnitudes, code length, etc. The
simplicity prior has been implemented in equally many ways, for example by choosing
hypothesis spaces with few parameters, using small initial values, using early stopping,
defining a Gaussian prior probability on the parameters, or—equivalently—using L2 reg-
ularization.

The simplicity prior is also related to assuming equations of low polynomial order, which
is a plausible assumption given that such polynomials accurately describe the physical laws
in our universe (Lin and Tegmark, 2016). This assumption is used particularly in classical

statistics that often rely on linear models.

GoobD LocAL OPTIMA

The gradient of the learning objective leads to good local optima.

Many machine learning methods rely on gradient-based optimization to find the best
hypothesis. Since this optimization approach is local, it can only find local optima. For
this approach to work, we must assume a good local optimum, such that following the
gradient of the learning objective leads to a hypothesis that has a similar loss as the global
optimum. This assumption seems to be true for high-dimensional parameter spaces and
neural networks in particular.

Dauphin et al. (2014) present empirical evidence for the argument that “in contrast
to conventional wisdom derived from low dimensional intuition, local minima with high

Y

error are exponentially rare in high dimensions.” Choromanska et al. (2015) provide a
theory for why this result holds for neural networks and conclude that “minima lie in a
band [of similar performance] which gets smaller as the network size increases”.

These results indicate that high-dimensional parameter spaces (and neural networks in
particular) match the implicit assumptions of gradient based optimization, which could

partly explain why they work so well.

24

2.5. PRIORS IN MACHINE LEARNING

2.5.2 GENERIC Al PRIORS

I adapted the term generic Al priors from Bengio et al. (2013), who argued that the key
to successful learning is the incorporation of “many general priors about the world around
us.” The following list of generic Al priors is based on their work and on the work of Lin
and Tegmark (2016) who investigated machine learning from a physics perspective. I will

formulate these priors in terms of the world.

INDEPENDENT PROPERTIES

Things are composed of independent properties.

This independent properties prior assumes that properties which describe the world
around us are meaningful independently of each other (Bengio et al., 2013). If one prop-
erty, such as the color of an object, changes, the other object properties, size, weight,
position, etc., retain their meaning.

Let me illustrate what this means for learning with another example: By observing a
cat for the first time, we can not only learn something about cats, but also about how
things with four legs move, what fur looks like, that mouths produce sounds, etc. When
we then see a dog for the first time, we can immediately make certain predictions based on
properties that it shares with the cat, e.g. that it moves similarly because it has the same
number of legs, even though we have never seen this combination of properties before.

This might sound trivial, but many machine learning methods—such as nearest neigh-
bor approaches, decision trees, Gaussian SVMs—are not able to make this kind of gener-
alization because they learn about local regions in the input space. They only learn about
certain combinations of properties but not about the properties themselves. Therefore,
those methods cannot generalize to combinations that have not been observed during
training.

Such generalizations require the assumption of independent properties, which can be
encoded into machine learning using distributed representations, which are the core of
linear methods and neural networks. Distributed representations can allow an exponential
gain in learning efficiency (Bengio et al., 2013), because they allow to learn from a single
example not just about the specific combination of properties that it represents but about

each property individually, which allows non-local generalization of experience.

25

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

HIERARCHY

Things are structured hierarchically.

Lin and Tegmark (2016) argue that our universe has hierarchical structure, where
causally complex structures result from the combination of simpler structures. They
give the example that “elementary particles form atoms which in turn form molecules,
cells, organisms, planets, solar systems, galaxies, etc”.

This prior can be encoded by replicating hierarchical structure in the learning method.
Such a structure must turn the concrete into abstract representations through multiple
levels of abstractions in a way that allows features at every level to be shared between
different parts of the representation of the next level. Bengio et al. (2013) argue that is this
sharing and reuse of features allows deep learning to disentangle useful representations.

The idea of shared representations is also the motivation of multi-task learning (Caru-
ana, 1997), which has recently been applied to reinforcement learning (Jaderberg et al.,
2016; Mirowski et al., 2016). The same assumption also explains why convolutional net-
works that were trained on one data set provide features that are useful for other vision-
related tasks (Razavian et al., 2014).

The common idea is that the assumption of hierarchy allows effective reuse of features,

which increases data-efficiency.

SYMMETRY

Some properties are invariant under certain transformations.

Symmetry priors assume transformations that do not affect the property at hand (Lin
and Tegmark, 2016). Common invariant transformations are translation and rotation.
Many properties in the world are similar regardless of their spatial position and orientation.
Cats look similar in Berlin and Boston, walk the same way, and make the same sounds.
Encoding such invariances into learning drastically reduces the number of parameters.

Symmetry priors are heavily used in computer vision because the content of an image
is invariant to, for example, reflection, rotation, translation, and changes in illumination.
A common way to encode these symmetries is to augment the training set with trans-
formed versions of the original samples (Krizhevsky et al., 2012). Tobin et al. (2017) used
the related idea of domain randomization to learn object detection in a simulator and
generalize to real scenes by sampling from these symmetries.

While data augmentation and domain adaptation are flexible ways for encoding sym-
metries, they are computationally expensive because the symmetries need to be learned
instead of being encoded in the hypothesis directly. But some symmetries have been

implemented by restricting the hypothesis space. Convolutional networks, for example,

26

2.5. PRIORS IN MACHINE LEARNING

implement translational invariance by spatial weight sharing of the convolution parame-
ters (LeCun et al., 1989).
Another important symmetry is time invariance, the assumption that certain properties

do not change over time, e.g. that the transition function in an MDP remains the same.

LocALITY

Things directly affect only what is in their vicinity.

If all things in the universe could directly influence each other, predictions would require
global information about everything. The locality prior states that “things directly affect
only what is in their immediate vicinity.” (Lin and Tegmark, 2016).

There are two types of locality: spatial locality and temporal locality. We can exploit
spatial locality to reason about the collision of objects, which is only possible if they are
close to each other. Spatial locality also applies to image pixels; neighboring pixels are
more likely to belong to the same entity than pixels that are farther away. This is why local
image filters can capture useful information, such as in convolutional networks (LeCun
et al., 1989).

The same concept applies in the time dimension. The past affects the future only
through a stream of temporally local effects. Temporal locality can be encoded in sliding
window approaches that use information from the last k time steps to make a predic-
tion (Dietterich, 2002). Temporal locality is only the basis of models with Markov states
such as MDPs, temporal difference learning, dynamic programming, recurrent neural net-

works, and Bayes filters.

2.5.3 THE MISSING PRIORS

These priors are the condensation of our understanding of machine learning. I agree with
Bengio et al. (2013) that refining such a list of priors and incorporating it into machine
learning will bring us closer to artificial intelligence. Since we have not achieved that goal,
we must ask the question: What priors are we missing?

If we view these priors as a form of subjective physics from the perspective of a robot
living in and learning about the real world, it is striking that all priors above are passive.
They all apply to an disinterested observer learning about the world and making predic-
tions. Although these priors are very helpful in this context, their passivity limits the
amount of prior knowledge that they can capture.

Since robots are not disinterested but have certain tasks, and since they can interact
with the world, there is a wealth of prior knowledge that has not been exploited. I call

these robotic priors.

27

Chapter 2. BACKGROUND: MACHINE LEARNING AND PRIOR KNOWLEDGE

In the three main chapters of this thesis, I will propose three sources for robotic priors:
the task, algorithms, and physics. For each of these sources, I will define specific priors,
encode them into a machine learning approach to a perception problem, and demonstrate

their effectiveness for improving generalization.

28

LEARNING OBJECT SEGMENTATION
THROUGH TASK-SPECIFIC PRIORS

3.1 INTRODUCTION

This chapter focuses on the problem of learning object segmentation for the Amazon
picking challenge. The key to solving this problem was to encode prior knowledge about
the task into the object segmentation method. The resulting method was data-efficient,
robust, and an essential component of our winning entry in this challenge.

The 2015 Amazon picking challenge (APC) was a warehouse logistics challenge that
required robots to fulfill an order by autonomously recognizing and picking twelve objects
from the bins of a warehouse shelf (see Fig. 3.1). Each bin contained between one and
four objects, selected from a set of 25 known objects. The goal was to pick as many of the
twelve target objects as possible in 20 minutes (without picking wrong objects). The robot
had to be completely autonomous—mno human control or intervention was allowed. Our
research group and 25 other international teams from academia and industry competed
in this challenge. While the challenge includes many subproblems such as hardware
design, grasping, and control, a post-APC survey among all participating teams found
that perception was the most difficult aspect of this challenge (Correll et al., 2016). Object
perception—identifying and localizing target objects—is what this chapter will focus on.
We will see how object perception can be simplified by exploiting prior knowledge about
the task of the Amazon picking challenge.

From own experience, I know that it is difficult to achieve good performance in this
task by applying existing object perception techniques. Our initial tests of off-the-shelf

libraries for object recognition, segmentation, and pose estimation revealed substantial

29

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

Figure 3.1: Our robot in the Amazon picking challenge: (a) the robot looks for an object in the shelf; it
observes the scene from an RGB-D camera that is mounted on its forearm; (b) view from the RGB-D camera;
(c) result of the segmentation of the target object (duck toy) (©2016 IEEE)

30

3.1. INTRODUCTION

shortcomings in the APC setting. This difficulty stands in contrast to the availability
of excellent open source libraries, such as PCL and OpenCV, and occurred for a seem-
ingly simple perception problem. Rennie et al. (2015) performed more detailed tests of
LINEMOD, a standard object detection and pose estimation algorithm, which showed
only 32% accuracy when applied to the APC setting. Even if they tailor the method to
the APC setting, it still only achieves 60% accuracy.

If research teams from academia and industry cannot leverage the achievements of
decades of computer vision research in the context of the APC, we must question our
assumptions. Can we achieve generic and task-agnostic perception for robotics? In our
own APC solution, we deviated from the trajectory of solving perception problems in
their most general form. Instead, we were successful with a simple perception method
that exploits knowledge about the task at hand. Our method probabilistically combines
a number of simple color and depth features, designed to take advantage of the character-
istics of the warehouse setup. To localize the target object, our system performs object
segmentation and classification on an RGB-D image (see Fig. 3.1¢).

This task-specific multi-class segmentation approach is a key component of our chal-
lenge entry that ultimately enabled us to win the APC. During the competition, our
method segmented and identified all twelve objects correctly, which enabled the robot to
successfully pick ten of them outperforming all 25 other teams. A detailed description of
the complete system can be found in our systems paper (Eppner et al., 2016). Here, I
will focus on object perception, in particular segmenting the target object by leveraging
task-specific priors.

Of course, the resulting segmentation method is task-specific and tailored to the APC.
However, by making these task-specific priors explicit and analyzing their contribution,
we can make progress in the direction of more general solutions. Towards this goal, I
performed an extensive post-hoc evaluation of our method. I hope that the results provide
valuable insight for perception beyond the specific warehouse logistics setting and might

help to make progress towards more robust robotic perception.

3.1.1 CONTRIBUTIONS
In this chapter, we* make the following contributions:
CONCEPTUAL CONTRIBUTIONS

o We analyze the task of object perception in the Amazon picking challenge to identify

task-specific priors and demonstrate their implementation in an object segmentation

*Throughout this thesis, I will use the first-person plural narrative we to describe collaborative work
because all work has been collaborative at least with my advisor. I will use the first-person singular
narrative I to distinguish statements of my own, e.g. in introductions and conclusions.

31

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

method.
TECHNICAL CONTRIBUTIONS

o We propose a simple, data-efficient, and robust task-specific object segmentation
method for the Amazon picking challenge. The source code and data are available at:

https://gitlab.tubit.tu-berlin.de/rbo-lab/rbo-apc-object-segmentation
EMPIRICAL CONTRIBUTIONS

o We show that task-specific priors can enable data-efficient learning of robust object
perception. Our object perception method generalized successfully to a setting
outside of the lab environment, a feat which most other teams in the challenge

struggled with.

o We perform an extensive post-challenge analysis that reveals the contributions of the
different components of our method. We find that a higher amount of machine learn-
ing would have improved performance, tight-combination between segmentation and
classification is important, missing information can be a source of information, and

simple visual post-processing can outperform complex reasoning.

3.1.2 OUTLINE

The rest of this chapter is organized as follows:

e Section 3.2 Related Work provides an overview of existing object perception

methods.

e Section 3.3 Task-Specific Priors discusses the concept of task-specific prior
knowledge and its potential for data-efficient learning in robotics. It also analyses
the APC setting to extract task-specific priors that can simplify object perception
for this task.

e Section 3.4 Task-Specific Object Perception introduces our object segmenta-
tion approach for the APC and describes its use in the perception system of our

challenge entry.

e Section 3.5 Experiments and Results reports the perception results in the
challenge and performs a detailed post-challenge analysis that investigates of error
distribution across different scenarios and comparisons to baselines and different

variants of our method.

e Section 3.6 Conclusion summarizes this chapter and discusses how to make

progress towards more general robotic perception through prior knowledge.

32

 https://gitlab.tubit.tu-berlin.de/rbo-lab/rbo-apc-object-segmentation

3.2. RELATED WORK

3.2 RELATED WORK

This section gives an overview of related work in object perception.

The perception problem in the APC is an instance of the general object detection and
segmentation problem, which is actively researched in computer vision. Results of popular
vision competitions such as PASCAL VOC (Everingham et al., 2014) or ImageNet (Rus-
sakovsky et al., 2015) show that solutions related to our problem (such as single-object
localization, detection, or segmentation) currently receive significant attention and win-
ning entries steadily reduce error metrics over the years. A common theme among those
entries are sliding-window approaches using deformable parts models (Felzenszwalb et al.,
2010) or deep neural networks in combination with large-scale datasets (Szegedy et al.,
2013). They give as output bounding boxes with highly likely object locations, which
contain many pixels that are not part of the object. This renders these representations
difficult to use in a robotic manipulation context, where accurate, or at least conservative,
shape estimates are crucial to decide on appropriate actions.

Multi-class segmentation addresses this problem by identifying for each pixel in an
image to which object class it belongs. A popular approach to multi-class image segmen-
tation are conditional random fields (CRFs, Lafferty et al., 2001). They encode local (per-
pixel or region) and pairwise statistical preferences, and define an energy whose minimum
corresponds to the most likely segmentation. CRFs provide a principled way to integrate
different sources of information (e.g. color, texture, shape, location, and depth) and can
easily incorporate smoothness constraints (Shotton et al., 2006; Miiller and Behnke, 2014).
Similar to CRFs, our approach combines different sources of information in a probabilistic
fashion. A comparison between a generic CRF and our method is shown in Section 3.5.2.

A more classical yet effective approach to object segmentation is histogram back-
projection (Swain and Ballard, 1991). Given the color histogram of the target object,
the method back-projects the histogram into the image by replacing each pixel color with
the respective bin count of the histogram. Areas with high bin counts are then assumed
to be the target object. Our work extends histogram back-projection to a probabilistic
version and also incorporates additional non-color features.

In the context of robotic manipulation, approaches to object detection usually aim at
estimating the full 6D object pose, and therefore rely more heavily on depth data. Detec-
tion and pose estimation can be based on CAD models (Klank et al., 2009), feature point
histograms (Rusu et al., 2009, 2010), local keypoint descriptors like SIFT and SURF (Col-
let et al., 2011), or edge and normal information to address textureless objects as done
in LINEMOD (Hinterstoisser et al., 2012). These approaches are based on table top as-
sumptions and do not scale well when confronted with the limited visibility and clutter
imposed by the APC setup. For example, LINEMOD (Hinterstoisser et al., 2012) shows

already significant translational error with only two items per bin (Rennie et al., 2015).

33

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

Although we do not estimate the 6D pose of objects, our results show that the information

contained in the segmentation is sufficient for our system to pick successfully.

3.3 TASK-SPECIFIC PRIORS

Before describing our approach to object perception in the APC task, we will discuss the
idea behind task-specific priors in robotics and relate it to other learning approaches that
exploit such priors. Afterwards, we will analyze the APC task for perception challenges
and useful problem structure that can be used as task-specific prior knowledge.

Ultimately, robots should be able to solve a wide range of tasks. Since we cannot
envision all tasks that robots could potentially have to carry out, they will have to learn
these tasks as they go. Does this mean that—in order to make progress towards the goal
of task-versatility—we should avoid any assumptions about the robot’s tasks?

Even if we want our robots to solve a wide range of tasks, assumptions about these
tasks might still be very helpful. For example, there are tasks that are so common that
we can anticipate them, such as fetching objects for a human or assembling an object
from its pieces. It might be useful to have a “bag of tricks” to handle such tasks most
efficiently. There is also structure inherent in a range of tasks, e.g. common subtasks such
as picking up, moving, and placing objects or the fact that many tasks can be defined
by a goal state such as a certain arrangement of objects. Therefore, it might make sense
to have shared behaviors for common subtasks (Schaal, 2006) and adapt these behaviors
based on object poses (Pastor et al., 2009).

While we want to exploit prior knowledge about the probable tasks, we also want to
give the robot the flexibility to learn new tasks and adapt existing solutions based on
experience. Therefore, we need to combine task-specific priors with machine learning.
This combination must exploit things that we know about the task in order to make
learning—of the things that we do not know—more efficient. How can we approach this
problem? Let us look at examples from the literature where researchers have combined
task-specific priors and machine learning.

The most common example of using task-specific priors in machine learning is feature
engineering. If we know which features of the sensory input are task-relevant, we can
provide the learning method with these features instead of the raw sensor data. Here, we
are essentially solving the first part of the problem by hand (identifying the right features)
and only apply learning to the second part (learning feature patterns). This approach
has been heavily used to enable efficient learning, in particular in robotics where large
amounts of data is difficult to obtain (Kober et al., 2013). For example, the features used
by Abbeel et al. (2010) for learning acrobatic helicopter flight from expert demonstrations

“take advantage of symmetries of the helicopter” by representing positions, velocities and

34

3.3. TASK-SPECIFIC PRIORS

accelerations in the body frame of the helicopter. Riedmiller et al. (2007) use task-specific
features for autonomous driving such as the cross-track-error, its time derivative, and 3
other features as input for reinforcement learning. As a result they are able to learn to
steer a real car after only 20 minutes of training.

Similarly to preprocessing the input of the function we want to learn, we can also
post-process the output. The autonomous car example above (Riedmiller et al., 2007)
integrates the output of the reinforcement learning controller over time to produce the
steering angle. It is also possible to provide robots with task-specific high-level actions.
Konidaris et al. (2018) use a set of defined skills to learn a symbolic representation for
high-level planning from raw sensory input. These assume the second part of the behavior
to be fixed and learn the first part. Naturally, both approaches can also be combined.

Using a fixed pre-processing or post-processing are only two instances of embedding a
learning method in a larger system that contains components that are tailored to the task.
By defining these components rather than learning them from data, we are restricting the
hypothesis space for machine learning (as explained in Section 2.3.2), which improves
learning efficiency. To efficiently apply machine learning to a specific robotic task, we
need to analyze the task in order to understand which assumptions can be made and then
encode these assumptions into a learning method. The rest of this section performs this

analysis for object perception in the APC.

3.3.1 TAsk ANALYSIS: THE AMAZON PICKING CHALLENGE

The task in the Amazon picking challenge consists of autonomously picking twelve out of
25 objects (see Fig. 3.2) from a warehouse shelf and placing them into a storage container
(see Fig. 3.1) within 20 minutes. The robot knows which objects are contained in each of

the shelf’s twelve bins, but not of their exact arrangement inside the bin.

EvALUATION CRITERIA: For each successfully picked target object, the robot receives
10, 15, or 20 points, depending on how many additional objects were in the same bin
(between none and three). Objects that are considered difficult to pick grant up to three

bonus points. Picking the wrong object results in -12 points.

35

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

Figure 3.2: The 25 picking objects from the challenge

OBJECTS: The 25 competition objects vary widely in size and appearance (see Fig. 3.2).
Objects range from small spark plugs to bulky boxes, from hard cases to soft plush toys,
and from loose objects to those wrapped in plastic. This variety presents a challenge for

grasping and perception.

ENVIRONMENT: The items are placed in twelve different bins of the shelf. The robot is
allowed to operate in a 2m X 2m area in front of this shelf. The bins have a rather small
opening (21 ¢m x 28 em) but extend quite far to the back (43¢m). The small opening
restricts grasping opportunities, in particular for bins that contain multiple objects.

The environment also poses significant challenges for perception. Due to the narrow
bins, objects are often visible from one side only and partially obstructed. The floors of
the shelf are made of reflective metal, rendering color and depth information unreliable.
During the actual challenge, the lighting conditions were particularly difficult due to very
bright spot lights directly above the competition area: objects in the front of each bin
appeared to be effectively white, while objects in the back appeared as nearly black.

PERCEPTION CHALLENGES IN THE APC SETTING

To identify task-specific priors for perception in the APC setting, we analyze the problem
in more detail. We identify challenges and useful problem structure for overcoming these

challenges.

No SINGLE DISCRIMINATIVE PROPERTY FOR ALL OBJECTS: The 25 APC objects
were chosen to reflect the large variety present in a warehouse scenario. No single per-
ceptual feature suffices for identification: some objects have distinctive shapes, others are
deformable; some objects have distinctive colors, others have similar color histograms, or
view-dependent variations; some objects have surfaces amenable to our RGB-D sensor,
others are wrapped in plastic bags. We address this problem by combining a variety of

features.

36

3.4. TASK-SPECIFIC OBJECT PERCEPTION

LimiTED OBJECT VISIBILITY: Camera-based perception can only obtain a partial view
of an object in the shelf from a particular camera position. Nearby objects sometimes
partially occlude others. We address this challenge by training on perceptual data from

objects in different poses.

UNCONTROLLED LIGHTING: Visual perception is sensitive to lighting conditions. At
the challenge venue, the lighting was directly from above and extremely bright, relative
to the ambient light. In these conditions, images were nearly saturated in bright regions
and appeared black in the remaining ones. To alleviate this problem we transform the

RGB image to HSV color space and include features based on depth.

PARTIAL 3D MEASUREMENTS: Kinect-like sensors do not provide reliable 3D measure-
ments for reflective or translucent materials, such as the plastic-wrapped objects or the
metal shelf of the APC. We turn this problem into a source of information by using missing

depth values as a feature for segmentation.

USEFUL PROBLEM STRUCTURE IN THE APC SETTING

SMALL NUMBER OF KNOWN OBJECTS: Since the complete set of objects was available
and known beforehand, it was possible to collect training data from these objects in

different orientations and bin locations.

FEw OBJECTS PER BIN: Since bins contained at most four known objects, we can
ignore all other objects during segmentation. Our method automatically uses the most

discriminative features for the particular subset of objects present in a bin.

KNOWN SHELF: Since the objects are placed in a known shelf that can be tracked by
the robot, we can use shelf-related features, such as the height of a pixel in the bin or
the distance to the tracked shelf model. These features help to discriminate objects of

different sizes and to differentiate between objects and the shelf.

3.4 TASK-SPECIFIC OBJECT PERCEPTION

3.4.1 OBJECT PERCEPTION PIPELINE

To successfully pick specific objects, the robot must recognize and locate the target object.
Our system captures images with an RGB-D camera mounted on the robot’s forearm and
performs three steps: 1. feature extraction, 2. object segmentation, and 3. bounding box
fitting. We first extract a number of task-specific features for every pixel of the RGB-D

37

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

image. Using statistics about these pixel-features for each object, we find the image
segment that has the highest probability of belonging to the target object. We take the
point cloud for this segment and fit a bounding box with size of the target object to it.
The fitted bounding box allows the robot to decide where and from which direction it
should pick up the object.

We will now explain these three steps of our object perception pipeline before giving

additional details on the features and the object segmentation.

FEATURE EXTRACTION

To extract features from the target bin, the robot tracks the shelf in the depth image using
the iterative closest point method (ICP, Chen and Medioni, 1992). Based on the tracked
shelf, it crops the RGB-D image to only show the target bin and computes the following
six features for each pixel: color, visual edges, distance to the tracked shelf model, height
above the ground plane of the shelf bin, height in the image plane (for pixels without
depth information), and presence/absence of depth information.

These features discriminate between most objects and the shelf. Instead of searching
for features that could solve the general object recognition problem, these task-specific
features rely on strong assumptions (e.g. that objects are placed in a known shelf) in
order to simplify perception. As a result of these assumptions, our perception system
was able to handle the difficult lighting conditions during the Amazon picking challenge,

non-rigid objects, partial views, and incomplete depth data.

OBJECT SEGMENTATION

Based on manually segmented training images, our method precomputes histograms for
each feature and object. It uses these histograms to estimate how likely each feature value
in the current image is for each object. By multiplying these likelihoods and normalizing
them per pixel, we compute the probability of each pixel in the current image to belong to a
specific object. We compute these probabilities for all objects that we know are contained
in the target bin and for the bin itself. Our method then smooths these probability images,
labels each pixel corresponding to the most probable object, and selects the segment that
includes the pixel with the maximum probability for the target object. In the last step,
it makes the size of the segment consistent with our expectation and greedily segments

objects in sequence, eliminating already segmented objects.

38

3.4. TASK-SPECIFIC OBJECT PERCEPTION

BounbpIiNnG Box FITTING

The segment estimated by the previous step is now transformed into a point cloud repre-
sentation, filtered for outliers, and used to fit a bounding box. The fitted bounding box is
then compared to the true dimensions of the target object to match the sides of the object

correctly. The result of this step is an approximate estimate of position and orientation.

3.4.2 FEATURES

We will now provide a detailed description of the features that we used for segmentation.
Based on the analysis from Section 3.3.1, we describe each pixel by six features that jointly
discriminate between the objects:

Color: A discrete value in the range 0 — 182 based on the hue-saturation-value (HSV)
color representation, which is relatively invariant to lighting conditions. We project the
HSV color space to a single dimension by thresholding appropriately: we set the feature
to H (ranging from 0 — 179) for pixels with distinctive color (S > 90 and V > 20), and
otherwise to 180 for white (V > 200), to 181 for gray (200 > V > 50), and to 182 for
black pixels (50 > V).

Edge: A binary feature that describes whether the pixel is in the vicinity of a visual
edge. We compute this feature by applying Canny edge detection to the image and
dilating it with a small elliptical kernel (with a diameter of 11 pixels).

Missing 3D: A binary value representing whether a pixel contains valid depth and
therefore 3D information.

Distance to shelf: A continuous value (in mm) that denotes the distance of a pixel
to the closest point on the shelf. We estimate this value by tracking the shelf in the
RGB-D image. For this we start with an estimate based on the localization and forward
kinematics of the robot and refine it using ICP. Pixels without valid depth information
are ignored.

Height (3D): A continuous value (in mm) that denotes the shortest distance of a pixel
to the ground plane of the bin, computed similarly to the distance-to-shelf feature. Pixels
without valid depth information are again ignored.

Height (2D): A continuous value (in mm) that describes the height of the pixel
projected onto the (open) front plane of the shelf bin. This feature approximates 3D

height and is only used for pixels without valid depth information.

39

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

3.4.3 OBJECT SEGMENTATION

We will now describe our multi-class segmentation method (video link: https://youtu.
be/Ry6JzeWOHOM) in detail. We will first describe how feature statistics can be learned

from data and then explain how these statistics are used for segmentation.

LEARNING PHASE

Given a 6D feature vector per pixel, we now explain how to learn the likelihood of the
features for the APC objects.

Data COLLECTION: During the preparation of the APC, a dataset was made available
that included RGB-D images of all objects from multiple views together with estimated
3D models of the objects.* However, we found that differences in the cameras, viewing
angle, and lighting conditions made it difficult to transfer models from this dataset to our
robot. Moreover, in this dataset the objects are not inside the APC shelf. Therefore, the
likelihood of some shelf dependent features as well as a model for the shelf itself could not
be learned from this dataset.

We therefore generated a dataset which closely resembled the competition scenario.
We placed the objects in the shelf in different poses and collected RGB-D images and the
estimated shelf pose. Finally, we manually segmented the images until we had a sufficient
number examples for each object to cover their possible poses (161 samples in total, on

average 6 samples per object).

CoMPUTING FEATURE LIKELIHOODS: Based on our dataset, we generate feature like-
lihoods for each object o € O. For each feature f (e.g., color, height), we compute a
histogram from the pixels that belong to the hand-labeled object segments and normalize
this histogram to get a likelihood P(X)|O = o) over the possible values z/) € X(/). To
be robust against small changes in feature values, we smooth non-binary likelihood func-
tions with a Gaussian kernel (standard deviations for the smoothing kernel: ocolorg_179 = 35
Tcolorigo_152 = Ly Odist to shelf = 1-DIMIN, Oheight(3D) = MM, Theight(2n) = 6mm). For robust-
ness to large changes in feature values, we mix the likelihoods with uniform distributions,
P(XD]O = 0) = puni; Pani (X)) + (1 = puni,) P(XD]O = 0), where we use the following
parameters for the different features: (Punico, = 0-2; Punii o sperr = 0-05; Punivge = 0.4,
Punipieesp = 0-2, Puniyergnean) = 0.4, Punieigneop) = 0.8). Thus, even feature values that have
never been observed for an object have non-zero probability and do not entirely rule out

certain objects. The parameters oy and pyy;, define how much we trust feature f.

*http://rll.berkeley.edu/amazon_picking_challenge/

40

https://youtu.be/Ry6JzeW0HOM
https://youtu.be/Ry6JzeW0HOM
http://rll.berkeley.edu/amazon_picking_challenge/

3.4. TASK-SPECIFIC OBJECT PERCEPTION

color height (2D) p(duck_toy|x)

A Ay
dlstance to shelf height (3D) o]
|~
p(oreos|x) ‘, ’

’(‘F] ——
edges 3D missing

- - W i ﬁ

Figure 3.3: Overview of the multi-class segmentation phase of our approach (©2016 IEEE)

backprojection

& Bayes' rule
post-processing

L]
o
£
K]
2
[}
=
o
X
o

SEGMENTATION PHASE

The learned feature likelihoods are the base of our multi-class segmentation phase, which

is illustrated in Figure 3.3.

CROPPING AND FEATURE EXTRACTION: In the first step of the multi-class segmen-
tation phase, we crop the RGB-D image to only contain the bin with the target object.
This step removes clutter and distracting objects from other bins. We then compute the
6D feature vector described in Section 3.4.3 for each pixel in the cropped image (see Fig.
3.3). Note that estimating the cropping mask and some of the features (e.g. height) relies
on tracking the pose of the shelf.

BACK-PROJECTION AND BAYES’ RULE: In this step, we compute for each object o
in the bin and every pixel ¢ the probability that this pixel belongs to the object given
its feature vector X;, P(O; = 0|X;). This results in one posterior image per object
(see Fig. 3.3). To compute them, we iterate over all features f and back-project their
likelihoods P(X)|o) into the image, i.e., we replace the feature values xl(f) with their
likelihood P(:cgf)\0), similar to Swain and Ballard (1991). Assuming conditional inde-
pendence between the features, we multiply their likelihoods for each pixel: P(X|o) =
P(X(color)| o) P(X (height(3D))|5) ~ . Then, we apply Bayes’ rule by multiplying P(X|o) with
an object prior P(0) and normalizing each pixel (see Fig. 3.4). We use a flat prior across
all objects except the shelf, which we set to be three times as high so that the method

assigns uncertain pixels to the shelf segment rather than to the wrong object.

41

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

feature likelihood projected likelihood posterior

u

=
= .
[

Figure 3.4: Likelihood back-projection and computation of the posterior by the example of the
color feature. (©2016 IEEE)

feature image

P(object | color)

Bayes' rule

™
[°]
2
e
Q.
Y]
[°]
(0]
-]

PIXEL-LABELING AND POST-PROCESSING: Nearby pixels often display the same object
and should therefore have similar object probabilities assigned to them. To incorporate
such spatial information, we smooth each object’s posterior image with a Gaussian kernel
(o0 = 4 pixels). This step is related to locating an object by convolving its back-projected
histogram with a disk (Swain and Ballard, 1991) and to pairwise potentials in CRFs. The
smoothing step evens out single pixels or small regions of much higher or much lower
probability than the surrounding area, which makes the segmentation more robust. Here
we implicitly exploit that the APC objects are compact and occupy a significant area of

the image.

Based on this smoothed posterior image, we label each pixel i as belonging to the object
o with the highest posterior P(0|X;) and extract connected regions that are assigned to
the same object. In case of having multiple disconnected segments for an object, we select

the one that includes the maximum in the smoothed posterior image for that object.

As a post-processing step, we make the segment convex. This step incorporates missing
object parts and reflects the convexity of most APC objects. Additionally, we look at the
size of the segment (number of pixels) and compare it to segment sizes for this object in
our dataset. If the segment is considered too large to be correct (larger than 1.2 times its
maximum size in our dataset), we reduce its posterior image (by subtracting 0.05) and

reassign the object labels. We repeat this until the segment shrinks to a plausible size.

The last post-processing step is a greedy re-labeling based on the following idea: If we
are confident about the segmentation of one object, we do not have to consider this object
for the rest of the image. We exploit this by sequentially segmenting the objects, greedily
starting with the object that we are most certain about, where we measure certainty by
segment size. If the segment size is consistent with our dataset, we assume that we have
found the correct segment of this object with high probability, reduce its posterior outside
of the segment accordingly (by multiplying it with 0.2) and re-normalize. We proceed in
the same way with the next most certain object and continue until the target object has

42

3.5. EXPERIMENTS AND RESULTS

been processed.

3.5 EXPERIMENTS AND RESULTS

We evaluated our method on a dataset that contains 346 manually segmented RGB-D
images. The training set includes 161 samples (about six per object) recorded in our lab
in Berlin. Our test set consists of three parts: a) three runs (66 samples) recorded in
our lab, b) five runs (107 samples) recorded in the challenge venue in Seattle, and c) the
actual APC run (12 samples). Unless indicated otherwise, all of the following experiments
use (b) as test set. Both our implementation and the dataset are publicly available at
https://gitlab.tubit.tu-berlin.de/rbo-lab/rbo-apc-object-segmentation.

We measure performance on each test sample by segmenting the target object in the
presence of other known objects in the same bin. For each sample, we compare the
predicted segment with the manually annotated ground truth. From this comparison, we
compute precision and recall and average them across samples.

Precision describes which portion of the predicted segment is correct. Recall describes
which portion of the true segment was predicted. To get a single performance measure,
we compute their weighted geometric mean. We use the F 5-score to emphasize precision
over recall, because in our task finding even a small portion of the correct object will often

allow the robot to grasp it successfully.

3.5.1 PERFORMANCE EVALUATIONS

PERFORMANCE AT AMAZON PICKING CHALLENGE

Figure 3.5 shows the result of applying our method in the actual competition run of the
2015 APC at ICRA in Seattle (video link: https://youtu.be/DuFtwpxQnFI). Based on
the 3D point cloud of the estimated segment, the robot computed a bounding box of
the target object, chose the side from which to pick the object, moved its end-effector
towards the center of the bounding box until contact, and picked up the object with a
vacuum gripper (Eppner et al., 2016). Our system outperformed the other 25 teams by
successfully picking ten out of the twelve objects. The robot only failed in two cases. In
bin (f), it accidentally picked the plush eggs instead of the spark plug due to an inaccurate
picking motion. In bin (k), the robot could not remove the big cheezit box because it got

stuck.

43

 https://gitlab.tubit.tu-berlin.de/rbo-lab/rbo-apc-object-segmentation
https://youtu.be/DuFtwpxQnFI

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

G) (k) (1)

Figure 3.5: Segmentation results during the APC run; the green line outlines the segments returned by our
method; all segments lie on the correct objects; mean precision: 91%, mean recall: 73%, Fq.5 score: 0.864
(©2016 IEEE)

44

3.5. EXPERIMENTS AND RESULTS

1.0

0.9

2 objects 0-8

1 object 107

straw_cup ¢

stanley 66e e SP 40.6
c . ®board_erase]
o mark_twain_booke ~ S
0.7k bath_duck 4 los &
(0] n
= ¢ highlighters o Pencil_cup loa ue

0.6} i
{0.3
paper_mate
* 0.2
0.5¢ i
e index_cards 0.1
0.4 0.0
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

Figure 3.6: Performance by object (black) and number of objects in bin (white) (©2016 IEEE)

PERFORMANCE BY OBJECT

Figure 3.6 shows the performance of our method for different objects (black text) and for
different numbers of objects per bin (white text). Our method had most problems with
flat objects that are dominated by white color, e.g. the index cards (see Fig. 3.5 (d) to
the right), the paper mate (see Fig. 3.5 (c) to the right), and the highlighters (see Fig. 3.5
(e) to the right). Our method most reliably segmented large objects with distinct colors,
e.g. the stir sticks (see Fig. 3.5 (c) to the left), the cheezits (see Fig. 3.5 (k)), and the
plush eggs (see Fig. 3.5 (f) to the right). These results are consistent with our findings in
Section 3.5.3, which show that color is in fact the most important feature.

The number of objects per bin also has a strong impact on the performance of our
method (see Fig. 3.6) because with more objects in the bin, the features we are using, like
color or height, become much less discriminative.

Figure 3.7 shows typical failure cases: (a) part of an object with similar features is
mistaken for the target object, (b) close objects with similar features lead to inaccurate

object boundaries, (c) reflections are included in the target object.

45

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

(c)

Figure 3.7: Typical failure cases (green line outlines segments found by our method); from left to right:
segment detected on the wrong object, segment spanning over several objects, reflections considered as part
of an object (©2016 |IEEE)

— Recall
0.2r| — Precision
0.1f| — F,, score
0.0 ‘ ‘ ‘
0 5 10 15 20

added candidate objects

Figure 3.8: Performance trend when the assumption about known objects is reduced (increasing the candidate
objects); recall decreases quickly but precision stays relatively stable (©2016 IEEE)

INCREASING THE NUMBER OF OBJECTS PER BIN

Our method can be easily scaled to thousands of possible objects as long as there is only
a small number of known objects in every bin. As Figure 3.6 suggests, the performance
degrades with increasing numbers of candidate objects in the bin. We explicitly augment
the list of candidate objects in the bin with objects that were not present. The results

in Figure 3.8 show a decrease in recall whereas precision remains relatively stable.

3.5.2 CoMPARISON TO CRF

We compared our method against a widely used generic approach to multi-class segmenta-
tion: a CRF based on RGB-D input that uses a learned classifier to estimate the pixel-wise
probabilities and a predefined pairwise probability (0.99) for neighbouring pixels to have
the same label. We used a random forest (Breiman, 2001) as the classifier and regularized
it by setting a minimum size of leaves to a fraction of the total number of samples (see
Fig. 3.9).

This experiment shows that the baseline works for the data that it was trained on,
but does not generalize well to unseen data. Generic regularization does not solve this

problem. Compare this to the performance of our method which stays almost constant

46

3.5. EXPERIMENTS AND RESULTS

0.8
0.7}
0.6}
@ 05)
S
", %4 | CRF (RGB-D), regularization:
" 0.3f 0.00 mmm 0.02
ool |™= 0.005 mmm 0.04
2f | mmm 0.01
017 | mmm Our method

0 1|
Training (Berlin) Test (Berlin) Test (Seattle) APC (Seattle)

Figure 3.9: Comparison to a generic conditional random field (CRF) with different amounts of regularization;
the unary potentials are obtained from a random forest (©2016 |IEEE)

0.8¢ I
07 U =Nl L]
0.6 -l

o 05 [color

§ 0.4 I edge

ue 03 I miss3D

I height2D

0-2 s height3D
0.1 B dist to shelf
0.0

Test (Berlin) Test (Seattle)

Figure 3.10: Contribution of different features to the overall performance; the gray bar indicates our perfor-
mance using all features; the filled bars show the performance based on a single feature alone; the empty bars
show the change in performance if the corresponding feature is removed and the remaining features are used
in the model; in both cases, the size of the bars correspond to the usefulness of the features (©2016 IEEE)

when going from training to test set and even when going to data collected in Seattle

under very different lighting conditions.

3.5.3 VARIANTS OF OUR METHOD

The next experiments evaluate the contribution of the different parts of our algorithm to
the final result.

FEATURES

In this experiment we evaluate the importance of each feature to the overall performance
of the algorithm (see Fig. 3.10). First, we evaluated the performance of our algorithm
using only one of the features. We can observe that none of the features alone reaches
a performance comparable to using all of them together. However, color is a powerful

feature by itself, because it is sufficient to discriminate well between many objects. Using

47

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

only the distance to shelf or the height (3D) also obtains relatively good scores because
these features discriminate very well between objects and the shelf, which already solves
single object bins. The features edge, missing 3D information, and height (2D) alone were
not able to produce any segmentation. In the second experiment, we deactivated one of
the features and measured the performance drop. Again color is the most crucial feature.
We observe that the missing 3D feature, which could not produce any segmentation when
used alone, contributes substantially to the performance. Interestingly, the height (2D)

features seems unnecessary and the edge feature even hurts performance.

PIXEL LABELING AND SELECTION

For this experiment, we divide the multi-class segmentation process into two steps: pizel
labeling and selection. The pixel labeling step assigns an object label to each pixel, which
creates image regions of the same label, possibly disconnected. The second step selects
one of these regions as the final segment.

We now compare different methods for these two steps. First, we compare four variants
of the pixel labeling step. 1. Max: assigning to each pixel the label of the most likely object.
2. Max smooth: the same as max, but smoothing the probability image first. 3. Simple
graph cut: formulating the labeling in terms of energy minimization: pixel probabilities
are turned into potentials and connected to their four neighbors with a high probability
(0.99) of having the same label. Then, we apply graph-cut to find the optimal partition
of the graph into labeled segments. 4. Graph cut using depth edges: similar to simple
graph cut, but we adapt the pairwise probabilities depending on depth differences: very
high (0.997) for neighbors with similar depth, high (0.95) if there is no depth information,
and low (0.5) for neighbors that cross depth edges. Second, we compare three variants
for the selection step: 1. a naive approach of selecting all segments, 2. selecting the
largest segment, and 3. selecting the segment that includes the mazimum in the smoothed
probability image.

The results show that, surprisingly, the selection method has a much larger impact
on the performance than the pixel labeling method (see Fig. 3.11a). The simple max
pixel labeling is defeated by all other methods, especially in combination with the select-
all method. All other pixel labeling methods are comparable. Selecting all segments
naturally leads to the highest recall but lowest precision. Selecting the largest segment
(which is common practice) trades recall for precision. The max smooth selection, however,
does this more efficiently. The intuition behind this difference is the following: in most
cases the largest segment is also the segment that includes the maximum probability. In
these cases, both methods perform equally well. But in some cases, when they are not
the same, it seems to be better to trust the point with highest probability rather than the

largest segment. The best combination of methods is using maz smooth for segmentation

48

3.5. EXPERIMENTS AND RESULTS

0.8 ‘
*
0.80}
*
* * *
* w & i o
0.7 LY 0.75} ,
L c © (o]

c ® 2
2 | — : YL
9 Pixel labeling method &
& Bl max 0.70}

Bl max smooth
0.6/ mmm graph cut simple

ON OFF

Bl graph cut depth edges

Selection method C®®0 / Fkink convex

A all A 0.65[%@ @% / OO shrinking

® largest 7rk®0 / Oker greedy

* max smooth : : ‘
0.5 05 06 0.60 0.65 0.70

Recall Recall
(a) (b)

Figure 3.11: Combinations of different methods for (a) pixel labeling and selection and (b) re-labeling and
post-processing. (©2016 IEEE)

and selection, which is the combination we used in the APC.

RE-LABELING AND POST-PROCESSING

Our method includes three re-labeling and post-processing steps: making the segment
convex, shrinking it if it is too large, and greedily segmenting the image starting with
the largest segment. In this experiment, we tested all combinations of these steps. The
results (see Fig. 3.11) show that greedy re-labeling (golden color) substantially increases
the recall irrespective of which other steps are used. Convexity (hexagon symbol) and
shrinking (filled symbol) work best together: Making the segment convex increases the
recall and shrinking it, if necessary, improves precision. The best performance is achieved

when all three steps are combined.

RANDOM FOREST FOR PIXEL PROBABILITY ESTIMATION

In this experiment we extend our method to use a random forest classifier (Breiman, 2001)
to estimate the posterior images instead of using likelihood back-projection and Bayes’
rule. For the given set of objects in the bin, we trained a random forest to discriminate just
these objects and then use the probability estimates from the random forest as posterior
image in our method. Apart from this, we retained all other steps and used the same
features, except that the color feature is replaced by the original HSV values to allow the

random forest to deviate from the thresholds we had set manually.

49

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

0.9r
0.8f
0.7f
0.6
(0]
é 0.5}
“ 0.4f Random forest, regularization:
|.|_‘5037 B 0.00 I 0.02
’ B 0.005 mmm 0.04
0.2t B 0.01
0.1 B Our method
0 1 1 1 1]] [] [1]]
Training (Berlin) Test (Berlin) Test (Seattle) APC (Seattle)

Figure 3.12: Performance with incorporating a random forest classifier into our method (©2016 IEEE)

Our hypothesis was that this hybrid method would suffer from overfitting and not
reach the performance of our original method. Surprisingly, the random forest classifier
improved our method (see Fig. 3.12). On the one hand, this classifier did introduce a
higher variance in performance between training set and test set compared to using likeli-
hood back-projection. This is because it is less restricted, i.e. it does not assume feature
independence and can represent highly complex functions. The likelihood estimation, on
the other hand, includes many manually tuned parameters, e.g. parameters for smooth-
ing the feature likelihoods or weights for mixing them with uniform distributions, which
introduces a bias. Contrary to our hypothesis, the bias we introduced is larger than the

variance of the random forest classifier.

3.6 CONCLUSION

3.6.1 SUMMARY

In this chapter, we used task-specific priors to learn object segmentation for the Ama-
zon picking challenge. We implemented these priors by using task-specific features, by
restricting the possible results based on the task conditions, and by probabilistically inte-
grating many task-relevant sources of information. While our object perception method
is tailored to one specific task, the findings from our experiments are more general. They

can be summarized as follows:

1. Machine learning approaches can replace large parts of the hand-tuned parameters
and even learn from very limited amounts of data, but only if appropriately com-
bined with prior knowledge. This insight is reflected by the fact that using random
forests with our features and post-processing outperforms the hand-tuned pixel prob-
ability estimation component (Section 3.5.3), whereas applying it to RGB-D data
directly does not (Section 3.5.2). This finding is backed up by decades of applied

50

3.6. CONCLUSION

machine learning research, but it still has not become common practice in all areas

of robot perception.

2. We must tightly connect segmentation and classification of objects, and explicitly
reason about the environment, not only about the target object. This finding is
clearly supported by our analysis of the influence of known objects (Section 3.5.1)
and the contribution of the distance-to-shelf feature (Section 3.5.3). However, it
stands in contrast to many state-of-the art approaches to robotic perception that

solve subproblems fully independently, and do not use contextual information.

3. Missing information is an important source of information, as indicated by the
contribution of the missing-3D-points feature (Section 3.5.3). Although computing

and using this information is cheap, few methods in robot perception exploit it.

4. Our results show that simple visual post-processing can outperform complex reason-
ing, as exemplified by the fact that Gaussian smoothing on probability images is as
effective as optimizing pairwise potentials based on depth-edges (Section 3.5.3). We
believe that this finding has practical implications: the theoretically best method
does not necessarily give large—if any—improvement over approximate heuristics.
Thus, the decision of choosing a method for a particular problem should be sup-

ported by empirical data, and not only be based on theoretical soundness.

3.6.2 MACHINE LEARNING AND TASK-GENERALITY

Our results demonstrate the potential of using prior knowledge for learning robotic per-
ception, but they also hint at advantages of shifting more from an engineering approach
towards a machine learning approach. The first potential advantage of shifting more to-
wards machine learning is an increase in generality such that perception can be learned
for different tasks. The second potential advantage is improved performance, e.g. by
replacing hand-tuned parameters (see result 1.) and to tightly connect different modules
also during learning (see result 2.) using end-to-end learning.

To leverage the first advantage of increased generality, we need to take into account
other sources of prior knowledge that are not necessarily task-specific. To leverage the
second advantage of improved performance, we need to rethink how we can use these priors
in a way that maximally empowers machine learning to do what it can do well—fitting
parameters to data.

In the next chapter, we will take a step in that direction. Instead of exploiting task-
specific priors, we will make use of prior knowledge encoded in algorithms that apply to
many tasks. We will incorporate these priors in a way that enables end-to-end learning,

which optimizes all parameters for perception performance.

o1

Chapter 3. LEARNING OBJECT SEGMENTATION THROUGH TASK-SPECIFIC PRIORS

52

LEARNING STATE ESTIMATION
THROUGH ALGORITHMIC PRIORS

4.1 INTRODUCTION

In this chapter, we demonstrate the use of algorithmic priors for the problem of learning
state estimation. This work shows how we can use algorithms as priors by implementing
them in a differentiable way and fitting their model parameters to data using end-to-end
learning.

End-to-end learning tunes all parts of a learnable system for end-to-end performance—
which is what we ultimately care about—instead of optimizing each part individually.
End-to-end learning excels when the correct learning objectives for individual parts are
not known; it therefore has significant potential in the context of complex robotic systems.

Compared to learning each part of a system individually, end-to-end learning puts
fewer constraints on the individual parts, which can improve performance but can also
lead to overfitting. We must therefore balance end-to-end learning with regularization
by incorporating appropriate priors. Priors can be encoded in the form of differentiable
network architectures. By defining the network architecture and its learnable parameters,
we restrict the hypothesis space and thus regularize learning. At the same time, the
differentiability of the network allows us to adapt all parameters of the network in a way
that maximizes end-to-end performance.

This approach has been very successful in computer vision. Highly engineered vision
pipelines are outperformed by convolutional networks trained end-to-end (He et al., 2015).
But this only works because convolutional networks (LeCun et al., 1989) encode priors in

the network architecture that are suitable for computer vision—a hierarchy of local filters

53

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

Error Error
H H
1 1
1 H

v
Belief over states

Action K Action

Motion
model

" Prediction

Measurement
4
update i

Measurement Measurement

model

g

Prediction

g
g

Observation Observation !
0/1
SriaRe
(a) Differentiable histogram filter (b) Differentiable particle filter

Figure 4.1: Differentiable Bayes filters. Models can be learned end-to-end by backpropagation through the
algorithm.

shared across the image. Problems in robotics possess additional structure, for example
in physical interactions with the environment. Only by exploiting all available structure
will we be able to realize the potential of end-to-end learning in robotics.

But how can we find more architectures like the convolutional network for robotics?
Robotic algorithms capture problem structure and often use models that are specific to
the task or environment. By making these algorithms differentiable and their models
learnable, we can effectively turn them into network architectures. Such networks enable
end-to-end learning while also encoding prior knowledge from algorithms, which we call
algorithmic priors.

Here, we apply end-to-end learning with algorithmic priors to state estimation in
robotics. In this perception problem, a robot needs to infer the latent state from its
observations and actions. Since a single observation can be insufficient to estimate the
state, the robot needs to integrate this information over time keeping track of its own
uncertainty.

Given the standard assumptions in this problem, Bayes filters provide the provably
optimal algorithmic structure for solving it (Thrun et al., 2005), recursively updating a
probability distribution over states with prediction and measurement update using task-
specific motion and measurement models. In this work, we implement Bayes filters in
a differentiable way and train their models end-to-end, such that they optimize state
estimation performance. We applied this approach to two different Bayes filter variants,
which differ in how they represent probability distributions (see Fig. 4.1).

The first variant is a differentiable histogram filter (DHF), a Bayes filter that represents
probability distributions with histograms. It uses feedforward networks as learnable mod-
els and implements the prediction and update steps as convolutional and multiplicative

operations. Our experiments show that our method is more data-efficient than generic neu-

54

4.1. INTRODUCTION

ral networks, improves performance compared to standard histogram filters, and—most
importantly—enables unsupervised learning of recursive state estimation loops.

DHFs should be viewed as a proof of concept of end-to-end learning with algorithmic
priors. While they show very promising results in simulation, they are not yet practical
for real world application, mostly because of the inherent limitations of histograms when
representing high-dimensional beliefs. We address this issue by moving to particle based
belief representations.

Our second variant, the differentiable particle filter (DPF), extends this work to make it
applicable to more realistic state estimation problems. Since DPFs represent probability
distributions with samples (or particles), they focus their computational effort on states
with high probability, which makes them computationally more efficient. By using appro-
priate learnable models, we can apply DPFs to state estimation problems based on raw
visual observations, such as global localization in a maze based on camera and odometry
input.

Our experiments agree with our DHF results: End-to-end learning improves perfor-
mance compared to using models optimized for accuracy and algorithmic priors regularize
learning, which greatly improves performance in state estimation. Compared to generic
long short-term memory networks (LSTMs, Hochreiter and Schmidhuber, 1997), DPFs
reduce the error rate by ~80% or require 87% less training data for the same error rate.
Additionally, even with end-to-end learning, DPFs remain explainable—we can examine
the learned models and their interaction. And finally, while LSTMs fail when tested with
a different policy than used for training, DPFs are robust to changing the robot’s policy.

4.1.1 CONTRIBUTIONS

In this chapter, we make the following contributions:

CONCEPTUAL CONTRIBUTIONS

o We propose to encode algorithmic priors by making algorithms differentiable and
combining them with end-to-end learning, which we demonstrate for two variants

of the Bayes filter algorithm.
TECHNICAL CONTRIBUTIONS

o We introduce differentiable histogram filters, which encode the histogram filter al-
gorithm but allow the models to be learned end-to-end in a supervised and unsu-

pervised way.

o We introduce differentiable particle filters, which encode the (computationally more

efficient) particle filter algorithm but allow the models to be learned end-to-end. Our

55

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

source code and data are available at
https://github.com/tu-rbo/differentiable-particle-filters.

o As part of these implementations, we identified and developed components that
should help implementing other grid- and sample-based algorithms in a differentiable
manner. For grid-based representations, we implemented the prediction step by
convolution and the update step by element-wise multiplication. To work with
sample-based representations, we used networks to generate samples based on the
reparameterization trick (Kingma and Welling, 2013) or dropout (Srivastava et al.,

2014) and performed density estimation to compute the learning objective.
EMPIRICAL CONTRIBUTIONS

o We show that algorithmic priors enable explainability and improve data-efficiency

and generalization.

o We show that end-to-end learning improves performance by learning incorrect mod-

els that work in the context of the algorithm.

o We show that the combination of algorithmic priors and end-to-end learning can

enable unsupervised learning.

o We show that generic neural networks learn fundamentally different behavior than

differentiable algorithms.

4.1.2 OUTLINE

The rest of this chapter is organized as follows:

o Section 4.2 Background explains the state estimation problem, Bayes filters, and

end-to-end learning.

e Section 4.3 Algorithmic Priors introduces the idea of algorithmic priors and

their combination with end-to-end learning.

« Section 4.4 Related Work gives an overviews of approaches from the literature
that combine algorithmic priors and end-to-end learning in state estimation and

planning for robotics.

e Section 4.5 Differentiable Histogram Filters describes the differentiable im-
plementation of this grid-based Bayes filter variant and multiple approaches to train
its models. This section also presents experiments, results, and limitations of differ-

entiable histogram filters.

56

https://github.com/tu-rbo/differentiable-particle-filters

4.2. BACKGROUND

Figure 4.2: Graphical model for state estimation

e Section 4.6 Differentiable Particle Filters addresses these limitations by pre-
senting a differentiable implementation of the sample-based Bayes filter and ap-
proaches to train its models end-to-end. This section also includes a comprehensive
set of experiments on global localization and tracking based on simulated and real
data.

e Section 4.7 Conclusion summarizes our findings and discusses how alternatives

to end-to-end learning present an opportunity to encode additional prior knowledge.

4.2 BACKGROUND

4.2.1 THE STATE ESTIMATION PROBLEM

We consider the problem of estimating a latent state s from a history of observations o and
actions a, e.g. a robot’s pose from camera images and odometry.* To handle uncertain
observations and actions, we estimate a probability distribution over the current state s,

conditioned on the history of observations 0., and actions ay.;, which is called belief:

bel(sy) = p(s¢|a@y, 0124).

4.2.2 BAYES FILTERS

If we assume that our problem factorizes as shown in Fig. 4.2, the Bayes filter algorithm
solves it optimally (Thrun et al., 2005) by making use of the Markov property of the
state and the conditional independence of observations and actions. From the Markov
property follows that the last belief bel(s;_;) summarizes all information contained in the
history of observations 01.;_; and actions a.;_; that is relevant for predicting the future.
Accordingly, the Bayes filter computes bel(s;) recursively from bel(s;_;) by incorporating
the new information contained in a; and o;. From assuming conditional independence be-

tween actions and observations given the state follows that Bayes filters update the belief

*We denote vectors, such as states, actions, and observations, in bold to set them apart from scalar
values.

57

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

in two steps: 1) prediction using action a; and 2) measurement update using observation
0.

1) The prediction step is based on the motion model p(s; | 8;-1, a;), which defines how
likely the robot enters state s, if it performs action a; in s;_;. Using the motion model,
this step computes the predicted belief bel(s;) by summing over all s,_; from which a,

could have led to s;:
bel(s;) = /p(st | s¢-1,a;)bel(s;_1)ds; . (4.1)

2) The measurement update uses the measurement model p(o; | s;), which defines the
likelihood of an observation o; given a state s;. Using this model and observation o, this

step updates the belief using Bayes’ rule (with normalization 7),
bel(st) = np(ot | St)M(St). (42)

Any implementation of the Bayes filter algorithm for a continuous state space must
represent a continuous belief—and thereby approximate it. Different approximations
correspond to different Bayes filter implementations, for example Kalman filters, which
represent the belief by a Gaussian, histogram filters, which represent it by a histogram,

or particle filters, which represent the belief by a set of particles (Thrun et al., 2005).

KALMAN FILTERS

Kalman filters represent all distributions—bel(s;), p(s; | si—1,a:), and p(o; | s;)—by
Gaussian functions. Thus, the prediction step (Eq. 4.1) becomes the convolution of two
Gaussians, and the measurement update (Eq. 4.1) becomes a product of Gaussians, which
both maintain the belief to be Gaussian.

These Gaussian representations make Kalman filters computationally very efficient and
enable their application to high-dimensional state spaces. But since Gaussians are uni-
modal, Kalman filters cannot estimate multi-modal beliefs, i.e. they cannot simultane-
ously track multiple distinct hypotheses.

The two Bayes filter variants that we discuss next do not have this restriction. These
variants will be explained in greater detail because they form the basis of the differentiable

Bayes filter implementations in this chapter.

58

4.2. BACKGROUND

HisToGRAM FILTERS

Histogram Filters partition the state space into a grid of n cells, sq, So, ..., s,, and repre-
sent the belief by a histogram with one value per grid cell b;; = bel(S; = s;).

The histogram filter updates this distribution by moving probability mass between these
grid cells and by multiplying each probability based on consistency with the measurement
(followed by normalization). This representation allows histogram filters to represent
distributions with multiple modes, i.e. track multiple distinct hypothesis simultaneously.

The histogram filter implements the prediction step (Eq. 4.1) by moving probability

mass between grid cells based on the motion model and the current action,

Vit by =Y p(Si = sk | Sic1 = si, @) big1.

The histogram filter implements the measurement update (Eq. 4.2) by multiplying the
probability for each bin with the observation likelihood at the corresponding state:

Vi : Bkz,t = P(Ot | Sy = Sk) Bk:,t,

bt

Vk : bk,t = =.
Zi bz‘,t
PARTICLE FILTERS
Particle filters approximate the belief with particles (or samples) S; = 37[51}, s?], ey SL”]
with weights wp], w?], e ,wi"]. The particle filter updates this distribution by moving

particles, changing their weights, and resampling them, which duplicates or removes par-
ticles proportionally to their weight. Resampling makes this Bayes filter implementation
efficient by focusing the belief approximation on the most relevant parts of the state space.

The particle filter implements the prediction step (Eq. 4.1) by moving each particle

stochastically, which is achieved by sampling from a generative motion model,
Vi s~ p(s | ar,si). (4.3)

The particle filter implements the measurement update (Eq. 4.2) by setting the weight
of each particle to the observation likelihood—the probability of the current observation

conditioned on the state represented by the particle,

A2 wy] = p(o; | s,[fi]). (4.4)
The particle set is then resampled by randomly drawing particles s,[ﬂ proportionally to

their weight wii] before the filter performs the next iteration of prediction and update.

59

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

Total amount of
information

d |

] L
Classic Machine
computer learning

science

Figure 4.3: Information sources: prior and data

4.2.3 END-TO-END LEARNING AND DIFFERENTIABILITY

If we want to use the Bayes filter structure as a prior and fit the measurement model and
the motion model to data, we can essentially do one of two things: a) learn the models
in isolation to optimize a quality measure of the model or b) learn the models end-to-end,
i.e. train the models as part of the entire system and optimize the end-to-end performance.

In either way, we might want to optimize the models using gradient descent, for example
by computing the gradient of the learning objective with respect to the model parameters
using backpropagation (repeated application of the chain rule). Therefore, the motion
model and the measurement model need to be differentiable regardless of whether we
choose option a) or option b). For b) end-to-end learning, we need to backpropagate
the gradient through the histogram filter algorithm (not to change the algorithm but to
compute how to change the models to improve the algorithm’s output). Therefore, in
addition to the models, the algorithm itself needs to be differentiable.

4.3 ALGORITHMIC PRIORS

Every information that is contained in the solution to a problem must either be provided
as prior knowledge or learned from data. Different approaches balance these sources of
information differently. In the classic approach to computer science, all required informa-
tion is provided by a human (e.g. in the form of algorithms and models). In the machine
learning approach, only a minimal amount of prior knowledge is provided (in form of a
learning algorithm) while most information is extracted from data. When trading-off how
much and which information should be provided as a prior or extracted from data, we
should consider the entire spectrum rather than limit ourselves to these two end points
(see Fig. 4.3).

In the context of robotics, for example, it is clear that the left end of this spectrum will
not enable intelligent robots, because we cannot foresee and specify every detail for solving
a wide range of tasks in initially unknown environments. Robots need to collect data and
learn from them. But if we go all the way to the right end of the spectrum, we need

large amounts of data, which is very difficult to obtain in robotics where data collection

60

4.3. ALGORITHMIC PRIORS

is slow and costly. Fortunately, robotic tasks include rich structure that can be used as
prior. Physics, for example, governs the interaction of any robot and its environment and
physics-based priors can substantially improve learning (Scholz et al., 2014; Jonschkowski
and Brock, 2015). But robotic tasks include additional structure that can be exploited.

Every algorithm that has proven successful in robotics implicitly encodes information
about the structure of robotic tasks. We propose to use this robotics-specific information
captured by robotic algorithms and combine it with machine learning to fill in the task-
specific details based on data. By combining such algorithmic priors and machine learning,
we can strike the right balance between generality and data-efficiency.

Algorithms and machine learning can be combined in different ways, using algorithms
either 1) as fixed parts of solutions, 2) as parts of the learning process, or 3) as both.

The first approach learns models in isolation and then uses them in algorithms, e.g. in
robot control based on learned motion models (Nguyen-Tuong and Peters, 2011) (note
that the choice of control algorithm does not influence how the models are learned).

The second approach uses algorithms as teachers to generate training data, which is
used to learn a function that generalizes beyond the capabilities of the teacher algorithm.
Examples include using background subtraction to provide training data for learning
image segmentation (Zeng et al., 2016) and using trajectory optimization to supervise
reinforcement learning methods (Levine and Koltun, 2013).

The third approach—the one that we are focusing on in this chapter—uses the algo-
rithms in both the learning process and the solution. The main advantage of this approach
is that models are optimized for the algorithms that use them (instead of optimizing a
proxy objective such as model accuracy). To achieve this, we need to make the algorithms
differentiable, such that we can compute how changes in the model affect the output of
the algorithm, which allows to train the models end-to-end. This idea has been applied
to different algorithms, e.g. in the form of neural Turing machines (Graves et al., 2014)
and neural programmer-interpreters (Reed and de Freitas, 2015). The following section

gives an overview of similar approaches in robotics.

61

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

4.4 RELATED WORK

There is a surge of recent work that combines algorithmic priors and end-to-end learning
for planning and state estimation with histogram-based and Gaussian belief representa-

tions.

PLANNING WITH KNOWN STATE: Tamar et al. (2016) introduced value iteration net-
works, a differentiable planning algorithm with models that can be optimized for value
iteration. Their key insight is that value iteration in a grid based state space can be rep-
resented by convolutional neural networks. Silver et al. (2017) proposed the predictron,
a differentiable embedding of the TD(A) algorithm in a learned state space. Okada et al.
(2017) proposed path integral networks, which encode an optimal control algorithm to

learn continuous tasks.

STATE ESTIMATION (AND PLANNING) WITH HISTOGRAMS: After we introduced the
differentiable histogram filter (Jonschkowski and Brock, 2016), Shankar et al. (2016) and
Karkus et al. (2017) combined histogram filters and QMDP planners in a differentiable
network for planning in partially observable environments. Gupta et al. (2017) combined
differentiable mapping and planning in a network architecture for navigation in novel
environments. All of these approaches use convolution to operate on a grid based state

space.

STATE ESTIMATION WITH GAUSSIANS: Haarnoja et al. (2016) presented a differentiable
Kalman filter with a Gaussian belief and an end-to-end learnable measurement model
from visual input. Watter et al. (2015) and Karl et al. (2017) learn a latent state space
that facilitates prediction. These approaches use (locally) linear dynamics models and
Gaussian beliefs.

In the following section, we will introduce differentiable histogram filters that operate
on histogram-based belief representations using convolution. This work illustrates the idea
of differentiable Bayes filters with a non-Gaussian belief representation, shows how they
can be learned end-to-end, and demonstrates the feasibility of unsupervised learning with
such methods.

Afterwards, we will build on this work and extend it to particle filters with sample-
based belief representations. Sample-based representations can be advantageous because
they can represent multi-modal distributions (unlike Gaussians) while focusing the com-
putational effort on states of high probability (unlike histograms). But sample-based
representations introduce new challenges for differentiable implementations, e.g. gener-

ating samples from networks, performing density estimation to compute gradients, and

62

4.5. DIFFERENTIABLE HISTOGRAM FILTERS

handling non-differentiable resampling. These are the challenges that we tackle in Sec-
tion 4.6.

4.5 DIFFERENTIABLE HISTOGRAM FILTERS

This section introduces differentiable histogram filters (DHFs), a differentiable implemen-
tation of the histogram filter algorithm that allows both motion model and measurement
model to be learned end-to-end by backpropagation through time (Werbos, 1990). Al-
ternatively, we can view the DHF as a new recurrent neural network architecture that
implements the structure of a histogram filter (see Fig. 4.4) and thereby incorporates the

Bayes filter priors.

4.5.1 IMPLEMENTATION

The remainder of this section describes how histogram filters can be implemented in a
differentiable way and how their models can be learned in isolation or end-to-end. We
will first describe how to represent the belief, then explain the two update steps and the
models involved in them, and finally present different learning objectives that can be used
for optimizing the models.

To comply with the deep learning framework (Goodfellow et al., 2016), we will define
DHFs using vector and matrix operations. We will also introduce additional priors for
computational or data efficiency. For the sake of readability, we assume a one-dimensional
state space here. All formulas can be easily adapted to higher dimensions. We write
specific parameter and model choices in italic to distinguish them from the more generic
description of DHFs.

BELIEF

The histogram over states is implemented as a vector b of probabilities with one entry

per bin,
bt = [bel(St = 1)7 bel(St = 2), ey bel(St = ’SD]

We can also think of the belief as a neural network layer where the activation of each
unit represents the value of a histogram bin. The belief b; constitutes the output of the
histogram filter at the current step ¢ and an input at the next step t + 1—together with

an action a, and an observation o, (see Fig. 4.4).

63

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

PREDICTION

The most direct implementation of the prediction step (which we replace shortly) de-
fines a learnable function f for the motion model, f : sy, 8:-1,ai-1 — p(s¢ | Si—1, a-1),
and employs f in the prediction step (Eq. 4.1). The equation can be vectorized for
computational efficiency by defining an |S| x |S| action-parameterized matrix F'(a) with
F; j(a) = f(i,J,a), such that b, = F(a;_1)b_1.

However, this approach is computationally expensive because it requires |S|? evaluations
of f for a single prediction step. We can make this computation more efficient, if we assume

robot motion to be local and invariant across the state space, i.e.

p<5t ’ Stflaatfl) = p(ASt | at71)7
Vt\Ast] S k’,

where As; = s; — s;_1 and k is the maximum state change. Accordingly, we define a new
learnable function for the motion model, g : As;, a;—1 — p(As; | a;—1) and use g instead
of f. For vectorization, we define a (2k + 1)-dimensional vector g(a), whose elements
gi(a) = g(i—k—1, a) represent the probabilities of all positive and negative state changes

up to k. We can now reformulate the prediction step (Eq. 4.1) as a convolution (%),
by = by * glai-1),

where the belief b, _; is convolved with the motion kernel g(a;_1) for action a;_; (see
Fig. 4.4).

MoTiON MODEL: The learnable motion model g can be implemented as any feedforward
network that maps As and a to a probability. The prior that g(a) represents a probability
mass function, i.e. that the elements of g(a) should be positive and sum to one, can be
enforced using the softmax nonlinearity on the vector of unnormalized network outputs

a), such that gi(a) = <.
J

Another useful prior for g is smoothness with respect to As and a, i.e. that similar
combinations of As and a lead to similar probabilities. This smoothness is the reason
why (for standard feedforward networks), we should use As as an input rather than as
index for different output dimensions. With additional knowledge about robot motion,

we can replace smoothness by a stronger prior.

For the experiments in this chapter, we assumed linear motion with zero mean Gaussian

noise, and therefore defined the motion model with only two learnable parameters o and

64

4.5. DIFFERENTIABLE HISTOGRAM FILTERS

o and the obligatory normalization,

_ (Asfaa)Q

g(As,a) =¢ P
g(As,a) |
S dha)

g(As,a) =

MEASUREMENT UPDATE

Analogously to the motion model in the prediction step, we define a learnable function h
that represents the measurement model for the measurement update, h : sy, 0, — p(o; | s¢).
To vectorize the update equation (Eq. 4.2), we define a vector h(o) with elements h;(0) =
h(i,0), such that the measurement update corresponds to element-wise multiplication (®)

with this vector,

b, = h(o) ® by,
followed by a normalization, b, = Z%t - (see Fig. 4.4).

MEASUREMENT MODEL: The learnable function A that represents the measurement
model can again be implemented by any feedforward network. Since h corresponds to
p(o; | s4)—a probability distribution over observations—it needs to be normalized across

observations, not across states. To realize the correct normalization, we need to compute

the unnormalized likelihood vector h(o) for every observation o and compute the softmax

over the corresponding scalars in different vectors rather than over the scalars of the
h(o)

Zo’ eE(O,) '

summation must be approximated using sampled observations.

same vector: h(o) = If the observations are continuous instead of discrete, this

For the experiments in this chapter, we represented h by a network with three hidden
layers of 32 rectified linear units (Nair and Hinton, 2010), followed by a linear function
and a normalization as described above. Using the observation and state as input rather

than output dimensions again incorporates the smoothness prior on these quantities.

LEARNING

We can learn the motion model g and the measurement model A using different learning
objectives based on different sequences of data. We will first look at a number of super-
vised learning objectives that require oy.7, ay.7, $1.7, and sometimes x;.,—the underlying

continuous state. Then, we will describe unsupervised learning that only needs oy.7 and

ay.r.

65

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

Belief over states

1

—L_x b, ti=t41
h(o:)® >*g(at1)

1 oo
hi(ot) gilat—1
by
1 O T oap—1
Observation Action

Figure 4.4: Differentiable histogram filter. Motion model (purple) and measurement model (green) are
learned; the algorithmic structure is given (x: convolution, ®: element-wise multiplication).

SUPERVISED LEARNING IN ISOLATION: Both models can be learned in isolation by
optimizing an objective function, e.g. the cross-entropy between experienced state change
/ observation and the corresponding outputs of g and h,

T

L = — 1 e(Ast—kz—l

)1
I P og(g(ai-1)),

T
1
= (ot)
L, = T ;Zl e log(h(oy)),

where e denotes a standard basis vector with all zeros except for a one at position i,

that is the position that represents the experienced state change or observation.

SUPERVISED END-TO-END LEARNING: Due to our differentiable implementation, the
models can also be learned end-to-end using backpropagation through time (Werbos,
1990), which we apply on several overlapping subsequences of length C' (in our exper-
iments, C' = 32). In the corresponding learning objectives, we compare the belief at the
final time step of this subsequence with the true state. If we want to optimize the accuracy

of the filter with respect to its discrete states, we can again use a cross-entropy loss,

T
1 S —C!
Lacc. = _T —C Z 6() log(bz(ft t))’
t=C+1
where bit_C:t) denotes the final belief at time step ¢ when the histogram filter is applied
on the subsequence that spans steps t — C to t. Alternatively, we might want to optimize

other objectives, e.g. the mean square error with respect to the underlying continuous

66

4.5. DIFFERENTIABLE HISTOGRAM FILTERS

—
N W A

(a) Hallway localization task (b) Drone localization task

Figure 4.5: Randomly sampled environments per task. Motion and measurement models are unknown.

state,

T

1 § : -C:

Lmse = _T —C (xt - ngt t))27
t=C+1

where x denotes a vector of the continuous values to which the discrete states correspond,
(t—C:t)
such that xb;

this subsequence.

is the weighted average of these values according to the final belief in

UNSUPERVISED END-TO-END LEARNING: By exploiting the structure of the histogram
filter algorithm and the differentiability, we can even train the models without any state
labels by predicting future observations, but later use the models for state estimation.
Similarly to supervised end-to-end learning, we apply the filter on different subsequences
of length C', but then we follow this with D steps without performing the measurement
update (in our experiments, D = 32). Instead, we use the measurement model to predict
the observations. Pred(o) = >, p(os | s¢)Bel(s;) = h(0y)b;. To predict the probabilities
for all observations, we define a matrix H with elements H; ; = h(i, j), using h as defined
in Section 4.6.1. Putting everything together, we get the following loss for unsupervised

end-to-end learning.

T D

1 —(t—C:t+d)
Lunsu .= r— E E e(oter) IOg(HTb),
’ (T'=C)D t=C+1 d=1 e

where the outer sum iterates over different subsequences and the inner sum iterates over

predicted observations for a number of future steps.

4.5.2 EXPERIMENTS AND RESULTS

To test DHFs, we consider the problem of learning to estimate the robot’s state in unknown
environments with partial observations. In this problem, we compare standard histogram
filters for which the models are learned in isolation (HF), differentiable histogram fil-
ters (DHFs), and two-layer long-short-term memory networks (LSTMs, Hochreiter and
Schmidhuber, 1997). The models of the HFs are learned by optimizing the loss functions

67

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

L, and L; presented in the previous section. For the DHFs and LSTMs, we compare
end-to-end learning using Lacc., Limse; and Lynsup. -

Our results show that 1) the algorithmic priors in HFs and DHFs increase data efficiency
for learning localization compared to generic LSTMs, 2) end-to-end learning improves the
performance of DHFs compared to HFs, and 3) DHFs are able to learn state estimation

without state labels.

EXPERIMENT: LEARNING STATE ESTIMATION IN UNKNOWN ENVIRONMENTS

Before analyzing the results, we will briefly describe the problem setting in more detail.
We are focusing on partially observable localization tasks: a robot moves through an
environment by performing actions and receives partial observations, such that it needs to
filter this information over time to estimate its state, i.e. its position. In our experiments,
the robot does not know the environment beforehand and thus has to learn from data
how to recursively estimate its state.

We performed experiments in two continuous localization tasks: a) a hallway localiza-
tion task (Thrun et al., 2005) and b) a drone localization task (see Fig. 4.5). The tasks
are similar in that they have continuous actions and binary observations (door/wall and
purple/white tile), both of which are subject to 10% random error. The tasks differ in
the dimensionality of the continuous state. In the hallway task, the robot only needs to
estimate a one-dimensional state (its position along the hallway), which for all methods is
discretized into 100 states. The drone localization task has a two-dimensional state, which
is discretized into 50 bins per dimension resulting in 2500 bins in total. In both tasks, the
motion and the measurement models are unknown and localization needs to be learned
from data, i.e. a sequence of observations, actions, and—in the supervised setting—states

produced by the robot moving randomly through the environment.

RESULT: IMPROVED DATA-EFFICIENCY

Hallway task: We performed multiple experiments in the hallway localization task with
different amounts of training data. The learning curves with respect to mean squared
error for supervised learning show large differences in data efficiency (see solid lines in
Fig. 4.6a): DHFs require substantially less training samples than LSTMs to achieve good
performance (2000 rather than > 8000). HFs are even more data-efficient but quickly
stop improving with additional data.

Drone task: For the drone localization task, we performed an experiment using 4000
training steps (see Table 4.1). Our results show that this data is sufficient for the DHF
(but not for the LSTM) to achieve good performance. Our method only required a similar
amount of data as for the 1D hallway task, even though the histogram size had increased
from 100 to 2500 bins.

68

4.5. DIFFERENTIABLE HISTOGRAM FILTERS

S
B 6mr §0.9
5 = HF S
o o .
a5 m DHF (unsup.) gos ey
2 mm DHF (acc.) s
o 4 DHF (mse) =
S, m LSTM (acc.) 207t/
g = (STM (mse) 2 [|
S, - .
Bl e 5 0.6/,
S1 : 8
7 0.000 3
So Y 2000 4000 6000 8000 £ 0- 2000 4000 6000 8000
g 0 ZOOQ) 4000 6000 8000 #Training samples (steps) #Training samples (steps)
#Training samples (steps) b
(a) (b) (c)

Figure 4.6: Hallway task, learning curves for different metrics: (a) mean squared error of estimating the
continuous state—lower is better, (b) accuracy of estimation the discrete state—higher is better, (c) accuracy
of predicting the next 32 observations—higher is better. The legend specifies both the architecture and the
learning objective. Lines show means, shaded surfaces show standard errors. The dashed line highlights
unsupervised learning (no state labels). LSTMs trained for state estimation cannot predict observations and
therefore are not included in (c).

Table 4.1: Drone task: test performance of different methods with 4000 training samples

Method MSE (state) | Acc. (state) | Acc. (obs.)

HF 0.22 0.05 0.81

DHF (unsup.) | 0.22 0.03 0.81

DHF (acc.) 0.39 0.17 0.40

DHF (mse) 0.16 0.08 0.66

LSTM (acc.) 3.03 0.03 —

LSTM (mse) 0.50 0.06 -

Discussion: The priors encoded in the DHF improve data efficiency because any
information contained in these priors does not need to be extracted from data. This
leads to better generalization, e.g. the ability to robustly and accurately track multiple
hypotheses (see Fig.4.7).

Note on computational limits: The size of the histogram is exponential in the
number of state dimensions. A comparison between the 1D and the 2D task suggests
that data might not be the bottleneck for applying the method to higher dimensional
problems, since the data requirements were similar. However, the increased histogram
size directly translates into longer training times, such that computation quickly becomes
the bottleneck for scaling this method to higher-dimensional problems. Addressing this
problem requires to change the belief representation, e.g. to particles, which we will do in

the last part of this chapter.

RESULT: OPTIMIZATION OF END-TO-END PERFORMANCE

Hallway task: While HFs excel with very few data, DHFs surpass them if more than

2000 training samples are available (see gray and yellow lines in Fig. 4.6a). For the mean

69

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

squared error metric, the best method is the DHF with a mean squared error objective
(yellow line). However, if we care about a different metric, e.g. accuracy of estimating
the discrete state, the methods rank differently (see Fig. 4.6b). The best method for the
previous metric (yellow line) is outperformed by HFs (gray line) and even more so by
DHFs that are optimized for accuracy (teal line). For yet another metric, i.e. accuracy of
predicting future observations, HFs outperform both other approaches but are equal to
DHFs optimized for predicting future observations (see Fig. 4.6c¢).

Drone task: The results of the drone localization task show the same pattern (see
Table 4.1). The best method for every metric is the DHF that optimizes this metric.

Discussion: DHFs perform better than HFs because they optimize the models for the
filtering process (with respect to the metric they were trained for) rather than optimizing
model accuracy. This can be advantageous because “inaccurate” models can improve end-
to-end performance. Compare the measurement model learned in isolation (HF) to the
models learned end-to-end (DHF) in Fig. 4.7a (the correct model would have probabilities

0.9 in door states and probabilities 0.1 in non-door states due to 10% measurement error).

RESULT: ENABLING UNSUPERVISED LEARNING

Hallway and drone tasks: In both tasks, unsupervised DHFs were similar to HFs and
better than all other methods for predicting future observations. Interestingly, they also
had comparatively low mean squared error for state estimation even though they had
never seen any state labels (see dashed green line in Fig. 4.6 and second line in Table 4.1).
In fact, the qualitative results for both tasks show a remarkable similarity between the
learned models and the estimated belief between HFs and unsupervised DHFs (compare
HF and DHF (unsup.) in Fig. 4.7 and Fig. 4.8).

Discussion: DHFs can learn state estimation purely based on observations and actions.
By predicting future observations using the structure of the histogram filter algorithm,
the method discovers a state representation that works well with this algorithm, which
is surprisingly close to the “correct” models learned by HFs, although no state labels are

used.

4.5.3 LIMITATIONS

Differentiable histogram filters present a proof-of-concept but they are not practical for
most robotic tasks.

The main limitations of DHFs are: 1) computation scales exponentially with the number
of dimensions due to the state space discretization; 2) formulating the prediction step using
convolution requires state-invariant motion; 3) the normalization in the measurement

model relies on discrete observations.

70

4.5. DIFFERENTIABLE HISTOGRAM FILTERS

S

S 1.0 HF DHF (unsup.) DHF (acc.) DHF (mse)
S L0y e R ERRSSAEEES
E \ //\

I /

Q H

o J

— I

o

g D DDD D D DDD D

o State State

(a) Learned measurement models

DHF DHF DHF LSTM LSTM
(unsup.) (mse) (acc.) (mse)
D
%D
= D
“ b
D
Time Time Time Time Time Time
Belief = C—
0.0 02 04 06 08 1.0

(b) Belief over time during a test run. Black dots mark the true
trajectory.

Figure 4.7: Hallway navigation task: (a) learned measurement models for one environment (D=door state)
and (b) belief evolution for a single test run in this environment. All methods used 4000 training samples.

DHF
(unsup).nun.-.
1]
DHF
(acc.) |
»

DHF

LSTM

Belief =
0.0

LSTM
(mse)

0.05 0.1

Figure 4.8: Drone localization task: belief evolution during a single test run for different methods. Black
dots/lines show the true position/trajectory of the drone. All methods used 4000 training samples.

71

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

Measurement update

Resample

Belief * t=t+1

Action ¢

Insert Action fe
particles Particle sampler
New Set poses
particles Observ. fyeights ” .
likelihood 1y Noisy
» actions
Particle k Observ.
proposer O N likelihood l@ 'f E
estimator
EnCOdiW Particles Predicted
- Move
Particle rticl poses
Observ. h poses particies
encoder /'O
* Predicted
belief Prediction

E

Observation Ot

Figure 4.9: DPF overview. Models in prediction and measurement update can be learned end-to-end. Boxes
represent models and color indicates that they can be learned.

In the next section, we will demonstrate how all of these limitations can be overcome,
by extending the histogram filter to a particle filter: 1) the state space does not need to be
discretized but the particles focus computation at states of high belief; 2) the prediction
step with particles allows state dependent motion models; 3) omitting the normalization
in the measurement model still results in successful state estimation, which removes the

requirement for discrete observations.

4.6 DIFFERENTIABLE PARTICLE FILTERS

This section introduces the differentiable particle filter (DPF), an end-to-end differentiable
implementation of the particle filter with learnable motion and measurement models. We
can also view DPFs as a new recurrent network architecture that encodes the algorithmic
prior from particle filters in the network structure (see Fig. 4.9).

To extend the histogram filter to a particle filter, we need to replace the belief histogram
with a set of particles. We represent each particle as a vector that describes the particle
location in state space and its weight. The belief is then represented by a vector of particles.
The measurement update computes the particle weights similarly to the measurement
update in the histogram filter. The prediction step does not perform convolution, but
moves particles (updates their location in state space) by sampling from a probabilistic
motion model. After each time step, particles are resampled according to their weight.

The particle set is initialized by proposing particles based on the current observation.

72

4.6. DIFFERENTIABLE PARTICLE FILTERS

N w
1 1

=
1

Probability density

o
1

0.0 0.2 0.4 0.6 0.8 1.0
State

Figure 4.10: Computing the gradient for end-to-end learning requires density estimation from the predicted
particles (gray circles, darkness corresponds to particle weight). After converting the particles into a mixture
of Gaussians (blue), we can compute the belief at the true state (orange bar at red x) and maximize it.

4.6.1 IMPLEMENTATION

This section describes our DPF implementation. Our source code, which is based on
TensorFlow (Abadi et al., 2015) and Sonnet (DeepMind, 2017), is available at:
https://github.com/tu-rbo/differentiable-particle-filters

BELIEF

DPFs represent the belief at time ¢ by a set of weighted particles, bel(s;) = (S, w;), where
S € R™ describes n particles in d-dimensional state space with weights w € R™. At
every time step, DPFs update the previous belief bel(s;_1) with action a; and observation
o, to get bel(s;) (see Fig. 4.9).

PREDICTION

The prediction step moves each particle by sampling from a probabilistic motion model
(Eq. 4.3). We implement this step by splitting the motion model into an action sampler f,
which creates a noisy action al per particle, and a dynamics model g, which moves each

particle ¢ according to all.

all = a;, + folas, € ~ N, (4.5)
sl = s+ g(si) al"), (4.6)

where fy is a feedforward network, 0 are all parameters of the DPF, and €l € R is a noise
vector drawn from a standard normal distribution. Using a noise vector as input to learn a
generative model via backpropagation is known as the reparameterization trick (Kingma
and Welling, 2013). Here, this trick enables fg to learn to sample from action-dependent
motion noise. The resulting noisy actions are fed into g, which simulates how these actions

change the state. If we know the underlying dynamics model we can directly implement

73

https://github.com/tu-rbo/differentiable-particle-filters

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

its equations in g, which we do for our experiments. Alternatively, we could replace g by

a feedforward network go and learn the dynamics from data (see Table 4.2).

MEASUREMENT UPDATE

The measurement update uses the observation to compute particle weights (Eq. 4.4).
DPFs implement this update and additionally use the observation to propose new parti-
cles (see Fig. 4.9). The DPF measurement model consists of three components: a shared
observation encoder h, which encodes an observation o; into a vector e;, a particle pro-
poser k, which generates new particles, and an observation likelihood estimator [, which

weights each particle based on the observation.

€e; = h/g(ot), (47)
sl = ko(es, 01 ~ B), (4.8)
wf] = lg(ey, 57[3]), (4.9)

where hg, kg, and lg are feedforward networks based on parameters @; The input ol is
a dropout vector sampled from a Bernoulli distribution. Here, dropout is not used for
regularization but as a source of randomness for sampling different particles from the

same encoding e; (see Table 4.2).

PARTICLE PROPOSAL AND RESAMPLING

DPFs combine two processes that generate particles: the first one proposes particles
from the current observation (as described above) and the second one resamples existing
particles based on their weight. During filtering, DPFs move gradually from the first
process, which generates possible hypotheses, to the second, which tracks and weeds out
these hypotheses. The ratio of proposed particles follows an exponential function, in our
case 0.7" with t=0 at the beginning of the filtering process.

DPFs implement resampling by stochastic universal sampling (Baker, 1987). Since re-
sampling is not differentiable, it stops the gradient such that end-to-end learning can only
optimize the models to improve the current output, neglecting how these changes might
affect the output in future time steps. This limitation is not problematic for supervised
learning because predicting the correct Markov state is the right objective at every time
step. Unsupervised learning on the other hand will probably require backpropagation

through multiple time steps—which is an important topic in future work.

74

4.6. DIFFERENTIABLE PARTICLE FILTERS

Table 4.2: Feedforward networks for learnable DPF models

fo: 2 x fc(32, relu), fc(3) + mean centering across particles

ge: 3 x fc(128, relu), fc(3) + scaled by E;[abs(s; — s,-1)]

hg: conv(3x3, 16, stride 2, relu), conv(3x3, 32, stride 2, relu), conv(3x3, 64, stride 2,
relu), dropout(keep 0.3), fc(128, relu)

kg: fc(128, relu), dropout™®(keep 0.15), 3 x fc(128, relu), fc(4, tanh)

lg: 2 x fc(128, relu), fc(1, sigmoid scaled to range [0.004, 1.0])

*

fc: fully connected, conv: convolution, *: applied at training and test time

SUPERVISED LEARNING

DPF models can be learned from sequences of supervised data oi.r, ai.r, s using
maximum likelihood estimation, where we want to maximize the belief at the true state
bel(s}). To estimate the probability density at s; from a set of particles, we treat each
particle as a Gaussian in a mixture model with weights w; (see Fig. 4.10). For a sensible
metric across state dimensions, we scale each dimension by dividing by the average step

size E4[abs(s; —s;_;)]. This density estimation enables individual and end-to-end learning.

INDIVIDUAL LEARNING OF THE MOTION MODEL: We optimize the motion model in-
dividually to match the observed motion noise by sampling states sy] from sy ; and a,
using Eq. 4.5-4.6 and maximizing the data likelihood as described above, 8% = argming —
logp(s; | s;_1,a;0f). If the dynamics model g is unknown, we train go by minimizing

*

mean squared error between g(s;_;,a;) and s; — s} ;.

INDIVIDUAL LEARNING OF THE MEASUREMENT MODEL: The particle proposer kg is
trained analogously to the motion model by sampling sy} from o; using Eq. 4.7-4.8 and
maximizing the Gaussian mixture at the true state sj.

We train the observation likelihood estimator lp (and hg) by maximizing the like-

lihood of observations in their state and minimizing their likelihood in other states,
02,! = argminew - 1Og(Et[l9(h9(ot)7 3:)]) - log(l - Et1,t2 [ZG(hG(Otl)v 3;)])

END-TO-END LEARNING: For end-to-end learning, we apply DPFs on overlapping sub-

sequences and maximize the belief at all true states along the sequence as described above,
0" = argmin, — log E;[bel(s; 0)].

4.6.2 EXPERIMENTS AND RESULTS

We evaluated DPFs in two state estimation problems in robotics: global localization and

visual odometry. We tested global localization in simulated 3D mazes based on vision

75

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

and odometry. We focused on this task because it requires simultaneously considering
multiple hypotheses, which is the main advantage of particle filters over Kalman filters.
Here, we evaluated two things: a) the effect of end-to-end learning compared to individual
learning and b) the influence of algorithmic priors encoded in DPFs by comparing to
generic LSTMs. To show the versatility of DPFs and to compare to published results
with backprop Kalman filters (BKFs, Haarnoja et al., 2016), we also apply DPFs to the
KITTTI visual odometry task (Geiger et al., 2013). The goal is to track the position and
orientation of a driving car based on a first-person-view video. In both tasks, DPFs use
the known dynamics model g but do not assume any knowledge about the map of the
environment and learn the measurement model entirely from data.

Our global localization results show that 1) algorithmic priors enable explainability,
2) end-to-end learning improves performance but sequencing individual and end-to-end
learning is even more powerful, 3) algorithmic priors in DPFs improve performance com-
pared to LSTMs reducing the error by 70-80%, and 4) algorithmic priors lead to policy
invariance: While the LSTM baseline learns localization in a way that stops working when
the robot behaves differently (~84% error rate), localization with the DPF remains useful
with different policies (~15% error rate).

In the visual odometry task, DPFs perform as well as BKFs even though the task exactly
fits the capabilities and limitations of Kalman filters—tracking a unimodal belief from a
known initial state. This result demonstrates the versatility of DPFs because the task
differs from the first one in a number of properties: higher frequency, longer sequences
and a 5D state instead of a 3D state. The result also shows that DPFs work on real data
and are able to learn measurement models that work for visually diverse observations

based on less than 40 minutes of video.

EXPERIMENT: LEARNING GLOBAL LOCALIZATION

In this global localization task, we want to estimate the position and orientation of a
robot based on visual input. For this purpose, we took the navigation environments from
DeepMind Lab (Beattie et al., 2016) and removed all objects and unique wall textures to
ensure partial observability. We then collected data by letting the simulated robot wander
through the maze (see Fig. 4.11). The robot followed a hand-coded policy that moves in
directions with high depth values from RGB-D input and performs 10% random actions.
For each maze, we collected 1000 trajectories of 100 steps with one step per second for
training and testing. As input for localization, we only used RGB images and odometry
and added random disturbances to make the task more realistic. For the observations, we
randomly cropped the rendered 32 x 32 RGB images to 24 x 24 and added Gaussian noise
with o = 20 (see Fig. 4.11d-f). As actions, we used odometry information that corresponds

to the change in position and orientation since the last time step in the robot’s local frame.

76

4.6. DIFFERENTIABLE PARTICLE FILTERS

Al

(a) Maze 1 (10x5)

el

(c) Maze 3 (20x13)

o PO] Dt s o md B b b

(d) Maze 1 observations (e) Maze 2 observations (f) Maze 3 observations

(b) Maze 2 (15x9)

Figure 4.11: Three maze environments. Red lines show example trajectories of length 100. Blue circles show
the first five steps, of which the observations are depicted below.

NS
c — C .. i —ind

/ — e2e
&" e

— ind+e2e

(a) Predictions with learned motion model

-1.0 -0.5 0.0 0.5 1.0
Predicted pos. relative to odom.

(b) Comparison of learned noise

Figure 4.12: Learned motion model. (a) shows predictions (cyan) of the state (red) from the previous state
(black). (b) compares prediction uncertainty in x to true odometry noise (dotted line).

We corrupted the actions with multiplicative Gaussian noise with ¢ = 0.1. All methods
were optimized on short trajectories of length 20 with Adam (Kingma and Ba, 2014) and
regularized using dropout (Srivastava et al., 2014) and early stopping. We will now look

at the results in this task.

RESULT: ALGORITHMIC PRIORS ENABLE EXPLAINABILITY

Due to the algorithmic priors in DPFs; the models remain interpretable even after end-to-
end learning. We can therefore examine a) the motion model, b) the measurement model,
and c) their interplay during filtering. Unless indicated otherwise, all models were first

learned individually and then end-to-end.

7

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

‘ o 0.8°8
o
0.6 =
V | 04
4 o2 8
b .
bopod o
(a) Obs. 0.0
(c) Obs. likelihood estimator
4 N o
‘ - 04 3
<
| T
v
gt 02=
b (%)
- :
(d) Obs. 0.0
(f) Obs. likelihood estimator
0.8
MO
QN+ ‘ - kS
A 0.6 2
o | 0.4 ¥
4)
0.2
L .
(g) Obs. 0.0

(h) Particle proposer (i) Obs. likelihood estimator

Figure 4.13: Learned measurement model. Observations, corresponding model output, and true state (red).
To remove clutter, the observation likelihood only shows above average states.

MoTioN MODEL: Fig. 4.12a shows subsequent robot poses together with predictions
from the motion model. These examples show that the model has learned to spread the
particles proportionally to the amount of movement, assigning higher uncertainty to larger
steps. But how does this behavior depend on whether the model was learned individually
or end-to-end?

Fig. 4.12b compares the average prediction uncertainty using models from different
learning schemes. The results show that individual learning leads to the “correct” model
that exactly describes the odometry noise (compare the red and the dotted black line).
End-to-end learning, on the other hand, generates models that overestimate the noise
(green and orange lines), which matches the insights of experts in state estimation who
report that “many of the models that have proven most successful in practical applications

vastly overestimate the amount of uncertainty” (Thrun et al., 2005, p. 118).

78

4.6. DIFFERENTIABLE PARTICLE FILTERS

0.000 0.001 0.002
Particle weight

Figure 4.14: Global localization with DPFs. One plot per time step of a test trajectory: true state (red),
1000 particles (proposed particles have weight 0.001). Last plot: the weighted particle mean (green) matches
the true state after the first few steps.

MEASUREMENT MODEL Fig. 4.13 shows three example observations and the correspond-
ing outputs of the measurement model: proposed particles and weights depending on par-
ticle position. Note how the model predicts particles and estimates high weights at the
true state and other states in locally symmetric parts of the maze. We can also see that
the data distribution shapes the learned models, e.g. by focusing on dead ends for the
second observation, which is where the robot following the hand-coded policy will look
straight at a wall before turning around. Similar to motion models, end-to-end learned
measurement models are not accurate but effective for end-to-end state estimation, as we

will see next.

MoODEL INTERPLAY: Figure 4.14 shows how the models work together in the DPF.
During the first five steps, the filter mainly proposes new particles and only slowly shifts
to resampling according of the particle weights. After this initialization, the filter reduces
the number of main hypotheses to three in step seven and to one in step ten. In the
remaining steps, the filter tracks the state by moving and spreading the particles according

to the motion model and by refocusing the belief based on observation likelihood.

79

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

1.0

1.0

—— LST™
—— DPF (ind) 0.8
DPF (e2e)
—— DPF (ind+e2e)

Error rate

©
=]

Error rate
© o o9
N - o
N L L
Error rate
© o o o
N s o ©
N L L s

o
o

16 32 64 125 250 500 1000 16 32 64 125 250 500 1000 16 32 64 125 250 500 1000

Training trajectories (log. scale) Training trajectories (log. scale) Training trajectories (log. scale)
(a) Maze 1 (10x5) (b) Maze 2 (15x9) (c) Maze 3 (20x13)
= 1.2 = 1.2 = 1.2
= = =
310 \ 310 N J 210
] 8]
g 0.8 g 0.8 \/ g 0.8
© 0.6 - © 0.6 - 0.6 -
e o e
2 0.4 \/ 2044 2 0.4
° o °
+ 0.2 4 < 0.21 + 0.2 4
e e e
@ 0.0 = T T T T T T 0 0.0 41— T T T T & 0.0 = T T T T T T
16 32 64 125 250 500 1000 16 32 64 125 250 500 1000 16 32 64 125 250 500 1000
Training trajectories (log. scale) Training trajectories (log. scale) Training trajectories (log. scale)
(d) Maze 1 (10x5), relative to (e) Maze 2 (15x9), relative to (f) Maze 3 (20x13), relative to
LSTM LSTM LSTM

Figure 4.15: Learning curves in all mazes (a-c), also relative to LSTM baseline (d-f). ind: individual learning,
e2e: end-to-end learning. Shaded areas denote standard errors.

REsuLT: END-TO-END LEARNING IMPROVES PERFORMANCE

To quantify the effect of end-to-end learning on state estimation performance, we com-
pared three different learning schemes for DPFs: individual learning of each model (ind),
end-to-end learning (e2e), and both in sequence (ind+4-e2e). We evaluated the perfor-
mance in all three mazes and varied the amount of training trajectories along a logarithmic
scale from 32 to 1000. We measured localization performance by error rate, where we con-
sider a prediction erroneous if the distance to the true state, divided by E;[abs(s; — s;_1)],

is greater than 1.

The resulting learning curves in Fig. 4.15a-c¢ show that end-to-end learned DPFs (or-
ange line) consistently outperform individually trained DPFs (red line) across all mazes.
Individual training is worst with few training trajectories (less than 64) but also plateaus
with more data (more than 125 trajectories). In both cases, the problem is that the mod-
els are not optimized for state estimation performance. With few data, the training does
not take into account how the unavoidable model errors will affect filtering performance.
With lots of data, the models will work according to the individual learning objectives but
those might not be aligned optimally with the end-to-end filtering objective. End-to-end
learning consistently leads to improved performance for the same reasons.

Performance improves even more when we sequence individual and end-to-end learning
(green line in Fig. 4.15a-c). Individual pretraining helps because it incorporates additional
information about the function of each model into the learning process, while end-to-end

learning incorporates information about how these models affect end-to-end performance.

80

4.6. DIFFERENTIABLE PARTICLE FILTERS

Naturally, it is beneficial to combine both sources of information.

RESULT: ALGORITHMIC PRIORS IMPROVE PERFORMANCE

To measure the effect of the algorithmic priors encoded in DPFs, we compare them with
a generic neural network baseline that replaces the filtering loop with a two-layer long-
short-term memory network (LSTMs, Hochreiter and Schmidhuber, 1997). The baseline
architecture is kept as similar as possible to the DPF architecture—the same structure as
he followed by 2 x Istm(512), 2 x fc(256, relu), and fc(3)—and is trained end-to-end to
minimize mean squared error.

The comparison between DPF (ind+e2e) and the LSTM baseline (blue) in Fig. 4.15a-c
shows that the error rate of DPF (ind+-e2e) is lower than for LSTM for all mazes and all
amounts of training data. Also in all mazes, DPF (ind+e2e) achieve the final performance
of LSTM already with 125 trajectories, % of the full training set.

We performed a small ablation study in maze 2 to quantify the effect the known dynam-
ics model on this performance. When the dynamics model is learned, the final error rate
for DPFs increases from 1.6% to 2.7% compared to 6.0% error rate for LSTMs. This shows
that knowing the dynamics model is helpful but not essential for DPF’s performance.

To visualize the performance relative to the LSTM baseline in more detail, we divided
all learning curves by performance of the baseline (see Fig. 4.15d-f). Since DPFs include
additional prior knowledge compared to LSTMs, we might expect them to have higher
bias and lower variance. Therefore, we would expect DPFs relative error to be lowest
with small amounts of data and highest with large amounts of data (the green curves
in Fig. 4.15d-f should go up steadily from left to right until they cross the blue lines).
Surprisingly, these curves show a different trend: DPFs relative performance to LSTMs
improves with more data and converges to about % to % of the error rate. There could
be a slight upwards trend in the end, but on a logarithmic data axis it would take a
tremendous amount of data to close the gap. This result suggests that the priors from the
Bayes filter algorithm reduce variance without adding bias—that these algorithmic priors

capture some true structure about the problem, which data does not help to improve upon.

RESULT: ALGORITHMIC PRIORS LEAD TO PoOLICY INVARIANCE

To be useful for different tasks, localization must be policy-invariant. At the same time,
the robot must follow some policy to gather training data, which will inevitably affect the
data distribution, add unwanted correlations between states and actions, etc.

We investigated how much the different methods overfit to these correlations by chang-
ing the policy between training and test, using two policies A and B. Policy A refers to
the heuristic exploration policy that we used for all experiments above (see Section 4.6.2).

Policy B uses the true pose of the robot, randomly generates a goal cell in the maze,

81

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

EEE DPF (ind)
- DPF (e2e)
%< B DPF (ind+e2e)
S | mmm LSTM
=
E 11 .10 12
% | O3 01 moy [EUCEPUEY |
g
< .83
g
©
ém
o
.08
O o .00 pnben || 02 01 |
A B A+B

Trained with policy

Figure 4.16: Generalization between policies in maze 2. A: heuristic exploration policy, B: shortest path
policy. Methods were trained using 1000 trajectories from A, B, or an equal mix of A and B, and then tested
with policy A or B.

computes the shortest path to the goal, and follows this path from cell to cell using a
simple controller mixed with 10% random actions.

The results in Fig. 4.16 show that all methods have low error rates when tested on their
training policy (although DPFs improve over LSTMs even more on policy B). But when
we use different policies for training and test, LSTM’s error rate jumps to over 80%), while
DPF (ind+e2e) still works in most cases (5% and 26% error rate).

The LSTM baseline is not able to generalize to new policies because it does not discrim-
inate between actions and observations and fits to any information that improves state
estimation. If the training data includes correlations between states and actions (e.g. be-
cause the robot moves faster in a long hallway than in a small room), then the LSTM
learns this correlation. Put differently, the LSTM learns to infer the state from the action
chosen by the policy. The problem is that this inference fails if the policy changes. The
algorithmic priors in DPFs prevent them from overfitting to such correlations between
states and actions because DPFs cannot directly infer states from actions.

DPFs generalize better from A to B than from B to A. Since generalization from B to
A is equally difficult for DPFs with individually learned models, the error increase cannot
come from overfitting to correlations in the data through end-to-end learning, but is most
likely because the states visited by policy A cover those visited by policy B but not vice
versa.

The alternative approach to encoding policy invariance as a prior is to learn it by adding
this variance to the data. Our results show that if we train on combined training data from
both policies (A+B), all methods perform well in tests with either policy. This approach
in the spirit of domain randomization and data augmentation helps DPFs because it
covers the union of the visited states and (additionally) helps the LSTMs by including
state-action correlations from both policies. But to make the LSTM localization truly

policy invariant such that it would work with any new policy C, the training data has

82

4.6. DIFFERENTIABLE PARTICLE FILTERS

—— Predicted pos.
200 - —— Ground truth
— 0 A
E
>
—200 A
~400 -
0 200 400
x (m)
(a) Visual input (image and difference image) at time steps (b) Trajectory 9; starts at (0,0)

100, 200, and 300 (indicated in (b) by black circles)

Figure 4.17: Visual odometry with DPFs. Example test trajectory

to cover the space of all policies in an unbiased way, which is difficult for any interesting

problem.

EXPERIMENT: LEARNING VISUAL ODOMETRY

To validate our simulation results on real data, we applied DPFs on the KITTI visual
odometry data set, which consists of data from eleven trajectories of a real car driving in
an urban area for a total of 40 minutes. The data set includes RGB stereo camera images
as well as the ground truth position and orientation of the car in an interval of ~0.1
seconds. The main challenge of this task is to generalize in a way that works across highly
diverse observations because the method is being tested on a road that it has never seen
during training. Since the the car drives on different roads in every trajectory, it is not
possible to extract global information about the car’s position from the images. Instead,
we need to estimate the car’s translational and angular velocity from the stream of images
and integrate this information over time to track the car’s position and orientation.

We tackle this problem with a DPF in a five dimensional state space, which consists of
the position, orientation, forward velocity and angular velocity. DPFs learn to perform
visual odometry from a known initial state using a simple first-order dynamics model g and
a learnable action sampler fy. Since there is no information about the action of the driver,
the action sampler produces zero mean motion noise on the velocity dimensions, which is
then evaluated with the measurement model. To keep the comparison as fair as possible,
we used the same network architecture for the observation encoder hg that was used in the
backprop Kalman filter paper (Haarnoja et al., 2016), which takes as input the current
image and the difference image to the last frame (see Fig. 4.17). Our observation likelihood

estimator lg weights particles based on their velocity dimensions and the encoding hg(0y).

83

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

Table 4.3: KITTI visual odometry results

Test 100 Test 100,/200/400/800

Translational error (m/m)

BKF* 0.2062 0.1804

DPF (ind) 0.1901 £+ 0.0229 0.2246 £ 0.0371

DPF (e2e) 0.1467 + 0.0149 0.1748 £ 0.0468

DPF (ind+e2e) 0.1559 + 0.0280 0.1666 + 0.0379
Rotational error (deg/m)

BKF* 0.0801 0.0556

DPF (ind) 0.1074 £ 0.0199 0.0806 £ 0.0153

DPF (e2e) 0.0645 £ 0.0086 0.0524 +£ 0.0068

DPF (ind—i—eQe) 0.0499 £ 0.0082 0.0409 £ 0.0060

Means £ standard errors; * results from Haarnoja et al. (2016)

Since, the initial state is known, we do not use a particle proposer. We train the DPF
individually and end-to-end, only using the velocity dimensions for maximum likelihood
estimation.

We evaluated the performance following the same procedure as in the BKF paper. We
used eleven-fold cross validation where we picked one trajectory for testing and used the
rest for training, for which we used subsequences of length 50. We evaluated the trained
model on the test trajectory by computing the average error over all subsequences of 100

time steps and all subsequences of 100, 200, 400, and 800 time steps.

RESULT: SAMPLE-BASED REPRESENTATIONS OUTPERFORM (GAUSSIANS

Table 4.3 compares our results to those published for BKFs (Haarnoja et al., 2016). We can
see that DPFs outperform BKFs, in particular for short sequences where they reduce the
error by ~30%. Any improvement over BKFs in this task is surprising because Gaussian
beliefs seem sufficient to capture uncertainty in this task. The improvement could come
from the fact that DPFs sample-based distributions can represent long tailed probabilities
for the motion noise and the belief. These results demonstrate that DPFs generalize to

different tasks and can be successfully applied to real data.

84

4.7. CONCLUSION

4.7 (CONCLUSION

4.7.1 SUMMARY

We proposed to combine prior knowledge captured in algorithms with end-to-end learning
by making the algorithm differentiable and such that their parameters can be learned in a
way that optimizes the algorithm’s performance. We demonstrated the feasibility of this
idea in the context of state estimation in robotics by introducing differentiable histogram
filters and differentiable particle filters.

Our experiments show substantial advantages of combining end-to-end learning with
algorithmic priors. End-to-end learning optimizes models for performance while algorith-
mic priors enable explainability and regularize learning, which improves data-efficiency
and generalization. Our results also demonstrate that this combination can enable unsu-
pervised learning.

I believe that using algorithms as algorithmic priors will improve generalization of end-
to-end learned systems and make them more applicable for robotics. The components of
our DHF and DPF implementations, such as prediction by convolution, sample generation,
and density estimation, will be useful for producing differentiable versions of other grid-

and sampling-based algorithms.

4.7.2 ALTERNATIVES TO END-TO-END LEARNING

In this chapter, we used prior knowledge to restrict the hypothesis space and combined it
end-to-end learning objectives. End-to-end learning is powerful because it optimizes the
performance of the entire system rather than the performance of individual components.
But the success of this approach hinges on the availability of labeled data that we can
use for end-to-end learning.

In many cases, labels are not available because it is difficult to measure the true state of
a system, because it is unrealistic that robots learning autonomously would have access
to that information, or because we do not even know which state representation best
facilitates solving a given problem.

Without labels for perception, we use end-to-end learning to optimize perception as
part of the larger system that describes behavior “from pixels to torques” The problem
of this approach is again one of regularization. To prevent overfitting of such a complex
system, we need to incorporate additional prior knowledge.

The overfitting problem is amplified if we assume that robot will mostly not learn from
labeled examples that specify the torques it should apply for a given situation. For robots
that mostly learn from unlabeled data and sparse reward signals, end-to-end learning

objectives do not provide sufficient feedback to optimize the learnable parameters in a

85

Chapter 4. LEARNING STATE ESTIMATION THROUGH ALGORITHMIC PRIORS

way that will generalize well. What is the alternative?

We already got a glimpse of an alternative in this chapter, when we trained DHFs in
an unsupervised way by predicting observations rather than states. This example shows
how we can use additional learning objectives as a proxy for the actual objective, which
is end-to-end performance. As we will see in the next chapter, predicting data is not the
only kind of objective, but we can have a range of learning objectives that relate data
and predictions in a number of interesting ways. And we will also see how these learning
objectives can capture powerful prior knowledge about interactions with the physical

world, which we call robotic priors.

86

LEARNING STATE REPRESENTATIONS
THROUGH PHYSICS-BASED PRIORS

5.1 INTRODUCTION

This chapter proposes an alternative to the end-to-end learning approach from the previ-
ous chapter based on proxy learning objectives. It focuses on encoding prior knowledge

not by restricting the hypothesis space but by defining appropriate learning objectives.

The problem setting for this chapter is reinforcement learning, where the robot should
learn a behavior that maps observations to actions in a way that maximizes long term
reward. Learning this function end-to-end by trial and error is inefficient because of the
sparse reward signal. Instead, we split the behavior into two parts, an observation-state-
mapping that extracts a task-relevant state description from the current observation and

a policy takes this state and decides on the next action.

This chapter addresses the problem of learning the first part—the mapping from ob-
servations to task-relevant states—in an unsupervised way, i.e. without any state labels.
The goal is to learn state representations that facilitate learning the second part, the

policy, from a sequence of observations, actions, and rewards.

Towards this end, we exploit prior knowledge about how robots interact with their
environment. Regardless of the task, robots always interact with the real world, which is
governed by the laws of physics. As the robot’s internal state captures properties of the
world, the same laws that apply to the physical world must also apply to this internal
state representation. Robots can learn representations that are consistent with physics

by exploiting prior knowledge about interacting with the physical world, which we term

87

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

EsS®-

(a) simulated slot car racing task

(c) navigation task with a real robot

Figure 5.1: State representations learned from visual input in (a) a simulated slot car racing task, (b) a
simulated (and simplified) navigation task, and (c) a navigation task with a real robot. For (a) and (b)
the state representations clearly capture the pertinent information for each task, i.e., the position of the slot
car on the circular race track and the location of the mobile robot, respectively. For (c) the learned state
representation is five-dimensional and, therefore, difficult to inspect visually. The plot shows two projections
of the state space onto the first principal components.

robotic priors.*

In the main part of this chapter, we formulate five robotic priors. Then, we formulate
consistency with these priors in the form of loss functions, such that they can be used as
learning objectives to state representation learning. Finally, we explain how, by minimiz-
ing this loss function, we can learn state representations that allow robots to effectively
learn new tasks using standard reinforcement learning. We call this method learning with
robotic priors (LRP).

We analyze our approach in depth in simulated robotic tasks based on visual observa-
tions: a slot car racing task with two cars and a navigation task (see Figure 5.1). We
verify these results in an experiment with a real robot in a similar navigation task (see

Section 5.6.2). These tasks contain distractors that influence the visual observations of

*Since physics was the first source of prior knowledge that we had identified, we referred to these
priors also as robotic priors in our publications. To stay consistent with the literature, I will use the
same term in this chapter. Please note that in the introduction and conclusion, I use robotic priors more
inclusively to refer to prior knowledge in robotics, which can come from the task, algorithms, or physics.

88

5.1. INTRODUCTION

the robot but that are irrelevant for the task. With LRP, the robot learns to extract a low-
dimensional state representation from high-dimensional visual observations that ignores
these task-irrelevant distractions. We show that this change of representation greatly sim-
plifies the subsequent learning problem and thereby substantially improves reinforcement
learning performance. We also demonstrate that state representations that were learned
for one task can also be transferred to new tasks.

We also present two extensions of this approach: 1) learning state representations
for multiple tasks using an additional prior and 2) learning structured state spaces that
consist of a position and velocity part by adding this structure as a hard constraint on
the hypothesis space.

Finally, we relate this approach to learning with side information, which is an alternative
perspective on machine learning that can be viewed as a generalization of the approach
presented in this chapter. The main idea is that relating side information (such as actions
and rewards) to learnable functions (such as a function from observations to states) can

help to learn representations and regularize learning.

5.1.1 CONTRIBUTIONS

In this chapter, we make the following contributions:

CONCEPTUAL CONTRIBUTIONS

o We identify a set of robotic priors and implement consistency with these priors in

the form of learning objectives.

o We generalize insights from this approach by relating it to learning with side in-
formation, a new perspective on machine learning, in which our work is only one

particular pattern among many others.

TECHNICAL CONTRIBUTIONS

« We introduce learning with robotic priors (LRP), a method for unsupervised learn-
ing of state representations that implements robotic priors as learning objectives.
LRP learns state representations without supervision that ignore task-irrelevant in-
formation and improves generalization of subsequent reinforcement learning. Our
source code and data is available at: https://github.com/tu-rbo/learning-

state-representations-with-robotic-priors

o We present a multi-task extension, MT-LRP, which classifies experience into dif-

ferent tasks and learns separate state representations for each task. MT-LRP

89

https://github.com/tu-rbo/learning-state-representations-with-robotic-priors
https://github.com/tu-rbo/learning-state-representations-with-robotic-priors

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

works by adding two new learning objectives and implementing the observation-

state-mapping as a gated network.

We present position velocity encoders (PVEs), which extend LRP to learn a state
space that is structured into a position and a velocity part by combining additional

learning objectives with constraints in the hypothesis space.

EMPIRICAL CONTRIBUTIONS

We show that robotic priors enable state representation learning that is invariant
to perspective, ignores distractors, identifies task-dimensionality, improves reinforce-
ment learning, and transfers to related tasks. The presented extensions demonstrate
that this approach scales to multiple tasks and is well suited for learning structured

state representations.

5.1.2 OUTLINE

The rest of this chapter is organized as follows:

Section 5.2 Background and Related Work introduces the state representation

learning problem and surveys related approaches to learning state representations

Section 5.3 Robotic Priors explains the concept of robotic priors and defines the

priors that we use in this work.

Section 5.4 Optimizing Consistency with Robotic Priors formulates these
priors in the form of learning objectives and demonstrates how they can be optimized

in a state representation learning algorithm.

Section 5.5 Experiments and Results describes the experiments and analysis

experimental results.

Section 5.6 Extension 1: Learning State Representations for Multiple

Tasks extends this approach to multi-task learning.

Section 5.7 Extension 2: Adding Position-Velocity Structure to the State

extends this approach to learning structured state spaces.

Section 5.8 Relation to Learning with Side Information relates our work
on learning state representations to learning with side information, which presents
a new perspective on machine learning and the use of prior knowledge through

learning objectives.

Section 5.9 Conclusion summarizes the findings of this chapter and discusses

future research directions.

90

5.2. BACKGROUND AND RELATED WORK

O¢, Tt

Figure 5.2: The robot-world-interaction. At time t, the robot computes the state s; from its observation
0¢ using observation-state-mapping ¢. It chooses action a; according to policy 7 with the goal to maximize
future rewards 7¢41:00-

5.2 BACKGROUND AND RELATED WORK

5.2.1 THE STATE REPRESENTATION LEARNING PROBLEM

As robots must rely on their task-general sensors, they cannot directly perceive their
task-specific state. Instead, they must extract the state from sensory observations. State
representation learning is the problem of learning to extract a state description from a
history of interactions (i.e. previous observations, actions, and rewards) in order to enable
efficient learning of the policy. We formalize this problem as learning a mapping ¢ to the
current state, such that s, = ¢(01.4, a1.4-1,71.¢). Given s;, the robot selects the next action
according to its policy: a; = m(s;).

In this chapter, we focus on a special instance of this problem assuming that the state
can be estimated from a single observation. This reduces the state representation learning
problem to learning an observation-state-mapping ¢, where s; = ¢(0;) (see Figure 5.2).

To make this simplification, we must assume that the observation has the Markov
property. Technically, this turns the problem into a Markov decision process such that we
could use the raw observation as state. However, as we will see later in this chapter, the
distance metric in the observation space (e.g., camera images) often does not enable the
robot to learn the task. Even with Markov observations, robots must learn more useful
state representations.

Note that sensory input of robots is often local and, therefore, observations are non-
Markov for many robotic tasks. For some tasks, we can make observations Markov by
including sensory inputs from multiple time steps in o,. However, the dimensionality of
o, multiplies with the number of time steps that are taken into account and, ultimately,
the state can depend on the entire history of observations, actions, and rewards. Alter-
natively, one could learn a state-filter instead of a observation-state-mapping (similar to
the previous chapter but without any supervision). With every new action, observation,
and reward, the filter would update the state. We think that it is crucial to investigate

these extensions in future work, e.g. based on the differentiable particle filters (see Chap-

91

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

ter 5). For now, we assume Markov observations and restrict ourselves to learning an
observation-state-mapping. In the next section, we outline how we address this problem

in a robotics-specific way.

5.2.2 APPROACHES TO STATE REPRESENTATION LEARNING

State representation learning is an instance of representation learning for interactive prob-
lems. The goal of state representation learning is to find a mapping from observations—or,
more generally, from histories of interactions—to states that allow choosing the right ac-
tions. State representation learning is related to the problem of abstraction selection in
hierarchical reinforcement learning, which deals with selecting a state representation from
a given set (van Seijen et al., 2014; Konidaris and Barto, 2009) or choosing a subset of
state dimensions from a given representation (Cobo et al., 2014). By contrast to this
work, we want to emphasize the need to construct state representations from sensory
input without relying on predefined task-specific state features.

Note that state representation learning is more difficult than the standard dimension-
ality reduction problem, which is addressed by multi-dimensional scaling (Kruskal, 1964)
and other methods (Roweis and Saul, 2000; Tenenbaum et al., 2000; Hadsell et al., 2006)
because they require knowledge of distances or neighborhood relationships between data
samples in state space. The robot, on the other hand, does not know about semantic
similarity of sensory input beforehand. In order to know which observations correspond
to similar situations with respect to the task, it has to solve the reinforcement learning
problem (see Section 5.2.1), which it cannot solve without a suitable state representation.
The question is: What is a good objective for state representation learning? We will now
look at different objectives that have been proposed in the literature and relate them to
our robotic priors (which we will define in Section 5.3.2 and formulate as objectives in
Section 5.4.1).

92

5.2. BACKGROUND AND RELATED WORK

COMPRESSION OF OBSERVATIONS: Lange et al. (2012) obtain state representations by
compressing observations using deep autoencoders. This approach relies on the prior that
there is a simple (low-dimensional) state description and on the prior that this description
is a compression of the observations. While we use the same simplicity prior, we believe

that it is important to also take time, actions, and rewards into account.

TEMPORAL COHERENCE: Slow feature analysis (Wiskott and Sejnowski, 2002) finds
a mapping to states that change as slowly as possible, guided by the prior that many
properties in our world change slowly over time. This method has been used to identify
a representation of body postures of a humanoid robot (Hofer et al., 2010) as well as
for solving reinforcement learning tasks with visual observations (Legenstein et al., 2010).
Luciw and Schmidhuber (2012) showed that slow feature analysis can approximate proto-
value functions (Mahadevan and Maggioni, 2007), which form a compact basis for all
value functions. Incorporating the same prior, dimensionality reduction methods have
used temporal distance to estimate neighborhood relationships (Jenkins and Matari¢,
2004).

Slowness or temporal coherence is an important robotic prior that LRP also relies on.
However, the purpose of the state is to provide a sufficient statistic based on which the
robot can choose the right actions. Therefore, the actions of the robot must also be
considered for learning the state representation. The following methods and ours take

this valuable information into account.

PREDICTIVE AND PREDICTABLE ACTIONS: These approaches find state representa-
tions in which actions lead to simple, predictable transformations. Action respecting
embeddings, proposed by Bowling et al. (2005), aim at a state space in which actions
are distance-preserving. Sprague (2009) introduced predictive projections, which find a
representation such that actions applied to similar states result in similar state changes.
Predictive state representations, proposed by Littman et al. (2002), define states as suc-
cess probabilities for a set of tests, where a test is a prediction about future observations
conditioned on future actions. Boots et al. (2011) showed how predictive state represen-
tations can be learned from visual observations. As we will see, these ideas are related to
the proportionality prior, the causality prior, and the repeatability prior in this chapter.

The problem with these methods—and all other methods discussed so far—is that they
generate task-general state representations. This is problematic when the robot lives in a
complex environment and there is no common state representation that works for all tasks.
Therefore, we will use the reward to focus on the task-specific aspects of the observations

and ignore information irrelevant for the task.

93

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

INTERLEAVING STATE REPRESENTATION LEARNING AND REINFORCEMENT LEARNING:
The approaches presented so far learn state representations first to then use them for
reinforcement learning. We will now discuss approaches that combine these steps. Piater
et al. (2011) use decision trees to incrementally discriminate between observations with
inconsistent state-action values according to the reinforcement learning algorithm. This
method is comparable to an earlier approach of Singh et al. (1995), which minimizes the
error in the value function by clustering states. Menache et al. (2005) also adapt the state
representation during reinforcement learning; they represent the state as a set of basis
functions and adapt their parameters in order to improve the value function estimate.
Methods in this category rely on causality of values. They assume that the value
is attributable to the state. To compute the value, they must solve the reinforcement
learning problem. These steps can be decoupled by factorizing the value function into
the reward function and the state transition function. This is used by the following

approaches, and also by ours.

SIMULTANEOUSLY LEARNING THE TRANSITION FUNCTION: In earlier work (Jonsch-
kowski and Brock, 2013), we proposed to learn the state transition function together with
the state representation to maximize state predictability while simultaneously optimiz-
ing temporal coherence. A drawback of this approach is that it ignores the reward and,

therefore, cannot distinguish task-relevant from irrelevant information.

SIMULTANEOUSLY LEARNING TRANSITION FUNCTION AND REWARD FUNCTION: Some
approaches jointly learn an observation-state-mapping, a transition function, and a re-
ward function, differing in their learning objective. Hutter (2009) proposes minimizing
the combined code length of the mapping, transition function, and reward function. Duell
et al. (2012) learn these functions to predict future rewards conditioned on future actions.
Jetchev et al. (2013) maximize state predictability and reward discrimination to learn a
symbolic state representation.

These approaches build models of state transitions and rewards to enforce state pre-
dictability and reward discrimination. Contrary to this approach, we define our learn-
ing objective in terms of distances between state-samples, similar to the idea of multi-
dimensional scaling (Kruskal, 1964). In this way, we can assure the existence of tran-
sition and reward functions for the state representation without having to model them

explicitly.

94

5.3. RoBOTIC PRIORS

5.3 RoBOTIC PRIORS

5.3.1 PRIORS ABOUT INTERACTING WITH THE PHYSICAL WORLD

According to Bengio et al. (2013), the key to successful representation learning is the
incorporation of “many general priors about the world around us.” They proposed a list
of generic priors for artificial intelligence and argue that refining this list and incorporating
it into a method for representation learning will bring us closer to artificial intelligence.
This is exactly what we are trying to do in the context of robotics. However, we believe
that the problem of artificial intelligence is too broad and that therefore generic priors
are too weak. We try to find stronger priors about the problem structure by focusing
on robotic tasks, which involve interacting with the physical world. We call such priors
robotic priors.

Scholz et al. (2014) follow the same idea of using physics based priors to learn a forward
model (or transition function) of the world. Instead of using a generic hypothesis space
for the forward model, they use a restricted parametric hypothesis space based on physics.
This can be very helpful for robotic tasks because we know that the right forward model
must lie in this restricted hypothesis space. However, this work assumes to already have a
suitable state representation consisting of poses and velocities as well as knowledge about
the exact semantics of every state-dimension. Our work focuses on how a robot could
learn to extract such a state representation from sensory input.

The interaction between the robot and the real world is structured by the laws of
physics. From this fact, we can derive robotic priors that capture characteristics of all

robotic tasks based on physical interaction.

95

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

5.3.2 FI1vE RoBOTIC PRIORS

In this section, we define five robotic priors.

SIMPLICITY: For a given task, only a small number of world properties are relevant.
This prior is related to Occam’s razor, a widely accepted principle in science. In our
context, Occam’s razor will favor state representations that exclude irrelevant information,
thereby leading to a lower-dimensional reinforcement learning problem and improving

generalization.

SLOWNESS / TEMPORAL COHERENCE: Task-relevant properties of the world change
gradually over time (Wiskott and Sejnowski, 2002). This prior is related to Newton’s first
law of motion. Physical objects have inertia and change their velocity only gradually as
a result of external forces. However, temporal coherence also applies to more abstract
properties than physical motion, as most changes in the world occur gradually. The
temporal coherence prior favors state representations that obey this principle as the robot

transitions between states.

PROPORTIONALITY: The amount of change in task-relevant properties resulting from an
action 1is proportional to the magnitude of the action. This prior results from Newton’s
second law of motion, F' = m - a. If an action represents the application of a certain force
on an object of a fixed mass, the acceleration evoked by this force is constant. This holds
true for robot movements and physical interactions with other objects but also generalizes
to more abstract processes. As the robot does not know the magnitudes of its actions
beforehand, this prior enforces that multiple executions of the same action result in the

same amount of state change.

CAUSALITY: The task-relevant properties, together with the action, determine the re-
ward. This and the next prior resemble Newton’s third law of motion or, more generally,
causal determinism. If the same action leads to different rewards in two situations, these
situations must differ in some task-relevant property and should thus not be represented
by the same state. Consequently, this prior favors state representations that include the

relevant properties to distinguish these situations.

96

5.3. RoBOTIC PRIORS

REPEATABILITY: The task-relevant properties and the action together determine the
resulting change in these properties. This prior is analogous to the previous one—for states
instead of rewards—and also results from Newton’s third law of motion. This principle is
enforced by favoring state representations in which the consequences of actions are similar
if they are repeated in similar situations. The repeatability prior and the causality prior

together constitute the Markov property of states.

Note that most of these priors are defined in terms of actions and rewards. Thus, they
do not apply to passive systems that can only observe but not act. These priors are
also not generic artificial intelligence priors applicable to all tasks and environments, as
artificial environments can be very different from our world, e.g., not obeying Newton’s
laws of motion. However, restricting the problem space to the physical world allows us to
define useful priors.

But even in the physical world, there are still counterexamples for each prior. Pro-
portionality does not hold when the robot hits a wall and its position remains constant
even though it attempts to move with a certain velocity. Causality is violated due to
sensory aliasing when the robot cannot distinguish two situations with different seman-
tics. Repeatability is contradicted by stochastic actions. As we will see, all of these
counterexamples are present in the experiments in this chapter and LRP is robust against
them.

Our approach can handle such counterexamples because the robotic priors are not
strict assumptions that have to hold for the method to work. Instead, LRP finds a state
representation that is consistent with these priors as much as possible. As the robotic
priors capture the general structure of interactions with the physical world, they are useful,

even in the presence of counterexamples.

5.3.3 ADDITIONAL PRIORS IN EXTENSIONS 1 AND 2

The two extensions that are described after the evaluation of the original method, intro-
duce additional robotic priors. Extension 1 handles multi-task learning using the following

prior:

97

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

TASK-COHERENCE: The task only changes between episodes not within an episode. This
prior can be viewed as a form of slowness assumption on the task. The task of a robot
naturally will change much slower than its state. Here, we assumed that tasks can only

change between episodes but this assumption can potentially be relaxed.

Extension 2 introduces structure into the state space, which allows it to define priors
specifically for positions, velocities, and accelerations, leading to a new opportunities for

defining robotic priors. The new priors introduced by this extension are:

VARIATION: Positions of relevant things vary. As the robot explores its task and ma-
nipulates its environment, the positions of task-relevant objects (including itself) will

vary—otherwise there is not much that the robot could learn.

CONSERVATION: Velocity magnitudes change slowly. This prior derives from the law
of conservation of energy, which states that the total energy in a closed system remains

constant.

CONTROLLABILITY: Controllable things are relevant. The objects that can be controlled
by the robot are likely relevant for its task. If the robot acts by applying forces, control-

lable things could be those whose accelerations correlate with the actions of the robot.

5.4 OPTIMIZING CONSISTENCY WITH ROBOTIC PRIORS

In this section, we formulate state representation learning as an optimization problem by
turning our robotic priors into loss functions. Then, we turn the theory into a method
that minimizes this loss function, thereby learning a state representation that reflects the

priors defined above.

5.4.1 FORMULATION AS OPTIMIZATION PROBLEM

We will now turn the robotic priors into a loss function L that is minimized when the
state representation is most consistent with the priors. We construct loss terms for all
robotic priors (except for the simplicity prior, see below) and define L as their weighted

suim

~

L(D> QE) = Wy Ltemporal coherence(Da Qg) + prproportionality(Da Cb)

~

+ wchausality(Da ¢) + errepeatability(Da QAS)

98

5.4. OPTIMIZING CONSISTENCY WITH ROBOTIC PRIORS

Each of these terms is computed for an observation-state-mapping qg and data of the
robot interacting with the world, D = {0y, a;, 7 }}-;, which consist of sensory observations
o, actions a, and rewards r for n consecutive steps. The observation-state-mapping 95 is
then learned by minimizing L(D, ¢) (the - indicates that ¢ changes during learning).

By linearly combining these loss terms, we assume independence between the robotic
priors. They could also be combined non-linearly, but the existence of independent coun-
terexamples for each individual prior supports our assumption. There is a weight w
assigned to each loss term because the typical magnitude varies significantly between
these terms. The weights can counteract this imbalance. Additionally, the weighting
allows us to stress the importance of individual priors by using a higher weight for the
corresponding loss term.

We will now describe how the individual robotic priors are defined as loss terms. For
better readability, we will write s, instead of ngS(ot) when we refer to the state at time ¢

according to the observation-state-mapping ¢.

SIMPLICITY L0SS: The simplicity prior is not formulated as a loss term but implemented
by enforcing the state representation to be of fixed low dimensionality. Future work should
explore formulations of this prior as a loss term, e.g., defined in terms of sparsity, the

number of dimensions, or other properties of the state representation.

TEMPORAL COHERENCE LoOss: States must change gradually over time. We denote
the state change as: AS; = §;11 — §;. The temporal coherence loss is the expected squared

magnitude of the state change.

~

Lucun (D, 6) = B[A4]].

PROPORTIONALITY LOss: If the robot has performed the same action at times t; and
to, the states must change by the same magnitude ||AS;, || = ||AS,]|-
The proportionality loss term is the expected squared difference in magnitude of state

change after the same action was applied:

Lyron.(D:8) = B| (1831, | = 430, 1)? | an, = as].

99

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

CAusALITY Loss: Two situations at times ¢; and ¢, must be dissimilar if the robot
received different rewards in the following time step, even though it had performed the
same action, ay, = @y, ATy 41 7 Teyt1-

The similarity of two states is 1 if the states are identical and approaches 0 with
increasing distance between them. To compute the similarity of state pairs, we can use
any differentiable similarity function. Previously, we have proposed to use the exponential
of the negative distance, e~ =%ul following research from psychology (Shepard, 1987).
However, the bell shaped function, e‘”§t2_§t1”2, is a reasonable alternative and in our
experience leads to improved performance.

Therefore, we define the causality loss as the expected similarity of the state pairs for

which the same action leads to different rewards:
~ _lla, & 2
Lcaus.(Da ¢) = E |:€ HStQ StlH ‘ at1 = atz) Tt1+1 7£ 7a7524r11| .

REPEATABILITY LOSS: States must be changed by the actions in a repeatable way. If
the same action was applied at times ¢; and ¢, and these situations are similar (have
similar state representations), the state change produced by the actions should be equal,
not only in magnitude but also in direction.

We define the repeatability loss term as the expected squared difference in the state

change following the same action, weighted by the similarity of the states:

Lrep(Du (%) =E €7H§t27§t1”2 HA§t2 - A§t1 H2 ‘ ay, = a’t2] :

5.4.2 LEARNING WITH RoBOTIC PRIORS (LRP)

We will now show how a linear mapping from observations to states can be learned by
minimizing the loss function. We call the resulting method learning with robotic priors

(LRP) because it optimizes consistency with those priors.

CHOOSING THE WEIGHTS: The weights in the loss function balance the relative impor-
tance of the different robotic priors. We believe that all proposed priors are important.
Therefore, we chose the weights such that they provide gradients with similar magnitudes
for the tasks we are interested in: wy =1, w, =5, we = 1, w, = 5.

Note that little effort was put into choosing these parameters because LRP is robust
against a range of weight assignments. Simple uniform weighting also worked well in all

of our experiments (Jonschkowski and Brock, 2014).

100

5.4. OPTIMIZING CONSISTENCY WITH ROBOTIC PRIORS

APPROXIMATING THE LOss FUNCTION: We compute the expected values in the loss
function by taking the mean over training samples. For the proportionality loss, the
causality loss, and the repeatability loss, this would require taking into account all O(n?)
pairs of training samples. For reasons of computational efficiency, we approximate each
of these computations by only considering a subset of all pairs: For each training sample,
we randomly choose 10 other samples such that the resulting pairs fulfill the conditions
of the respective loss term. The mean is then taken over this subset of training sample

pairs.

LEARNING A LINEAR OBSERVATION-STATE-MAPPING: LRP learns a linear observation-

state-mapping,

A

5= dlo) = W(or — o),

where 1, is the mean of all observations during training and W is a weight matrix that
is adapted by performing gradient descent on the approximated loss function L. Lin-
ear functions form a very limited hypothesis space, but LRP can easily be extended to
non-linear functions approximators, e.g., using feature expansion, kernel approaches, or
artificial neural networks, as we will demonstrate in Sections 5.6 and 5.7.

Note that subtracting the mean observation is equivalent to subtracting the mean state
and does not affect the loss function, which is defined over relative and not over absolute
properties of the state samples. The only purpose of this step is to center the state
representation. This can be useful for subsequent reinforcement learning depending on
which form of function approximation is used (neural networks, for example, rely on mean

centered input data).

REGULARIZATION: Without regularization, this learning scheme can lead to overfitting.
Minimizing the loss for the training data can potentially increase the loss for unseen test
data. In this case, the learned observation-state-mapping would not generalize well to
new data. We approach this problem by introducing a L1 regularization on the weights
of the observation-state-mapping. We find the best observation-state-mapping by solving

the following optimization:

~

b= arginin [L(D, ¢) + Al1(8)],

where 1;(¢) = Z (Wi 4.
2

The regularization parameter A\ can vary greatly depending on the task. However, it

can be estimated using cross-validation. In all our experiments, we do this by using the

101

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

first 80% of the data for training and the remaining 20% as validation set. Then we
do a grid search over different values for A € {0,0.0003,0.001,0.003, ...,3,10} and pick
the value that achieved the lowest loss on the validation data after 100 steps of gradient
descent. Using this value, we learn the final state representation on the entire data set
for 100 steps.

GRADIENT DESCENT: The representation learning process starts with initializing the
weight matrix W with small random weights that are uniformly chosen from the interval
[—0.05,0.05]. Using this observation-state-mapping, it projects all experienced observa-
tions into the state space, computes the loss of this state representation and the gradient
with respect to W, and changes W accordingly. This process is repeated, in our case for
100 learning steps. We dynamically adapt the step size for each weight dimension using

improved Rprop with weight backtracking (Igel and Hiisken, 2003).

ANALYTICAL GRADIENT: The gradient can be computed analytically by partial deriva-
tives with respect to all parameters Wm for each loss term (see Appendix A.1 for the
derivation). The weighted sum of these terms, together with the gradient of the regular-

ization term, gives the total gradient.

0 A . .
———Liemp. (D, 0) = E [2 (Sia41 = 810) (04041 — 0j75>]-

8Wi7]’ ~ ~~ - ~~
Agi,t AOJ"t
0 ~ . .
i Lo (D) = B2 (| A, - 145,])
<A§i7t2AO‘j7t2 Aé’i,h AOle) B i|
~ - ~ atl - a’t2 .
||A8t2|| ||A8tl||
LLC&US.(DJ (Zg) — E |:_26_||§t2_§t1 ||2(§i’t2 . §i’t1)
oW, ;
(Oj1t2 - 0]‘7751) Apy = Qty, Tty 7é rtg] .
a n — §t *§t 2 a o
Werep.(Da (b) = E |:2€ I 2 1” <(A5i,t2 - Asi,tl)

(D0j1, — D0j1y) — (8ity — 8ity) (04,0 — 0jity)
HAth - A§t1H2> ‘ At = atz] .

102

5.5. EXPERIMENTS AND RESULTS

REINFORCEMENT LEARNING METHOD: To evaluate the utility of learned state repre-
sentations, we used a standard reinforcement learning method that can handle continuous
state spaces: fitted Q-iteration (Sutton and Barto, 1998) based on normalized radial basis

function (RBF) features that are repeated for every action.

We generate these features by applying the k-means algorithm on all state samples to
find 100 radial basis function centers. We set the standard deviation of the radial basis
functions to be half of the average distance from a center to the closest next center. The
activation of the radial basis functions are normalized such that they sum to one. This
vector of state features is repeated for every action and stacked to build, for example, a
2500 dimensional feature vector when there are 25 discrete actions. In this state-action-
feature vector, all elements are zero except for the radial basis function activations for the
corresponding action.

The state-action-value-function, or Q-function, describes the value of applying a certain
action in a certain state. We define it as a linear function of the radial basis feature vector,
Q(s,a) = A7 fagr(s,a). We initialize 3 with small random values and perform one step

of Q-iteration to estimate the state-action-values of all training samples.

Y, Q(st, ag) < i1+ 7 max [Q(stH, a)] ,

where v = 0.9 is used to exponentially discount future rewards. We then fit the linear
function Q to the estimated state-action-values Q(st, a;) by assigning B to the vector that

minimizes the sum of squared errors:

.) - . 2
5 = argmin }_ (87 frme (s, 00) ~Qsi, 1))
————
t
Q(st,ar)

We alternate Q-iteration and Q-fitting until convergence. The resulting Q-function al-

lows the robot to greedily choose the actions with the highest value, 7(s) = argmax [Q(s, a)})

5.5 EXPERIMENTS AND RESULTS

In this section, we extensively evaluate LRP in simulated and real robotic tasks with
visual observations. We test how well LRP can map 768-dimensional visual observations
(16 x 16 pixels for red, green, and blue) into a two-dimensional or five-dimensional state
space.

First, we look at the learning process in detail to understand how the state representa-
tion, the loss, and the gradient evolve. Then, we analyze learned state representations to

gain insight into the capabilities of our approach. We start by comparing learned state

103

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

representations for a simple navigation task® when the robot observes the scene from
different perspectives, having either an egocentric view or a top-down view. The results
show that, in both cases, LRP learns a mapping to the same pertinent dimensions.

Next, we investigate in a slot car racing task’ how LRP can handle task-irrelevant dis-
tractors. To the best of our knowledge, this is the first time that this problem is addressed
in state representation learning, even though we view it as essential (in any real-world
environment, the observations of robots will be subject to task-irrelevant distractions).
We will see that LRP can separate task-relevant properties of the observation from irrel-
evant information. Then, we will also introduce distractors into the navigation task and
see that the performance of LRP is not influenced by them. After that, we analyze how
the state representations for both tasks change if they are given more dimensions than
necessary to solve the task. The results show that, in one of the tasks, LRP can identify
the minimal state dimensionality irrespective of the distractors.

Finally, we demonstrate that the learned state representations can substantially improve
the performance of subsequent reinforcement learning. We explain how this effect results
from improved generalization. Additionally, we show that state representations learned
for one task can also enable reinforcement learning in other related tasks. In the end, we

verify our results from simulation in an experiment with a real robot.

5.5.1 LEARNING PROCESS

During learning, the observation-state-mapping is continually changed according to the
gradient of the loss function to minimize the loss function of the resulting state represen-
tation. In this experiment, we will look at this learning process in detail for one run of

the simple navigation task.

SIMPLE NAVIGATION TASK: In the simple navigation task (see Figure 5.3a), the robot
is located in a square-shaped room of size 45 x 45 units with 4-units-high walls of different
colors. The robot has a height and diameter of 2 units. The orientation of the robot is
fixed but it can control its up-down and left-right velocity choosing from {—6,—3,0,3,6}
units per time step. The robot thus has 25 discrete actions. These actions are subject to
Gaussian noise with 0 mean and standard deviation of 10% of the commanded velocity.
The task of the robot is to move to the top right corner without hitting a wall. If the
distance to this corner is less than 15 units, the robot gets a reward +10 unless it is
touching a wall, in which case it gets a negative reward of —1. The robot perceives its
environment through a camera with a wide angle lens (field of view 300°). The 16 x 16-

pixel RGB image is represented as a 768-dimensional observation vector. The example

*The navigation task is based on experiments in the literature (Boots et al., 2011; Sprague, 2009).
TThe slot car racing task is inspired by an experiment of Lange et al. (2012).

104

5.5. EXPERIMENTS AND RESULTS

(b) Observation

(a) Simple navigation task

Figure 5.3: Simple navigation task with fixed orientation. The robot gets positive reward in the top right
corner and negative reward when it runs into a wall. Subfigure (b) shows the observation in scene (a).

3.0 T T T T T

- - Total

—— Temporal coherence
— Proportionality

— Repeatability

— Causality

— Regularization

2.5

2.0

Gradient magnitude

25
1.2 . p— — T ‘
o IR Y
1.0k S o ° . o L4 - - =
. . 0, o . o o Remlforcement learning g
5 . s s - - Tota 1150 @
Q08 o R 3 [Temporal coherence =
~ ° o “on n f Y
¥ e e o S~ [Proportionality [}
© o ° ~ o
2 06F o o ° . S~ [Repeatability 1100 €
= | N S [Causality 2
") -
0 041 T T e e e e - o o
S . . 3 . 150 2
o H ° o ja
0.2fe © H e ° ° e
“le © 2 . H >
o o, ¢ LI b T | 10 <
0_0I 1 d 1 1 L 1
0 5 10 15 20 25
c
el
e
8
c &
g A
]
_
Q.
(0] I ! L I
o 0 5 20 25

Representation learning steps

Figure 5.4: State representation learning process. The plots show how the gradient magnitude (top), the
loss on validation samples (middle), the reinforcement learning success (middle), and the state representation
(bottom) change during learning. Every red dot in the middle plot shows the evaluation of one policy based
on the learned state representation. Every dot in the bottom plot represents one observation mapped into
the state space. The colors denote the reward that was received in that situation (red = +10, blue = —1,
regularization: A = 0.03).

105

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

observation (see Figure 5.3b) shows the dark blue wall in the middle and the green and
the light blue wall on either side of the image.

EXPERIMENTAL DESIGN: The robot explored its environment performing 5000 random
actions. Based on this experience, it learned a mapping from the 768-dimensional observa-
tion space to a two-dimensional state representation. We interrupted the learning process
after every learning step, applied a standard reinforcement learning method to learn a
policy, and evaluated it for 20 episodes of 25 steps starting from different initial positions.
We repeated this reinforcement learning and evaluation cycle ten times for every learning

step due to the randomness in the reinforcement learning method.

RESULTS—L0SS GRADIENT UNFOLDS STATE REPRESENTATION: The learning pro-
cess starts from a randomly initialized observation-state-mapping and the corresponding
state representation (see bottom left in Figure 5.4). Every learning step changes the
mapping and unfolds the state representation. When this process converges, the state
representation resembles the task-relevant properties of the world—in this case the loca-
tion of the robot (see bottom right in Figure 5.4).

The observation-state-mapping is changed following the loss gradient (see dashed line in
top plot in Figure 5.4). This gradient is the sum of the loss term gradients, each of which
can point in a different direction (see colored lines in top plot, Figure 5.4). The causality
gradient pushes apart states that lead to different rewards after performing the same
action. It is most active in the beginning when all states are near each other. The temporal
coherence gradient pulls consecutive states closer together. It becomes more active when
the state representation is spread out. The repeatability gradient enforces deterministic
state changes and is also most active in the beginning when the state representation is
still very chaotic. The proportionality gradient equalizes distances across the state space.
Its activation declines as the representation increasingly complies with this objective.

Throughout the training process, the causality loss and gradient are larger then the
corresponding terms of the other priors. This results from the fact that causality directly
opposes the other priors. Causality can be optimized by expanding the state space while
all other robotic priors can be optimized by collapsing all states to a single point. To
reach a balance, the causality gradient must be as large as the other gradients combined.

In the beginning, the different gradient terms do not (entirely) oppose each other and
there is a large total gradient according to which the observation-state-mapping is modi-
fied. Following the total gradient, its magnitude decreases until a local minimum of the
loss function is reached. This is where the different gradients point in opposing directions,
the total gradient is zero, and the state representation converges.

Note that the resulting state representation discriminates between states that have

different delayed rewards although immediate rewards are identical. For example, most

106

5.5. EXPERIMENTS AND RESULTS

locations in the room have the same immediate reward, zero, but they are still represented
by different states. It is important to differentiate between them because they lead to
different delayed rewards after performing a number of actions. LRP discriminates be-
tween these situations due to a synergy of the causality prior and the repeatability prior.
The causality prior discriminates between different immediate rewards. The repeatability
prior enforces deterministic state changes and thereby propagates this discrimination to
situations from which states with different rewards can be reached. The temporal coher-
ence prior and the proportionality prior make this process more robust using additional

knowledge.

RESULTS—LO0SS AS PROXY FOR REWARD: As the loss decreases during learning, the
reinforcement learning success increases (see middle plot, Figure 5.4). In the beginning,
the reinforcement success varies greatly between different evaluations. This is due to the
randomness in the reinforcement learning method we used, especially in random assign-
ment of radial basis function centers. But during the learning process this changes in two
ways.

First, the reinforcement learning failures (with total reward less than 50) stop after
learning step twelve. These failures are due to incorrect generalization from experience
to new situations. They are caused by a state representation that does not capture
the pertinent dimensions of the task. With a good state representation, however, every
execution of the reinforcement learning method generalizes well.

Second, the successful reinforcement learning trials (with more than total reward of 50)
become better. There is a strong correlation between this increase and the loss decrease.

Both results show that minimizing the loss function can be a good proxy objective
for maximizing reward when learning a state representation. If we wanted to use the
reward as objective directly, every representation learning step would involve learning
policies and evaluating them by performing actions in the real world. Even worse, the
number of required evaluations increases exponentially with the number of parameters in
the observation-state-mapping, because we would have to compute a gradient with that
many dimensions. The loss function, on the other hand, allows to directly compute the

gradient.

107

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

5.5.2 INVARIANCE TO PERSPECTIVE

To investigate whether LRP is invariant to perspective, we test it in two versions of
a simple navigation task with different visual observations, viewing the scene from the
robot’s perspective and viewing the scene from the top. In both versions, the robot learns
a state representation that reflects its location which is exactly the information required

to solve the task.

PERSPECTIVES IN THE SIMPLE NAVIGATION TASK: The simple navigation task, as
described in section 5.5.1, has egocentric observations from a camera on the robot. We
will refer to this task as egocentric view version of the simple navigation task (see Figure
5.5a). The top-down view version of this task is identical to this version, except for the
observations which are images of the entire scene taken from the top by a static camera.
In these images, the robot shows as a dark spot against the background. For the robot
to be always visible, we had to increase its diameter to 4 units in this version of the task
(see Figure 5.5b).

EXPERIMENTAL DESIGN: We performed the following experiment for both versions of
the task. The robot explored its environment performing 5000 random actions and learned
a mapping from the 768-dimensional observation space to a two-dimensional state repre-

sentation based on this experience.

RESULT—EQUIVALENT STATE REPRESENTATIONS: To compare the learned state rep-
resentations, we have plotted the state estimates for 5000 training steps based on ego-
centric view observations (see Figure 5.5¢) and based on top-down view observations (see
Figure 5.5d). In both cases, the samples form a square in state space, suggesting that
the state is an estimate of the location of the robot in the square room. We can show
that this is in fact what is learned by coloring each state sample according to the reward
that the robot received in this state during training. The result resembles very accurately
the reward definition in Figure 5.3a. The learned state representation is equivalent in
both versions of the task. There are two orthogonal axes in the state representations that
correspond to the coordinates of the robot. Of course, these axes in state space do not

have to align between experiments; they can be rotated or flipped.

108

5.5. EXPERIMENTS AND RESULTS

(a) Egocentric view version (b) Top-down view version

2 10 2 10

o o~
C c
Rl 2
%) %]
c e c °
_aé 0 o 2 E o 2
© & © &
3 3
5 8
n_1 0
23 -1 0 1 2 ! -1
State dimension 1 State dimension 1
(c) State representation (egocentric) (d) State representation (top-down)
2.0
o~ R 32 o~ e
£ - £
E 16 E L, 1.0
3 B
(] (]
0.0 0.0
— e
£ . I Ef-
o -16 o -1.0
))
- -
© @©
n & el o
Red Green Blue -32 Red Green Blue 20
(e) Observation-state-mapping (f) Observation-state-mapping
(egocentric) (top-down)

Figure 5.5: Results for two versions of the simple navigation task with fixed orientation. The observation
of the robot is either an egocentric view (a) or a top-down view (b) of the scene. (c) and (d) show the
representations of 5000 training samples in state space for both versions. Each dot results from applying the
learned observation-state-mapping ¢* to an observation. The color relates the state samples to the reward
received in that situation during training. (e) and (f) display the learned observation-state-mappings, i.e., the
respective weight matrices which linearly project pixel values in the different color channels to state dimensions.
Regularization and final loss on validation samples: egocentric version, A = 0.03, L = 0.36; top-down version,
A=0.1, L =0.52.

109

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

RESULT—DIFFERENT OBSERVATION-STATE-MAPPINGS: In the two versions of the
task, the sensory observations of the robot are very different. Nevertheless, it learned
a mapping from these observations to the task-relevant dimensions: the location of the
robot. Note that the mappings from observations to states must be very different to result

in this identical state representation (see Figures 5.5e and 5.5f).

RESULT—L0SS EXPLAINS QUALITY DIFFERENCE: Even though the state representa-
tions for both versions are equivalent in principle, they are of different quality. The state
representation based on egocentric observations is much clearer compared to the more
blurry state representation based on top-down view observations, where situations with
different rewards are mapped to similar states. Reinforcement learning based on such
a representation will be less successful compared to the state representation based on
egocentric observations. Presumably, the low resolution top-view observations cannot be
(linearly) mapped to the location of the robot with high accuracy because they do not
contain sufficient information.

This quality difference is also reflected in the final loss on validation samples L. For
the egocentric version, L = 0.36 and for the top-down version of the task, L = 0.52. This

reconfirms that the defined loss is a sensible quality measure for state representations.

5.5.3 IGNORING DISTRACTORS

In this experiment, we test whether LRP distinguishes task-relevant properties of the
observations from irrelevant information. First, we investigate this in a slot car racing
task with two cars. While the robot observes two slot cars, it can only control one of
them. The other car does not play a role in this task apart from potentially distracting
the robot. The robot does not know beforehand which car is relevant for the task. Second,
we extend the simple navigation task with task-irrelevant distractors and test LRP in this

scenario.

THE SLOT CAR RACING TASK: An example scene from the slot car racing task is
shown in Figure 5.6a. The robot can control the velocity of the red car, choosing from
[0.01,0.02,...,0.1] units per time step. The velocity is subject to zero mean Gaussian
noise with standard deviation of 10% of the commanded velocity. The robot’s reward is
proportional to the commanded velocity—unless the car goes too fast in a sharp turn and
is thrown off the track. In this case, the robot gets a negative reward of —10. The robot
cannot control the green slot car. The velocity of this car is chosen randomly from the
same range as for the red car. The green slot car does not influence the reward of the
robot or the movement of the red car. The robot observes the scene from the top through
a 16 x 16-pixel RGB image (see Figure 5.6b).

110

5.5. EXPERIMENTS AND RESULTS

(a) Slot car racing with distractor (green car) (b) Observation
1.0
0.8 ~ 40
1 0.6 E — H —
o o u
-5 0.4 P . 20
2 O.Z-E o
@ 5)
£ 0 008 .
5 4
E —
i £
n 5 i B = -20
-1 8 o fu
©
I
. 2] -40
-1 0 1 -10 Red Green Blue
State dimension 1
d) Observation-state-mappin
(c) State samples (reward) (d) PPINg
1.0 1.0

o
©
o
©

o
()]
Position of distracting slot car

o
)

o
=
Position of controllable slot car

State dimension 2
o

State dimension 2
o

©
N

o
=)

0.0
State dimension 1 State dimension 1

(e) State samples (red car) (f) State samples (green car)

Figure 5.6: Results for the slot car racing task (a) with visual observations (b). Plots (c), (e), and (f)
show the learned state representation. The color relates state samples to reward (c), the position of the
relevant car (e), and the position of the distractor (f). Plot (d) shows the weight matrix of the learned
observation-state-mapping. The regularization and final validation loss are A = 0.001 and L = 0.49.

111

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

(b)

(d) (e) (f)

Figure 5.7: Distractors in the simple navigation task. (a-c) show three situations at an interval of ten time
steps. The robot is exploring while the distractors move randomly. (d-f) show the corresponding observations
(note how they are influenced by the distractors).

EXPERIMENTAL DESIGN: The robot explored randomly for 5000 time steps and then

learned a mapping from 768-dimensional observations to two-dimensional states.

RESULT—RELEVANT INFORMATION EXTRACTED: To understand the learned state
representation, we have plotted the states of the 5000 training steps with one dot per
state sample (see Figure 5.6¢). The states form a circle which corresponds to the topol-
ogy of the track. We have colored the state samples according to the reward. The three
blue clusters in this plot correspond to the three sharp turns on the track, where the
robot had routinely driven too fast during training and thus received negative reward.
We also colored the states according to the ground truth position of the red slot car (see
Figure 5.6e) and the green slot car (see Figure 5.6f). The figures show that the position
along this circle in state space corresponds to the position of the controllable slot car on
the track. One round of the red slot car corresponds to a circular trajectory in state space.
LRP was able to distinguish task-relevant from irrelevant information in the observations

and, at the same time, found a compressed representation of these pertinent properties.

112

5.5. EXPERIMENTS AND RESULTS

2 10
~ 0.4
£ u

~N o1 6]

5 o i e 02

i) - © i

c ° = |

9] 5 "

g0 0 =

£ H 0.0

© x —_

] w

s g

i -1 = m = —
S 02
8 \ il
©
:r—; "

-25 - 5 5 5 -1 Red Green Blue —04

State dimension 1

(a) State representation (b) Observation-state-mapping

Figure 5.8: Results for simple navigation task with distractors. Regularization and final validation loss are
A=0.3 and L = 0.36.

RESULT—TWO-DIMENSIONAL REPRESENTATION OF POSITION: The position of the
slot car on the track is one-dimensional and, thus, could be captured in one-dimensional
state representation. However, such a representation would not conform with the tempo-
ral coherence prior. The positions at the beginning and the end of the track would be
maximally apart in such a representation, even though they are actually very close to-
gether due to the circularity of the track. To represent a circular one-dimensional property,

we need a two-dimensional Fuclidean space.

SIMPLE NAVIGATION TASK WITH DISTRACTORS: To verify the results from the slot
car racing task in the simple navigation task, we added seven distractors to this task:
three circles on the floor and four rectangles on the walls that move randomly (see Fig-
ure 5.7). The distractors are observed by the robot but do not influence its movement
or reward. They are irrelevant for the task and should thus not be included in the state

representation.*

*The colors of the distractors were chosen to be equal to their background in the green and the
blue color channel of the RGB image. They can be ignored by not taking into account the observation
dimensions that correspond to the red color channel.

113

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

EXPERIMENTAL DESIGN: The robot explored randomly for 5000 time steps and then

learned a mapping from 768-dimensional observations to a two-dimensional state.

RESULT—IDENTICAL STATE REPRESENTATION: The state representation that the robot
learned in the presence of visual distractors captures the task-relevant properties and en-
tirely ignores the distractors. In fact, the learned representation is identical to the one
learned without the presence of distractors (compare Figures 5.8a and 5.5¢). Also, the

validation loss after training is 0.36 in both tasks.

RESULT—DIFFERENT OBSERVATION-STATE-MAPPINGS: There are major differences
in the learned observation-state-mappings between the task with and without distractors
(compare Figures 5.8b and 5.5¢). In the task including the distractors, the weights are
more evenly distributed across the image. In this task, the highest weight is smaller by an
order of magnitude compared to the task without distractors. This makes sense because
the observations vary much more in this task, leading to stronger regularization (A = 0.3

instead of 0.03) and a more robust mapping.

114

5.5. EXPERIMENTS AND RESULTS

0.4
© ©
2 o 2 9]
~ 088 < 084y
9] c w g @
=3 S b o
203 [L 9, =
> o ® Q £
2 S 068 S 0.6:5
5 - (%}
g £ o E &
° S5 0 5 o 0 o=
0.2 © s = 3
kS = 048 & 04T
N 2 g 5 S 5
2 2 5 2
© 2 2
g c c £ 8
501 & 022 & 025
S -2 b -2]
3 o
£ a
-3 0.0 -3 0.0
0.0 =3 -2 -1 0 1 2 3 =3 -2 -1 0 1 2 3
1 2 3 4 5 Principal component 1 Principal component 3

Principal component

(b) Components 1 and 2 represent (c) Components 3 and 4 represent

(a) Eigenvalues of state samples X .
the controllable red car the distracting green car

Figure 5.9: Results for the slot car task with a five-dimensional state space (A = 0.003, L = 0.45).

5.5.4 MAPPING TO A HIGHER-DIMENSIONAL STATE SPACE

In the previous experiments, we gave the robot an appropriate number of dimensions for
the state representation. In this section, we investigate what happens in these same exam-
ples when the robot learns state representations with more dimensions than necessary. To
this end, we repeated the experiments for the slot car task and for the simple navigation
task with distractors, only now learning a five-dimensional instead of a two-dimensional
state representation. After exploration for 5000 time steps and state representation learn-
ing, we took the 5000 x 5-matrix M containing the estimated states for these experiences

and performed a principal component analysis of this matrix.

RESULT—ALTERNATIVE EXPLANATIONS FOR THE REWARD: In the slot car task, the
state sample matrix M has rank four. There are two larger eigenvalues and two smaller
eigenvalues (see Figure 5.9a). If we project the state samples on their first two principal
components, we can see that the dimensions with the larger eigenvalues correspond to
the position of the controllable red slot car on the race track (see Figure 5.9b). The third
and fourth principal component correspond to the position of the non-controllable green
slot car (see Figure 5.9¢).

If the green car is irrelevant for the task, why is it represented in the state? The
robot maximizes state dissimilarity between situations where it received different rewards
even though it performed the same action. If the robot chooses the same velocity but
the slot car is thrown off one time while it stays on track another time, it makes the
states of these two situations dissimilar. The most powerful discrimination between these
situations is the position of the red slot car. But sometimes small differences in position
or the stochasticity of the actions can make the difference between the two outcomes.
The robot thus finds alternative explanations like the position of the green slot car. The
eigenvalues show that this property has a lower impact on the state than the position

of the controllable red slot car. LRP includes these alternative explanations if there are

115

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

10

o
o
IS

o ° =
w B (%
o

Reward

o
N
Principal component 2

Normalized eigenvalue

I
i

0.0! -1

1 RE 4 5 a3 2 1 0 1 2z 3 a4
Principal component Principal component 1

(a) Eigenvalues of state samples (b) Projected state samples

Figure 5.10: Results for the navigation task with a five-dimensional state space (A = 1, L = 0.36).

enough dimensions in the state space. When the state space is limited, the method focuses

on pertinent dimensions as shown in Section 5.5.3.

RESULT—IDENTIFYING THE DIMENSIONALITY OF THE TASK: For the navigation task,
we find that all but the first two eigenvalues of M are close to zero (see Figure 5.10a).
The rank of the matrix is effectively two. This means that all state samples lie on a
plane in the five-dimensional state space. We can visualize this plane by projecting the
state samples on their first two principal components (see Figure 5.10b). The state space
again corresponds to the location of the robot just as in the two-dimensional experiment.
Apparently, the robot does not need to include additional properties of the world into the
state representation in order to explain the reward. Thus, even with a five-dimensional
state space, the robot learns that the task is two-dimensional and captures only those

properties of its observation ignoring the distractors.

5.5.5 IMPROVED PERFORMANCE IN REINFORCEMENT LEARNING

The preceding experiments have shown some promising features of LRP. But in the end,
the quality of state representations can only be measured by their utility for subsequent
learning. In this experiment, we will see that LRP can substantially improve reinforcement

learning performance and that it needs very few data to do so.

116

5.5. EXPERIMENTS AND RESULTS

Figure 5.11: Extended navigation task with distractors.

EXTENDED NAVIGATION TASK: To construct a more challenging task for this exper-
iment, we extended the navigation task by allowing the robot to change its orienta-
tion. The robot can turn and move forwards or backwards choosing its rotational ve-
locity from [—30,—15,0, 15, 30] degrees per time step and its translational velocity from
[—6,—3,0,3,6] units per time step for a total of 25 actions. All actions are subject to
Gaussian noise with 0 mean and 10% standard deviation. This task includes the same
visual distractors described before. The objective of the task also did not change. The
robot must move to within 15 units of the top right corner, where it gets a reward of 10

unless it runs into a wall, in which case it gets a reward of —1 (see Figure 5.11).

EXPERIMENTAL DESIGN: The robot explored its environment e-greedy. With probability
0.9, it performed a random action, otherwise it performed the best action according to its
policy. After every 500 time steps, the exploration was interrupted. From its accumulated
experience, the robot learned an observation-state-mapping and a policy which it used
in the following 500 exploration steps. After learning, the robot was also tested for
20 episodes, each consisting of 50 steps starting from random initial configurations. Based
on these tests, we computed the average sum of rewards. This cycle of exploration,
learning, and testing was carried out until the robot had explored for 7500 time steps.
The entire learning experiment was repeated ten times.

We performed the experiment multiple times with the same reinforcement learning
method and different state representations: the five-dimensional state representation from
LRP, the five slowest features of the observations (computed using linear slow feature anal-
ysis (Wiskott and Sejnowski, 2002)), the first five principal components of the observations,
and the raw 768-dimensional observation. To get an upper bound on the reinforcement
learning performance, we also compared with a simpler version of this task without dis-
tractors in which the robot has access to its ground truth pose. In this case it uses its
position (normalized to [—1,1]) and the cosine and sine of its orientation as state, which

we consider an optimal representation for this task.

117

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

RL on ground truth pose
RL on learned states

400

3001

200 3 RL on slow features

Return per 50 step episode

RL on observations

=

o

(=]
T

1000 2000 3000 4000 5000 6000 7000
Training steps

Figure 5.12: Reinforcement learning (RL) curves for different state representations. Lines show means,
surfaces display their standard errors.

RESULT—IMPROVED GENERALIZATION: We want to start analyzing the results in Fig-
ure 5.12, by comparing LRP (green) against performing reinforcement learning directly on
the raw observations (blue). These results show that the robot was not able to learn the
task by directly applying reinforcement learning on the observations. When tested, the
robot usually rotated in place or did not move at all. Using the state representation found
by LRP, however, it learned this task getting an average reward of about 430 per 50 step
episode. This corresponds to reaching the goal area after 7 steps on average without ever
running against a wall. Where does this difference come from? LRP basically acts as a
regularization on the learning problem by extracting the right information from sensory
input. This leads to better generalization from experiences to new situations.

Virtually every learning algorithm, including the one we used for reinforcement learning,
generalizes according to the smoothness prior, which is: “similar inputs lead to similar
outputs” or in this case “similar states require similar actions”. Therefore, experiences
are generalized to situations that have a similar representation where similarity is usually
defined in terms of Euclidean distance. How do the distance metrics implied by the
observation space and the state space compare?

We examined this with another experiment. In this experiment, the robot explored
randomly for 5000 steps and learned a five-dimensional state representation based on this
experience. For the following analysis, we used every tenth of the training samples (to
make sure that they are sufficiently different from each other). We chose one of these
samples as a reference and computed the distances between the reference sample and all
other samples both in observation space and in state space. This analysis reveals two
important differences that have a huge impact on generalization.

First, the distances from the reference to every other sample have a much smaller

118

5.5. EXPERIMENTS AND RESULTS

20
45
20 Il Observation space
Bl State space
10+
3 35 \ :‘. ~o
o
230 A 3
& 25 >~ 0 ‘
s
S 2 |3
8
£ 15 -10}
z
10 EEm Reference sample
5 20 Il NNs in observation space
“4YI'| M NNs in state space
80 0.2 0.4 0.6 0.8 1.0 .

=20 -10 0 10 20
X

(b) Ground truth pose of NNs

alid Sl P}

Normalized distance to reference sample

(a) Histogram of distances

(c) Ref. (d) NNs in obs. space (e) NNs in state space
1.0 1.0
S S
20} 2 20} S
e e
085 085
- (%] L (%]
10 o s 10 e, %
060 ~ 1063
© ©
> 0 S > 0 5
© ©
0.4 - j0.4 =
u— Y—
(] o
—10} c -10} c
e h=l
10278 {028
2 2
-20} 5 -20 5
00 00
-20 -10 0 10 20 e -20 -10 0 10 20 e
X X
(f) Generalization in obs. space (g) Generalization in state space

Figure 5.13: Distances and generalization in the observation space (blue) compared to the learned state
space (green). (a) shows the distances of different observation samples to the reference sample (c). (d) and
(e) display the nearest neighbors (NNs) of the reference sample. The ground truth pose of these samples is
displayed in (b). (f) and (g) illustrate how the distance metric affects generalization.

119

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

variance in observation space compared to state space. In other words: Every sample is
roughly equally far away in observation space. The nearest neighbor (NN) of the reference
is almost half as far away as the most distant sample (see Figure 5.13a). This effect is
caused by the high dimensionality of the observation space. In this space, everything is
far apart. One would need an exponential number of samples to adequately fill the space.
This poses a major problem for the smoothness prior in subsequent learning. In order to
generalize to the most similar situations, one will automatically also generalize to other
less similar situations because their distances from the reference are alike.

Second, the nearest neighbors of the reference sample in observation space can have
very different semantics with respect to the task. To illustrate this, we show the ground
truth pose of the reference sample and its three nearest neighbors in both observation
space and state space (see Figure 5.13b). The nearest neighbors in state space correspond
to similar poses such that it makes sense to generalize knowledge about which action to
take from one situation to its neighbors. For the nearest neighbors in observation space,
this is not the case. The reference observation (see Figure 5.13¢) and its nearest neighbors
in observation space (see Figure 5.13d) exemplify why observations from these different
poses are close in observation space: The arrangement of distractors in their visual input
coincides. The alignment of the walls, on the other hand, which provides information
about the robot’s location, differs greatly from the reference observation.

Note that this second issue is not specific to the pixel-representation. The same applies
to different image representations: histogram of colors, histogram of gradients, point-
features, and in fact every generic representation. Generic representations must include
these task-irrelevant distractors because for other tasks, for example “follow the red rectan-
gle”, this is the important information and other information is irrelevant and distracting.

Both issues violate the smoothness prior that is used by the reinforcement learning
method. The consequences for generalization are shown in Figures 5.13f and 5.13g. The
color shows the strength of the generalization from the reference sample to every other
sample and vice versa (computed as the activation of a radial basis function centered at

the reference sample).

RESULT—PERTINENT STATE REPRESENTATION: The two baselines, principal compo-
nent analysis (orange) and slow feature analysis (red), also improve reinforcement learn-
ing performance to some degree due to the low dimensionality of the state representation.
However, these methods also suffer from being distracted by information in the visual
input that is not task-related.

Both methods cannot distinguish relevant from irrelevant information because they
are purely based on observations. LRP takes actions and rewards into account and is,
therefore, able to learn state representations that pertain to the task.

The reason why principal component analysis still performs reasonably well is that it

120

5.5. EXPERIMENTS AND RESULTS

finds those dimensions that can explain the largest variances in the observations and the

robot’s pose is one important factor for that.

RESULT—ALMOST AS USEFUL AS GROUND TRUTH POSE: We now compare the re-
sults of our approach to the upper bound of the reinforcement learning method—using the
ground truth pose of the robot as state (gray, dashed line, see Figure 5.12). We have to
keep in mind how much easier this task is compared to coping with 768-dimensional visual
observations influenced by distractors. Still, LRP is able to learn a state representation
that is almost as useful for reinforcement learning as the true pose of the robot. The final
difference in average reward corresponds to taking one additional step until reaching the
goal. The state representation learned by LRP was almost as good as the best omniscient

state representation that we could think of.

RESULT—LITTLE TRAINING DATA REQUIRED: Interestingly, LRP required few data to
learn useful representations. Even at the very beginning, the learning curves based on the
ground truth pose (gray) and based on the learned representation (green) are comparable.
This shows that LRP needs less training data to learn a useful state representation than

the reinforcement learning method needs to learn the right policy.

5.5.6 TRANSFER LEARNING

Ultimately, versatile robots must be able to learn a multitude of tasks, many of which are
related. For effective learning, experience must be reused and transferred between tasks.
For different tasks, the robot often needs to extract different information from its sensory
input. If, for example, the robot is given the task to follow an object instead of moving to a
fixed location, the absolute pose of the robot becomes meaningless and an object that was
a distraction for the navigation task becomes important for the new task. While different
tasks generally require different state representations, many tasks are also related, for
example moving to different locations in the same environment. Such related tasks share
or partly share useful state representations, for example the robot pose. Other tasks are
composed of subtasks, for example moving to a certain location, picking something up,
and then delivering it to another location. When tasks are combined from subtasks, their
state representations could also be combined from the subtasks’ state representations,
which would allow to incrementally learn even very complex state representations.

Such an incremental learning scheme requires that the learned state representations
are general enough to be reused in higher level tasks. This is not self-evident for state
representations learned for a specific task. Navigating to the top right corner, for example,
only requires to know the direction and the distance to this corner. While these features

form a useful state representation for this specific task, they do not enable the robot

121

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

8

g

8

— RL on learned states
— RL on learned states (transfer)

Return per 50 step episode
N
o
o

o

1000 2000 3000 4000 5000 6000 7000
Training steps

(b) Learning curves for task A

o 400

T

o

0

a 300

(0]

5]

+ 200

o

n

5 100

o

£

2 0/ —RL on learned states

2 — RL on learned states (transfer)
-100™7600 2000 3000 4000 5000 6000 7000

Training steps
(c) Task B (d) Learning curves for task B

[}

S 200

)

Qo

(V]

9]

+ 100

o

n

@

20

c

2 — RL on learned states

&, — RL on learned states (transfer)
-100

1000 2000 3000 4000 5000 6000 7000
Training steps

(e) Task C (f) Learning curves for task C

Figure 5.14: Transferring learned state representations from the extended navigation task to new tasks. Lines
show means, surfaces display mean estimate standard errors

122

5.5. EXPERIMENTS AND RESULTS

to navigate to other locations. Interestingly, our previous experiments suggest that this
is not the kind of state representation that LRP produces. Instead, the learned state
representations capture the task dimensions in a general way even though they were
learned from data for a specific task. In this experiment, we want to quantify how reusable
these state representations are across related tasks. We measure this by the utility of
applying an observation-state-mapping that was learned for the extended navigation task

in a set of new related tasks.

THREE NEW TaAsks: Task A is identical to the extended navigation task with distrac-
tors, except that the goal area has been changed to the opposite corner (see Figure 5.14a).
In task B, the goal area is a rectangle in the top of the room. In this area, the robot
receives a reward of +10. Next to this rectangle, there is another rectangular area in
which the robot receives negative reward of —20 (see Figure 5.14c). In task C, the robot
receives reward of +10 for moving right and negative reward of —10 for moving left when
it is in the top third of the room. In the bottom third of the room, this is reversed: the
robot is rewarded positively for moving left and negatively for moving right (see Figure
5.14e).

EXPERIMENTAL DESIGN: In this experiment, we measure the utility of a transferred
state representation for reinforcement learning based on the cumulative reward obtained
by the robot. We use the same design as in Section 5.5.5, except that the observation-state-
mapping is not learned continually during the trial in which it is tested. Instead, the state
representation is learned from 5000 random exploration steps. The learned observation-
state-mapping is then used in the new tasks without changing it. We compare the utility
of state representations learned specifically for the new tasks and those transferred from

the extended navigation task.

RESULT—SUCCESSFUL TRANSFER OF LEARNED STATE REPRESENTATIONS: We com-
pare the reinforcement learning performance in tasks A, B, and C based on the transferred
state representation to the performance based on the state representation learned for each
specific task (see Figure 5.14). Since both state representations lead to similar learning
curves, the transferred state representation must be as useful for solving tasks A, B, and
C as the state representations specifically learned for each task. These results show that,
across this set of related tasks, LRP is invariant to which specific task it was learned for.

Since task A is equivalent to the extended navigation task, it may be surprising that
the reinforcement learning performance in task A is not as good as in the experiment
in Section 5.5.5 (compare green curves in Figures 5.14b and 5.12). We think that this
performance difference depends on whether the same or different data were used for state

representation learning and reinforcement learning. When the learned observation-state-

123

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

s

(a) Mobile robot (b) Distractor (c) Real navigation task

(d) Observation from cameras (left, front, right, back)

Figure 5.15: The navigation task with a real robot (c). The observation (d) is a combined image from the
down-sampled output of the four RGB cameras attached to the robot (a). (d) shows the yellow wall to the
left, the blue wall in front, the red wall to the right, and the green wall in the back of the robot (three cameras
are tilted). LRP was applied on this observation without any additional preprocessing. (b) shows a distractor
in front of the robot.

mapping is applied to new data, it will not generalize perfectly. While the learned policy
seems to be robust against these deviations during testing, the reinforcement learning
method appears to be more sensitive, which might result in a non-optimal policy. For
tasks B and C the learning curves suggest that the performance based on the transferred
state representation might even be better than the performance based on the task-specific
state representation. Overall, these results are very promising as they demonstrate the po-
tential to reuse the learned state representations which is a prerequisite for incrementally

combining them to form more complex state representations.

5.5.7 VERIFICATION ON A REAL ROBOT

Simulations are a great tool to conduct experiments under ideal conditions. However,
simulations always carry the risk of ignoring important aspects of the problem. Therefore,
we also need to verify our results in a real world scenario. For a video of this experiment,
see: https://youtu.be/BolevVGIk18

124

https://youtu.be/BolevVGJk18

5.6. EXTENSION 1: LEARNING STATE REPRESENTATIONS FOR MULTIPLE TASKS

REAL NAVIGATION TASK: We tried to replicate the extended navigation task as closely
as possible using an iRobot Create equipped with four standard web cams (see Figure
5.15a). This robot was placed in a square room with yellow, blue, red, and green walls
of length 3.2 meters (see Figure 5.15¢). The camera settings (especially contrast and
saturation) were chosen such that the colored walls are clearly visible. The images of the
four web cams were down-sampled to 8 x 6 pixels and combined into a single image which
the robot received as 576-dimensional observation (see Figure 5.15d).

For computing the reward and for analyzing the results, it was necessary to estimate
the pose of the robot. This was done using a particle filter based on input from a laser
scanner on the robot. Neither the pose information, nor the laser scanner input was used
by the robot during the task.

EXPERIMENTAL DESIGN: The experimental design was similar to the navigation tasks in
simulation. The robot explored e-greedy (see Figure 5.16d) and was interrupted after every
500 steps to learn an observation-state-mapping and a policy using the same methods and
parameters as in the simulation experiments. After 2000 training steps (about 50 minutes),
the robot was tested five times starting from different positions in the room. The resulting
trajectories are shown in Figure 5.16e. During the entire experiment, a person was acting
as a visual distractor (see Figure 5.15b). The person walked around randomly, avoiding

collisions with the robot, but otherwise moving independently from it.

RESULT—VERIFICATION ON A REAL RoBOT: After 2000 training steps, the robot had
learned to move to the top right corner in the presence of the visual distractor (see Figure
5.16e).

This experiment reproduces our findings from simulation in the real world. LRP is able
to extract the right information to solve this task from visual input, even in the presence of
distractors. At least in this simple setting, it was able to cope with illumination changes,
shadows and occlusion from the distractor, non-Gaussian noise in actions due to delays
in the wireless connection and changes in the battery level, and many other effects that

were not modeled in simulation.

5.6 EXTENSION 1: LEARNING STATE REPRESENTATIONS
FOR MULTIPLE TASKS

In this section, we extend LRP to an algorithm for learning state representations for
multiple tasks by learning with robotic priors (MT-LRP). MT-LRP is able to acquire
different low-dimensional state representations for multiple tasks in an unsupervised fash-

ion. Importantly, MT-LRP does not require knowledge about which task is executed at

125

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

y [m]

5 1o -os
(d) 2000 training steps

0.0 0.5

1.‘0 1.‘5
x [m]

(e) Five test episodes

Figure 5.16: Training and results on a real robot. (a-c) show the robot and the moving distractor during the

training phase. (d) shows the trajectory of the robot during its 2000 training steps. (e) displays five robot
trajectories using the learned observation-state-mapping and policy.

126

5.6. EXTENSION 1: LEARNING STATE REPRESENTATIONS FOR MULTIPLE TASKS

task 7
select
X extract policy
task select
state
X) 1
|
Sg,fi(e)%o X @ state s (X ™ action a
extract task- >.< s

specific state

Figure 5.17: Overview of the gated network for state representation learning for multiple tasks.

a given time or about the number of tasks involved. This is an important requirement
for robotic life-long learning, where robots should be able to determine autonomously if
a task requires a separate state representation (grasping a pen is different from open-
ing a door) or not (grasping a red or brown cup can be achieved with the same state
representation). The representations learned with MT-LRP enable the use of standard
reinforcement learning methods to compute effective policies from few data.

MT-LRP is implemented as two neural networks, coupled by a gating mechanism (Sigaud
et al., 2015) as illustrated in Figure 5.17. The first network, y, detects which task is be-
ing executed and selects the corresponding state representation. The second network, ¢,
learns task-specific state representations, as described above. This gated network architec-
ture is similar to the one proposed by Droniou et al. (2015). Their network simultaneously
learns discrete classes jointly with continuous class variations (called submanifolds) in an
unsupervised way. In our approach, we learn discrete tasks rather than discrete classes;
we learn task-specific state representations rather than class-specific submanifolds. We
train the two coupled networks simultaneously optimizing consistency with robotic priors
as described above, but add an additional prior of task consistency. Both networks learn
from raw sensor data, without supervision and solely based on the robot’s experiences.

We show in simulation experiments that MT-LRP is able to learn multiple state repre-
sentations and task detectors from raw observations and that these representations allow
to learn better policies from fewer data when compared with prior state representation
learning methods. We also analyze the contribution to this result of each the method’s

individual components.

5.6.1 MuLTI-TASK LEARNING WITH ROBOTIC PRIORS (MT-LRP)

MULTI-TASK STATE REPRESENTATIONS: Consider a scenario in which an agent is
learning multiple distinct tasks. For each task 7 € {1,...,T}, the agent now requires
a task-specific policy 7w, : S; — A. We approach the problem by learning a task-specific
state representation ¢, : O — S, for each policy, and a task detector y which determines
the task, given the current observation. We will consider a probabilistic task-detector

X : O — [0,1]7 that assigns a probability to each task being active.

127

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

In order to solve the full multi-task RL problem, we must learn x, {¢-}req1,.,7y and
{m:}req,...7y. We propose to address this problem by MT-LRP, a method that jointly
uses the state representations {¢,} to learn task-specific policies {7, },cq1,...r} (using stan-
dard RL methods), and switches between them using the task detector x. To solve the
joint learning problem, MT-LRP generalizes LRP in the following way: (i) we replace
the linear observation-state-mapping from the original method with a gated neural net-
work, where the gates act as task detectors that switch between different task-specific
observation-state-mappings; (ii) we extend the list of robotic priors by the prior of task
coherence, which allows us to train multiple task-specific state representations without

any specification (or labels) of tasks and states.

GATED NEURAL NETWORK ARCHITECTURE: We use a gated neural network architec-
ture as shown schematically in Fig. 5.17. The key idea is that both the task detector y
as well as the state representation ¢ are computed from raw inputs. However, the output
of the task detector gates the output of the state representation. Effectively, this means
the output of x(0) decides which task-specific state representation ¢, is passed further to
the policy, which is also gated by the output of y (o).

Formally, x(0) = o(xpre(0)) is composed of a function yp.e with 7T-dimensional output
and a softmaxr o that ensures that xy computes a proper probability distribution over
tasks. The probabilities are then used to gate ¢. To do this, we decompose ¢ into a
pre-gating function ¢pe that extracts features shared across all tasks (i.e. “multi-task”
in the sense of Caruana (1997)), and a T' x M x N gating tensor G that encodes the T’
(linear) observation-state mappings (M = dim(s) and N is the output dimension of ¢pye).
The value of the state’s i-th dimension s; computes as the expectation of the dot product

of gating tensor and ¢p..(0) over the task probabilities x(o):

T

s; = ¢i(0) = Z X£(0) (Gri:s Ppre(0))- (5.1)

k=1

LEARNING OBJECTIVE: To train the network, we extend the robotic prior loss Lgp by

a task-coherence prior L.
L= LRP(D, ¢) + LUTLT(D, X), (52)

where w, is a scalar weight balancing the influence of the additional loss term. Task
coherence is the assumption that a task only changes between training episodes, not
within the same episode. It does not presuppose any knowledge about the number of

tasks or the task presented in an episode, but it exploits the fact that task switching

128

5.6. EXTENSION 1: LEARNING STATE REPRESENTATIONS FOR MULTIPLE TASKS

(a) Slot car racing (b) Observation

Figure 5.18: Two tasks. The robot is controlling either the red or the blue car.

12000 training steps

LRP
PCA

Observations

Return per 100 step episode

Known car position

-10 Observations
" Known car position 0 10 50 30 70 50
- 1000 2000 3000 4000 5000 6000 7000 8000 Average reward per episode

Training steps .
i (b) Three slot car scenario
(a) Two slot car scenario

Figure 5.19: Reinforcement learning performance (mean and standard error) for different state representations
for the slot car task two or three cars (static visual cue).

weakly correlates with training episodes. It applies directly to the output of the task

detector, x(0), and consists of two terms:

con+sep __ 7 con sep
LS = L% 4 ¥

= E[H(X(otl),x(om)) ’ episode,, = episodetz] (5.3)
+ E[e’H(X(Otl)’X(%)) ‘ episode,, # episodew}, (5.4)
where H denotes the cross-entropy H(p,q) = — >, p(x) logg(z). The first term L™

enforces task consistency during an episode. We use it to penalize y if it assigns different
task distributions to inputs o, 0, that belong to the same episode. The second term
L3P expresses task separation and encourages x to assign tasks to different episodes. This
loss is complementary to task consistency, as it penalizes x if it assigns similar task

distributions to oy,, 0o, from different episodes.

5.6.2 EXPERIMENTS AND RESULTS

We evaluate M'T-LRP in the multi-task slot-car racing scenario, where the agent controls

one of multiple cars (Figure 5.18), with the goal of traversing the circuit as fast as possible

129

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

without leaving the track due to speeding in curves. However, the agent does not know a
priori which car it controls, and only receives the raw visual signal as input. Additionally,
uncontrolled cars driving at random velocity, act as visual distractors. We turn this
scenario into a multi-task problem in which the agent must learn to control each car,
where controlling the different cars corresponds to separate tasks. To indicate the car
that the agent controls, we indicate a picture of the car in the upper left corner.

We will now present the main results of our experiments: (i) we show that MT-LRP
enables the agent to extract better representations for RL; (ii) we provide insight in how
the learner detects/learns task and state representations; (iii) we show the contribution

of each of the task-coherence loss terms.

RESULT: EXTRACTS BETTER STATE REPRESENTATIONS

Figure 5.19a shows the learning curves for RL based on state representations learned
by the different methods in the two-slot-car scenario (static visual cue condition, see
supplementary material). No method reaches the performance of the upper baseline,
mainly due to aliasing errors resulting from the low image resolution. MT-LRP gets
very close to the performance of the upper baseline, especially for very low amounts of
training data (d < 2500), whereas LRP does not even attain this level of performance for
the full training set d = 8000 as LRP can only learn to extract the position of all cars,
not the relevant one. The gap between MT-LRP and LRP increases even more if we add
another car (Figure 5.19b).

REsSuLT: DETECTS ALL TASKS

To gain more insight into what is learned, we analyze the state representations extracted
by MT-LRP in Figure 5.20. Each point in the figure corresponds to one observation,
markers indicate the task and colors the most active gate unit. We see that the first gate
unit (blue) is always active for task 1 (circle), and the second gate unit for task 2, and
that the states reflect the circular structure of the slot car racing track. We thus conclude
that MT-LRP has learned to identify the tasks and to represent the position of each car

on the track.

130

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

@ s«

c 2} A Tesk2]
é A . Gate Unit 1 |
£ B Gate unit2
o ol i T
2
2 M Lcon
(%]
: # s -
c -1 1
: w ~
] T T

_2, — 4

A R p— 0 1 2 3 4 ~100 —80 —60 —40 -20 0 20 40 60

First State Dimension Average reward per episode

Figure 5.20: Multi-task state representation. Figure 5.21: Performance after 8000 training steps
Markers denote task and colors denote gate units with different learning objectives.
(which coincide perfectly).

RESULT: TASK-CONSISTENCY PRIOR 1S NECESSARY

To understand the influence of the different task-coherence prior variants, we compared
their performance in Figure 5.21. We see that relying solely on the robotic priors gives
poor results, mainly because the gate units are not used properly: more than one gate
unit is activated per task (x has high entropy). Adding the task-separation prior forces
the network to use as many gates as possible (five in our case), leading to bad state
representations. Interestingly, using task consistency only gives roughly the same result
as using task consistency and task separation. This indicates that the robotics prior
loss is sufficient to encourage the learner to separate different tasks: however, the task-

consistency loss is required to guide the learner to identify the different tasks.

5.7 EXTENSION 2: ADDING POSITION-VELOCITY STRUC-
TURE TO THE STATE

Position and velocity are fundamental components of state representations in robotics.
In this extension, we investigate how robots can learn position-velocity representations
without supervision. Towards this end, we split the state representation into a velocity
state and a position state and incorporate robotic priors about position and velocity in
the form of model constraints and learning objectives.

Our extension to position-velocity states is inspired by work on physics-based priors
in model-based reinforcement learning by Scholz et al. (2014), which proposed to learn
a physically plausible dynamics model given a position-velocity representation. Here, we
turn their approach around and ask: How could we learn a position-velocity representation

from sensory input without specifying which positions and velocities are relevant for the

131

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

Velocity Position pull
States States —

\ /I push
ﬁ\ p& Learning ’\ /.

t t-1 t-2 t-3

Figure 5.22: PVEs encode an observation into a low-dimensional position state. From a sequence of such
position states, they estimate velocities. PVEs learn the encoding by optimizing consistency of positions and
velocities with robotic priors.

task?

The answer we are proposing, the position-velocity encoder, works by incorporating
prior knowledge in two different ways, which fit Mitchell’s categorization of inductive bi-
ases into restriction biases and preference biases (Mitchell, 1997, p. 64). Restriction biases
restrict the hypothesis space that is considered during learning, such as our constraint in
the PVE model to estimate velocities from finite differences in position (rather than learn-
ing to extract velocity information from a sequence of observations). Preference biases
express preferences for certain hypothesis, such as our loss functions for training PVEs,
which measure inconsistency with robotic priors.

Our method, the position-velocity encoder (PVE), implements a hard model constraint
by estimating velocity states from finite differences in position states. This constraint
fixes the relation between these two parts of the state representation. Additionally, PVEs
include soft objectives that measure consistency with robotic priors. These objectives are
optimized during learning and shape which information is encoded and how multiple state
samples relate to each other. Both ingredients work together to learn an encoding into a
structured state representation that includes position states, which describe information
from a single observation, and velocity states, which describe how this information changes
over time.

Figure 5.22 shows the position encoder that maps observations (blue rectangles) to
position states (blue dots). The velocity state—the time derivative of the position state—
is approximated from finite differences in position. This structured state space allows us
to formulate new robotic priors, specifically for positions and velocities, in the form of
learning objectives.

In our experiments, we apply position-velocity encoders to simulated control tasks from
pixels. We show that PVEs are able to discover the topology and the dimensionality of the
task, that they can learn equivalent representations from different camera perspectives,
that they capture information about the true positions and velocities of physical objects
in the scene, and that reinforcement learning based on the learned position-velocity state

can produce precise control.

132

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

5.7.1 POSITION-VELOCITY ENCODERS (PVES)

Position-Velocity Encoders (PVEs) learn to map raw observations into a structured state

space that consists of a position part and a velocity part by combining two key ideas:

1. PVEs encode the current observation into a position state and estimate a wvelocity

state from finite differences in position (more details in Sec. 5.7.1).

2. PVEs are trained by optimizing consistency with robotic priors about positions,

velocities, and accelerations (more details in Secs. 5.7.1 & 5.7.1).

MODEL

The PVE model consists of a convolutional network and a numerical velocity estima-

tion. The convolutional network ¢ encodes a visual observation o; into a low-dimensional

position-state s§”), where superscript (p) stands for position.

sgp) = ¢(0y).

From the difference of the last two position states s§”) and sﬁf)1, the model estimates the

velocity state s!”):

Sl(tv) Sl(tp) (»))7

= af — S

1
timestep

tant that velocity states have the right scale relative to position states in order to create

where « is a hyperparameter that subsumes and scales velocity states. It is impor-

a sensible metric in the combined state s;, which we construct by stacking the position

. sgp)
t — Sl(f/u) .

We can also use finite differences to estimate acceleration (or jerk, jounce, etc.). We

state and the velocity state.

do not include these derivatives in the state because we assume that the robot controls
accelerations by its actions. But we do use the acceleration state in some loss functions.
We compute the acceleration state sﬁa) in the same way as the velocity state but we omit

the scaling since we will not use accelerations in the combined state space:

S = 5"~ ol

133

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

RoBoTIC PRIORS AND LEARNING OBJECTIVES

The encoder ¢ is trained by making the combined state space consistent with a set of
robotic priors, which we will describe in this section. These priors use the structured
state space and are specific to positions, velocities, and accelerations. Consistency with
these priors is defined in the form of loss functions that are minimized during learning.
The following list of robotic priors should be understood as an exploration into this matter,

not as a final answer.

VARIATION: Positions of relevant things vary. As the robot explores its task and ma-
nipulates its environment, the positions of task-relevant objects (including itself) will
vary—otherwise there is not much that the robot could learn. If we assume that positions
of relevant objects vary in the robot’s experience, the internal representation of such po-
sitions must also vary; random pairs of position states should not be similar. Therefore,
we optimize consistency with the variation prior by minimizing the expected similarity

between random pairs of position states,

_e(® _(P)
Lvariation =E |:6 lsa”=s, ”]’

—distance

where we use e as a similarity measure that is 1 if the distance is 0 and that goes

to 0 with increasing distance between the position states, which is exactly what we want.

SLOWNESS: Positions change slowly. Physical objects do not teleport; they do not
change their position arbitrarily from one second to the next. To make the internal posi-
tion state consistent with the slowness prior, we minimize the expected squared distance

between consecutive position states,
leowness =E |:”S£p) - ngi)l”z} .

Since this change in position is directly connected to the rate of position change (or

velocity), we can also write down the same loss using the velocity state:

il

where « is the scaling hyperparameter defined earlier. This reformulation hints at a

S

Lowness = E |:‘
(07

different interpretation of slowness, which is simply: wvelocities are low.*

*Note that defining the slowness prior to mean wvelocities are low translates to the loss function
Lsiowness = E[(siv))z] = E[(a(sgp) - ngi)l))z]’ which depends on the scaling parameter a. We use the other
formulation to make this loss independent of o because we want to change o during training without
affecting this loss (see Sec 5.7.1 for more details).

134

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

INERTIA: Velocities change slowly. Since physical objects have inertia, they resist
changes to their velocity (both in direction or magnitude). If we assume limited forces to
overcome this resistance, velocities should only change by small amounts. Note how the

inertia prior corresponds to the slowness prior applied to velocities.
Lineria = B[[1s¢” = s{"412] = B[Is{”)].

This formulation of the inertia prior focuses on large velocity changes due to the square in

the loss function. Alternatively, we can define the loss function based on absolute changes.
Linertia (abs) — E [Hsl(fa) H :

Small changes in velocity have a higher weight in the second loss compared to the first
loss. We found that combining both losses leads to better results than using either one of
them.

CONSERVATION: Velocity magnitudes change slowly. This prior derives from the law
of conservation of energy, which states that the total energy in a closed system remains
constant. As the robot applies forces to the environment, we do not have a closed system.
Additionally, we cannot estimate, e.g. kinetic energy without knowing the masses of
objects, let alone potential energy stored in springs etc. Still, we want to enforce the
same idea of keeping the absolute amount of energy, or in our case “movement” similar

in consecutive time steps.
2
Lconservation =E [(”ng)“ - ”Sz(tqi)l”)]

CONTROLLABILITY: Controllable things are relevant. The objects that can be controlled
by the robot are likely relevant for its task. If the robot acts by applying forces, control-
lable things could be those whose accelerations correlate with the actions of the robot.
Accordingly, we can define a loss function per action dimension 7 to optimize covariance
between action dimension ¢ and accelerations in a state dimension 1.

—Cov(a i,s(a) .
Lcontrollability i =¢€ (@i5041,0)

_ e—E[(at,i—E[at,i]) (sii)l,i_E[sgi)l,i])}

Note that we used this loss in only one of the tasks—ball in cup—because the above priors
were insufficient. The results for this task are still preliminary. A complete solution of
this task and a deeper investigation into other formulations of controllability are part of

future work.

135

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

TRAINING PROCEDURE

We train PVEs by minimizing a weighted sum of the loss functions described above using

gradient descent. This section explains the training procedure in detail.

DATA GATHERING: First, the robot gathers data by exploring its environment. Since we
are using a reinforcement learning setting, the data consist of sequences of observations,
actions, and rewards. Most of the presented loss functions only use observations, the

controllability loss also uses actions, but none of our current losses uses the reward signal.

Loss CoOMPUTATION: We iterate through the collected data in mini batches, which
consist of a small set of short sequences. For each mini-batch, we compute the loss

functions by replacing expectations with statistical averages.*

Loss COMBINATION: We combine these losses in a weighted sum. Finding the right
weights is important because they balance how much each prior is enforced during learning.
We determined these weights empirically by adjusting them until the gradients in the
encoder parameters had similar magnitudes for all priors. Future work should try to
automate this process of weight tuning, potentially by applying the same heuristic in an

automated fashion.

PARAMETER UPDATES: For each mini-batch, we compute the gradient! of the combined
loss with respect to the encoder parameters using symbolic auto-differentiation (Abadi
et al., 2015) and perform an update using the Adam optimizer (Kingma and Ba, 2014).

We iterate this process until convergence.

VELOCITY SCALING CURRICULUM: While training PVEs, we follow a curriculum that
in the beginning focuses on positions and only later also takes velocities into account.
This curriculum is implemented by changing the velocity scaling parameter a. In the
first phase, we train with a = 0 until convergence. In the second phase, we increase «
linearly from 0 to its final value and train until convergence again. In phase one, only the
first two priors, variation and slowness, are active. Surprisingly, these two are powerful
antagonists that can unfold the topology of the position-state space. The second phase
mainly smooths the state space such that velocities can be accurately estimated from

finite differences.

*For the variation loss, we sample all pairs of experiences with the same time step in different sequences
of the mini batch. For all other losses we consider all samples in the mini batch.
fSome of the gradients can only be computed after adding small Gaussian noise to the encoded states.

136

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

Table 5.1: Loss weights per task (same for a and b).

Task a | Task b | Task ¢
Variation 1.0 1.0 1.0
Slowness 1.0 1.0 1.0
Inertia 0.1 0.1 0.001
Inertia (abs) 0.1 0.1 0.02
Conservation 0.2 0.2 0.005
Controllability (i=1,2) | 0.0 0.0 0.5

(a) Inverted pendulum (b) Cart-pole (c) Ball in cup

Figure 5.23: Three control tasks from pixel input

HYPERPARAMETERS: We used the following hyperparameters in our experiments. The
convolutional network had three convolutional layers with 16, 32, and 64 channels, kernel
size 5x5, and stride 2, followed by three fully connected layers of sizes 128, 128, and 5 (for
a 5-dimensional position state). Every layer except the last one was followed by a ReLu
nonlinearity (Nair and Hinton, 2010). The mini-batch size was 32 sequences of 10 steps
each. The maximum velocity scaling o« was 10. The weights for the different losses are
shown in Table 5.1.

5.7.2 EXPERIMENTS AND RESULTS

We applied PVEs to a series of simulated control tasks from raw pixel input (see Fig. 5.23).
All tasks use the MuJoCo simulator (Todorov et al., 2012). For each task, we collected
a batch of training data that consists of 1000 short trajectories of 20 steps by randomly
sampling start configurations with different positions and velocities and applying a random

policy.

137

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

TASKS

INVERTED PENDULUM: The inverted pendulum is a stick that is fixed to a rotary joint
at one end. The goal is to swing it up and balance it upright by applying torques at
the joint. However, the motor is not strong enough to pull the pendulum up all at once.
Instead the pendulum must be swung back and forth to generate enough (but not too

much) momentum.

CART-POLE: The cart-pole task is an extension of the inverted pendulum task. Since
the pole is attached to a cart with a passive joint, it can only be swung up by accelerating

the car correctly, which requires precise control.

BALL IN Cup: This task includes a cup and a ball attached to the bottom of the cup
with a string. The goal is to move the cup in such a way that the ball lands in the cup.

In our version of the task, cup and ball can only move in the plane.

REsuLT: PVES LEARN POSITION-VELOCITY REPRESENTATIONS

For each task, we will now look at the learned state representations. We visualize 5-

dimensional position-states by projecting to their principal components.

INVERTED PENDULUM: The state representation learned by the PVE is shown in Fig-
ure 5.24a, where we can see the encoding of test observations into the position-state
space. Each dot is the position encoding of a single image. The color denotes the amount
of reward that was achieved in that instance.

The plot shows a number of interesting results. First, observations that correspond to
similar rewards are encoded close together in position space. Second, the position states
form a circle, which makes sense because the inverted pendulum moves in a circle. Third,
all principal components after the first two are close to zero. This means that the circular
encoding lies on a plane in the five-dimensional space—the PVE discovered that the task
is two dimensional.*

Next, we will look at the estimated velocities in the learned space. In Figure 5.24b, we
overlayed encoded training data colored by reward with the encoding of a single sequence
of observations shown in Figure 5.24c. The position states are marked with black dots and
the velocity state vectors are drawn as lines. In the observation sequence, the pendulum
swings from the left side to the top and then to the right side. Similarly, the encoded

positions move from a medium reward region via the high-reward region (red color) to the

*Even though the task only has one positional degree of freedom (the angle of the pendulum), we
need at least two dimensions if we want a Euclidean metric to make sense in this space, such that there
are no jumps as from 360 to 0 degrees in an angular representation.

138

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

3——— ~
-
g 3
c c
s/ 2
S2y) g
g T
g - k=
£ AN~ ! g
1 | a
/ e
2 3
Principal component Principal component 1
(a) Encoded position states (b) Overlayed state sequence

(c) Observation sequence

Figure 5.24: For the inverted pendulum, PVEs learn a circular position representation that allows accurate
velocity estimation. Each dot in (a) and (b) is the encoding of a single observation. The color denotes the
reward received with the observation (red = high, blue = low). Black dots in (b) show the encoding of the
observation sequence in (c). Black lines show the estimated velocities. Supplementary videos: http:
//youtu.be/ipGe7LphOLw shows the learning process, http://youtu.be/u0bQwz89h1I demonstrates the
learned PVE.

139

http://youtu.be/ipGe7Lph0Lw
http://youtu.be/ipGe7Lph0Lw
http://youtu.be/u0bQwz89h1I

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

medium reward region on the other side. During this motion, the velocity estimations are
tangential to the circle in the position space with minimal noise, which should be useful

for controlling the pendulum (see video links in Fig. 5.24).

CART-POLE: Here, we compare PVEs on two different observations: 1) using a moving
camera that follows the cart by rotating sideways, 2) using a static camera that cov-
ers the entire region in which the cart moves. Figure 5.25 shows the learned position
representations for both perspectives.

This experiment demonstrates how PVEs can learn equivalent internal representations
(compare Figs. 5.25a and 5.25b) from observations that look very different (Figs. 5.25¢,
5.25f). For both kinds of observations, the state samples form a tube, the length of which
corresponds to the position of the cart, while the circular part represents the position
of the pole. Here, the PVE uses three of the five dimensions and thereby discovers the
three-dimensional nature of the given task.

The observation sequence from the moving camera (Fig. 5.25¢) shows the cart moving
to the left while the pole falls down on the right side. The PVE represents this trajectory
(Fig. 5.25¢) by moving from the high-reward red region to the blue region, which reflects
the movement of the pole, and to the right side, which corresponds to sideways movement
of the cart. The observation sequence from the static camera (Fig. 5.25f) shows the
pole swinging up while the cart moves to the right. Accordingly, the encoded trajectory
(Fig. 5.25d) goes to the red region and to the right side (right and left are swapped between

these two representations).

BALL IN Cup: The results for this task are preliminary. The task is challenging due to
the movement of the cup, which is inconsistent with some of our robotic priors. The cup
is confined to a small region and controlled by the robot allowing rapid movements and
changes of direction. The cup can be moved from one end of its position range to the
other end in a few time steps. Therefore, the slowness prior does not hold here (unless
we sampled observations at a higher frequency). Additionally, the robot can apply large
forces on the cup, leading to large accelerations and jerky movements, which are again
inconsistent with many of our priors on changes in velocity. As a result, PVEs struggle
with encoding the cup, which we will quantify in the following section.

To approach this problem, we added the controllability prior, which enforces that things
controlled by the robot are encoded into the state. This improved the resulting state
representation (see Fig. 5.26). While the semantics of the state representation are not as
clear as for the previous tasks, the representation uses four dimensions, which makes sense
for two objects in a plane. Additionally, the goal states (ball in cup) are clearly separated
from the other states. As we will see in the following section, the information about the

cup is still very noisy, which is probably why reinforcement learning based on PVEs does

140

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

4| e | — — — 4| ——0o - — -
+J +
c c
: g
g3 & i &) / S 3|<Ehuke| & D /
S S
o o
o O
f_U i f_U B / 2 |
25 A / | 25 ‘ 7N
27 d | = didgse>| & |
'C \\.“,_ > / 'C
o / Prs o y , p
/ . S/ A ; “V
ar: i aus ' |
1 // § I 1 / (i 8 i
/ \ N2 ' /'/ \\ j ./[!
1 2 3 4 1 2 3 4
Principal component Principal component
(a) Learned representation (b) Learned representation
(moving camera) (static camera)
o o
—)
c ¥ £ c
Q : Q s
c c) wi ! 0T
] o =
Q. Q. ~
€ €
o o
(9] (9]
© ©
o . o .
.k_) ‘!" G
.E E R
p- f—
o o T, PR
Principal component 1 Principal component 1
(c) Encoded sequence (d) Encoded sequence
(moving camera) (static camera)

(e) Observation sequence
(moving camera)

f) Observation sequence
(q
(static camera)

Figure 5.25: For cart-pole, PVEs learn equivalent state representations from different observations. Sup-
plementary videos: learning process for the moving camera http://youtu.be/RKlciWWuJfc and
static camera http://youtu.be/MYxrA1Bw6MU, learned PVE with the moving camera http://youtu.be/
67QZRsLNTAE.

141

http://youtu.be/RKlciWWuJfc
http://youtu.be/MYxrA1Bw6MU
http://youtu.be/67QZRsLNTAE
http://youtu.be/67QZRsLNTAE

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

g — — | — | =
i o
O 4 | i | il | Wow |/ I c
- v
8 c
= o
§ * At | a
o 3 / q g
s —— °
() 3 ©
£ 2 i ? | 2
a] O
3 =
G] o
1 2 3 4 > Principal component 1
Principal component
(a) Learned representation (b) Encoded sequence

(c) Observation sequence

Figure 5.26: Learned position-velocity representation for ball in cup. Supplementary videos: http:
//youtu.be/3fLaSL8d4TY shows the learning process, http://youtu.be/1IhEGv5kLFo demonstrates the
learned PVE.

not reach the same performance as in the other tasks. This result makes the ball in cup
task a good candidate for a next step on extending PVEs by revising and adding robotic

priors.

RESULT: LEARNED STATES ALLOW REGRESSION TO TRUE POSITIONS AND VELOCI-
TIES

To measure the quality of the learned position-velocity representation, we performed re-
gression from the learned postion-velocity state to true positions and velocities of relevant
objects. Here, we trained a fully connected neural network with 3 hidden ReLu layers of
256 units each for 200 steps with Adam. We normalized the true positions and velocities
and performed supervised learning from the learned position-velocity state to the true

features minimizing mean squared error. After training on observations from 1000 times

142

http://youtu.be/3fLaSL8d4TY
http://youtu.be/3fLaSL8d4TY
http://youtu.be/lIhEGv5kLFo

5.7. EXTENSION 2: ADDING POSITION-VELOCITY STRUCTURE TO THE STATE

20 steps, we tested with 100 times 20 test samples. The resulting test errors are shown
in Table 5.2.

Table 5.2: Comparison of mean squared test errors.

Inverted pendulum Ball in cup
c08(Opore) | 0.0003 Tenp | 0.0622
s_in(epole) 0.0002 Youp | 0.0645
Opole 0.0003 ZTpan | 0.0187
Yball 0.0294
Cart-pole (different cameras) Teup | 0.6654
moving | static Yeup | 0.6372
Tcart 0.0007 | 0.0015 ZTpan | 0.1535
cos(bpole) | 0.0013 | 0.0021 Yvan | 0.2359
sin(fpore) | 0.0012 | 0.0033
Teart 0.0069 | 0.0198
Opole 0.0110 | 0.0264

When we compare these errors, we find that the errors are lowest for the pendulum
task, which makes sense because the range of possible observations is so small in this task,
that it is well covered by the training data. For the cart-pole the errors are still very low
for position, but higher for the estimated velocities because noise in the position states is
increased when computing velocities from finite differences. Also, the errors double when
we go from the moving camera setting to the static camera setting. From this difference,
we can predict that control should be easier in the first setting. Finally, for ball in cup,
the errors are again much larger for the reasons discussed earlier. The estimation of the
cup velocity is particularly challenging.

Note that we performed this regression test to measure how well these properties are
encoded in the state. We do not use the state labels for training the representation and
we do not use them for learning control. In the following section, we will measure the
utility of the learned representation by reinforcement learning performance based on these

representations.

RESULT: LEARNED REPRESENTATIONS ENABLING REINFORCEMENT LEARNING

In this experiment, we learn control for these tasks with neural fitted Q-iteration (NFQ,
Riedmiller, 2005) based on the encoding learned by PVEs. As a baseline, we use untrained
PVEs with randomly initialized encodings in this preliminary work (we will thoroughly
compare to other methods in future work). For the policy, we used a fully connected
neural network with two hidden layers of 250 sigmoid units per layer. We trained it two
times for 30 episodes after each training epoch. We rescaled rewards to be non-positive
and omitted discounting. We repeated actions for multiple time steps (4 for the pendulum

and cart-pole tasks, 6 for the ball in cup task).

143

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

=
(=)
o

20

N
o
o

Reward per epoch (500 steps)
o
Reward per epoch (500 steps)

BN
[= B =]
o o

o

100 200 300 400 500
Training epochs

0 100 200 300 400 500
Training epochs

(a) Inverted pendulum (b) Cart-pole

A
o
o

NFQ with initialized PVE
NFQ with trained PVE

NFQ with trained PVE
(on static camera images for cart-pole)

w
(=
o

=
(=]
o

o©

100 200 300 400 500
Training epochs

Reward per epoch (500 steps)
N
[=)
o

(c) Ball in cup

Figure 5.27: Reinforcement learning performance for different tasks based on state representations learned
by PVEs. Lines show means of 50 trials, darker shading shows standard errors, lighter shading shows range
from minimum to maximum values.

The resulting learning curves are shown in Figure 5.27. The blue curves show the
baselines with random encodings, which do not allow learning any of the three tasks. The
green and red curves show reinforcement learning based on PVEs that were trained on a
batch of 1000 trajectories of 20 steps. For the inverted pendulum and for the cart-pole
task, the green curves reach optimal performance after only 50 and 300 epochs. The
red curve, which shows the performance based on the static camera perspective does not
reach optimal performance, probably due to the more noisy state estimation discussed
in the previous section. At this point, it is not clear whether this issue comes from the
low resolution in the input or from the fact that the position of the pole and the cart
are more strongly coupled in these observations which makes learning the state encoding
more difficult. Lastly, for the ball in cup task, the learned control beats the baseline
consistently and (as the light green maximum shading shows) more successful control
using the learned representation is possible. But due to the noisy state estimation, this
is not sufficient for solving the task consistently. Future work could start from here and

investigate which priors are missing to solve this and more realistic robotic tasks.

144

5.8. RELATION TO LEARNING WITH SIDE INFORMATION

Z

<Ly

Figure 5.28: Side information z is related to function f(x) =y.

5.8 RELATION TO LEARNING WITH SIDE INFORMATION

In this section, we relate our work to learning with side information (Vapnik and Vashist,
2009; Chen et al., 2012) and thereby generalize the idea of formulating prior knowledge
as learning objectives. The main idea of learning with side information is that we cannot
only learn functions from input/output pairs, as is done in supervised learning, but also
use other side information for learning if we know how this side information relates to the
learnable function. Learning with robotic priors, for example, uses the actions, rewards,
and time as side information to learn a mapping from observations to states but the same
idea applies to other problems.

For many problems, there are additional data z available that are neither the input x
nor the output y of function f but that carry valuable information about how f maps x
to y, as illustrated in Fig. 5.28. We refer to this kind of data as side information (Chen
et al., 2012), also known as privileged information (Vapnik and Vashist, 2009). Examples

for side information are
1. intermediate results computed by the true underlying f,
2. output of a related function (with input x) that shares computations with f,
3. input of a related function (with output y) that shares computations with f, or

4. relations between inputs x; and x; or between outputs y; and y;.

EXAMPLE: Suppose we want to estimate a function from the input/output samples:
314, 530, and 2—9. From looking at these data, it is not immediately obvious what
the true underlying function is. However, if we provide side information and the prior
that they correspond to intermediate values that f computes, in this case 3+ 9+ 14,
5+ 25+ 30, and 2+— 4+ 9, we see that the function first squares its input and then
adds five to the intermediate result, f(x) = x?+5. Side information together with a prior
about how they relate to f reveal the underlying function.

Incorporating priors about how z relates to f is what we call learning with side infor-
mation. By enforcing consistency with these priors, we regularize learning which improves
generalization. Note that we use side information only during training, not for predic-
tion. There are a number of approaches in the literature that (often implicitly) follow

the paradigm of learning with side information and demonstrate impressive results. Here,

145

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

we connect these lines of work, make the underlying paradigm explicit, and attribute the
improved generalization to the use of priors enabled by side information.

Learning with side information provides an effective way to incorporate priors into the
learning objective by exploiting data that are neither input nor output data of the target
function f and are only required during training time. Note the difference to unsupervised

and semi-supervised learning which only consider additional input data.

5.8.1 DEFINITION OF LEARNING WITH SIDE INFORMATION

In learning with side information, we estimate a function f : x — y and optionally an
auxiliary function S by minimizing two objectives, the main objective Ly and the side

objective Ly,:

argmin, Ly(f | {xi,yi}),
N

argming g La(f, B | {xi,yi i:17{Zj}j]\/i1)'

To define L, we assume a supervised learning setting in which the goal is to estimate a
function f: x — y from a set of N input/output pairs {x;,y;}},. Then, L; corresponds
to a standard supervised learning objective, e.g. mean-squared error for regression or hinge
loss for classification.

The side objective is captured by L,, which depends on side information z and can
include the auxiliary function 8. The exact form of L,, z, and § depends on the pattern
applied (Sec. 5.8.2). For all patterns, z are data that are neither from the input space nor
from the output space of f but carry valuable information about f, and are only needed
for learning, not for prediction. Hence, the training data include M side information
samples in addition to the N input/output pairs, D = ({x;,y:}I*,,{z,;}}L,). Each of the
side information samples relates to one or more input/output samples, commonly M = N
or M = N2

To exploit z for learning f, we formulate priors about how z relates to f in the side
objective L,. To express L,, many patterns require f to be split into two functions, ¢
and 1, where ¢ maps x to an intermediate representation s, and v predicts y based
on s, hence y = f(x) = 9(¢(x)) = 1(s). This split exposes the representation s and
facilitates the formulation of L, by relating s and z, possibly using 5. Often it allows us
to omit ¢ and y from L,, i.e. to define L,(¢, 5 | {x},{z}). For example, in the multi-task
pattern (Sec. 5.8.2) the intermediate representation s is shared amongst the main task
of predicting y with function v (s) and an auxiliary task of predicting z with (s). The
auxiliary task regularizes the shared function ¢ and improves generalization for the main
task.

Note that we intentionally kept this formalization narrow to improve readability. It is

146

5.8. RELATION TO LEARNING WITH SIDE INFORMATION

straightforward to extend the ideas presented here to a reinforcement learning setting, to
multiple types of side information, to multiple intermediate representations, and to more

than one side objective.

TRAINING PROCEDURES

Since learning with side information requires us to optimize multiple learning objectives
affected by different subsets of training data and functions, we need appropriate training
procedures. We have identified three common training procedures that differ with respect
to the order in which they (i) optimize the two objectives and (ii) modify the functions f
and [:

Simultaneous learning jointly trains f and 8 by optimizing a weighted sum of the two
learning objectives Ly and L, (Weston et al., 2008). This procedure introduces the need
to find a good weighting of the different learning objectives, which might be difficult if
the gradients of the objectives differ by orders of magnitude and vary during learning.

If we split f into ¢ and v, as described in the previous section, we can choose among
two additional procedures. In the decoupled procedure, we first optimize the side objective
L,(¢,8 | {x},{z}), while adapting ¢ and S to learn the intermediate representation s.
Then, we optimize the main objective Ls(¢,v | {x,y}), while keeping ¢ (and 3) fixed.
This simple procedure is only applicable if the side objective provides enough guidance to
learn a task-relevant representation s, whereas the simultaneous procedure is also appli-
cable for “weak” side objectives L,. To alleviate this problem, the pre-train and finetune
procedure first applies the decoupled procedure, but then optimizes L¢(¢, v | {x,y}) while
adapting ¢, too, in order to fine-tune s for the task. This strategy is popular in deep learn-
ing as unsupervised pre-training (Erhan et al., 2010) and can be applied analogously for
learning with side information. For this procedure to have an effect, Ly must not be

convex (otherwise, the pre-training step would be unlearned).

147

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

5.8.2 PATTERNS FOR LEARNING WITH SIDE INFORMATION

We will now present different approaches for learning with side information, which we
have grouped into patterns. We describe for each pattern the general idea, the underlying
prior, the side information z, the side objective L,, and the auxiliary function 5. We point
to successful applications of each pattern (summarized in Appendix A.2.2) and visualize

the patterns with schemas as in Fig. 5.29.

How TO READ THE SCHEMAS: The schemas represent computation flow graphs where
functions (drawn as arrows) connect variables (represented as nodes), both of which follow
the definitions from Section 5.8.1. Predictions of variables are indicated by *. The target
function is depicted in black. Additional elements that are only required at training time
and can be omitted during prediction are shown in gray, except for side information and
the corresponding learning objectives, which are highlighted in green. Learning objectives
are visualized by connecting variables with ~ to denote that the objective enforces sim-
ilarity between these variables. The = sign (see Fig. 5.34) indicates that a function is
replicated (e.g. by weight sharing).

Note that these graphs are not probabilistic graphical models (PGMs). We provide
PGMs as a complementary visualization of causal dependencies in Appendix A.2.1. In
contrast, the computation flow graphs are advantageous for the purpose of this section
since 1. they discriminate between variables and functions, 2. they expose the sequence
of computation, 3. they visualize the learning objectives, and thus 4. are easily converted
into neural networks, which are employed by most of the related works reviewed in this

section.

DIRECT PATTERN

The direct pattern leverages known, intermediate results

x+—2 >§: v Y~y

of the computation performed by f. Given these interme-
diate results as side information z, we can learn a func- Z
tion ¢ that transforms x into the representation s such Figure 5.29: Direct pattern
that s ~ z, as shown in Fig. 5.29. No auxiliary function
B is required. The pattern is only applicable if z makes it easier to predict y, and if x
contains enough information to predict z. The example in Section 5.8 is an instance of
this pattern.

To formalize this pattern, we use a suitable side objective L, = Lgirect(¢ | {X,2}) from
supervised learning that enforces the representation s to be equal to the side information

Z.

148

5.8. RELATION TO LEARNING WITH SIDE INFORMATION

APPLICATIONS: Machine learning approaches in computational biology frequently use
this pattern to combine understanding from biology research with learning. For example,
in contact prediction, the goal is to predict which parts of a folded protein are close to each
other based on the DNA sequence that describes the protein. Virtually all learning-based
approaches to this problem first predict intermediate representations s, such as secondary
structures (local 3D structure categories), and then use s to predict contacts (Cheng and
Baldi, 2007). The representation s can be reliably estimated which greatly facilitates
learning ¢.

Knowledge transfer (Vapnik and Izmailov, 2015) uses this pattern, but includes an
additional step of extracting features 5(z) from the side information. Function ¢ is then
learned by regression, such that s ~ ((z). They also suggest augmenting s with the
original input x. Similarly, Chen et al. (2012) suggest to reconstruct only highly predictive

features of z using a modified version of AdaBoost.

MuLTI-TASK PATTERN

This pattern applies when the side information z are out-

Y Ty,
Xt /Sr/\w /yNy

puts of a related function (with input x) that shares com-

putations with the function we want to estimate. As illus- ‘ Z~Z

trated in Fig. 5.30, the pattern assumes that the target Figure 5.30: Multi-task pattern
function f = 1 o ¢ and the related function § o ¢ share
¢ and therefore have the same intermediate representation s = ¢(x). By training the
representation to predict both y using v, and z using the auxiliary learnable function
£ : s — z, we incorporate the prior that related tasks share intermediate representa-
tions. This pattern corresponds to multi-task learning (Caruana, 1997), a type of transfer
learning (Pan and Yang, 2010).

To apply the multi-task pattern, we can use any suitable learning objective from super-

vised learning L, = Lyuitask(®, 8 | {X,2}) in order to learn to predict z from x.

149

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

APPLICATIONS: Multi-task learning has been successfully applied in a wide variety of
tasks (Caruana, 1997; Pan and Yang, 2010). Recently, Zhao and Itti (2015) proposed to
use object pose information to improve object recognition in a convolutional deep neural
network. Similarly, Levine et al. (2015) use image classification and pose prediction as
side information to teach a robot remarkable vision-based manipulation skills, such as

stacking lego blocks or screwing caps onto bottles.

IRRELEVANCE PATTERN: A special case of the multi-

¢ v Ql N7
Xt » S wJ_/yNy

task patterns exploits knowledge about unrelated tasks,
by enforcing the prediction of the side information to
be orthogonal to the main task (Romera-Paredes et al., Figure 5.31: Exploiting irrelevant
2012). This idea is formalized by forcing 1 to be orthogo- side information.

nal to the auxiliary prediction function 3 (see Fig. 5.31),

which allows to use knowledge about irrelevant distractors present in the input data. How-
ever, it is unclear how to efficiently formulate the orthogonality constraints between 1)

and [for the non-linear case.

MuLTI-VIEwW PATTERN

The multi-view pattern is complementary to the multi-task pattern, treating side infor-
mation as input instead of output. It applies when z are inputs of a related function
(with output y) that share computations with f. This pattern corresponds to multi-view
learning (Sun, 2013).

When we treat z as auxiliary input, we can use it in two different ways: explicitly by
correlating it with the original input x (Fig. 5.32), or implicitly by predicting the target
output (Fig. 5.33). In both cases, we learn functions ¢ : x — s and § : z — s, such
that s ~ s’

The multi-view (correlation) pattern assumes that cor- o (TNNPN
X > St }y ~ y

related representations computed from related inputs are a 4 2
useful intermediate representation for predicting the tar-)
get output. It can be formalized with a learning objective (a) Labeled x data
that enforces the correlation between ¢(x) and (5(z), e.g. x ¢ S
the mean squared error L, = Lyutiview(®, 8 | {X,2}) = 5 . 2/ b on
S lo(x) — B(z:)||?. If we apply the decoupled training 2! 7Sk ry ~y
procedure, i.e. only optimize the objective, we have to (b) Labeled z data

add constraints, e.g. unit variance, to Lyuitiview in order
Figure 5.32: Multi-view (correlation)

to avoid the trivial solution of having a constant interme- pattern

diate representation. In case ¢ and [are linear, Luiview

with unit variance corresponds to Canonical Correlation

150

5.8. RELATION TO LEARNING WITH SIDE INFORMATION

Analysis (CCA).

APPLICATIONS: The pattern is often employed in multi-modal scenarios (Sun, 2013).
Chen et al. (2014) show how to enhance object recognition from RGB-only images by
leveraging depth data as side information during training. In computational neuroscience,
the pattern is widely used to learn from multiple modalities (e.g., EEG and fMRI) or across
subjects (Déhne et al., 2014). The pattern can also be applied for clustering (Feyereisl and
Aickelin, 2012). The idea is to repeatedly cluster on both {x;} and {z;} and then return
the clustering of x with the highest agreement with z. In a recent article, Wang et al.
(2015) suggest and compare deep architectures that combine multi-task and multi-view
learning, and show that a deep canonically correlated auto-encoder gives superior results

for visual, speech, and language learning.

The multi-view prediction pattern is based on the prior o ITNPN
.. : Xl > St >y ~ y
that predicting the target output from related inputs re-) I
. | “13 val \ </ /
quires similar intermediate representations. It trains the Z 7Sl Yy ~Y

functions ¢ : x s and 8 : z s’ such that both s and Figyre 5.33: Multi-view prediction
s’ map to the target output using the same prediction pattern

function v, e.g. using weight sharing. Since s and s’ are

coupled to y via the main objective, we do not only regularize ¢, but also .

Despite their similarities, we are not aware of any systematic comparison of multi-view
and multi-task learning. Neither have we found applications of the prediction pattern
in the literature. Our experiments provide a first empirical comparison of these pat-
terns (Sec. 5.6.2).

PAIRWISE PATTERNS

Pairwise patterns use side information z;; that carr ~

| P o ” Toxp st gy
information about the relationship between samples ¢ I ~ T
and j to shape the intermediate representation, e.g. —Xjb— 7Sj v

the difference between their intermediate representations Figure 5.34: Pairwise pattern

(Fig. 5.34, the = indicates weight sharing).

151

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

PAIRWISE SIMILARITY/DISSIMILARITY PATTERN: If the side information gives infor-
mation about similarity of samples with respect to the task, we can impose the prior
that samples that are similar (dissimilar) according to their side information should have
similar (dissimilar) intermediate representations. Such side information is often available
as information about local neighborhoods of samples (Tenenbaum et al., 2000). Another
powerful source of similarity information are time sequences, since temporally subsequent
samples often have similar task-relevant properties, as exploited by slow feature analy-
sis (SFA) and temporal coherence (Wiskott and Sejnowski, 2002; Weston et al., 2008).
Additionally, an intelligent teacher can provide information about which samples are sim-
ilar (Vapnik and Izmailov, 2015).

Similarity can be enforced with a squared loss on the distance between similar samples:

Leim (¢ | {x,2}) = Z 16(xi) — G(x;)I|* L(zy; = sim.),

where 1 denotes the indicator function. Solely using this objective might lead to trivial
solutions where all samples are mapped to a constant. We can resolve this problem
by imposing additional balancing constraints on s (Weston et al., 2008) or selectively
push samples apart that are dissimilar according to the side information (or optionally

according to the labels y):

Lai (¢ | {x,2}) = Y o(llo(xs) = d(x)]]) Lz = dis.),

i’j

where ¢ is a function that measures the proximity of dissimilar samples in representation
s. Candidates for ¢ are the margin-based o(d) = max(0,m — d*) for some pre-defined
margin m (Hadsell et al., 2006), the exponential of the negative distance o(d) = e™¢
(Jonschkowski and Brock, 2014), or the Gaussian function o(d) = e~ (Jonschkowski and
Brock, 2015). Another way to avoid trivial solutions is to impose an input-reconstruction
objective, e.g. by using an auto-encoder (Watter et al., 2015).

Vapnik and Izmailov (2015) incorporate similarity information into support vector ma-
chines by replacing the free slack variables with a function of z. This method incorporates

the prior that slack variables should be similar for samples with similar side information.

152

5.8. RELATION TO LEARNING WITH SIDE INFORMATION

APPLICATIONS: This pattern has been shown to successfully guide the learner in iden-
tifying task-relevant properties of x. Hadsell et al. (2006) show how to learn a lighting
invariant pose representation of objects in the NORB dataset. Weston et al. (2008) show
that regularizing a convolutional network with a temporal coherence objective outper-
forms pure supervised object classification in the COIL-100 dataset by 20% in terms of

recognition accuracy.

Recent works show how to apply this pattern to reinforcement learning settings. Watter
et al. (2015) exploit the time sequence to jointly learn a state representation and the world
dynamics from raw observations for a variety of standard tasks, such as cart-pole balancing.
Jonschkowski and Brock (2015) apply the pattern in a robot navigation task, and show
how leveraging temporal and robot action information enable the robot to learn a state

representation from raw observations, despite the presence of visual distractors.

Note that this pattern only preserves local similarities between samples. If the side
information provides a global distance metric, Weston et al. (2008) propose to formulate
side objectives for learning a distance-preserving mapping of x to z, e.g. based on multi-
dimensional scaling (Kruskal, 1964). Alternatively, the distance metric can be learned

using side information (Fouad et al., 2013).

PAIRWISE TRANSFORMATION PATTERN: Instead of exploiting only binary similarity
information between samples, the pairwise transformation pattern exploits continuous
information about the relative transformations between samples, to make the internal
representation (or parts of it) consistent or equivariant with the known relative trans-
formations. Such side information is often available in robot and reinforcement learning

settings.

Consistency with the transformations z can be enforced in different ways: (a) Hinton
et al. (2011) require the transformation z to affect s in a known way, and suggest the
transforming autoencoder model shown in Fig. 5.35a to learn such an s. The idea is to
learn to reconstruct the transformed input from the original input and the known trans-
formation. (b) If the transformations in s are unknown, Jayaraman and Grauman (2015)
suggest to learn these transformations as an auxiliary task using the pattern depicted in
Fig. 5.35b. (¢) We can also turn this approach around and try to predict the transforma-
tion based on the original and the transformed representation (Agrawal et al., 2015) as
depicted in Fig. 5.35c. All three variants (a)-(c) enforce equivariance of s with respect
to the relative transformations, and can be trained using supervised side objectives. (d)
Instead of optimizing for equivariance, we can also enforce that the same transformation
has the same effect, when applied to different samples (Fig. 5.35d). When transforma-

tions are discrete, we formalize this by penalizing the squared difference of the change in

153

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

internal representation after applying the same transformation:

Ltransf.(¢ | {X,Z}) = Z ||A¢(Xz) - A¢(X])||21(ZZ: Zj)’

where A denotes the change caused by the transfor-
mation, i.e. Ap(x;) = P(x;41) — ¢(x;) for sequential
data.

ous transformations by replacing the indicator func-

This objective can be extended to continu-

tion with a similarity function o(z,— z;) from Sec-
tion 5.8.2. Variants of this pattern allow to enforce
only locally consistent transformations, by multiply-
ing (6(x;)
magnitudes of change by comparing norms ||A¢(x;)||
(Jonschkowski and Brock, 2015).

— o(x;)), or to enforce only consistent
¢(]))7 y

APPLICATIONS: Many results in the literature
demonstrate the usefulness of the pairwise transfor-
mation pattern. Agrawal et al. (2015) report that
using relative pose information as side information
can reduce the error rate on MNIST by half with re-
spect to pure supervised learning. They also demon-
strate the approach for scene recognition on the SUN
dataset, and show that pre-training using limited
of relative pose side information is almost as good
class-based supervision. Jayaraman and Grauman
(2015) demonstrate a recognition accuracy of ~ 50%

on the KITTI dataset, outperforming pure super-

'S %~

DG RPN
Sirt—>Xi11™~ X
(a) Predicting transformed input

L@ — Y\
X b ¥Sit1 ~ Sin
(b) Predicting representation
X! ¢ > St 2 Y.~V
I j 4 A
X! »Sipt—? Zi~ Z;

(c) Predicting transformation

X —2 g Vi~ Vi
[l
D U 7Sitl
I ~ Zi-2;
Xjb- |"| ------- >S;
X b 7Sj+1

(d) Comparing pairs of transformations

Figure 5.35: Pairwise transf. patterns

vised learning (41.81% accuracy) and SFA (47.04%). Interestingly, both works enforce

learning a pose equivariant representation, although the classification task they address

requires invariance.

tasks (Lenc and Vedaldi, 2014).

154

It is still unclear why equivariant representations help in such

5.9. CONCLUSION

LABEL DISTANCE PATTERN: The label distance pat- X yng y
tern is a special case of the pairwise pattern, where the Figure 5.36: Label distances
side information defines distances between labels, not

samples (see Fig. 5.36). An instance of this pattern, often used in structured predic-
tion, is hierarchical multi-class learning (Silla Jr. and Freitas, 2010), where a hierarchy is
imposed on the labels to penalize misclassifications between samples with similar classes

less severely.

5.9 CONCLUSION

5.9.1 SUMMARY

We have presented a new approach to state representation learning in robotics: learning
with robotic priors (LRP). The first key idea to this approach is to focus on state repre-
sentation learning in the physical world instead of trying to solve the general problem of
state representation learning in arbitrary (artificial) environments. Reducing the problem
domain in this way allows us to use robotics-specific prior knowledge. We strongly believe
that such prior knowledge will be vital to create versatile robots.

The second key idea is a specific way to use prior knowledge for state representation
learning. We evaluate representations by how consistent they are with our priors about the
world. We proposed five robotic priors—simplicity, temporal coherence, proportionality,
causality, and repeatability—and showed how they can be turned into an objective for
state representation learning.

Our experiments demonstrate that the inclusion of robotic priors can greatly improve
learning performance and generalization. The magnitude of this effect is significant, in
spite of the generality of the employed priors. These experiments have been reproduced
and extended by Lesort et al. (2017).

We have also presented two extensions of the original approach. The first extension
enables multi-task state representation learning, MT-LRP, where the agent simultaneously
needs to cluster its experience into multiple tasks and to learn a state representation for
each of them. This extension differs from the original approach by implementing the
observation-state-mapping as a gated neural network and by adding the prior of task
coherence, which is encoded in the learning objective. Our experiments confirmed that
MT-LRP is effective at simultaneously identifying tasks and learning task-specific state
representations. This capability is beneficial for scaling reinforcement learning to realistic
scenarios that require dedicated skills for different tasks.

The second extension are position-velocity encoders (PVEs), which are able to learn
state representations structured into a position and a velocity part without supervision
and without requiring image reconstruction. PVEs combine two key ideas, 1) to con-

155

Chapter 5. LEARNING STATE REPRESENTATIONS THROUGH PHYSICS-BASED PRIORS

strain the model to estimate velocities in the correct way from positions and 2) to train
the position encoder by optimizing consistency with robotic priors, which are specific to
positions, velocities, and accelerations. We have shown how structuring the state space
into positions and velocities creates new opportunities for formulating useful constraints
and learning objectives. Our experiments show that this allows PVEs to learn effective
state representations for continuous control tasks.

Finally, we have related the idea of incorporating prior knowledge in the form of loss
functions to learning with side information, which provides a new perspective on machine
learning and complements existing paradigms such as supervised learning, representation
learning, and deep learning. We have connected learning with side information with var-
ious methods in the literature that use side information implicitly. This allowed us to
systematically analyze these methods and extract patterns from them that show how
they incorporate different priors about how side information relates to the target func-
tion. Since different priors coincide with different learning tasks, we hypothesized that
the performance of these patterns will vary strongly depending on the applicability of
the corresponding prior. Our experiments confirm this hypothesis and demonstrate that

learning with side information can substantially improve generalization.

5.9.2 FUTURE DIRECTIONS: STRUCTURED STATE REPRESENTATIONS

Interacting with the physical world is the essential definition of robotics and an important
source of prior knowledge. This is what differentiates robots from other artificial agents
that operate in games etc. Physical interaction provides a wealth of structure that, in
this chapter, we only begun to explore.

In the initial work, we demonstrated the possibility and the advantage of defining such
priors about physical interaction even in purely unstructured state representations—and
this approach can certainly be improved by finding better priors.

But I expect a much larger leap when we add more structure into the state representa-
tion. The two extensions that I have presented go in this direction, structuring the state
into multiple tasks or into different time derivatives (position, velocity, acceleration). But
there is ample room for additional structure such as objects, hierarchies, other intentional
agents, etc. By having such structure in the state space, we can formulate more powerful
learning objectives that enforce physically consistent representations.

In addition to simplifying representation learning, structured state spaces will also
facilitate learning forward models, because this learning problem, too, can make use of
priors based on the state structure. Better models will enable model-based reinforcement
learning, an approach that can potentially be much more data-efficient than the currently

dominant model-free reinforcement learning.

156

CONCLUSION

6.1 MACHINE LEARNING RESEARCH

I would like to start this chapter with some general conclusions about machine learning
research from the perspective of a roboticist. This section is inspired by Domingos (2012),
who wrote an excellent paper on “a few useful things to know about machine learning”,
where he described important machine learning insights that do not usually appear in

scientific publications. Here, I will state my own insights about machine learning research.

6.1.1 LEARNING IS A MEANS, NOT AN END

Learning is a means to create intelligence, not an end in itself. If we can solve a problem
without learning and the solution is effective, robust, and general enough, then there is no
reason to apply machine learning. In this thesis, I made the argument many times that
we cannot learn everything, that we need to assume something. Successfully engineered
solutions (or parts thereof) are good candidates for useful assumptions.

Thus, our first reaction to a solution of a robotics problem that does not rely on any
machine learning should not be whether we could also learn it from data, but whether
machine learning could improve this solution by making it more effective by replacing
manual parameter tuning or more robust and general by adapting parameters to a given
scenario. If the answer to these questions is “no”, then there is no reason for learning. If
it is “yes”, we should not only consider replacing the engineered solution altogether but

also consider complementing it with learning where learning is most useful.

157

Chapter 6. CONCLUSION

6.1.2 PROBLEMS AND DATA SETS ARE NOT THE SAME

In machine learning research, we often equate data sets with scientific problems that
we want to solve, as if data sets were somehow given to us. But instead of being the
problem, data sets are an ingredient for solving a problem—just as learning algorithms
are. Gathering data is an important part of machine learning research that is not discussed
much in the literature but that often requires tremendous effort.

In order to learn object segmentation for the Amazon picking challenge (see Chapter 3),
for example, we had to perform all of the following steps to gather a single labeled training
sample: Select between one and five objects, enter their identifiers into the sample meta-
data, arrange these objects in a shelf bin, make the robot move its arm-mounted camera
in front of the bin, record an RGB-D image, transfer the image and meta-data from the
robot to another computer, manually create segmentation masks for all objects using
image editing software, and add the image, the object masks, and meta-data to the data
set.

Due to this laborious process, we used only about six labeled images per object. We
had actually generated more samples than that, but had to select a subset for each object
that covers the views of an object in an unbiased way because some objects have very
different appearances depending on which side faces the camera and too many samples
of one view would make it more difficult to recognize the object from other views. Even
with all this effort, the data set is not the same as the problem: object segmentation in
the Amazon picking challenge.

During the challenge, many teams struggled with perception because the test condi-
tions differed from their training set. The challenge venue had bright lights at the ceiling
and some objects were slightly different from those the teams had received earlier. Appar-
ently, they came in different variants depending on when and where they were ordered
from Amazon. A number of teams modified the test conditions (within the rules of the
challenge) to match the data set they had used for training their models. They added
shades to block the bright lights and were allowed to use their own object variants. This
anecdote really illustrates how brittle learned models can be when they are tested in
conditions different from the training set.

Since we ultimately want to solve problems not data sets, we should acknowledge that
training data are part of the solution, that gathering such data requires a lot of effort,
which can crucially limit the scalability of machine learning, and that test data can only

be a proxy for the real problem.

158

6.1. MACHINE LEARNING RESEARCH

6.1.3 REINFORCEMENT LEARNING REQUIRES INSTRUMENTED ENVI-
RONMENTS

Reinforcement learning can potentially remove the need for manual data collection by
defining a setting for autonomous learning. In the reinforcement learning setting, the
robot continuously perceives the state, performs actions, receives feedback in form of a
reward signal, and adapts its behavior so as to maximize long-term reward. This setting
captures the interactivity of learning, allows continued adaptation rather than having
a distinct training and test phase, and most importantly does not require manual data
collection or any other form of human intervention.

At second glance, however, reinforcement learning requires either substantial human in-
tervention or highly instrumented environments, i.e. environments that contain sensors,
computation, and mechanisms to enable learning. The first problem is that reinforce-
ment learning methods often assume access to the ground truth state of the system, an
unrealistic assumption that has motivated my work in Chapter 5.

But even if robots learn from raw observations instead of states, they might still rely
on the true state to compute the reward. In my real world experiments in Section 5.5.7,
where a mobile robot was rewarded whenever it entered the top right corner of a room,
I had to equip the robot with a laser range finder and perform global localization with
a particle filter to estimate whether the robot is in the goal region and should receive a
reward. While the robot’s learned behavior did not depend on this information, generating
the reward signal, which is needed for learning the behavior, required the true state.

But the reward is not the only reason for why we need instrumented environments
to enable reinforcement learning. The environment must also retain a state that allows
to fullfil the task and enable the robot to explore safely and to recover from failures.
Levine et al. (2016), for example, apply reinforcement learning to grasping and enable
safe exploration by restricting the learnable policy and by using a soft gripper. They
maintain the environment in a state that allows continuous learning by picking objects
from bins with sloped walls and only moving the objects above the bin, such that they
never fall outside of it, where the robot would not be able to grasp them. Riedmiller et al.
(2007) learn to steer a car with reinforcement learning which required a recovery policy
that took over when the car left the track. This recovery policy must already solve (a
variant of) the task that is being learned here. Episodic tasks as in the work of Levine
et al. (2015), require a reset to the initial state after each episode, which can be done
manually or by instrumenting the environment appropriately.

Although reinforcement learning appears to be a natural framework for robot learning,
autonomous reinforcement learning requires substantial instrumentation of the environ-
ment. Only through manual or automatic processes to generate the reward, to reset the

state, and to ensure safe exploration, can reinforcement learning be applied to robotics.

159

Chapter 6. CONCLUSION

6.1.4 SIMULATION Is UseruL BuT NO SILVER BULLET

Due to the difficulties with data collection and instrumented environments described
above, reinforcement learning research is often done in simulation. Most of my own
experiments presented in Chapters 4 and 5 are performed in simulation because this
offers a number of advantages.

Simulation makes it very easy to gather large amounts of labeled data. In Chapter 4,
I used simulation to collect thousands of trajectories of a robot walking through different
mazes on a single day, without having to care about hardware issues, battery life, changes
in illumination, etc. These experiments are repeatable, adaptable, and scalable, so that I
could easily regenerate the data, generate it using a different robot behavior, and generate
more data if needed. Because simulation provides access to the underlying state, labels
such as the position and orientation of the robot can be directly read out, which makes
simulation suitable for supervised learning. And simulation is even more valuable for
reinforcement learning.

To develop supervised learning methods, we can apply them on data sets many times
without having to collect the data again. But for reinforcement learning, this is not
possible. Reinforcement learning methods can only be tested by interacting with an
environment. If those evaluations would have to be run in the real world, the development
of reinforcement learning methods would virtually come to a stop because every learning
experiment during the development of a new method would take an impractical amount
of time. Here, simulation plays a crucial role for accelerating or even enabling progress.

Nevertheless, it is important to keep in mind that simulation is only a proxy for reality—
that, ultimately, we want to apply these algorithms on real robotic systems. Therefore,
we have to be careful about our use of simulations in machine learning research. The
first risk of using simulations is that we develop our algorithms for a learning setting
in which exploration is safe, data is cheap, and instrumentation of the environment is
easy instead of assuming a more realistic learning scenario. This trend can be seen in
recent reinforcement learning publications, which often use millions of interactions with
the environment (Lillicrap et al., 2015; Heess et al., 2017).

The second risk of experimenting only in simulations is that we might overfit to them
by encoding priors into our learning algorithms which apply to the simulation but not to
the real world. This can easily happen because simulations have to simplify many aspects
of reality. At the same time, we might fail to take advantage of properties of the real
world that are not present in simulation such as how soft hands can simplify control for
grasping (Deimel and Brock, 2016).

Therefore, we need to constantly assess how much our simulated environments reflect
properties of the real world. While we should use simulation to develop our methods, we

must also verify our results using real data and real experiments.

160

6.2. THE ROLE OF PRIORS IN MACHINE LEARNING

Chapters 4 and 5 demonstrate this approach of developing a method for robot learning

in simulation and verifying the results on real data or in real experiments.

6.2 THE ROLE OF PRIORS IN MACHINE LEARNING

Throughout this thesis, I have argued that priors are essential for machine learning and
that adding prior knowledge has the potential to improve generalization, in particular
in robot learning. In this section, I will argue that we should put priors at the center
of our perspective on machine learning. I will first discuss limitations of separating ma-
chine learning into supervised learning, unsupervised learning, and reinforcement learning,
which is the predominant perspective on machine learning. Then, I will argue for taking
a perspective that focuses on the role of prior knowledge in machine learning. I will re-
late this perspective to deep learning, which has generated powerful tools for studying
machine learning from the perspective of encoding prior knowledge. I will conclude this

section by describing the implications of the prior-centric perspective for robotics.

6.2.1 COMBINING SUPERVISED, UNSUPERVISED, AND REINFORCEMENT
LEARNING

The majority of machine learning research belongs to one of three problem categories:
supervised learning, reinforcement learning, and unsupervised learning (see Section 2.4).
This factorization of research enabled the field to focus on different parts of the machine
learning problem. Supervised learning focuses on approximating functions from samples
of their input and output, unsupervised learning focuses on discovering structure in un-
labeled data, and reinforcement learning focuses on learning interaction from trial and
error. This focused research has produced important theories, methods, and tools for
these sub-problems.

But it is important to note that in their pure forms, none of these standard learning
paradigms will enable the kind of learning that we would need for intelligent robots.

Pure supervised learning only relies on labeled data, which is laborious to collect and
potentially limits generalization when test and training scenario are different (see Sec-
tion 6.1.2).

Pure reinforcement learning often requires instrumented environments (see Section 6.1.3).
Unless the reward function provides a gradient towards solving the task, reinforcement
learning has an additional limitation: It requires the robot to solve the task by chance to
even enable learning. Without “stumbling upon” the solution, the robot does not receive
the reward that it needs for learning the task.

Pure unsupervised learning can extract structure from abundant unsupervised data,

but without any supervision or a reward signal there is no feedback about how the robot

161

Chapter 6. CONCLUSION

should change its behavior.

If we accept learning as a means to create artificial intelligence, instead of as an end in
itself (see Section 6.1.1), it follows that intelligent robots should learn by extracting infor-
mation from all available sources: scarce but highly informative labeled data, abundant
unlabeled data, and trial and error. By combining these paradigms, they can complement
each other and remedy their weaknesses.

There are a number of recent approaches that go in this direction, for example using
auxiliary supervised or unsupervised tasks in reinforcement learning (Jaderberg et al.,
2016; Mirowski et al., 2016), initializing a policy by learning from demonstrations and fine-
tuning using reinforcement learning (Abbeel et al., 2010), or using supervised learning to
generalize from multiple policies trained by model-based reinforcement learning (Levine
and Koltun, 2013). But these combinations still rely on the same standard learning
objectives from the original subfields, which is an unnecessary restriction.

Supervised, unsupervised, and reinforcement learning provide standard learning objec-
tives, which are really special cases. By combining these paradigms, there is an oppor-
tunity to consider other learning objectives. In Chapter 5, I have demonstrated that if
we apply the unsupervised learning goal of finding lower dimensional manifolds in the
reinforcement learning setting, we can generate much richer objective functions. This is
possible because the reinforcement learning problem provides sequences of observations,
actions, and rewards, which afford more assumptions than plain unlabeled data assumed
by pure unsupervised learning. Learning with side information generalizes this idea of
expressing priors about how different variables relate to each other (see Section 5.8).

If we combine these different problem categories, we need another paradigm to structure
our thinking about machine learning. I believe that priors should be at the center of such

a new paradigm.

6.2.2 PRIOR-CENTERED MACHINE LEARNING

Before explaining further why I think that we should adopt a machine learning paradigm
that puts priors at the center, I want to clearly state I do not claim credit for this idea.
The importance of prior knowledge in machine learning has been expressed many times
(Mitchell, 1980; Geman et al., 1992; Wolpert, 1996; Bengio et al., 2013). In this section,
I do not presume to present a new view on machine learning, but merely to summarize
arguments for why putting priors at the center of machine learning would indeed be a
good idea.

Mitchell (1980) argues that we need priors or biases: “If consistency with the training
instances is taken as the sole determiner of appropriate generalizations, then a program
can never make the inductive leap necessary to classify instances beyond those it has

observed. Only if the program has other sources of information, or biases for choosing

162

6.2. THE ROLE OF PRIORS IN MACHINE LEARNING

one generalization over the other, can it non-arbitrarily classify instances beyond those in
the training set.”

Geman et al. (1992) analyzes the bias-variance trade-off and comes to the conclusion
that “learning complex tasks is essentially impossible without the a priori introduction of
carefully designed biases into the machines’s architecture” and that “identifying the right
‘preconditions’ is the substantial problem in neural modeling.”.

Wolpert (1996) raises the questions, “Can one actually get something for nothing in
supervised learning? Can one get useful, caveat-free theoretical results that link the train-
ing set and the learning algorithm to generalization error, without making assumptions
concerning the target?”, and refute them by proving the no free lunch theorem.

Bengio et al. (2013) reviews the field of representation learning and conclude that
machine learning must incorporate “many general priors about the world around us.”
They propose a list of priors for artificial intelligence and argue that refining this list and
incorporating it into machine learning will bring us closer to artificial intelligence.

Logic, theory, and practice all show that priors are essential for machine learning. The
open question is not whether machine learning needs prior knowledge, but how specific
or general those priors should be for the problem of (embodied) artificial intelligence.

Putting priors at the center of machine learning has practical implications for machine
learning research. Since the role of priors is to enable generalization, we should consider
changing the way we test our learning algorithms, putting more emphasis on increasing
the “inductive leap” that we require from our learning methods by introducing differ-
ences between the training and test conditions. We must search for priors that allow
generalization beyond the current capabilities of learning systems.

My experiments in Section 4.6.2 show a step in this direction, where I tested the general-
ization of learned localization to different robot behavior. The result showed that generic
deep learning models are not able to perform this generalization, while the algorithmic
prior in the differentiable particle filter enabled this generalization.

A recent study by de Bruin et al. (2018) also demonstrated the impact of priors de-
scribed in this thesis on generalization. They integrated state representation learning
into deep reinforcement learning and performed experiments in a simulated driving task.
Their results show that robotic priors from Chapter 5 only slightly improve performance

in the training domain but substantially improve generalization to new test domains.

163

Chapter 6. CONCLUSION

6.2.3 THE TRUE POTENTIAL OF DEEP LEARNING

Although deep learning (LeCun et al., 2015) has already produced a range of impressive
results and changed the field of machine learning, I think the true potential of deep
learning is to enable prior-centered machine learning.

In some sense, deep learning is already doing that because it is most successful in com-
puter vision using convolutional neural networks, which encode prior knowledge about
visual input. New network architectures generated by deep learning research define dif-
ferent hypothesis spaces and thereby new ways of encoding prior knowledge.

But the real potential of deep learning results from the tools that have been developed
by the deep learning community. These tools tremendously facilitate the implementation
of new hypothesis spaces and learning objectives. Deep learning software frameworks such
as TensorFlow (Abadi et al., 2015) allow the definition of arbitrary parameterized com-
putation graphs, i.e. hypothesis spaces. Through auto-differentiation, they can perform
gradient-based optimization of the parameters for arbitrary learning objectives. Without
auto-differentiation, gradients need to be computed by hand (see Appendix A.1) and are
only valid for a certain combination of learning objective and hypothesis space.

In addition to auto-differentiation, which has been known for much longer (Pearlmutter
and Siskind, 2008), these frameworks include powerful learnable models with appropriate
initialization, a suite of optimization methods, and transparent use of powerful GPUs for
computation. My work on differentiable Bayes filters (see Chapter 4) would have been
virtually impossible without relying on these frameworks.

These software tools enable a new kind of programming that includes learnable parts,
which some refer to as differentiable (functional) programming (Olah, 2015). This new

programming paradigm will greatly simplify the encoding of prior knowledge.

6.2.4 ROBOTICS-SPECIFIC MACHINE LEARNING

The flip side of encoding prior knowledge into machine learning is that it reduces general-
ity. By including priors about the problem, we automatically exclude problems that are
inconsistent with these priors from the domain of the learning method. We might still
be able to apply a learning method outside of its domain but it will not work very well.
The differentiable particle filters described in Chapter 4, for example, are well suited for
learning state estimation. But if we apply them to a language task, they will perform
very poorly. There is no free lunch—improved generalization in one task comes at cost
of reduced generalization in another one (Wolpert, 1996).

The application of prior-centric machine learning to robotics will lead to robotics-
specific machine learning methods. While those methods might perform poorly for non-

robotic problems, they should improve generalization in robotics and thereby help to make

164

6.3. THIs THESIS

Table 6.1: Main chapters

] Chapter \ Problem \ Prior (what) \ Implementation (how) \

3 Object segmentation in | Task-specific priors: known | Task-specific features, post-
the Amazon picking chal- | objects and shelf, object con- | processing
lenge vexity

4 State estimation from non- | Algorithmic priors: Bayes | Restricted hypothesis space
Markov observations filter structure for end-to-end learning

5 Unsupervised learning of | Robotic priors based on | Proxy learning objectives
state representations Newtonian physics

progress towards understanding embodied intelligence and creating intelligent robots.
The robotic domain is rich in structure and affords a number of robotic priors. Research
in robotics-specific machine learning comes back to the two questions that I raised in the

introduction of my thesis:
1. What are the right priors for robotics?
2. How can we best incorporate these priors into machine learning?

This thesis investigated multiple possible answers to these questions in the context of

robotic perception.

6.3 THIS THESIS

In this thesis, I have approached three different perception problems in robotics by com-
bining machine learning with prior knowledge. In each of the three main chapters, I
focused on a different source of prior knowledge and a different way of incorporating this
knowledge into learning methods (see Table 6.1), which are potential answers to the what
and how questions.

The three main chapters lie along a spectrum from application-centered research to
basic research. Chapter 3 addresses a narrow problem scope using very specific priors.
The perception method developed in that chapter is in some sense the strongest because
The other

two chapters increase the problem scope and the generality of the employed priors. The

it is closest to a realistic application, but it is also most narrow in scope.

methods presented in Chapter 5 are more general than those in Chapter 4 because they
do not require labeled data, but they are also more limited because they can only estimate
the state from a single observation instead of learning a recursive update loop.

These problems were matched with priors along a similar continuum from specific to
generic, where task-specific priors about the Amazon picking challenge are the most spe-
cific, followed by algorithmic priors that make use of algorithmic solutions for a certain
category of problems, and finally robotic priors based on the laws of physics, which apply

to all robots.

165

Chapter 6. CONCLUSION

We also saw different ways of incorporating those priors, varying from very strong
constraints in the form of predefined features and post-processing steps, coupled with a
minimal amount of learning (basically statistics over features). In the second chapter,
we algorithmic priors implemented as hard constraints that restrict the hypothesis space,
combined with end-to-end learning to optimize all parameters for end-to-end performance.
In the final chapter, we saw robotic priors implemented as soft learning objectives, which

were optimized as a proxy instead of end-to-end performance.

6.3.1 WHAT: TASKS, ALGORITHMS, PHYSICS

What are the right priors for robotics? In my thesis, I proposed three potential sources
of prior knowledge: tasks, algorithms, and physics.

Task-specific priors capture knowledge about certain tasks that a robot is expected to
perform. Task-specific priors can capture very detailed information about any property
that is invariant in a task, such as improving object perception using a model of the shelf
that the objects are placed in. Such priors have a narrow applicability and are not very
useful for others tasks, but for the task at hand, they can provide strong regularization
and thus enable highly data efficient learning.

Algorithmic priors capture assumptions in algorithms, which are more abstract than
task-specific information. The Bayes filter algorithm, for example, applies too many state
estimation problems, such as localization, mapping, or object tracking, because it makes
assumptions about the general structure of the state estimation problem rather than
the specifics in one task or environment. Thus, algorithmic priors can help to improve
generalization across a larger range of robotic tasks.

Physics-based priors capture the structure of physical interaction between the robot
and the environment. The laws of physics imposes structure such as momentum, which
can be used to learn a representation of the world that is consistent with physics. Since
robots always interact with the physical world—regardless of their specific task—robotic
priors are widely applicable in robotics.

Note how these priors differ from the ubiquitous machine learning priors and the generic
Al priors from Section 2.5. While these priors apply to a passive disinterested observer,
the robotic priors in this thesis take the tasks and interaction into account.

We do not have to choose a single source of prior knowledge. Since all of these priors
capture different information, they can complement each other. Ultimately, robots need
a set of priors that together enables efficient learning and this set will include ubiquitous
ML priors, generic Al priors, robotic priors, and others that we are still missing.

Priors that capture a wide range of tasks will be important for equipping robots with
the necessary versatility. Specifics such as shelf-models should certainly be learned. But

certain narrow priors, such as perception that is tailored to distinguish human faces, could

166

6.3. THIs THESIS

be useful if they help to solve tasks that are sufficiently prevalent.

6.3.2 How: HYPOTHESIS SPACES AND LEARNING OBJECTIVES

How can we best incorporate these priors into machine learning? In the introduction,
I described machine learning by its four components—data, hypothesis space, learning
objective, and optimization method—and argued that we can encode prior knowledge
into each of them. In this thesis, I focused on two of these components: hypothesis
spaces and learning objectives. Interestingly, encoding priors into these two components
correspond to the two types of inductive biases that were proposed by Mitchell, restriction
biases and preference biases (Mitchell, 1997, p. 64).

Restriction biases restrict the hypothesis space and thereby exclude certain hypothesis.
Restricting the hypothesis space is a rigid way of encoding prior knowledge because the
learning method cannot, under any circumstances, produce a hypothesis outside of the
hypothesis space.

Preference biases define learning objectives that express a preference for one hypothe-
sis over another. Such learning objectives are often combined with others, for example
by using them as a regularization term in addition to a supervised learning objective.*
Compared to restriction biases, preference biases are more flexible because learning can
produce hypotheses that are not fully consistent with a learning objective (have non-zero
loss). When we encode priors in objective functions, consistency with these priors is
balanced with other learning objectives.

Whether it is better to encode a prior by restricting the hypothesis space or by defining
an objective function, depends on the nature of the prior. Soft constraints such as the
slowness prior, for example, are well suited to be encoded in a learning objective that
expresses a preference for slowly changing states. Hard constraints such as a particle-based
representation of the belief or a position-velocity structure in the state lend themselves
to be encoded by defining an appropriate hypothesis space.

While restricting the hypothesis space is more rigid than defining learning objectives,
it has the advantage of simplifying the learning process. By restricting the hypothesis
space, the method trivially achieves consistency with the encoded prior, even before any
optimization of the parameters takes place.

The perspective that learning objectives encode prior knowledge also sheds light on
the dichotomy between end-to-end learning and individual learning. By training parts
of a system individually, we encode prior knowledge about the function of these parts.

By training parts in the complete system to optimize end-to-end performance, we encode

*Standard regularization objectives, such as L1 or L2 regularization are defined over the learnable
parameters but ignore the data. The learning objectives presented in Chapter 5 regularize learning by
incorporating data. In general, this approach is called learning with side information (see Section 5.8).

167

Chapter 6. CONCLUSION

prior knowledge about how the part is embedded into the larger system, e.g. which inputs
the part will receive from other components and how errors in its output affect overall
system performance. Our results in Chapter 4 suggest that combining these objectives

leads to best performance.

6.4 RESEARCH VISION: A ROBOT-LEARNING SYSTEM

Apart from future work on structured state representations, which I have outlined in
Section 5.9.2, T would like to work towards integrating different ideas presented in this
thesis into a robot-learning system.

There is accumulating evince for the need and the potential of integrating the ap-
proaches presented in this thesis. The post-APC evaluation of our object segmentation
method in Chapter 3 showed that the method would benefit from integrating it more
strongly with machine learning. Our experiments with differentiable histogram filters
in Chapter 4 suggest that state estimation can be learned without supervision by com-
bining restrictions of the hypothesis space with appropriate learning objectives (see Sec-
tion 4.5.2). The position-velocity encoder in Chapter 5 is able learn state spaces that are
structured into positions and velocities, which could facilitate learning forward models
for reinforcement learning. A recent study by de Bruin et al. (2018) integrated our state
representation learning objective into deep reinforcement learning and showed they can
substantially improve generalization for reinforcement learning to new test domains.

My research vision is to integrate these different approaches into a combined robot-
learning system.

This system would define robot behavior by a network of modules that can be rigidly
defined or learned. Candidates for rigid implementations are perception skills such as the
perception of articulated objects (Martin-Martin et al., 2016), or planning mechanisms
such as logic-geometric programming (Toussaint, 2015). Both of these can potentially
facilitate learning other modules by backpropagating gradients through them. Other
modules can be learned using a restricted hypothesis space, such as the differentiable
particle filter presented in Chapter 4. And some modules can be fairly general learnable
models, e.g. deep neural networks (LeCun et al., 2015). The arrangement of these modules
could be fixed initially, but it might be useful to at least partially learn how they assemble
the overall system.

Based on the results presented in this thesis, there will likely not be a single learning
objective for optimizing this network of modules, but many objectives that range from
end-to-end performance of the entire system, to objectives on collections of modules that
improve their interplay, and to objectives on single modules. These objectives will relate

to any side information (see Sec. 5.8) that is useful, optimizing overall reward, using

168

6.5. FINAL THOUGHTS

supervision in the form of demonstrations and instructions, making predictions, and mak-
ing different internal estimations consistent with each other, for example by specifying
learning objectives on intermediate state representations as in Chapter 5).

To make progress towards this research vision, we need to start integrating solutions
into a combined system to study their interaction while continuing to improve our un-
derstanding of the individual modules. Ultimately, the questions remain the same that
I asked in the beginning: What are the right priors for robotics and how can we encode
them into learning? This thesis has shed some light on these questions in the context of
robot perception. There is still much more to be done but I believe that by continuing
research on robotic priors and by integrating them into a robot learning system, we can

realize this research vision.

6.5 FINAL THOUGHTS

In a recent debate about “deep learning, structure, and innate priors” (See, 2018), Yann
LeCun described the need for prior knowledge in machine learning as a “necessary evil”
while Christopher Manning considered it a “necessary good”. I clearly side with Christo-
pher Manning because priors in machine learning represent our understanding of the
world from the perspective of a learning embodied agent and I find it inspiring to seek
that understanding. I think that focusing on priors does not only make machine learning

research more promising, but also more exciting.

169

Chapter 6. CONCLUSION

170

A.1 DERIVATIVES OF LEARNING OBJECTIVES

TEMPORAL COHERENCE

L. (D, 6) = B[851

= B[l — 8]

=B > (Srer1 — Ske)

k

k

k l

[2 AN A0j7t:|

171

2]
2
=E Z (Z Wk,l (O041 — 0l,t>>]
1

5 2
TL emp. D)) - E T W ° -0
ST temp. (D, @) oW, ; Z <Z ki (0141 l’t>>]
=E 8Wl’7j (; Wi,l <0l,t+1 - OI,t)>]
E |2 (Z I/T/z’,l (01,441 — 0l,t>> (0jt41 — Oj,t)]

L !

E [2(8it+1 — 8it) (0441 — 0j.1)]
E

Appendix A.

CAUSALITY

LC&US(Da (b) =E _67”‘%27‘%1”2

Ay = Aty Tty 7é Tt2:|

[G —r .)2
=E]|e D IRy Aty = Aty Tty ?A Tt2i|

=E -G_Zk (Zz Wi, (Olﬂtz oLty))2

Aty = Ay, Tty # ’]”t2i|

0 7 _ — |8ty —8¢, |I? %
~ Leas. (D, ¢) = E e 15251 (-22 Wi (014, — ol,t1)> (0545 — 0j0,) | Aty = ay, 70, # %]
y _ :

S A
e E —26 HStQ Stl” (Si7t2 - 8i7t1) (Oj7t2 — 0j7t1> ‘ atl = a’tg) /r'tl # rt2:|
PROPORTIONALITY

Lorop(D; 8) = B[(850, | = A5, 1)

ay, = Clt2i|

E [<\/Z (Z Wi, (Ol,t2+1 — 014,))2
k l
— \/Z (Z Wit (014,41 — O1ty))2) ‘ a;, = atQ}

2
_9 : . i 19
8VV7;7]- Lprop.(D7 ¢) =E |:2 (HAStz || - ||A3t1 ||) <2||A§t2|| 8Wi7j (zl: Wi,l (Ol,t2+1 — Ol,t2)>

J/

Vv
2A8; 15, A0j 1,

2

1 0
g g (S 0]) =a]
2| A8y, || OW; (; 1 (041 01,t2)> ag, = ay,

J/

-~
208,11 Doj 1y

N N A§Z’7t2AO j to A§i7t1 Ao it
— B[2(1as | - 45,) (St - St
2 1

Cltl = (lt2i|

172

A.2. LEARNING WITH SIDE INFORMATION

REPEATABILITY

Lrep,(D, QAS) = E |:6_||§t2_§t1”2||A§t2 - A§t1 ||2 ‘ atl = at2i|

o N 0 s a2 s a2 O
Y L..(D.d) = E[AS, — A, |2 g3 =80 1?4 o=l13t =50, As, — A3, |2 (]
o rep. (D, @) | A3y, ol o, , o, | A3y, t1||/

- M
= —e P lo(g — 4,) (050 — 041,)
ok = 2 (Z Wit (Oty41 = Otty — Oty1 + 01,t1)> (0jt41 = Ojits — Ojt1+1 + 0jty)
l
= 2(A8;1, — Adiy,) (Aoj, — Aojy,)

0 N R R e a2 ~
—Lrep-(D’ gb) =E [_HAStz - Ash ||26 H5t2 StlH Q(Si,tz - Si,tl) (Oj,tz - 0j,t1)
oW,

+ 2€_H§t2_§t1”2(A§i7t2 — A§i7t1) (A0j7t2 — A0j7t1) ‘ atl = at2:|
=E |:2€_||§t2_§t1”2 <(A§i,t2 — Agi,tl)(AOj,tQ — A0j7t1)

- HA§t2 - A§t1”2(§i,t2 - §i,t1)<0j7t2 - O]',tl)) ‘ ay, = atz]

A.2 LEARNING WITH SIDE INFORMATION

A.2.1 PATTERNS AS PROBABILISTIC GRAPHICAL MODELS

To complement the computation flow schemas of the patterns used throughout the pa-
per, we provide an interpretation of the main patterns as probabilistic graphical models
(PGMs). These models treat the variables and functions introduced in Sec. 5.8.1 as ran-
dom variables, represented as nodes. Arrows between these random variables indicate
causal relationships. Gray nodes indicate observable, and white nodes latent random
variables. The latent functions can be learned by performing inference in these models.
The PGMs for the four main patterns are shown in Fig. A.1. The variables x, s, z and y
are observable random variables and are part of the training data D. The functions ¢, ¢
and [have become latent random variables, which the observed variables are conditioned

on. We now discuss aspects of individual patterns.

173

Appendix A.

0.Q
ONORORORORON |
00| @50 S5

(%) (%)

(a) Direct pattern D D
(b) Multi-task pattern (c) Multi-view pattern | Pairs (i,j) € D

& ®
®-E©-®

D

J

(d) Pairwise pattern

Figure A.1: Probabilistic graphical models for patterns

The direct pattern is shown in Fig. A.la. In comparison to its computation flow graph
(Fig. 5.29), the side information z is considered as drawn from the distribution over s, and
therefore z does not appear in the graphical model of the direct pattern.

Fig. A.1b and Fig. A.1c show the PGM for the multi-task and multi-view pattern,
respectively (computation flow graphs: Fig. 5.30 and Fig. 5.32). We see that they are
structurally similar and only differ on whether z depends on s and 3 or whether s depends
on z and (. In this regard, they are equivalent to their corresponding computation flow
schemas apart from the fact that the PGM for the multi-view pattern conceals how the
variables x and z belong to the functions ¢ and f.

Finally, the prototypical pairwise pattern is shown in Fig. A.1a (computation flow graph:
Fig. 5.34). Notice that here s; is conditioned on z; ; and s;, reflecting the fact that z, ; is
information about how s; relates to s;.

Several interesting research questions arise from the probabilistic view on learning with
side information. The majority of the reviewed literature uses non-probabilistic loss func-
tions, mostly for training neural networks. Translating them into probabilistic ones is
an interesting, but non-trivial research question, as the recent work on variational auto-
encoders (which are a probabilistic version of auto-encoders) shows (Kingma and Welling,
2013). A similar question arises on the relationship of the side objectives and prior proba-
bility distributions on ¢, 1, 8 and s. It would be interesting to investigate whether certain
side objectives can be shown to be equivalent to priors in the Bayesian sense, similar to

the well-known fact that L2 regularization is equivalent to a Gaussian prior.

174

A.2. LEARNING WITH SIDE INFORMATION

A.2.2 OVERVIEW OF RELATED WORK

In the following table, we summarize related works that apply learning with side infor-

mation. Since an exhaustive list of references for each pattern is beyond the scope of

this paper, we include works that span a wide variety of instantiations of the proposed

patterns and refer to survey articles if available.

Abbreviations:

AE=auto-encoder, CCA=canonical correlation analysis, ED=eigen decomposition,

GMLVQ=generalized matrix learning vector quantization, kNN=k-nearest-neighbors, LBP=locally bi-

nary pattern, MMD=maximum mean discrepancy, NN=neural network, RBM=restricted Boltzmann

machine, RL=reinforcement learning, SGD=stochastic gradient descent, SL=supervised learning (classi-

fication unless stated otherwise), SVM=support vector machine, UL=unsupervised learning

Method, Application: Side
Pattern Side Objective Articles Train. pp ’ .
Procedure Task, Input, Dataset Information
. Cheng and . . Secondary
.DZTECt SVM loss Baldi SVM (decoupl.) SL: Contact prediction on (3D) structure
(Fig. 5.29) (2007) sequences categories
Regression on SL on images: Digit HO]ISFIC mage
descriptions
highly predictive Chen et al. AdaBoost+ (Vapnik and Vashist, i
- . . ; LBP features
features of side (2012) (simul.) 2009), facial expression .
. . from high-res
information (Cohn-Kanade) .
images
Vapnik and SVM with SL on images .
. . knowledge Theoretical analysis: .
Regression loss Izmailov Image sections
transfer learning using privileged
(2015) , .
(decoupl.) information
Multi- Various supervised: Caruana Vljﬁil:tﬁzgg’
task hinge, MSE, NN (simul.) SL: pneumonia detection
(Fig. 5.30) | softmax (1997) cell count,
T potassium
Evgeniou
and Ponti simaul. : exam score prediction
d Pontil | SVM (simul SL dicti One task per
(2004) school
Levine Conv. NN RL on RGB-D: robot Image class,
et al. (2015) | (decoupl.) manipulation object pose
Zhao and Conv. NN . .
Ttti (2015) (simul.) SL on images (YYY-20M) | Object pose
Pan and
Yang (2010) Survey SL, UL -
Baxter (2000); Ando and Zhang (2005) | Theoretical analysis of -
Maurer (2006) multi-task learning
]\;[;Aelz_ EZI:;III (Sj‘\(;ﬁ/[—i_hsionf;e Farquhar SVM-2K SL on images gzﬁ;:;;t
(Fig. 5.32) | loss et al. (2005) | (simul.) (PASCAL-VOC) (SIFT)
. . SL on video/audio
eAf’O;eCOHSthUOH (I:Ttg:ltm(mn) 2%/) NN (various, e.g. CUAVE, Video/audio
’ ’ AVLetters)
Adjusted rand Fezermsl Poeti
index, mutual Zn . k-means UL on images: MNIST oeHe
information ickelin descriptions
m (2012)
Kernel SVM on SL on RGB: gender
ﬁf/}ﬁgg’? Chen et al. | kernel (EURECOM, LFW-a), RGBD
domain adaption] (2014) descriptor object (RGB-D O.D.,
oman adaphio features Catech-256)
SPoC (non-linear | Déihne et al. 2;‘;@& deatic SL: Mental state EEG diff.
CCA) (2014) ED (decoupl.) prediction subject

175

Appendix A.

Deep
CCA+AE Wang et al Canonically SL on images (MNIST), Noisy images,
reconstruction (2015) ’ Correlated AE speech (XRMB), word articulations,
error and others embedding (WMT2011) 2nd language
(simul.)
- Sun (2013) Survey SL, UL -
- Blum and Mitchell (1998) Theoretical analysis of -
Wang and Zhou (2010) multi-view learning
Slowness (first Wiskott
Pairwise equation in and Line
Similar- Sec. 5.8.2 with Sejnowski . RL on images: Navigation . .
. e ear/quadratic, . . . Time index
ity zij =1{j =i+ 1} (2002); ED (decoupl.) (physical simulation)
(Fig. 5.34) | and covariance Legenstein P
constraints). et al. (2010)
Equations in . .
Sec. 5.8.2 with Hadsell Conv. NN, }jjll;nggsﬁzglis reduction
margin-based o(d) et al. (2006) | (decoupl.) Y
. (MNIST, NORB)
(see Section 5.8.2)
Weston Conv. NN SL on images (MNIST,
et al. (2008) | (simul.) COIL100)
State predictability | Watter . RL: inverted pendulum,
+variational AE et al. (2015) CNN (simul.) cart-pole, robot arm
3D protein
Vapnik and SVM with SL: protein classification, structure,
Adapted SVM loss Vashist similarity finance market prediction, | future events,
(2009) control (simul.) digit recognition textual
description
Poetic
Distance metric Fouad et al. | GMLVQ/kNN SL: images (MNIST); descriptions;
learning (2013) (decoupl.) galaxy morphology spectral
features
. . Silla Jr.
. Hlerz?rchlcal and Freitas Survery on hierarchical classification (SL) L.ab.el .
(Fig. 5.36) | multi-class loss similarity
(2010)
Pairwise NN:
Transfor- Softmax Hinton trarisformin SL for pose prediction Relative pose
mation et al. (2011) AE (simul)g (MNIST, 3D simulation) p
(Fig. 5.35a))
Jayaraman . .
See Hadsell et al. and Slame?\cﬁ\sltyle SL on images (NORB, P}flatw? pg.se
(Fig. 5.35b)| (2006) Grauman conv. KITTI, SUN) (discretized;
(simul.) with k-means)
(2015)
Softmax Agraval | e e SL on images (VNIST, || (£ 10 PO
(Fig. 5.35¢) et al. (2015) train,/fine-tune) SF, KITTI) uniformly) ’
Jonschkow-
Various Ekrloiid ?;:f;f}’ol.s)GD RL: control, navigation, f;s;iz: time
(2015)
. Linear,
[rrele- L~ HwT/BH%’ WIch Romera- orthogonal SL on images: emotion Subject
vance ¥, B linear, | - || Paredes matrix detection (JAFFE) identit;
(Fig. 5.31) | Frobenius norm. et al. (2012) P s Y
actorization

176

Bibliography

Overview of Amazon Picking Challenge 2015. http://pwurman.org/
amazonpickingchallenge/2015/details.shtml. Accessed: 2017-11-14.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on hetero-

geneous systems. http://tensorflow.org/, 2015.

Pieter Abbeel, Adam Coates, and Andrew Y.T. Ng. Autonomous Helicopter Aerobatics
through Apprenticeship Learning. The International Journal of Robotics Research, 29
(13):1608-1639, 2010.

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to See by Moving.
arXiv:1505.01596, 2015.

Rie Kubota Ando and Tong Zhang. A Framework for Learning Predictive Structures
from Multiple Tasks and Unlabeled Data. Journal of Machine Learning Research, 6:
1817-1853, 2005.

James E. Baker. Reducing Bias and Inefficiency in the Selection Algorithm. In Proceedings
of the International Conference on Genetic Algorithms (ICGA), pages 14-21, 1987.

Jonathan Baron. Thinking and Deciding. Cambridge University Press, 2000.

Jonathan Baxter. A Model of Inductive Bias Learning. Journal of Artificial Intelligence
Research (JAIR), 12:149-198, 2000.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Hein-
rich Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, and others.
Deepmind Lab. arXiv:1612.03801, 2016.

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics,
pages 679-684, 1957.

177

http://pwurman.org/amazonpickingchallenge/2015/details.shtml
http://pwurman.org/amazonpickingchallenge/2015/details.shtml
http://tensorflow.org/

Bibliography

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-Wise
Training of Deep Networks. In Advances in Neural Information Processing Systems
(NIPS), pages 153-160, 2007.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation Learning: A
Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798-1828, 2013.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer New York,
2006.

Avrim Blum and Tom Mitchell. Combining Labeled and Unlabeled Data with Co-Training.
In Proceedings of the Annual Conference on Computational Learning Theory (COLT),
pages 92-100, 1998.

Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock, Danica Kragic, Ste-
fan Schaal, and Gaurav S. Sukhatme. Interactive Perception: Leveraging Action in
Perception and Perception in Action. IEEE Transactions on Robotics, 33(6):1273-1291,
2017.

Byron Boots, Sajid M. Siddiqi, and Geoffrey J. Gordon. Closing The Learning-Planning
Loop with Predictive State Representations. International Journal of Robotics Research,
30(7):954-966, 2011.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A Training Algorithm
for Optimal Margin Classifiers. In Proceedings of the Fifth Annual Conference on
Computational Learning Theory (COLT), pages 144-152; 1992.

Michael Bowling, Ali Ghodsi, and Dana Wilkinson. Action Respecting Embedding. In
Proceedings of the International Conference on Machine Learning (ICML), pages 65-72,
2005.

Leo Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001.

Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Classification
and Regression Trees. CRC press, 1984.

Rich Caruana. Multitask Learning. Machine Learning, 28(1):41-75, 1997.

Jixu Chen, Xiaoming Liu, and Siwei Lyu. Boosting with Side Information. In Proceedings
of the Asian Conference on Computer Vision (ACCYV), pages 563-577, 2012.

Lin Chen, Wen Li, and Dong Xu. Recognizing RGB Images by Learning from RGB-
D Data. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1418-1425, 2014.

178

BIBLIOGRAPHY

Yang Chen and Gérard Medioni. Object Modelling by Registration of Multiple Range
Images. Image and Vision Computing, 10(3):145-155, 1992.

Jianlin Cheng and Pierre Baldi. Improved Residue Contact Prediction Using Support
Vector Machines and A Large Feature Set. BMC' Bioinformatics, 8(1):113, 2007.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann Le-
Cun. The Loss Surfaces of Multilayer Networks. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 192-204, 2015.

Luis C. Cobo, Kaushik Subramanian, Charles L. Isbell Jr., Aaron D. Lanterman, and
Andrea Lockerd Thomaz. Abstraction from Demonstration for Efficient Reinforcement
Learning in High-Dimensional Domains. Artificial Intelligence, 216(1):103-128, 2014.

Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. The MOPED Framework:
Object Recognition and Pose Estimation for Manipulation. The International Journal
of Robotics Research, 30(10):1284 1306, 2011.

Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris
Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wurman.
Analysis and Observations From the First Amazon Picking Challenge. IEEE Transac-
tions on Automation Science and Engineering, PP(99):1-17, 2016.

Sven Déhne, Vadim V. Nikulin, David Ramirez, Peter J. Schreier, Klaus-Robert Miiller,
and Stefan Haufe. Finding Brain Oscillations with Power Sependencies in Neuroimaging
Data. Neurolmage, 96:334-348, 2014.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli,
and Yoshua Bengio. Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization. In Advances in Neural Information Processing
Systems (NIPS), pages 2933-2941, 2014.

Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. Integrating State Repre-
sentation Learning into Deep Reinforcement Learning. IEEE Robotics and Automation
Letters, PP(99):1-1, 2018.

DeepMind. Sonnet: TensorFlow-Based Neural Network Library. https://github.com/
deepmind/sonnet, 2017.

Raphael Deimel and Oliver Brock. A Novel Type of Compliant and Underactuated
Robotic Hand for Dexterous Graspings. The International Journal of Robotics Re-
search, 35(1-3):161-185, 2016.

179

https://github.com/deepmind/sonnet
https://github.com/deepmind/sonnet

Bibliography

Thomas G. Dietterich. Machine Learning for Sequential Data: A Review. In Proceedings
of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition (SSPR), pages 15-30, 2002.

Pedro Domingos. A Few Useful Things to Know about Machine Learning. Communica-
tions of the ACM, 55(10):78-87, 2012.

Alain Droniou, Serena Ivaldi, and Olivier Sigaud. Deep Unsupervised Network for Mul-

timodal Perception, Representation and Classification. Robotics and Autonomous Sys-
tems, 71:83-98, 2015.

Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L. Griffiths, and Alexei A. Efros.
Investigating Human Priors for Playing Video Games. In Workshop at International
Conference on Learning Representations (ICLR), 2018.

Siegmund Duell, Steffen Udluft, and Volkmar Sterzing. Solving Partially Observable Re-
inforcement Learning Problems with Recurrent Neural Networks. In Neural Networks:
Tricks of the Trade, volume 7700, pages 709-733. Springer Berlin Heidelberg, 2012.

Clemens Eppner, Sebastian Hofer, Rico Jonschkowski, Roberto Martin-Martin, Arne Siev-
erling, Vincent Wall, and Oliver Brock. Lessons from the Amazon Picking Challenge:
Four Aspects of Building Robotic Systems. In Proceedings of Robotics: Science and
Systems (RSS), 2016.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vin-
cent, and Samy Bengio. Why Does Unsupervised Pre-training Help Deep Learning?
Journal of Machine Learning Research, 11:625-660, 2010.

Mark Everingham, S.M. Ali Eslami, Luc Van Gool, Christopher K.I. Williams, John Winn,
and Andrew Zisserman. The Pascal Visual Object Classes Challenge: A Retrospective.
International Journal of Computer Vision, 111(1):98-136, 2014.

Theodoros Evgeniou and Massimiliano Pontil. Regularized Multi-Task Learning. In Pro-
ceedings of the Conference on Knowledge Discovery and Data Mining (KDD), pages
109-117. ACM, 2004.

Jason Farquhar, David Hardoon, Hongying Meng, John S. Shawe-taylor, and Sandor
Szedmak. Two View Learning: SVM-2K, Theory and Practice. In Advances in Neural
Information Processing Systems (NIPS), pages 355-362, 2005.

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. Object
Detection with Discriminatively Trained Part-Based Models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(9):1627-1645, 2010.

180

BIBLIOGRAPHY

Jan Feyereisl and Uwe Aickelin. Privileged Information for Data Clustering. Journal of
Information Science, 194:4-23, 2012.

Evelyn Fix and Joseph L. Hodges Jr. Discriminatory Analysis-Nonparametric Discrimi-

nation: Consistency Properties. Technical report, California Univ Berkeley, 1951.

Shereen Fouad, Peter Tino, Somak Raychaudhury, and Petra Schneider. Incorporating
Privileged Information Through Metric Learning. [EEFE Transactions on Neural Net-
works and Learning Systems, 24(7):1086-1098, 2013.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The FElements of Statistical

Learning. Springer New York, 2001.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision Meets
Robotics: The KITTI Dataset. The International Journal of Robotics Research, 32
(11):1231-1237, 2013.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural Networks and the
Bias/Variance Dilemma. Neural computation, 4(1):1-58, 1992.

Gerd Gigerenzer and Henry Brighton. Homo Heuristicus: Why Biased Minds Make Better
Inferences. Topics in Cognitive Science, 1(1):107-143, 20009.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances
in Neural Information Processing Systems (NIPS), pages 2672-2680, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv:1410.5401,
2014.

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik.
Cognitive Mapping and Planning for Visual Navigation. arXiv:1702.03920, 2017.

Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop KF: Learn-
ing Discriminative Deterministic State Estimators. In Advances in Neural Information
Processing Systems (NIPS), pages 4376-4384, 2016.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality Reduction by Learning
an Invariant Mapping. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1735-1742, 2006.

181

http://www.deeplearningbook.org

Bibliography

Martie G. Haselton, Daniel Nettle, and Damian R. Murray. The Evolution of Cognitive
Bias. In The Handbook of Evolutionary Psychology. John Wiley & Sons, Inc., 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. arXiv:1512.03385, 2015.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of Locomotion
Behaviours in Rich Environments. arXiv:1707.02286, 2017.

Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir Navab, Pascal
Fua, and Vincent Lepetit. Gradient Response Maps for Real-Time Detection of Texture-
Less Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. Transforming Auto-Encoders.
In Proceedings of the International Conference on Artificial Neural Networks ICANN,
pages 44-51, 2011.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural Computa-
tion, 9(8):1735-1780, 1997.

Sebastian Hofer, Manfred Hild, and Matthias Kubisch. Using Slow Feature Analysis to
Extract Behavioural Manifolds Related to Humanoid Robot Postures. In Proceedings
of the International Conference on Epigenetic Robotics (EpiRob), pages 43-50, 2010.

Harold Hotelling. Analysis of a Complex of Statistical Variables into Principal Compo-
nents. Journal of Educational Psychology, 24(6):417, 1933.

Marcus Hutter. Feature Reinforcement Learning: Part I: Unstructured MDPs. Journal
of Artificial General Intelligence, 1(1):3-24, 2009.

Christian Igel and Michael Hiisken. Empirical Evaluation of the Improved RPROP Learn-
ing Algorithms. Neurocomputing, 50(1):105-123, 2003.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement Learning with Unsupervised

Auxiliary Tasks. In Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2016.

Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc.,
1988.

Dinesh Jayaraman and Kristen Grauman. Learning Image Representations Equivariant
to Ego-Motion. arXiv:1505.02206, 2015.

182

BIBLIOGRAPHY

Odest Chadwicke Jenkins and Maja J. Matari¢. A Spatio-Temporal Extension to ISOMAP
Nonlinear Dimension Reduction. In Proceedings of the International Conference on
Machine Learning (ICML), page 56, 2004.

Nikolay Jetchev, Tobias Lang, and Marc Toussaint. Learning Grounded Relational Sym-
bols from Continuous Data for Abstract Reasoning. In Autonomous Learning Workshop
at the IEEFE International Conference on Robotics and Automation, 2013.

Rico Jonschkowski and Oliver Brock. Learning Task-Specific State Representations by
Maximizing Slowness and Predictability. In Proceedings of the International Work-
shop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems (ER-
LARS), 2013.

Rico Jonschkowski and Oliver Brock. State Representation Learning in Robotics: Using
Prior Knowledge about Physical Interaction. In Proceedings of Robotics: Science and
Systems, 2014.

Rico Jonschkowski and Oliver Brock. Learning State Representations with Robotic Priors.
Autonomous Robots, 39(3):407-428, 2015.

Rico Jonschkowski and Oliver Brock. End-To-End Learnable Histogram Filters. In Work-
shop on Deep Learning for Action and Interaction at the Conference on Neural Infor-
mation Processing Systems (NIPS), 2016.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and
Acting in Partially Observable Stochastic Domains. Artificial Intelligence, 101(1):99—
134, 1998.

Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-Net: Deep Learning for Planning
under Partial Observability. In Advances in Neural Information Processing Systems

(NIPS), pages 46974707, 2017.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep
Wariational Bayes Filters: Unsupervised Learning of State Space Models from Raw
Data. arXiw:1605.06432, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
Proceedings of the International Conference on Learning Representations (ICLR), 2014.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114,
2013.

183

Bibliography

Ulrich Klank, Dejan Pangercic, Radu Bogdan Rusu, and Michael Beetz. Real-Time Cad
Model Matching for Mobile Manipulation and Grasping. In Proceedings of the IEEE-
RAS International Conference on Humanoid Robots (Humanoids), pages 290-296, 2009.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics: A

Survey. The International Journal of Robotics Research, 2013.

Andrei N Kolmogorov. Three Approaches to the Quantitative Definition of Information.
Problems of Information Transmission, 1(1):1-7, 1965.

George Konidaris and Andrew G. Barto. Efficient Skill Learning Using Abstraction Se-
lection. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 1107-1112, 2009.

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From Skills to Sym-
bols: Learning Symbolic Representations for Abstract High-Level Planning. Journal
of Artificial Intelligence Research, 61:215-289, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information Processing
Systems (NIPS), pages 1106-1114, 2012.

Joseph B. Kruskal. Multidimensional Scaling by Optimizing Goodness of fit to a Non-
metric Hypothesis. Psychometrika, 29(1):1-27, 1964.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceed-
ings of the International Conference on Machine Learning (ICML), pages 282-289,
2001.

Sascha Lange, Martin Riedmiller, and Arne Voigtlander. Autonomous Reinforcement
Learning on Raw Visual Input Data in a Real World Application. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), pages 1-8, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521(7553):
436-444, 2015.

Yann A. LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Computation, 1(4):541-551, 1989.

Robert Legenstein, Niko Wilbert, and Laurenz Wiskott. Reinforcement Learning on
Slow Features of High-Dimensional Input Streams. PLoS Computational Biology, 6(8):
1000894, 2010.

184

BIBLIOGRAPHY

Jan Leike and Marcus Hutter. Bad Universal Priors and Notions of Optimality. In
Proceedings of the Conference on Learning Theory (COLT), pages 1244-1259, 2015.

Karel Lenc and Andrea Vedaldi. Understanding Image Representations by Measuring
their Equivariance and Equivalence. arXiv:1411.5908, 2014.

Timothée Lesort, Mathieu Seurin, Xinrui Li, Natalia Diaz Rodriguez, and David Fil-
liat. Unsupervised State Representation Learning with Robotic Priors: A Robustness
Benchmark. arXiv:1709.05185, 2017.

Sergey Levine and Vladlen Koltun. Guided Policy Search. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-End Training of
Deep Visuomotor Policies. arXiv:1504.00702, 2015.

Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning Hand-Eye
Coordination for Robotic Grasping with Large-Scale Data Collection. In Proceedings of
the International Symposium on Experimental Robotics (ISER), pages 173-184, 2016.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous Control with Deep Rein-
forcement Learning. arXiv:1509.02971, 2015.

Henry W. Lin and Max Tegmark. Why Does Deep and Cheap Learning Work so Well?
arXiv:1608.08225, 2016.

Michael L. Littman, Richard S. Sutton, and Satinder Singh. Predictive representations of
state. In Advances in Neural Information Processing Systems (NIPS), pages 1555-1561,
2002.

Matthew Luciw and Juergen Schmidhuber. Low Complexity Proto-Value Function Learn-
ing from Sensory Observations with Incremental Slow Feature Analysis. In Proceedings
of the International Conference on Artificial Neural Networks (ICANN), pages 279-287,
2012.

Sridhar Mahadevan and Mauro Maggioni. Proto-Value Functions: A Laplacian Frame-
work for Learning Representation and Control in Markov Decision Processes. Journal
of Machine Learning Research, 8(10):2169-2231, 2007.

David Marr. Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. MIT Press, 1982.

185

Bibliography

Roberto Martin-Martin, Sebastian Hofer, and Oliver Brock. An Integrated Approach to
Visual Perception of Articulated Objects. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 5091-5097, 2016.

Andreas Maurer. Bounds for Linear Multi-Task Learning. Journal of Machine Learning
Research, 7:117-139, 2006.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis Function Adaptation in Tempo-
ral Difference Reinforcement Learning. Annals of Operations Research, 134(1):215-238,
2005.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Ban-
ino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Ku-

maran, and Raia Hadsell. Learning to Navigate in Complex Environments. 2016.

Tom M. Mitchell. The Need for Biases in Learning Generalizations. Department of

Computer Science, Laboratory for Computer Science Research, Rutgers Univ., 1980.
Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

Andreas C. Miiller and Sven Behnke. Learning Depth-Sensitive Conditional Random
Fields for Semantic Segmentation of RGB-D Images. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 62326237, 2014.

Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines. In Proceedings of the International Conference on Machine Learning (ICML),
pages 807-814, 2010.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y.
Ng. Multimodal Deep Learning. In Proceedings of the International Conference on
Machine Learning (ICML), pages 689-696, 2011.

Duy Nguyen-Tuong and Jan Peters. Model Learning for Robot Control: A Survey. Cog-
nitive Processing, 12(4):319-340, 2011.

Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path Integral Networks: End-to-
End Differentiable Optimal Control. arXiv:1706.09597, 2017.

Christopher Olah. Neural Networks, Types, and Functional Programming. http://colah.
github.io/posts/2015-09-NN-Types-FP/, 2015. Accessed: 2018-02-25.

Sinno J. Pan and Qiang Yang. A survey on Transfer Learning. IFEE Transactions on
Knowledge and Data Engineering, 22(10):1345-1359, 2010.

186

http://colah.github.io/posts/2015-09-NN-Types-FP/
http://colah.github.io/posts/2015-09-NN-Types-FP/

BIBLIOGRAPHY

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and General-
ization of Motor Skills by Learning from Demonstration. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 763-768, 2009.

Barak A. Pearlmutter and Jeffrey M. Siskind. Reverse-Mode AD in a Functional Frame-

work: Lambda the Ultimate Backpropagator. ACM Transactions on Programming
Languages and Systems (TOPLAS), 30(2):7, 2008.

Justus Piater, Sébastien Jodogne, Renaud Detry, Dirk Kraft, Norbert Kriiger, Oliver
Kroemer, and Jan Peters. Learning Visual Representations for Perception-Action Sys-
tems. International Journal of Robotics Research, 30(3):294-307, 2011.

Rod Pierce. Sequences-Finding A Rule. http://www.mathsisfun.com/algebra/
sequences-finding-rule.html, 2017. Accessed: 2017-09-21.

Tinca J.C. Polderman, Beben Benyamin, Christiaan A. De Leeuw, Patrick F. Sullivan,
Arjen Van Bochoven, Peter M. Visscher, and Danielle Posthuma. Meta-analysis of the
Heritability of Human Traits Based on Fifty Years of Twin Studies. Nature genetics,
47(7):702, 2015.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. CNN
Features Off-The-Shelf: An Astounding Baseline for Recognition. In Proceedings of the
IEEFE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 512-519, 2014.

Scott Reed and Nando de Freitas. Neural Programmer-Interpreters. arXiv:1511.06279,
2015.

C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza. A Dataset for Improved
RGBD-based Object Detection and Pose Estimation for Warehouse Pick-and-Place.
arXiw:1509.01277, 2015.

Martin Riedmiller. Neural Fitted Q Iteration-First Experiences With a Data Efficient
Neural Reinforcement Learning Method. In Proceedings of the European Conference on
Machine Learning (ECML), pages 317-328, 2005.

Martin Riedmiller, Mike Montemerlo, and Hendrik Dahlkamp. Learning to Drive a Real
Car in 20 Minutes. In Proceedings of the International Conference Frontiers in the
Convergence of Bioscience and Information Technologies (FBIT), pages 645 —650, 2007.

Bernardino Romera-Paredes, Andreas Argyriou, Nadia Berthouze, and Massimiliano Pon-
til. Exploiting Unrelated Tasks in Multi-Task Learning. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pages 951-959,
2012.

187

http://www.mathsisfun.com/algebra/sequences-finding-rule.html
http://www.mathsisfun.com/algebra/sequences-finding-rule.html

Bibliography

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The
Annals of Mathematical Statistics, pages 832-837, 1956.

Sam T. Roweis and Lawrence K. Saul. Nonlinear Dimensionality Reduction by Locally
Linear Embedding. Science, 290(5500):2323-2326, 2000.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, pages 1-42, 2015.

Radu Bogdan Rusu, Nico Blodow, and Beetz Michael. Fast Point Feature Histograms
(FPFH) for 3D Registration. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 3212-3217, 2009.

Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2155-2162,
2010.

Stefan Schaal. Dynamic Movement Primitives-A Framework for Motor Control in Humans
and Humanoid Robotics. In Adaptive Motion of Animals and Machines, pages 261-280.
Springer New York, 2006.

Jonathan Scholz, Martin Levihn, Charles L. Isbell, and David Wingate. A Physics-Based
Model Prior for Object-Oriented MDPs. In Proceedings of the International Conference
on Machine Learning (ICML), 2014.

Abigail See. Deep Learning, Structure and Innate Priors-A Discussion between Yann
LeCun and Christopher Manning. http://www.abigailsee.com/2018/02/21/deep-
learning-structure-and-innate-priors.html, 2018. Accessed: 2018-02-28.

Tanmay Shankar, Santosha K. Dwivedy, and Prithwijit Guha. Reinforcement Learning
via Recurrent Convolutional Neural Networks. In Proceedings of the International
Conference on Pattern Recognition (ICPR), pages 2592-2597, 2016.

Roger N. Shepard. Toward a Universal Law of Generalization for Psychological Science.
Science, 237(4820):1317-1323, 1987.

Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost: Joint
Appearance, Shape and Context Modeling for Multi-Class Object Recognition and
Segmentation. In Proceedings of the European Conference on Computer Vision (ECCYV),
pages 1-15, 2006.

188

http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html
http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html

BIBLIOGRAPHY

Olivier Sigaud, Clément Masson, David Filliat, and Freek Stulp. Gated Networks: An
Inventory. arXiv:1512.03201, 2015.

Carlos N. Silla Jr. and Alex A. Freitas. A Survey of Hierarchical Classification Across
Different Application Domains. Data Mining and Knowledge Discovery, 22(1-2):31-72,
2010.

David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley,
Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, and Andre Barreto. The Pre-
dictron: End-to-End Learning and Planning. In Proceedings of the International Con-
ference on Machine Learning (ICML), pages 3191-3199, 2017.

Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement Learning with
Soft State Aggregation. In Advances in Neural Information Processing Systems (NIPS),
pages 361-368, 1995.

Ray J Solomonoff. A Formal Theory of Inductive Inference Part 1. Information and
Control, 7(1):1-22, 1964.

Nathan Sprague. Predictive Projections. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 1223-1229, 2009.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research, 15(1):1929-1958, 2014.

Shiliang Sun. A Survey of Multi-View Machine Learning. Neural Computing and Appli-
cations, 23(7-8):2031-2038, 2013.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

Michael J. Swain and Dana H. Ballard. Color Indexing. International Journal of Computer
Vision, 7(1):11-32, 1991.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep Neural Networks for
Object Detection. In Advances in Neural Information Processing Systems (NIPS),
pages 2553-2561, 2013.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value Iteration
Networks. In Advances in Neural Information Processing Systems (NIPS), pages 2154~
2162, 2016.

189

Bibliography

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction. Science, 290(5500):2319-2323, 2000.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain Randomization for Transferring Deep Neural Networks from Simula-
tion to the Real World. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 23-30, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A Physics Engine for Model-
Based Control. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5026-5033, 2012.

Marc Toussaint. Logic-Geometric Programming: An Optimization-Based Approach to
Combined Task and Motion Planning. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 1930-1936, 2015.

Amos Tversky and Daniel Kahneman. Judgment under Uncertainty: Heuristics and
Biases. Science, 185(4157):1124-1131, 1974.

Harm van Seijen, Shimon Whiteson, and Leon J. H. M. Kester. Efficient Abstraction
Selection in Reinforcement Learning. Computational Intelligence, 30(4):657-699, 2014.

Vladimir Vapnik and Rauf Izmailov. Learning Using Privileged Information: Similarity
Control and Knowledge Transfer. Journal of Machine Learning Research, 16:2023-2049,
2015.

Vladimir Vapnik and Akshay Vashist. A New Learning Paradigm: Learning using Privi-
leged Information. Neural Networks, 22(5-6):544-557, 2009.

Wei Wang and Zhi-Hua Zhou. A New Analysis of Co-Training. In Proceedings of the
International Conference on Machine Learning (ICML), pages 1135-1142, 2010.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On Deep Multi-View
Representation Learning. In Proceedings of the International Conference on Machine
Learning (ICML), pages 1083-1092, 2015.

Manuel Watter, Jost Tobias Springberg, Joschka Boedecker, and Martin Riedmiller. Em-
bed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images.
In Advances in Neural Information Processing Systems (NIPS), pages 2746-2754, 2015.

Paul J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550-1560, 1990.

190

BIBLIOGRAPHY

Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep Learning via Semi-supervised
Embedding. In Proceedings of the International Conference on Machine Learning
(ICML), pages 1168-1175, 2008.

Laurenz Wiskott and Terrence J. Sejnowski. Slow Feature Analysis: Unsupervised Learn-
ing of Invariances. Neural Computation, 14(4):715-770, 2002.

David H. Wolpert. The Lack of A Priori Distinctions Between Learning Algorithms.
Neural Computation, 8(7):1341-1390, 1996.

Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker Jr., Alberto Rodriguez,
and Jianxiong Xiao. Multi-View Self-Supervised Deep Learning for 6D Pose Estimation
in the Amazon Picking Challenge. arXiv:1609.09475, 2016.

Jiaping Zhao and Laurent Itti. Improved Deep Learning of Object Category using Pose
Information. arXiv:1607.05836, 2015.

191

	Title Page
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Robotics-Specific Machine Learning
	This Thesis: Robotics-Specific Machine Learning for Perception

	Background: Machine Learning and Prior Knowledge
	Priors in Bayesian Statistics and Machine Learning
	Machine Learning Needs Priors
	Example 1: Find the Rule
	There is No Free Lunch
	The Universal Prior—Is Occam's Razor Sufficient?
	Relation to Cognitive Science and Psychology

	Encoding Priors into Machine Learning
	Example 2: Logistic Regression
	Four Machine Learning Components
	Overfitting and the Bias/Variance Dilemma
	Encoding Priors in the Four Components

	Machine Learning Problems and Methods
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Machine Learning Problems in This Thesis

	Priors in Machine Learning
	Ubiquitous ML Priors
	Vector Representation
	IID Data
	Smoothness
	Simplicity
	Good Local Optima

	Generic AI Priors
	Independent Properties
	Hierarchy
	Symmetry
	Locality

	The Missing Priors

	Learning Object Segmentation Through Task-Specific Priors
	Introduction
	Contributions
	Outline

	Related Work
	Task-Specific Priors
	Task Analysis: The Amazon Picking Challenge

	Task-Specific Object Perception
	Object Perception Pipeline
	Features
	Object Segmentation
	Learning Phase
	Segmentation Phase

	Experiments and Results
	Performance Evaluations
	Performance at Amazon Picking Challenge
	Performance by Object
	Increasing the Number of Objects per Bin

	Comparison to CRF
	Variants of our Method
	Features
	Pixel Labeling and Selection
	Re-labeling and Post-processing
	Random Forest for Pixel Probability Estimation

	Conclusion
	Summary
	Machine Learning and Task-Generality

	Learning State Estimation Through Algorithmic Priors
	Introduction
	Contributions
	Outline

	Background
	The State Estimation Problem
	Bayes Filters
	End-to-End Learning and Differentiability

	Algorithmic Priors
	Related Work
	Differentiable Histogram Filters
	Implementation
	Belief
	Prediction
	Measurement Update
	Learning

	Experiments and Results
	Experiment: Learning State Estimation in Unknown Environments
	Result: Improved Data-Efficiency
	Result: Optimization of End-to-End Performance
	Result: Enabling Unsupervised Learning

	Limitations

	Differentiable Particle Filters
	Implementation
	Belief
	Prediction
	Measurement Update
	Particle Proposal and Resampling
	Supervised Learning

	Experiments and Results
	Experiment: Learning Global Localization
	Result: Algorithmic Priors Enable Explainability
	Result: End-to-End Learning Improves Performance
	Result: Algorithmic Priors Improve Performance
	Result: Algorithmic Priors Lead to Policy Invariance
	Experiment: Learning Visual Odometry
	Result: Sample-Based Representations Outperform Gaussians

	Conclusion
	Summary
	Alternatives to End-to-End Learning

	Learning State Representations Through Physics-based Priors
	Introduction
	Contributions
	Outline

	Background and Related Work
	The State Representation Learning Problem
	Approaches to State Representation Learning

	Robotic Priors
	Priors About Interacting with the Physical World
	Five Robotic Priors
	Additional Priors in Extensions 1 and 2

	Optimizing Consistency with Robotic Priors
	Formulation as Optimization Problem
	Learning with Robotic Priors (LRP)

	Experiments and Results
	Learning Process
	Invariance to Perspective
	Ignoring Distractors
	Mapping to a Higher-Dimensional State Space
	Improved Performance in Reinforcement Learning
	Transfer Learning
	Verification on a Real Robot

	Extension 1: Learning State Representations for Multiple Tasks
	Multi-Task Learning with Robotic Priors (MT-LRP)
	Experiments and Results
	Result: Extracts Better State Representations
	Result: Detects All Tasks
	Result: Task-Consistency Prior is Necessary

	Extension 2: Adding Position-Velocity Structure to the State
	Position-Velocity Encoders (PVEs)
	Model
	Robotic Priors and Learning Objectives
	Training Procedure

	Experiments and Results
	Tasks
	Result: PVEs Learn Position-Velocity Representations
	Result: Learned States Allow Regression to True Positions and Velocities
	Result: Learned Representations Enabling Reinforcement Learning

	Relation to Learning with Side Information
	Definition of Learning with Side Information
	Training Procedures

	Patterns for Learning with Side Information
	Direct Pattern
	Multi-Task Pattern
	Multi-View Pattern
	Pairwise Patterns

	Conclusion
	Summary
	Future Directions: Structured State Representations

	Conclusion
	Machine Learning Research
	Learning Is a Means, Not an End
	Problems and Data Sets Are Not the Same
	Reinforcement Learning Requires Instrumented Environments
	Simulation Is Useful But No Silver Bullet

	The Role of Priors in Machine Learning
	Combining Supervised, Unsupervised, and Reinforcement Learning
	Prior-Centered Machine Learning
	The True Potential of Deep Learning
	Robotics-Specific Machine Learning

	This Thesis
	What: Tasks, Algorithms, Physics
	How: Hypothesis Spaces and Learning Objectives

	Research Vision: A Robot-Learning System
	Final Thoughts

	Appendix
	Derivatives of Learning Objectives
	Learning with Side Information
	Patterns as Probabilistic Graphical Models
	Overview of Related Work

	References

