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Observational information for f(T) theories and Dark Torsion
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In the present work we analyze and compare the information coming from different observational
data sets in the context of a sort of f(T) theories. We perform a joint analysis with measurements
of the most recent type Ia supernovae (SNe Ia), Baryon Acoustic Oscillation (BAO), Cosmic Mi-
crowave Background radiation (CMB), Gamma-Ray Bursts data (GRBs) and Hubble parameter
observations (OHD) to constraint the only new parameter these theories have. It is shown that
when the new combined BAO/CMB parameter is used to put constraints, the result is different
from previous works. We also show that when we include Observational Hubble Data (OHD) the
simpler LambdaCDM model is excluded to one sigma level, leading the effective equation of state
of these theories to be of phantom type. Also, analyzing a tension criterion for SNe Ia and other
observational sets, we obtain more consistent and better suited data sets to work with these theories.

I. INTRODUCTION

Current cosmological observations, mainly from type
Ia supernovae, show that the universe is undergoing ac-
celerated expansion [1–4]. This accelerated expansion
has been attributed to a dark energy component with
negative pressure. The simplest explanation for this dark
energy seems to be the cosmological constant. However,
among many candidates [5–7], some modified gravity
models have also been proposed based on, for example,
f(R) theories [8–19].

Some models based on modified teleparallel gravity
were presented as an alternative to inflationary models
[20, 21] or showing a cosmological solution for the accel-
eration of the universe by means of a sort of theories of
modified gravity, namely f(LT ) [22], based on a modifica-
tion of the Teleparallel Equivalent of General Relativity
(TEGR) Lagrangian [23, 24] where dark torsion is the
responsible for the observed acceleration of the universe,
and the field equations are always 2nd order equations.
It was shown in [22] that this fact makes these theories
simpler than the dynamical equations resulting in f(R)
theories among other advantages. Recently, in [25] this
sort of modified gravity theories was called f(T ) theo-
ries and some works have begun to develop in this area
[26–35].

In [36] the tension and systematics in the Gold06 SNe
Ia data set have been investigated in great detail. Other
authors, working with different SNe Ia sets found these
were in tension with other SNe Ia sets and also with BAO
and CMB [37, 38]. In [37], analyzing the Union data set
[2], the UnionT truncated data set was built by discard-
ing the supernovae generating the tension by using the
ΛCDM model to select the outliers. In [38], perform-
ing the same truncation procedure of [37] for 10 differ-
ent models, it was suggested that the impact of different
models would be negligible.

∗Electronic address: gabriel@iafe.uba.ar

In this work we present thorough observational infor-
mation useful to work with f(T ) theories by using the lat-
est Union2 SNe Ia compilation released [3], the new com-
bined parameter from Baryon Acoustic Oscillation and
Cosmic Microwave Background radiation (BAO/CMB)
[39] (more suitable for non-standard models than the usu-
ally usedR andA parameters), a Gamma-Ray Burst data
set [40] and constraints from Observational Hubble Data
(OHD) [41–43].

This Letter is organized as follows: in Section II we
review the fundamental concepts about f(T ) theories to,
in Section III, analyze a criterion of tension to improve
the study of the new data sets including BAO/CMB
and GRBs. In Section IV we perform the truncation
of Union2 calculating the relative deviation to the best
fit of the f(T ) prediction for each one of the 557 points
following [37, 38] in order to show the disappearing of ten-
sion and establishing a new set suitable for f(T ) theories.
In Section V we add the OHD observational information
and discuss some remarkable results and, in Section VI,
we summarize the conclusions of this work.

II. GENERAL CONSIDERATIONS ABOUT f(T )
THEORIES

Teleparallelism [23, 24] uses as dynamical object a vier-
bein field ei(x

µ), i = 0, 1, 2, 3, which is an orthonormal
basis for the tangent space at each point xµ of the man-
ifold: ei · ej = ηi j , where ηi j = diag(1,−1,−1,−1).
Each vector ei can be described by its components eµi ,
µ = 0, 1, 2, 3 in a coordinate basis; i.e. ei = eµi ∂µ.
Notice that Latin indices refer to the tangent space,
while Greek indices label coordinates on the manifold.
The metric tensor is obtained from the dual vierbein as
gµν(x) = ηi j e

i
µ(x) e

j
ν(x). Differing from General Relativ-

ity (GR), which uses the torsionless Levi-Cività connec-
tion, Teleparallelism uses the curvatureless Weitzenböck
connection [44], whose non-null torsion is

T λ
µν = Γ̂λ

νµ − Γ̂λ
µν = eλi (∂µe

i
ν − ∂νe

i
µ) (1)
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The TEGR Lagrangian is built with the torsion (1),
and its dynamical equations for the vierbein imply the
Einstein equations for the metric. The teleparallel La-
grangian is [24, 45, 46],

LT ≡ T = S µν
ρ T ρ

µν (2)

where:

S µν
ρ =

1

2

(

Kµν
ρ + δµρ T θν

θ − δνρ T θµ
θ

)

(3)

and Kµν
ρ is the contorsion tensor:

Kµν
ρ = −

1

2

(

T µν
ρ − T νµ

ρ − T µν
ρ

)

(4)

which equals the difference between Weitzenböck and
Levi-Cività connections.
For a flat homogeneous and isotropic Friedmann-

Robertson-Walker universe (FRW),

eiµ = diag(1, a(t), a(t), a(t)) (5)

where a(t) is the cosmological scale factor. By replacing
in (1), (3) and (4) one obtains

T = SρµνTρµν = −6
ȧ2

a2
= −6H2 (6)

H being the Hubble parameter H = ȧ a−1.
In these modified gravity theories, the action is built

promoting T to a function f(T ). The case f(T ) = T cor-
responds to TEGR. In an f(T ) theory the spinless matter
couples to the metric in the standard form. Therefore,
the equations of a freely falling particle are the equa-
tions of the geodesics. Moreover, the source in the equa-
tions for the geometry results to be the matter energy-
momentum tensor. In these aspects there is no difference
with GR. If matter is distributed isotropically and ho-
mogeneously, the metric is the FRW metric and all kine-
matic equations (luminosity distance, angular distance,
cosmological redshift, etc.) will be identical to the GR
case. Any modification in the null geodesics followed
by light rays will be exclusively in the scale factor a(t).
Some authors have mentioned that f(T ) theories are not
invariant under local Lorentz transformations [20, 34].
However, if this would affect the viability of these mod-
els is a subject which is currently being analyzed.
The variation of the action with respect to the vierbein

leads to the field equations,

e−1∂µ(e S
µν

i )f ′(T )− e λ
i T ρ

µλ S νµ
ρ f ′(T ) +

S µν
i ∂µ(T )f

′′(T ) +
1

4
eνi f(T ) = 4 π G e ρ

i T ν
ρ (7)

where a prime denotes differentiation with respect to T ,
S µν
i = e ρ

i S µν
ρ and Tµν is the matter energy-momentum

tensor.
The substitution of the vierbein (5) in (7) for i = 0 = ν

yields

12H2 f ′(T ) + f(T ) = 16πG ρ (8)

Besides, the equation i = 1 = ν is

48H2f ′′(T )Ḣ− f ′(T )[12H2+4Ḣ]− f(T ) = 16πGp (9)

In Eqs. (8-9), ρ(t) and p(t) are the total density and
pressure respectively.
In [22] it was shown that when f(T ) is a power law

such as

f(T ) = T −
α

(−T )n
(10)

leads to reproduce the observed accelerated expansion of
the universe, being α and n real constants to be deter-
mined by observational constraints.
From (8) along with (10), the modified Friedmann

equation results to be (e.g. [22])

H2 −
(2n+ 1) α

6n+1H2n
=

8

3
πGρ (11)

where ρ = ρmo(1 + z)3 + ρro(1 + z)4, z is the cosmo-
logical redshift and as it is usual, we will call Ωi =
8πGρio/(3H

2
0 ) to the contributions of matter and radi-

ation to the total energy density today. For α = 0 the
GR spatially flat Friedmann equation is retrieved. The
case n = 0 recovers the GR dynamics with cosmologi-
cal constant. Compared with GR, n is the sole new free
parameter (see [22] for details).
In the next sections, we will use a χ2 = χ2

SNe +
χ2
BAO/CMB + χ2

GRB + χ2
OHD statistic to find best fits

for the free parameters Ωm and n of a model given by
(10) using several data sets. The separate χ2 of SNe
Ia, BAO/CMB, GRBs and OHD and the corresponding
data sets used in this work are shown in Appendix B.
In order to see whether our model is favored over the
ΛCDM model, we will also use the information criterion
known as AIC (Akaike Information Criterion) [47, 48].
The AIC is defined as AIC = −2 lnLmax+2k, where the

likelihood is defined as L ∝ eχ
2/2, the term −2 lnLmax

corresponds to the χ2
min and k is the number of param-

eters of the model. According to this criterion a model
with the smaller AIC is considered to be the best, and
a difference |∆AIC| in the range between 0 and 2 means
that the two models have about the same support from
the data. For a difference between 2 and 4 this support
is considerably less for the model with the larger AIC,
while for a difference >10 the model with the larger AIC
is practically irrelevant [49].

III. CONSTRAINING DARK TORSION WITH
UPDATED DATA SETS

We found interesting to analyze what would happen if
we applied a criterion in order to study the consistency
between data sets, a criterion more restrictive than the
only fact that the confidence intervals overlap. To per-
form this analysis, we adopted the criterion of consider-
ing the existence of tension between a given data set and
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another set constituted combining several data sets (in-
cluding the first one) as the fact that the best fit point
to the first data set is out of the 68.3% (1σ) confidence
level contour given by the combined data set. Similar
criteria were adopted in their analysis by [36–38]. One
could choose not to use this more restrictive criterion;
however, we wanted to investigate its consequences of
applying it to several data sets in the framework of f(T )
theories. In [36], for example, the best fits to sets and
subsets of SNe are compared with the means of deter-
mining if two of those are in tension or not, and how
far from the confidence intervals lies the ΛCDM model.
With our adopted criterion, we seek more physical con-
sistency between best-fits, so the best fits do not drive to
too different cosmological evolutions. The best fit which
effective equation of state is of the phantom type [50]
(weff < −1) tells us about very different physics from
the one that is not. Also, best fits that lie too far apart
from ΛCDM model (n = 0 or weff=-1) will indicate the
need of more exotic models.
Something important to consider is that the best fits

to the SNe or their combination depend also on the fitter
used to process the SNe data sets. Avoiding this type of
tension we make sure that in most cases both best fits
(SNe Ia and combined data sets) have similar results in
the equation of state weff or the n parameter. In the
wCDM (w=const) framework, for example, it has been
shown that with the SDSSII (MLCS) data set [51, 52]
both best fits suggest different cosmic evolutions while
when relieving the tension this problem disappears [53].
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FIG. 1: Confidence intervals at 68.3% and 95.4% in the Ωm−n
plane for the UnionT observations of SNe Ia only (dashed
lines) and UnionT SNe Ia, BAO and CMB (solid lines). We
also show the best fit values to the observations of UnionT
SNe Ia only (star), and to the combination of UnionT SNe Ia,
BAO and CMB (triangle).

Then, with this criterion, in our previous work [22]
existed some tension between the data from the SNe Ia
Union sample [2] and BAO [54] and CMB [55]. Taking
the truncated UnionT data set from [37] we proceeded to
evaluate the possible tension between UnionT, BAO and
CMB.

We found there was still tension between these data
sets as shown in Fig. 1. On one hand, the best fit to
SNe Ia is of the phantom type and the one correspond-
ing to the combined set is not and, on the other hand, the
best fit to SNe Ia drives H in recombination to be 20%
greater than for the best fit to SNe+BAO+CMB, and
weff today to be 35% greater. Considering the men-
tioned criterion, UnionT eliminates the tension between
data in some models as shown in [38], but it is not the
case with f(T ).

Instead of continuing truncating the Union set, now
we proceeded to use the latest SNe Ia data set Union2
[3] (processed with SALT2 light-curve fitter [56]) and
the combined parameter BAO/CMB. This combined
BAO/CMB parameter implemented in [39] is more suit-
able to add constraints to non-standard models (see Ap-
pendix B for details).

The best fit to the Union2 SNe Ia data set only, was
achieved with n = 0.49 and Ωm = 0.33 with the reduced
χ2
min/ν ≃ 0.98 (or equivalently, ∆χ2

min = −0.18 with
respect to ΛCDM with Ωm = 0.27 [4]), where ν is the
number of degrees of freedom. All the results with their
corresponding 1σ uncertainties and the analysis from the
AIC criterion are summarized in Table II.

Working only with the new BAO/CMB parameter we
found the value of n for the best fit is remarkably higher
than with other data sets (n = 4.58), although more
efficient in constraining Ωm (in contrast to working with
BAO and CMB parameters separately) having a range of
values more consistent with other observations, such as
weak lensing and its combination with CMB and SNe Ia
(e.g. [57, 58]). In our case we found Ωm = 0.28. These
values (n = 4.58, Ωm = 0.28) perform a better fit than
ΛCDM by a ∆χ2

min = −1.46. Comparing these results
with our previous work [22], we also found that including
this combined parameter, the value of n for the best fit
using BAO/CMB or its combination with the rest of the
data sets results always greater than zero. Therefore,
the effective dark torsion is of the phantom type [50].
This result is also in opposition with recent constraints
when BAO and CMB are used separately through the
parameters A and R respectively [26]. Combining the
SNe Ia data with BAO/CMB data we found the best fit,
which can be seen in Table II.

We added to our analysis a data set of observations
of Gamma-Ray Bursts (GRBs). Knowing that there are
still debates about if these objects are standard candles
(e.g. [59, 60]), we followed the policy assumed in other
published works such as [40, 61] to see how our results are
modified and to check the consistency of both approaches
presented by [61] and [40] in the framework of f(T ) the-
ories. Recently, in [62] it has been demonstrated that
the data set of [40] is consistent with Union2. One could
do the analysis using data sets consisting of SNe Ia and
GRBs separately. Otherwise, an analysis can be made
compiling Union2 and one GRBs data sets together [61].
These two separate analysis showed identical results (see
Appendix A).
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Here we used the approach developed in [40] firstly
for being a set-independent data set, this means this set
is not only applicable with Union2, but with any other
SNe Ia data set. Most importantly, we used this data
set because evaluating it separately from the SNe Ia is
more helpful in our work of finding tension between SNe
Ia data and other data sets. Otherwise, in case of finding
tension we might have needed to truncate a combination
of SNe+GRBs data set, being this last a sum of different
data. When incorporating GRBs to the joint statistic we
observed that the addition of the mentioned observations
slightly reduce the size of the confidence intervals and the
joint best fit is displayed in Table II.
In Fig. 2a, we show the confidence intervals of SNe

Ia with the combination of SNe+BAO/CMB+GRBs.
There, it can be easily seen that with the adopted cri-
terion for the tension between data sets, there is a slight
tension between Union2 and the other data sets.
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FIG. 2: (a) Confidence intervals at 68.3% and 95.4% in the
Ωm − n plane for the Union2 observations of SNe Ia only
(dashed lines) and Union2 SNe+BAO/CMB+GRBs (solid
lines). We also show the best fit values to the observations
of Union2 SNe Ia only (star), and to the combination of
Union2 SNe+BAO/CMB+GRBs (dot). (b) Idem (a), for the
Union2T data set.

In the next section, we will adopt the criterion pre-
sented in [37] in order to perform the truncation of
Union2 SNe Ia data set with the objective of dissipat-
ing the tension between data sets when analyzing these
f(T ) type of theories.

IV. BUILDING A NEW IMPROVED DATA SET

We followed the simple method used in [36, 37] to find
the outliers responsible for the tension. In [36] the dis-
tance moduli of the six SNe Ia which are mostly responsi-
ble for the tension in Gold06 data set differ by more than
1.8σ from the ΛCDM prediction. In [37] 21 SNe Ia were
discarded to build the UnionT set in order to eliminate
the tension with CMB and BAO.

Similarly, we firstly fitted our f(T ) model to the whole
557 SNe Ia in the Union2 data set and found the best fit
parameters (with the corresponding µ0 = 43.15). Then,
we calculated the relative deviation to the best fit pre-
diction, | µobs − µth | /σobs, for all the 557 data points.
We found that as in [37] the cut 1.9σ solved the tension
problem. This cut implied to take out 39 SNe Ia from
Union2. With the remaining 518 SNe Ia we build the
Union2T data set. The outliers are shown in Table I.

TABLE I: The names of the outliers from Union2 data set.

Outliers from Union2
1995ac, 1998dx, 1999bm, 2001v, 2002bf, 2002hd, 2002hu
2002jy, 2003ch, 2003ic, 2006br, 2006cm, 2006cz, 2007ca
10106, 2005ll, 2005lp, 2005fp, 2005gs, 2005gr, 2005hv
2005ig, 2005iu, 2005jj, 1997k, 1998ba, 03D4au, 04D3cp

04D3oe, 03D4cx, 03D1co, d084, e140, f308, g050
g120, m138, 05Str, 2002fx

In Fig. 2b, it is shown the result of using Union2T
with the combination of Union2T+BAO/CMB+GRBs.
The best fit to Union2T was achieved with the val-
ues n = 0.23, Ωm = 0.31 and with χ2

min/ν = 0.67
(∆χ2

min = −0.20), whilst the best fit to the joint anal-
ysis of Union2T+BAO/CMB+GRBs was obtained with
n = 0.09, Ωm = 0.29 with χ2

min/ν = 0.67 (∆χ2
min =

−0.97). From these results we can see that the χ2
min as

the χ2
min/ν have been significantly improved in respect

to the values obtained in the previous section.
This Union2T set along with the corresponding sets

of BAO/CMB and GRBs are more consistent between
them, considering the adopted criterion which advan-
tages were mentioned above.

V. ADDING OHD DATA

In this section we wondered about how the results of
the previous sections were modified when a data set with
Hubble parameter observations H(z) was added to the
χ2 statistic. The details of the used data are displayed
in Appendix B.
In Fig. 3a, the confidence intervals are shown at 68.3%

and 95.4% for the SNe Ia data only and for the combina-
tion of SNe+BAO/CMB+GRBs+OHD. Also, displaying
the corresponding best fits. This analysis showed that the
best fit was reached with n = 0.33 and Ωm = 0.29 with a
χ2
min/ν = 0.96 (∆χ2

min = −2.6). It is observed that the
confidence intervals are slightly smaller in size than when
OHD data is not added. Surprisingly, we found that the
adding of OHD pushes the ΛCDM model out of the 1σ
confidence level of the combined data. The inclusion of
OHD data, then, favors an equation of state of the phan-
tom type and makes the values that lie at 68.3% to be
n ∈ [0.12, 0.58], Ωm ∈ [0.27, 0.31]. A similar result was
obtained when combining BAO/CMB, the shift param-
eter R of CMB and supernovae Ia from SDSS by using
the MLCS light-curve fitter (Fig. 1 of [39]).
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FIG. 3: (a) Confidence intervals at 68.3% and 95.4% in the
Ωm − n plane for the Union2 observations of SNe Ia only
(dashed lines) and Union2 SNe+BAO/CMB+GRBs+OHD
(solid lines). We also show the best fit values to the observa-
tions of Union2 SNe Ia only (star), and to the combination of
Union2 SNe+BAO/CMB+GRBs+OHD (dot). (b) Idem (a),
for the Union2T observations.

Again, with the adopted criterion about the ex-
istence of tension between data sets we see there
is a slight tension between Union2 and Union2
SNe+BAO/CMB+GRBs+OHD. Performing the ana-
logue procedure of the previous section, we found that
a 1.9σ cut was suitable to remove the tension between
data sets. The result is displayed in Fig. 3b.

The combination Union2T SNe Ia with BAO/CMB,
GRBs and OHD allowed the ΛCDM model again to lie
inside the 1σ joint probability region.

We summarize in Table II the main results from the
analysis performed in this work.

TABLE II: Best fit values and 1σ errors for each parameter
marginalizing over the other, for the models considered in this
work. (1) SNe, (2) BAO/CMB, (3) SNe + BAO/CMB, (4)
SNe + BAO/CMB + GRBs, (5) SNe + BAO/CMB + GRBs
+ OHD, (6) U2T, (7) U2T + BAO/CMB + GRBs and (8)
U2T + BAO/CMB + GRBs + OHD. SNe stands for SNe Ia
from Union2 data set, U2T stands for the truncated Union2
data set with a 1.9σ cut and ∆AIC = AICf(T )−AICΛCDM .

Data set(s) n Ωm χ2
min/ν ∆χ2

min ∆AIC

1 0.49+1.13
−1.09 0.33+0.08

−0.19 0.98 -0.18 1.82

2 4.58
+n/a
−4.87 0.28+0.02

−0.02 - -1.46 0.54
3 0.15+0.28

−0.18 0.29+0.02
−0.02 0.97 -0.99 1.00

4 0.16+0.25
−0.18 0.29+0.02

−0.02 0.96 -0.93 1.07
5 0.33+0.25

−0.21 0.29+0.02
−0.02 0.96 -2.6 -0.60

6 0.23+1.08
−0.49 0.31+0.08

−0.18 0.67 -0.20 1.80
7 0.09+0.25

−0.18 0.29+0.02
−0.02 0.67 -0.97 1.03

8 0.28+0.24
−0.21 0.29+0.02

−0.02 0.67 -1.83 0.17

VI. CONCLUSIONS

We have updated the constraints to an f(T ) = T −
α(−T )−n theory by using the latest type Ia supernovae
data set Union2, the new combined BAO/CMB parame-
ter, a Gamma-Ray Bursts set and Hubble Observational
Data.
When the new BAO/CMB parameter is used instead

of the frequently used A and R parameters separately
the best fit values change with respect to previous works.
From Table II we see that all best fit values are for n > 0,
leading the effective equation of state to be phantom like.
Note that in all cases where SNe Ia data were involved,
we used the Union2 data set which was processed with
SALT2 fitter and this could be an additional factor in the
obtained results as showed in [53]. Adding GRB data did
not modify the results appreciatively and we also found
that two approximations performed by different authors
are consistent between them and lead to the same results.
We found that when including information from

OHD to put constraints, as in the BAO/CMB case,
an equation of state of the phantom type is favored.
Remarkably, the simpler ΛCDM model lies outside
the 68.3% confidence level region of the combined
SNe+BAO/CMB+GRBs+OHD data. The values that
lie at 68.3% are in the ranges n ∈ [0.12, 0.58], Ωm ∈
[0.27, 0.31].
The adopted criterion of tension between data sets

in this work and the truncation process performed to
Union2 data set allowed us, firstly, that the physics that
determines the cosmological evolution through the n pa-
rameter does not differ much when only the SNe are con-
sidered or when those are combined with other data sets,
and secondly, that each data set is consistent amongst the
others. In every case, eliminating tension leaded to re-
duce at least to one half the ratio between values of weff

in z = 0 and H in recombination, obtained from the
best fits to SNe alone or their combination with other
data sets. Additionally, the removal of tension by this
criterion resulted in, when combining Union2T data set
with BAO/CMB+GRB+OHD, the ΛCDM model to lie
inside the 1σ joint probability region of the data set with
all observations. From Table II, the values for ∆χ2

min

always favored the f(T ) models, whilst when perform-
ing an analysis with the AIC criterion we found that
all the evaluated cases of f(T ) have the same support
from the data with respect to the ΛCDM model since
0 < |∆AIC| < 2.
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Appendix A: Analysis from Hymnium Gamma-Ray
Bursts data set

Here we show the result of adding to the performed
analysis with the Union2 SNe Ia data set, the set Hym-
nium of 59 GRBs according to [61].
With the objective of comparing the obtained results

when adding GRBs to SNe Ia data and BAO/CMB us-
ing the 5 values set of [40] and when adding the data
sets in the way performed in [61], we observed the dif-
ferences in the 68.3% and 95.4% confidence intervals of
both methods. The result using the 59 GRBs set of [61]
is displayed in Fig. 4. The values in the joint best fit are
for n = 0.15+0.26

−0.18 and Ωm = 0.29+0.02
−0.02. As can be seen,

the result is very similar to the one obtained in section
III (Fig. 2a).

FIG. 4: Confidence intervals at 68.3% and 95.4% in the Ωm−n
plane coming from combining SNe+GRBs+BAO/CMB data,
where the 59 GRBs from the Hymnium data set were added
to Union2 according to [61].

Appendix B: Cosmological constraints methods

1. Type Ia Supernovae constraints

The data points of the 557 Union2 SNe Ia compiled in
[3] are given in terms of the distance modulus µobs(zi) and
the corresponding uncertainty for each observed value
σ(zi). On the other hand, the theoretical distance mod-
ulus is defined as

µth(zi) = 5log10DL(zi) + µ0 (B1)

where µ0 ≡ 42.38−5log10h and h is the Hubble constant
H0 in units of 100 km/s/Mpc, whereas the Hubble-free
luminosity distance for the flat case is

DL(z) = (1 + z)

∫ z

0

dz′

E(z′,p)
(B2)

in which E ≡ H/H0, and p denotes the model parame-
ters (here, n and Ωm). The parameter µ0 is a nuisance

parameter but it is independent of the data points. Fol-
lowing [63], the minimization with respect to µ0 can be
made by expanding the χ2

SNe with respect to µ0 as

χ2
SNe(p) = Ã− 2µ0B̃ + µ2

0C̃ (B3)

where,

Ã(p) =
N=557
∑

i=1

[µobs(zi)− µth(zi;µ0 = 0,p)]2

σ2(zi)

B̃(p) =

N=557
∑

i=1

[µobs(zi)− µth(zi;µ0 = 0,p)]

σ2(zi)

C̃ =

N=557
∑

i=1

1

σ2(zi)

Equation (B3) has a minimum for µ0 = B̃/C̃ at

χ̃2
SNe(p) = Ã(p)−

B̃(p)2

C̃
(B4)

Since χ2
SNe,min = χ̃2

SNe,min obviously, we can instead

minimize χ̃2
SNe which is independent of µ0.

2. Combined BAO/CMB parameter constraints

In the f(T ) theories considered here (10), for later
times the term −α/(−T )n is dominant, while in early
times when H → ∞ General Relativity is recovered.
Also, since this model presents matter domination at the
decoupling time as the standard model, we can use the
BAO and CMB information as showed in [22].

When analyzing CMB and BAO observations there
are two parameters commonly employed, R [64] and A
[54]. However, a more model-independent constraint can
be achieved by multiplying the BAO measurement of
rs(zd)/DV (z) with the position of the first CMB power
spectrum peak [55] ℓA = πdA(z∗)/rs(z∗), thus cancelling
some of the dependence on the sound horizon scale [39].
Here, dA(z∗) is the comoving angular-diameter distance
to recombination, rs is the comoving sound horizon at
photon decoupling, zd ≈ 1020 is the redshift of the drag
epoch at which the acoustic oscillations are frozen in, and
DV is defined as (assumed a ΛCDM model) [54],

DV (z) =

[

z

H(z)

(

∫ z

0

dz′

H(z′)

)2

]1/3

(B5)

We further assume z∗ = 1090 from [55] (variations within
the uncertainties about this value do not give significant
differences in the results).

In [65] was measured rs(zd)/DV (z) at two redshifts,
z = 0.2 and z = 0.35, finding rs(zd)/DV (0.2) = 0.1905±
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0.0061 and rs(zd)/DV (0.35) = 0.1097 ± 0.0036. Com-
bining this with ℓA gives the combined BAO/CMB con-
straints [39]:

dA(z∗)

DV (0.2)

rs(zd)

rs(z∗)
= 18.32± 0.59

dA(z∗)

DV (0.35)

rs(zd)

rs(z∗)
= 10.55± 0.35 (B6)

Before matching to cosmological models we also need
to implement the correction for the difference between
the sound horizon at the end of the drag epoch and the
sound horizon at last scattering. The first is relevant for
the BAO, the second for the CMB, and rs(zd)/rs(z∗) =
1.044± 0.019 (using values from [55]). Inserting this into
(B6) and taking into account the correlation between
these measurements using the correlation coefficient of
0.337 calculated by [65], gives the final constraints we
use for the cosmology analysis [39]:

A1 =
dA(z∗)

DV (0.2)
= 17.55± 0.65

A2 =
dA(z∗)

DV (0.35)
= 10.10± 0.38 (B7)

Using this BAO/CMB parameter cancels out some of
the dependence on the sound horizon size at last scat-
tering. This thereby removes the dependence on much
of the complex pre-recombination physics that is needed
to determine that horizon scale [39]. In all the cases, we
have considered a radiation component Ωr = 5x10−5.
So, for our analysis we add to the χ2 statistic:

χ2
BAO/CMB(p) =

N=2
∑

i=1

[Aobs(zi)−Ath(zi;p)]
2

σ2
A(zi)

(B8)

where p = (n,Ωm) are the free parameters, Aobs is the
observed value (A1 and A2), Ath is the predicted value by
the model and σA is the 1σ error of each measurement.

3. Gamma-Ray Bursts constraints

Following [66] and [40], we consider the well-known
Amati’s Ep,i − Eiso correlation [67–70] in GRBs, where
Ep,i = Ep,obs(1 + z) is the cosmological rest-frame spec-
tral peak energy, and Eiso is the isotropic energy.
In [71], it was defined a set of model-independent dis-

tance measurements {r̄p(zi)}:

r̄p(zi) ≡
rp(z)

rp(z0)
(B9)

with,

rp(z) ≡
(1 + z)1/2

z

H0

c
r(z) (B10)

where r(z) = dL(z)/(1 + z) is the comoving distance at
redshift z, and z0 = 0.0331 is the lowest GRBs redshift.

Following the method proposed by [71], in [40] were
obtained 5 model-independent distances data points and
their covariance matrix by using 109 GRBs via Amati’s
correlation. The resulted model-independent distances
r̄datap (zi) and their uncertainties, the correlation matrix
and the covariance matrix are these ones from [40].

So, a given cosmological model with {p} free parame-
ters can be constrained by GRBs via

χ2
GRB(p) = [∆r̄p(zi)]

T · (C−1
GRB) · [∆r̄p(zi)] (B11)

∆r̄p(zi) = r̄datap (zi)− r̄p(zi) (B12)

where r̄p(zi) is defined by (B9) and C−1
GRB is the inverse

of the covariance matrix. In this way, the constraints for
a large amount of observational GRBs data is projected
into the relative few quantities r̄datap (zi).

4. Observational Hubble Data (OHD) constraints

The Observational Hubble Data are based on differ-
ential ages of the galaxies [72]. In [73] it was obtained
an independent estimate for the Hubble parameter using
the method developed in [72], and the authors used it
to constrain the equation of state of dark energy. The
Hubble parameter depending on the differential ages as
a function of redshift can be written as,

H(z) = −
1

1 + z

dz

dt
(B13)

So, once dz/dt is known, H(z) is obtained directly [74].
By using the differential ages of passively-evolving galax-
ies, in [74] was obtained H(z) in the range of 0.1 . z .
1.8 and in [43] new data at 0.35 < z < 1 were studied.
Here, H0 from [42] and eleven observational Hubble data
from [43] are used.

In addition, in [41] the authors took the BAO scale
as a standard ruler in the radial direction, called ”Peak
Method”, obtaining three more additional data (in
km/s/Mpc): H(z = 0.24) = 79.69± 2.32, H(z = 0.34) =
83.8 ± 2.96 and H(z = 0.43) = 86.45 ± 3.27, which are
model- and scale-independent. We just consider the sta-
tistical errors.

The best fit values of the cosmological model parame-
ters from observational Hubble data are then determined
by minimizing,

χ2
OHD(p) =

N=15
∑

i=1

[Hobs(zi)−Hth(zi;p)]
2

σ2(zi)
(B14)

where as before, in this work p = (n,Ωm), Hth is the
predicted value for the Hubble parameter, Hobs is the
observed value, σ(zi) is the standard deviation of each
measurement, and the summation is over the full 15 val-
ues at redshift zi mentioned above.
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