
This version is available at https://doi.org/10.14279/depositonce-6964

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science (10260). The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-59569-6_55.

Winkler J.P., Vogelsang A. (2017) “What Does My Classifier Learn?” A Visual Approach to Understanding
Natural Language Text Classifiers. In: Frasincar F., Ittoo A., Nguyen L., Métais E. (eds) Natural Language
Processing and Information Systems. NLDB 2017. Lecture Notes in Computer Science, vol 10260.
Springer, Cham.

Winkler, Jonas Paul; Vogelsang, Andreas

“What Does My Classifier Learn?”
A Visual Approach to Understanding Natural Language Text Classifiers

Accepted manuscript (Postprint)Dokumententyp |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/158840547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“What Does My Classifier Learn?” A Visual

Approach to Understanding Natural Language

Text Classifiers

Jonas Paul Winkler and Andreas Vogelsang

Daimler Center for Automotive IT Innovations, Technische Universität Berlin,
Berlin, Germany

{jonas.winkler,andreas.vogelsang}@tu-berlin.de

Abstract. Neural Networks have been utilized to solve various tasks
such as image recognition, text classification, and machine translation
and have achieved exceptional results in many of these tasks. However,
understanding the inner workings of neural networks and explaining why
a certain output is produced are no trivial tasks. Especially when dealing
with text classification problems, an approach to explain network deci-
sions may greatly increase the acceptance of neural network supported
tools. In this paper, we present an approach to visualize reasons why a
classification outcome is produced by convolutional neural networks by
tracing back decisions made by the network. The approach is applied
to various text classification problems, including our own requirements
engineering related classification problem. We argue that by providing
these explanations in neural network supported tools, users will use such
tools with more confidence and also may allow the tool to do certain
tasks automatically.

Keywords: Visual feedback · Neural networks · Artificial intelligence ·
Machine learning · Natural language processing · Explanations · Require-
ments engineering

1 Introduction

Artificial Neural Networks have become powerful tools for performing a wide
variety of tasks such as image classification, text classification, and speech recog-
nition. Within the natural language processing community, neural networks have
been used to tackle various tasks such as machine translation, sentiment analysis,
authorship attribution, and also more fundamental tasks such as part-of-speech
tagging, chunking, and named entity recognition [4]. More recently, convolu-
tional neural networks that were almost exclusively used for image processing
tasks were also adapted to solve natural language processing tasks [5].

However, neural networks usually do not explain why certain decisions are
made. Especially when incorporating a trained neural network in a tool with
heavy user interaction, users may need to understand why the network produced

468

certain results in order to make better decisions. If such an explanation is not
provided, users may be frustrated because they do not understand the reasons
behind some decisions and consequently do not profit from the tool. In order to
provide such explanations, additional techniques are required.

In this paper, we propose a technique to trace back decisions made by convo-
lutional neural networks and provide visual feedback to explain these decisions.
The basic idea is to identify which parts of the network contributed the most to
a decision and to further identify the corresponding words in the input sentence.
We use that information to highlight certain parts within the input sentence.

The remainder of this paper is structured as follows. Our approach for com-
puting Document Influence Matrices and creating visual representations is pre-
sented in Sect. 3. In Sect. 4, we evaluate our approach on three different datasets.
We describe how we apply our approach on a specific use case in Sect. 5. Section 6
concludes.

2 Related Research

Understanding neural networks and providing explanations for network decisions
is a well-established area of research. Early approaches use fuzzy logic and create
rules from trained networks, ultimately explaining how input neurons relate to
output neurons [2,3]. In contrast to these works, our approach operates on indi-
vidual classification results, similar to what has been presented in [1,8]. These
methods usually exploit the weights of a trained network to compute an expla-
nation gradient. These gradients may then be used to identify individual inputs
as particularly important.

Application of this type of approach to image classification tasks are pre-
sented in [10,11]. Here, the authors visualize intermediate networks layers to
understand what the network has learned.

Within the natural language processing community, approaches to explain
natural language classifiers exist as well. In [6], the authors visualize network
structures to show the impact of salient words on the classification outcome.

3 Document Influence Matrices

In this section, we present our approach to compute Document Influence Matri-

ces, which contain information about how strongly each word in an input docu-
ment contributes to a decision made by a convolutional neural network. These
matrices may then be used to create visual representations, which highlight indi-
vidual words that contributed most to the classification outcome.

3.1 Classifying Text Using CNNs

This section describes the operations performed by convolutional neural net-
works as proposed by [5]. The architecture of the network is displayed in Fig. 1.

469

(1)

word embedding

(2)

convolution

(3)

1-max-pooling

(4)

concatenation

(5)

fully connected

layer

emb

len

emb

flen

fnum

cnumfsnum

input

sentence

Fig. 1. Network architecture as proposed by [5] (Color figure online)

(1) Word embedding. The first step is to transform documents into numerical
representations. This is done by using the word2vec [7] word embedding
technique. Word2vec maps individual words to vectors v ∈ R

emb , where emb

is the number of dimensions used for the word embedding. The word vectors
are obtained by training the word2vec model on a corpus. Furthermore, each
input document may be transformed into a matrix s ∈ R

len,emb , where len

is the length of the input document.
(2) Convolution. Next, a convolution operation applies filters to the input

document matrix. A filter is a matrix f ∈ R
flen,emb of trainable weights,

where flen is the length of the filter. A filter set is a rank-3 tensor fs ∈
R

fnum,flen,emb and contains fnum filters of the same length. Multiple sets of
filters with varying filter lengths may be used. In Fig. 1, two sets of filters
(blue and red) with filter length 3 and 2 are illustrated. A filter set is applied
to a document matrix by moving each filter as a sliding window over the
matrix, producing a single value at each position resulting in a matrix v(1) ∈
R

fnum,len+1−flen :

v
(1)
i,j = σ

((

flen
∑

k=1

emb
∑

l=1

fsi,k,l · sj+k−1,l

)

+ bi

)

(1)

In this equation, σ is an arbitrary activation function, such as sigmoid or
rectified linear units and b ∈ R

fnum holds a trainable bias for each filter.
(3) 1-max-pooling. 1-max-pooling reduces v(1) from the previous step to a

vector v(2) ∈ R
fnum by selecting the maximum value of each filter:

v
(2)
i = max

(

v
(1)
i,1 , v

(1)
i,2 , ..., v

(1)
i,len+1−flen

)

(2)

(4) Concatenation. The computations described in step 2 and 3 are performed
once for each filter set, resulting in multiple matrices v(2,i). Given fsnum filter

470

sets, these are concatenated to form a feature vector v(3) ∈ R
fsnum·fnum :

v(3) = v(2,1)‖v(2,2)‖...‖v(2,fsnum) (3)

(5) Fully connected layer. This feature vector is used as the input for a fully
connected layer, in which values from the feature vector are associated with
the output classes. Given cnum output classes, the output v(4) ∈ R

cnum of
this layer is computed as follows:

v
(4)
i =

fsnum·fnum
∑

j=1

wj,i · v
(3)
j

 + bi (4)

In this equation, w ∈ R
fsnum·fnum,cnum is a matrix of trainable weights and

b ∈ R
cnum is a vector of trainable biases.

Finally, the values computed for the output classes are transformed into true
probabilities by applying the softmax function.

After the network is trained on a training dataset, its filters have learned to
identify output classes based on the presence or absence of certain words and
word groups. For any given input document, the network yields probabilities for
all classes, indicating which class the input document belongs to.

3.2 Computing Document Influence Matrices

A Document Influence Matrix is a matrix DIM ∈ R
len,cnum . Each value DIM i,c

indicates how strongly the word at position i influences the network to classify
the document as class c. A high value at DIM i,c means that the word at position
i strongly suggests the classification of the document as class c, whereas a value
close to 0 means that there is no correlation between the word and the class.

To compute a Document Influence Matrix for a particular input document,
we analyze the output of the network and trace the decisions made by the net-
work at each layer back to its input. This is done by consecutively computing
intermediate influence matrices (IIM) at each major step.

(1) Examining the network output. When the network has reliably classified
a document as a particular class, the output of the network for this true class
will be close to 1, whereas the outputs for the other classes will be close to 0.
The definition of the softmax function implies that the output of the fully
connected layer for the true class is much higher than any of the outputs for
the false classes.

(2) Tracing back fully connected layers. Let us examine Eq. 4 for computing
the output of a fully connected layer in more detail. It may also be written
as follows:

v
(4)
i = w1,i · v

(3)
1 + w2,i · v

(3)
2 + ... + wm,i · v(3)

m + bi (5)

Since the result of this equation for the true class is much higher than the
result for any of the other classes, it must have more wj,i · vj summands

471

with high values. Therefore, a wj,i · vj summand with a high value has a
strong influence towards classifying an input document as a particular class,
whereas a wj,i · vj summand with a negative value has a strong influence
against classifying an input document as a particular class.
Furthermore, each wj,i · vj summand may be associated with one particular
input neuron of the layer. The influence of one particular input neuron on a
certain class is thus defined by the sum of all related wj,i ·vj summands. The

matrix IIM (fcl) ∈ R
inum,cnum for a fully connected layer with inum input

neurons and onum output neurons is computed as follows:

IIM
(fcl)
i,c =

onum
∑

j=1

IIM j,c · wi,j · vi (6)

(3) Tracing back concatenation. In Sect. 3.1, step 4, multiple feature vectors
are concatenated to form a single feature vector. To trace back the concate-
nation operation, the previous IIM is sliced into multiple pieces, resulting in
fsnum matrices IIM (concat,fsnum) ∈ R

fnum,cnum :

IIM
(concat,n)
i,c = IIM (n−1)·fnum+i,c (7)

Each of these matrices is traced back further individually.
(4) Tracing back 1-max-pooling. 1-max-pooling is used to select the highest

out of several values resulting from the application of one particular filter
everywhere in the input document. Only this highest value has impact on
the classification outcome and thus receives all influence. The rank-3 tensor
IIM (1max) ∈ R

fnum,len+1−flen,cnum is computed as follows:

IIM
(1max)
i,j,c =

{

IIM j,c v
(1)
i,j = v

(2)
j

0 otherwise
(8)

(5) Tracing back convolutional layers. Tracing back convolutional layers
follows the same principles as tracing back fully connected layers. The rank-
3 tensor IIM (conv) ∈ R

len,emb,cnum is computed as follows:

IIM
(conv)
i,j,c =

fnum
∑

k=1

len+1−flen
∑

l=1

IIM k,l,c · si,j ·

{

fsk,i+1−l,j i + 1 − l ∈ [1,flen]

0 otherwise
(9)

(6) Putting it all together. So far we have defined operations for computing
IIMs for each operation of the neural network. A DIM may be computed
using the following procedure:
1. Define an initial influence matrix IM ∈ R

cnum,cnum where IM c,c = outc
for each class c. All other fields are zero. Given the output of the last
layer of the network, this matrix states that each output has influence on
its respective class only.

2. Compute Intermediate Influence Matrices according to the architecture
of the network. At the concatenation step, continue individually for every
split.

472

3. Perform element-wise summation of all IIM (conv) matrices:

IIM (sum) =

fsnum
∑

i=1

IIM (conv ,i) (10)

The matrix IIM (sum) holds influence values of all word2wec components
of each word of the input document on each of the output classes.

4. Reduce the matrix IIM (sum) to a matrix DIM ∈ R
len,cnum :

DIM i,c =

emb
∑

j=1

IIM
(sum)
i,j,c (11)

This matrix finally contains individual influence values of each word on
each output class.

3.3 Creating a Visual Representation from Document Influence

Matrices

A visual representation of a Document Influence Matrix may be created by
following these steps:

1. Normalize the matrix so that all of its values are within the range [0, 1].
2. Select a distinct color for each class.
3. For each word in the document, select the highest value from the normalized

matrix, select the color of the class corresponding to this value, use the value
as the colors transparency, and use that color as the background for the word.

Table 1 shows examples from the datasets used in our experiments.

4 Experiments and Results

To prove the effectiveness of our approach, we conducted two different experi-
ments on multiple datasets.

The datasets used in these experiments are listed in Table 2. The Require-

ments dataset contains natural language requirements written in German and
taken from multiple requirement specification documents describing automo-
tive components and systems, such as wiper control, outside lighting, etc. It
also contains an equal number of Information objects (e.g. examples, informal
descriptions, and references). More information on this dataset is given in Sect. 5.

The Question dataset1 contains short natural language questions asking for
different kinds of answers, such as locations, numeric answers (dates, numbers),
persons, entities, descriptions, and abbreviations. The task is to detect what
kind of information a question asks for.

The Movie Reviews dataset2 consists of single line movie reviews. These are
either positive or negative.

1 http://cogcomp.cs.illinois.edu/Data/QA/QC/.
2 https://www.cs.cornell.edu/people/pabo/movie-review-data/.

473

Table 1. Examples

Table 2. Datasets

Dataset Classes Train examples Test examples Classification accuracy

Requirements 2 1854 206 84.95 %

Questions 6 4906 546 83.70 %

Movie Reviews 2 9595 1067 73.29 %

4.1 Analyzing Most Often Highlighted Words

The goal of our first experiment is to prove that our approach is capable of finding
and highlighting relevant words within input documents. Since our approach
assigns high influence values to important words and low influence values to
unimportant words, aggregating highly influential words per class should yield
lists of words commonly used to describe individuals of a particular class.

We computed Document Influence Matrices for all examples in the test set of
each dataset. Then, for each individual word used in the dataset, we aggregated
the total influence of that word across all Document Influence Matrices per class.
This results in lists of words per class and their influence on that class (i.e. how
often are they highlighted in the test set). The words were sorted descending by
their accumulated influence.

474

Table 3. Requirements dataset: most often highlighted words

Class Most often highlighted words

Requirement must, of, must (plural), contractor, be, shall, may, client, that, shall
(plural), active, to, supply voltage, a, agreed, must (old German
spelling)

Information described, can (plural), two, can, the, defined, requirements, in,
only, included, description, vehicle, so, require, deliver, specification

Table 4. Questions dataset: most often highlighted words

Class Most often highlighted words

Abbreviation stand, does, abbreviation, mean, is, for, an, number, beer, fame, term

Description how, what, is, do, are, the, does, why, a, origin, did, of, difference, mean

Entity what, the, name, was, is, of, a, fear, are, for, does, did, to, do, color

Human who, what, was, name, the, of, and, actor, company, school, tv

Location where, country, city, can, capital, the, was, state, are, what, does, in, of

Numeric how, many, when, did, does, was, year, long, the, do, average, is, of

Table 3 shows the results for the Requirements dataset. Words commonly used
to write requirements such as must and shall and their various German varia-
tions (i.e. “The system shall . . . ” and “The contractor must ensure that . . . ”)
are highlighted most frequently, which is exactly what we expected. A com-
monly used information-type sentence in our dataset is a reference to another
document (i.e. “further requirements are specified in ...”) and as such, the word
specified is highlighted very often. The other words are not particularly signifi-
cant. Furthermore, many sentences not containing certain requirement keywords
are information, although it is hard to specifically tell why exactly a sentence is
an information based on its words.

The results for the Questions dataset are displayed in Table 4. Most of the
classes can be identified very easy based on certain combinations of question
words and pronouns. Questions starting with “how many” are most likely asking
for numeric answers, “who was” is a strong indicator for a question asking for
a human’s name, and sentences containing “in which city” usually ask for a
specific location. The results in the table show that these terms are indeed the
most frequently highlighted.

Table 5 contains the most often highlighted words for the Movie Reviews

dataset. The list of positive words contains expected words such as best, worth,
fun, good and funny, but also words that we would not associate with positive
reviews at all (e.g. that, is, of, etc.). It seems that these words are often used in
phrasings with a positive sentiment. The word but is highlighted most in negative
reviews since it is often used when something is criticized (e.g., “The plot was
okay, but . . . ”). Also, different negative words such as bad, doesn’t, no, and isn’t

appear in this list since these are often used to express negative sentiment.

475

Table 5. Movie Reviews dataset: most often highlighted words

Class Most often highlighted words

Positive that, is, of, a, has, film, us, with, best, makes, an, worth, performances,
it’s, fun, who, good, documentary, funny

Negative but, too, and, more, bad, no, so, movie, in, or, doesn’t, just, only, about,
the, there’s, i, are, isn’t

4.2 Measuring the Quality of the Visual Representations

We have conducted an empirical study to assess the quality of the visual repre-
sentations created by our approach in more detail.

For each example in the test sets, we manually decided which words should
be most important for deciding the class and then compared our expectation
to the actual visual representation. Each example is then assigned one of the
following quality categories:

– Perfect match. Our approach highlighted exactly all words that we consid-
ered to be important. No additional and unexpected words are highlighted.

– Partial match. Only some of the words we considered to be important are
highlighted. No additional and unexpected words are highlighted.

– Mixed match. The visual representation highlights some or all of the
expected words. Additionally, some words, which we considered to be irrele-
vant, are also highlighted.

– Mismatch. The visual representation did not highlight any expected words.

After conducting this evaluation on all three datasets, we accumulated the
count of perfect, partial, mixed, and mismatches in total. In order to better
understand the results, we also separately accumulated the counts on correctly/
incorrectly classified examples and on examples with prediction probabilities
greater/less than 95%. The results are displayed in Fig. 2.

On the Requirements dataset, 57% of the examples are highlighted according
to our expectations. On 16% of the examples, the visual representations are not
useful at all. On the visual representations of the remaining 27% of the examples
either not all expected words are highlighted or some unexpected words are
highlighted as well.

The separated results on correctly and incorrectly classified examples reveals
that our approach naturally fails to provide reasonable visual representations for
incorrectly classified examples. Contrariwise, for almost all (94%) correctly clas-
sified examples, the visual representation contained all or at least some relevant
words. Inspecting the prediction probabilities also reveals an interesting correla-
tion: The visual representation of an example with a high prediction probability
is more likely to be correct than the visual representation of an example with a
low prediction probability.

Within the Question dataset, about 59% of all examples are accurately
highlighted. 11% of the examples are partially highlighted, whereas within the
remaining 30%, irrelevant words are highlighted. Just as with the Requirements

476

T
o
ta

l

C
o
rr

ec
t

In
co

rr
ec

t

P
>

0
.9

5

P
<

0
.9

5

T
o
ta

l

C
o
rr

ec
t

In
co

rr
ec

t

P
>

0
.9

5

P
<

0
.9

5

T
o
ta

l

C
o
rr

ec
t

In
co

rr
ec

t

P
>

0
.9

5

P
<

0
.9

5

0 %

20 %

40 %

60 %

80 %

100 %

Requirements Questions Movie Reviews

Perfect match Partial match Mixed match Mismatch

Fig. 2. Relation between important words and words highlighted by the approach.

dataset, the overall quality of the visual representations on correctly classified
examples and examples with high prediction probabilities is much higher than
the overall quality on incorrectly classified examples and examples with low pre-
diction probabilities.

Results on the Movie Reviews dataset are considerably worse than the results
on the other two datasets. Only 32% of the examples had completely correct
visual representations. In 69% of all cases, at lease some relevant words are
highlighted. In 55% of all examples, irrelevant words are highlighted as well. We
suspect that this is due to the lower accuracy of the model compared with the
other two models and due to the higher complexity of the classification task.

Based on the individual results for these three datasets, we made the following
general observations:

– The overall quality of the visual representations strongly correlates with the
performance of the trained model. The higher the accuracy of the model on
the test set, the better the overall quality, i.e. more relevant and less irrelevant
words are highlighted.

– The quality of an individual examples’ visual representation correlates with
the probability on the predicted class. Higher probabilities usually lead to
visual representations closer to what we expected.

5 Application to Natural Language Requirements

Classification

We have applied the approach presented in our previous works [9] in an indus-
trial setting to automatically classify natural language requirements, which
are written down in requirements specification of automotive systems. These

477

requirements documents specify the properties and behavior of systems. Most of
the content consists of natural language sentences. Apart from formal and legally
binding requirements, these documents also contain auxiliary information such
as clarifications, chapter overviews, and references to other documents. This kind
of content is not legally binding and as such is not relevant to e.g. third party
suppliers who implement a system. To better differentiate between requirements
and additional information, each content element has to be explicitly labeled
as either a requirement or an information. This task is error-prone and time-
consuming, as it is performed manually by requirements engineers.

We have build a tool that assists the requirements engineer in performing this
task. This tool analyzes a requirements documents, classifies each relevant (i.e.
only sentence, no headings, figures etc.) content element as either requirement
or information, and issues warnings when a content element is not classified as
predicted by the tool. Alongside these warnings, we used the approach presented
in this paper to highlight the words responsible for classifying a content element
as either information or requirement.

By using the visualization approach presented in this paper, the requirements
engineers were able to better understand why the tool made specific decisions.
If a user does not understand the classification outcome, the user is pinpointed
to phrases or individual words that contribute to the outcome. The user can
interpret these results and react to them in several ways:

– The user recognizes that the chosen phrasing may not be suitable for the
kind of content the user wants to express. Therefore, the user may revise the
sentence and thus increase the quality of the specification.

– The user recognizes that rules for classifying content items are used inconsis-
tently between requirements engineers. Therefore, the user initiates a discus-
sion for specific phrases or formulations w.r.t. their classification.

– The user recognizes that the tool has learned something wrong or that the
learned decision procedure does not match the current classification rules
(which may change over time). Therefore, the user marks this result as a
false positive. The neural network may adapt to this decision and keep up to
date (c.f. active learning).

6 Conclusions and Future Work

In this paper, we have presented an approach to create visual representations
for natural language sentences, which explain classifier decisions by highlighting
particularly important words. As shown in our evaluation, these visual represen-
tations are accurate as long as the underlying model is accurate.

As we integrated our approach in our requirement classification tool, we have
received very positive feedback from industry experts. We argue that an approach
to explain network classification decisions to users increases both usability and
acceptance of a tool. A visual approach as presented in this paper is sufficient
although any other approach may work as well.

In the future, we plan to conduct a more extensive field study on a large user
base to better understand the qualities and limitations of our approach.

478

References

1. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller,
K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11,
1803–1831 (2010)

2. Beńıtez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes?
IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997)

3. Castro, J.L., Mantas, C.J., Beńıtez, J.M.: Interpretation of artificial neural net-
works by means of fuzzy rules. IEEE Trans. Neural Netw. 13(1), 101–116 (2002)

4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

5. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1746–1751 (2014)

6. Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and understanding neural
models in NLP. In: Proceedings of NAACL-HLT, pp. 681–691. Association for
Computational Linguistics, San Diego, California (2016)

7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

8. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM,
New York (2016)

9. Winkler, J.P., Vogelsang, A.: Automatic classification of requirements based on
convolutional neural networks. In: 3rd IEEE International Workshop on Artificial
Intelligence for Requirements Engineering (AIRE) (2016)

10. Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. In: Deep Learning Workshop, 31st Interna-
tional Conference on Machine Learning (2015)

11. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

479

