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Prolactin, a pleiotropic hormone secreted by lactotropes, has reproductive and metabolic func-
tions. Chronically elevated prolactin levels increase food intake, but in some hyperprolactinemic
states such as in the global dopamine D2 receptor (D2R) knockout mouse, food intake is not
increased. Here, we conduct a cell-specific genetic dissection study using conditional mutant mice
that selectively lack D2Rs from pituitary lactotropes (lacDrd2KO) to evaluate the role of elevated
prolactin levels without any confounding effect of central D2Rs on motor and reward mechanisms
related to food intake. LacDrd2KO female mice exhibited chronic hyperprolactinemia, pituitary
hyperplasia, and a preserved GH axis. In addition, lacDrd2KO female but not male mice showed
increased food intake by 3 months of age, and from 5 months onward their body weights were
heavier. Marked increments in fat depots, adipocyte size, serum triglycerides, and nonesterified
fatty acid levels and a decrease in lipolytic enzymes in adipose tissue were seen. Furthermore,
lacDrd2KO female mice had glucose intolerance but a preserved response to insulin. In the hypo-
thalamus, Noy mRNA expression was increased, and Pomc and Poo mRNA levels were unaltered (in
contrast to results in global D2R knockout mice). Thus, the orexigenic effect of prolactin and its
action on hypothalamic Npy expression were fully evidenced, leading to increased food intake and
adiposity. Our results highlight the metabolic role of prolactin and illustrate the value of studying
cell-specific mutant mice to disentangle the pathophysiological mechanisms otherwise masked in
null allele mutants or in animals treated with pervasive pharmacological agents. (Endocrinology
155: 829-839, 2014)

rolactin is a pleiotropic hormone secreted by lacto-
Ptropes in the anterior pituitary gland and, in humans,
is also produced by multiple tissues, including adipose
tissue. Although the role of prolactin in reproduction and
fertility has been extensively studied, less is known about
its action on metabolism and body weight regulation (1).
The high prolactin levels typically observed in pregnant
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and lactating females contribute to a hyperphagic state (2),
probably sustained by leptin-resistant hypothalamic cen-
ters controlling food intake (3). During pregnancy, the
normal homeostatic mechanisms regulating appetite are
modified to generate a state of positive energy balance and
increased food intake to supply the growing fetus with its
energy requirements and increase fat storage to be used
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Abbreviations: D2R, dopamine D2 receptor; DMH, dorsomedial hypothalamus; GTT, glu-
cose tolerance test; H&E, hematoxylin and eosin; ITT, Intraperitoneal insulin tolerance test;
aMSH, a-melanocyte-stimulating hormone; NEFA, nonesterified fatty acid; PCNA, prolif-
erating cell nuclear antigen; PECAM, platelet endothelial cell adhesion molecule-1.
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during lactation (4). The adaptation of metabolic pro-
cesses to store energy during pregnancy in preparation for
future metabolic demands is a biological allostatic hall-
mark in evolution.

Consistent with the hypothesis that prolactin has a sig-
nificant role in the regulation of body weight, prolactin
receptor—deficient mice exhibit lower body weight and
reduced fat mass (5), prolactin administration stimulates
food intake (6, 7), and chronically elevated prolactin lev-
els, such as those seen during pregnancy, increase food
intake, probably by inducing a state of leptin resistance
(3). However, male mice bearing ectopic pituitary glands
show a small increase in body weight with a decline in fat
mass (8), and female mice overexpressing prolactin do not
show greater body weight (9). Furthermore, we found that
female mice lacking dopamine D2 receptors (Drd2~'")
exhibit chronic hyperprolactinemia and pituitary lacto-
trope hyperplasia (10, 11) but have body weight similar to
that of wild-type females in adulthood and only a minimal
increase in food intake (12). However, Drd2 ™'~ mice are
not an optimal model to study the effects of chronic hy-
perprolactinemia on energy balance, given the fundamen-
tal importance of central dopamine D2 receptors (D2Rs)
in reward mechanisms related to feeding behavior (13,
14).

The available evidence suggests that lack of central
D2Rs in the Drd2 '~ model might activate compensatory
mechanisms that could ultimately limit food intake in this
hyperprolactinemic transgenic model. In this regard, a
critical dependence of food intake on central dopamine
signaling is implied by the profound feeding deficits that
result from pharmacological depletion, blockage, or ge-
netic disruption of dopamine synthesis (15-20).

Therefore, we hypothesize that limiting Drd2 ablation
specifically in lactotropes would allow us to study the ef-
fect of high prolactin secretion on food intake and adi-
posity, without the confounding physiological and patho-
physiological mechanisms present in global null allele
Drd2 mutants or in animals treated with pervasive phar-
macological agents.

We report that conditional mutant female mice lacking
D2Rs in pituitary lactotropes (lacDrd2KO) display hy-
perprolactinemia, increased food intake, marked body
weight gain, and adipose tissue accretion compared with
those in control and Drd2™'~ female mice. These results
highlight the hyperphagic and lipogenic effects of chron-
ically elevated prolactin levels, which are better evidenced
in the presence of functional central D2Rs.

Materials and Methods

Animals

Constitutive dopamine D2 receptor knockout mice
(Drd2~""; official strain designation B6.129S2-Drd27"1'%)
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used in this study were backcrossed for 10 generations to wild-
type CS7BL/6] mice.

lacDrd2KO mice

Mice lacking expression of D2Rs in pituitary lactotropes were
generated by crossing Drd2!°X"1°XF mice (13) with transgenic
mice expressing Cre recombinase driven by the mouse prolactin
promoter [Tg(Prl-cre)'™™P] (21) for 2 generations. To test the
tissue specificity of Cre expression in Tg(Prl-cre) ™M™ transgenic
mice, Cre mRNA was analyzed by real-time PCR in different
tissues. Cre mRNA levels were highly expressed in the pituitary
and very low or almost absentin the hypothalamus, liver, kidney,
ovary, and lung (Supplemental Figure 1 published on The En-
docrine Society’s Journals Online web site at http://end.endo-
journals.org). Functional Cre recombinase activity was evalu-
ated in the pituitary, and it was present in most prolactin-
producing cells of the anterior pituitary in a highly selective
manner as described previously (21): immunofluorescence anal-
ysis was performed on coronal pituitary sections of double trans-
genic mice obtained by crossing Tg(Prl-cre) "™ mice with the
Cre reporter mouse line Ail4 (22) that expresses the fluorescent
protein td-tomato upon Cre recombination. Analysis of double-
positive cells (prolactin and td-tomato) indicated that in 96% of
lactotrope Cre recombinase was active (21). lacDrd2KO mice
and their Drd2'9""°*P control littermates were congenic to
CS7BL/6J (n = 8).

Breeding pairs of female Drd2'**o*" and male Drd2'o™1x.
p.Tg(Prl-Cre) mice were used to generate Drd2'***® (control)
and Drd2'e"'**? Tg(Prl-Cre) (lacDrd2KO) littermates, which
were included in each experiment. Mice of mixed genotypes were
housed in groups of 4 or § in a temperature-controlled room with
lights on at 7:00 AM and off at 7:00 pM and had free access to
laboratory chow and tap water.

Because in male mice there was a marginal increase in pro-
lactin levels and no differences in body or pituitary weight, fat
mass depots, or food intake (Supplemental Figure 2), we used
female mice in our experiments.

Body length and body weight were measured in a cohort of 12
to 14 female mice of both genotypes from 1 to 11 months of age.
Every month a blood sample was collected under ketamine/xy-
lazine anesthesia using the technique of submandibular bleeding
for prolactin assay.

Mice were euthanized by decapitation at defined ages. Sera
were collected for progesterone, IGF-I, prolactin, adiponectin,
nonesterified fatty acids (NEFAs), triglycerides, and insulin mea-
surements. Pituitaries, hypothalami, livers, and adipose tissues
were processed for real-time PCR, histochemistry, or RIA, as
detailed below.

All experimental procedures were performed according to
guidelines of the institutional animal care and use committee of
the Instituto de Biologia y Medicina Experimental, Buenos Aires
(in accordance with the Division of Animal Welfare, Office for
Protection from Research Risks, National Institutes of Health,
A#5072-01).

Food intake

Food intake was determined in individually caged female or
male mice of both genotypes (Drd2'"*™ " and lacDrd2KO).
Mice were provided with a known amount of regular chow pel-
lets (5% fat, 19% protein, and 5% fiber by weight; 2.4 kcal/g).
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During 1 week, animals and residual food were weighed daily at
the same hour (3:00 pm).

Body length

Body length was measured in live, fully anesthetized mice by
the nose-anus length (from the tip of the nose to the anus), with
the mice stretched supine on top of a ruler.

Estrous cycle monitoring

Estrous cycles were monitored by vaginal lavage in 5-month-
old females. Cycle stage was classified as estrus (primarily cor-
nified cells), diestrus (primarily leukocytes), or proestrus (pri-
marily nucleated cells).

Glucose tolerance test (GTT)

GTTs were performed in conscious female lacDrd2KO and
Drd2'oP1XP mice at 7 months of age. In brief, after overnight
fasting (8 hours), an ip injection of glucose (2 mg/g body weight)
was administered. Blood glucose levels (2 uL obtained from the
tail of each mouse) were examined at 0, 15, 30, 60, and 120
minutes after glucose injection with a hand-held glucose monitor
(Dex-II; Bayer).

Glucose-stimulated insulin secretion

Eight-hour-fasted 7-month-old female mice were used. Blood
was collected from the tail vein before (0 minutes) and 30 min-
utes after ip administration of glucose (3 mg/g). Serum samples
were immediately obtained by centrifugation at 3000 rpm for 10
minutes and stored at —20°C. Insulin secretion levels were as-
sessed by a sensitive mouse insulin ELISA kit (Crystal Chem).

Intraperitoneal insulin tolerance test (ITT)

Mice were fasted for 2 hours and then injected ip with human
insulin (Humulin, 1 U/kg body weight; Eli Lilly). Blood glucose
levels were measured with a hand-held glucose monitor (Dex-II)
at 0,15, 30, 60, 90, and 120 minutes thereafter in 2-uL samples
obtained from the tail of each mouse.

Adipose tissue weight

At 5 and 11 months of age, mice were euthanized and gonadal
and retroperitoneal adipose tissues, as well as livers, were care-
fully dissected free of surrounding tissue and weighed.

Serum lipid profile

Triglycerides and total cholesterol were measured by the
Trinder colorimetric assay and NEFAs by the Duncombe color-
imetric assay in 30 uL of diluted serum (1:2). The dilution was
made with saline solution. Adiponectin levels were assessed by a
mouse adiponectin ELISA kit (Crystal Chem).

RNA extraction and cDNA synthesis

Hypothalami, pituitaries, gonadal adipose tissues, and livers
from Tg(Prl-cre) '™ ®, wild-type, Drd2'e**1*" ‘andlacDrd2KO
mice were obtained and processed for recovery of total RNA
using TRIzol reagent (Invitrogen). The RNA concentration was
determined on the basis of absorbance at 260 nmy; its purity was
evaluated by the ratio of absorbance at 260/280 nm (>1.8) and
its integrity by agarose gel electrophoresis. RNAs were kept fro-
zen at —80°C until analyzed. RNA (1 ug) was reversed tran-
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scribed in a 20-uL volume in the presence of 10 mM MgCl,, 50
mM Tris - HCI (pH 8.6), 75 mM KClI, 0.5 mM deoxy-NTPs, 4
mM dithiothreitol, 0.5 ug of oligo(dT), s primer (Biodynamics),
and 20 U of Moloney murine leukemia virus reverse transcrip-
tase (Epicenter). The reverse transcriptase was omitted in control
reactions; the absence of PCR-amplified DNA fragments in these
samples indicated the isolation of RNA free of genomic DNA.

Real-time PCR for tissue Cre, hypothalamic
proopiomelanocortin (Pomc), precursor of orexins
(Ppo), neuropeptide Y (Npy), hepatic Cyp2b9 and
Cyp2d9, and liver and hepatic lipoprotein lipase
(Lpl), hormone-sensitive lipase (Hs/), adipose
triglyceride lipase (Atgl), and fatty acid synthase
(Fas) mRNA expression levels

These measurements were performed as described previously
(12). Oligonucleotides were obtained from Invitrogen. The se-
quences are described in Supplemental Table 1.

In brief, the reactions were performed by kinetic PCR using
TAQurate Green Real-Time PCR MasterMix (9.4 uL containing
10 mM Tris - HCI, 50 mM KCl, 3 mM MgCl,, 0.2 mM concen-
trations of deoxy-NTPs and 1.25 U of Taq polymerase), 100 ng
of cDNA and 0.3 uM concentrations of primers in a final volume
of 10 pL. The cycle profile was denaturation at 95°C for 10
minutes and amplification for 40 cycles, each cycle consisting of
denaturation at 95°C for 30 seconds, annealing at 63°C for 1
minute, and extension at 72°C for 33 seconds. The accumulating
DNA products were monitored by the ABI 7500 sequence de-
tection system (Applied Biosystems), and data were stored con-
tinuously during the reaction. The results were validated on the
basis of the quality of dissociation curves as described previously
(12).

Histochemistry

To determine adipocyte size, histological sections (5 wm)
were cut from paraffin-embedded tissue, mounted on micro-
scope glass slides, and dried overnight in an incubator at 37°C.
Sections were stained with hematoxylin and eosin (H&E). Dig-
ital images were captured using a Leica DFC320 digital camera
at X40 magnification. Morphometric analysis of gonadal adi-
pose tissue was performed by measuring =50 cells from at least
3 H&E sections per mouse from each genotype (n = 4 mice) with
the aid of Image] software (National Institutes of Health). Adi-
pocyte area medians were calculated, and the cell size distribu-
tion for each genotype was expressed as a percentage, grouping
cells at intervals of 200 um?.

Fluorescence immunohistochemical analysis was performed
on pituitary sections from 10- and 11-month-old mice (embed-
ded in paraffin) obtained by microtome (4 um). Sections were
incubated with primary antisera (monkey polyclonal anti-GH,
1:800; Dr. A. F. Parlow, National Hormone and Pituitary Pro-
gram, Torrance, CA), diluted in PBS for 14 to 18 hours at 4 C.
After 2 10-minute washes with PBS, sections were incubated
with a solution containing the secondary antibody, Texas Red—
conjugated goat anti-monkey IgG (1:100; Santa Cruz Biotech-
nology) diluted in PBS, for 1 hour at room temperature. Finally,
sections were rinsed in PBS twice during 10 minutes, mounted in
water, and coverslipped using fluorescence-saving medium
(Vectashield; Vector Laboratories). Confocal microscopy was
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performed. Sections were examined on a C1 Plan Apo 60X/1.4
oil confocal laser-scanning system (Nikon).

Immunohistochemical analysis was performed on pituitary
sections from 11-month-old mice using the avidin-biotin perox-
idase method as described previously (23). Rabbit polyclonal
anti-proliferating cell nuclear antigen (PCNA) (1:200; Santa
Cruz Biotechnology), rabbit polyclonal anti-a-melanocyte-
stimulating hormone («MSH) (1:10 000; Sigma-Aldrich), and
goat polyclonal anti-platelet endothelial cell adhesion mole-
cule-1 (PECAM) (1:200; Santa Cruz Biotechnology) were used.
Appropriate secondary antibodies were chosen. Immunoreac-
tivity was visualized using an avidin-biotin kit coupled to per-
oxidase (Vector Laboratories). Diaminobenzidine (Sigma-Al-
drich) was used as chromogen, and tissue sections were
counterstained with hematoxylin. aMSH-positive cells were ex-
pressed as a percentage of total nucleated cells in the section at
a magnification of X100. The vascular area was determined as
the cumulative area of the pituitary section occupied by PE-
CAM™ vessels expressed as a percentage relative to the total area.
PCNA-positive nuclei were expressed as a percentage of total
nucleated cells at a magnification of X100.

Livers were excised and snap-frozen at —80°C, embedded in
OCT, and then sectioned with a cryostat (10 wm). Staining with Oil
Red O (Sigma-Aldrich) was performed to visualize lipid content.

RIAs

Pituitaries were dissected and homogenized in 0.2 mL of PBS.
Protein contents were measured with a Qubit fluorometer and a
Quant-iT protein assay kit (Invitrogen). Aliquots of equal quan-
tities of protein were used to assay GH and prolactin content by
RIA using kits provided by the National Institute of Diabetes and
Digestive and Kidney Diseases (Dr A. F. Parlow, National Hor-
mone and Pituitary Program). Results are expressed in terms of
mouse prolactin standard RP3 or mouse GH standard AFP-
10783B. Intra- and interassay coefficients of variation were
7.2% and 12.8% and 8.4% and 13.2% for prolactin and GH,
respectively. For IGF-I RIA, serum samples (15 uL) and IGF-I
standards were subjected to the acid-ethanol cryoprecipitation
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Figure 1. Serum prolactin levels are increased, and estrous cycles disrupted in female lacDrd2KO
mice. A, Serum prolactin levels in female lacDrd2KO (n = 6) and Drd2'>™® (n = 6) mice from 1
to 11 months of age. Two-way ANOVA indicated a significant genotype effect (P = .0028), and
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method as described previously (24). IGF-I was determined using
an antibody (UB2-495) provided by Drs L. Underwood and J. J.
Van Wyk and distributed by the Hormone Distribution Program
of the National Institute of Diabetes and Digestive and Kidney
Diseases. Recombinant human IGF-I (Chiron Corp) was used as
the radioligand and unlabeled ligand. The assay sensitivity was
6 pg per tube. Intra- and interassay coefficients of variation were
8.2% and 14.1%, respectively.

Progesterone was measured using an antibody provided by
G. D. Niswender (Colorado State University, Fort Collins, Col-
orado) and labeled hormone (progesterone [1,2,6,7->H(N)])
from Dupont NEN. Assay sensitivity was 50 pg, and intra- and
interassay coefficients of variation were 7.5% and 11.9%.

Statistical analysis

Results are expressed as means = SEM. The differences be-
tween means were analyzed by the unpaired Student # test (in the
case of only 2 groups). Two-way ANOVA with a repeated-mea-
sures design was used to analyze body weight and length, food
intake, serum prolactin levels at different ages, GTTs, ITTs, and
glucose-stimulated insulin secretion. Two-way ANOVA for in-
dependent measures was used to analyze liver Cyp mRNA ex-
pression. A post hoc Tukey test was used when necessary. Per-
centages were analyzed by the x* test. Adipocyte size medians
were compared by the median test (x?). A value of P < .05 was
considered significant. Parametric or nonparametric compari-
sons were used as dictated by data distribution.

Results

Prolactin levels and estrous cycles in lacDrd2KO
mice
Transgenic mice expressing Cre from a prolactin pro-
moter, Tg(Prl-cre)"™™® (21), were used in combination
with mice carrying floxed alleles in the Drd2 gene
(Drd2'®1°xP) (13) to inactivate D2Rs in pituitary lacto-
tropes. The offspring, Drd2'ox/lox.
p.Tg(Prl-Cre)"™™" compound mice,
carried null Drd2 alleles in lacto-
trope cells (lacDrd2KO), whereas
; Drd2 alleles were normally ex-
1 pressed in other cell types as demon-
1 strated at the molecular and func-
tional levels (21). lacDrd2KO female
mice had elevated basal prolactin
levels from months 1 to 11 of age
(Figure 1A), and their estrous cy-
cles were altered, as evidenced by
an increase in the percentage of di-
estrus occurrence (Figure 1B), and
a marginal increase in serum pro-
gesterone levels at 5 months com-
pared with those of the Drd2!*x¥
loxP control littermates (P = .064)
(Figure 1C).
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Lactotrope hyperplasia and pituitary hypertrophy
in lacDrd2KO female mice

Pituitaries from 11-month-old lacDrd2KO females
were heavier than pituitaries from Drd2'>"1¥ mice (P =
.0039) (Figure 2, A and B), and the pituitary prolactin
concentration was increased (Figure 2C), indicating lac-
totrope hyperplasia. These hyperplastic pituitaries had in-
creased vascular area as evaluated by PECAM immuno-
staining (P = .002) (Figure 2D) and higher proliferation
rates, as evaluated by the nuclear PCNA staining index,
compared with those of controls (P < .05) (Figure 2E). In
male mice, there were no significant differences between
genotypes in pituitary weight or serum prolactin levels
(Supplemental Figure 2, A and B).

LacDrd2KO female mice have a preserved GH axis
Recordings of several cohorts of female lacDrd2KO
and Drd2'o**o control littermates during 9 months of
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Figure 2. Lactotrope hyperplasia in aged (11-month-old) female
lacDrd2KO mice. A, Pituitary weight in female Drd2'>™* (n = 6) and
lacDrd2KO (n = 9) mice. B, Representative image of pituitary size in a
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age revealed no differences between genotypes in body
length (Figure 3A). Furthermore, no differences in femur
length at 11 months were observed between genotypes
(1.64 = 0.02 and 1.69 = 0.05 cm for Drd2'>*">* and
lacDrd2KO mice, respectively). Accordingly, the pituitary
GH concentration and percentage of somatotropes, as
well as serum IGF-I levels, were similar in females of both
genotypes (Figure 3, B and C, respectively). Sexual dimor-
phic expression of some liver genes, especially cytochrome
450 coding genes (25, 26), are regulated by GH secretory
profiles. We demonstrate that mRNA levels of 2 sexually
dimorphic GH-dependent liver genes, the female-predom-
inant Cyp2b9 and the male-predominant Cyp2d9 gene,
were similar in both genotypes, indicating preserved sex-
ual dimorphic secretion patterns of GH (Figure 3D).
Taken together, these results suggest that lacDrd2KO fe-
male mice have a normal GH axis.

LacDrd2KO female mice have increased body
weight and adiposity

Body weight curves show that starting at 5 months on-
ward female lacDrd2KO mice were heavier than age-
matched Drd2!<® controls (Figure 4A). At 5 months
of age, lacDrd2KO female mice had heavier retroperito-
neal fat pads and heavier livers, and by 11 months both
gonadal and retroperitoneal fat pads were increased in the
lacDrd2KO model (Figure 4B). In a previous work, we
showed that Drd2~'~ female mice had body weights in
adulthood similar to those of their Drd2*'" female sib-
lings (27). We now evaluated adipose tissue in the global
knockout model and found no differences in adiposity or
liver weights between Drd2 ™'~ and Drd2*"* female mice
(data not shown), in contrast to the results found in the
lacDrd2KO model.

Adipocytes in lacDrd2KO mice were bigger, evidenced
by an increase in the median area (1363 and 2503 wm? for
Drd2'9P1XP 3nd lacDrd2KO, respectively, P < .0001)
(Figure 4C), and adipocyte size distribution showed that
adipose tissue from lacDrd2KO mice had a higher pro-
portion of large adipocytes (larger than 2000 um?) (Figure
4D) than adipose tissue from Drd2'***® 11-month-old
mice. Oil Red staining indicated higher lipid content in the
livers of lacDrd2KO females (Figure 4E), and, in accor-
dance, liver triglyceride content was increased (P = .05)
(Figure 4F). Furthermore, lacDrd2KO female mice had
increased serum triglyceride and NEFA levels compared
with the Drd2!1x controls (P =< .05), whereas serum
cholesterol and adiponectin levels were similar in both
genotypes (Figure 5, A-D).

Adiposity accretion might be the consequence of in-
creased lipogenesis and/or decreased lipolysis. We there-
fore studied the expression levels of 2 lipolytic (Hs/ and
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Figure 3. Female lacDrd2KO mice have a normal GH axis. A, Nose to anus length in female
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and Pomc) factors. Hypothalamic
Npy mRNA levels were increased in
female lacDrd2KO compared with
those in Drd2'"*1o*P control mice at
5 months when food intake was ele-
vated, and the difference persisted at
11 months of age (P < .05) (Figure
6C), Ppo mRNA levels were similar
in lacDrd2KO and Drd2'oxP/loxP
mice (Figure 6D). The percentages of
melanotropes in the intermediate pi-
tuitary (cells positively stained for
aMSH) were similar in lacDrd2KO
and Drd2'"1*? mice (Figure 6B),
and hypothalamic Pomc mRNA lev-
els were not different between geno-
x types at 5 and 11 months of age (Fig-
ure 6E).

lacDrd2KO

LacDrd2KO female mice exhibit
impaired glucose tolerance but
normal peripheral insulin
sensitivity

We investigated the impact of lac-
totrope D2R disruption on glucose
homeostasis in vivo. Fasting glucose
levels in 7-month-old lacDrd2KO
and Drd2'9?1oX mice were similar

Female Male

and a

(n = 4) mice. D, mRNA levels of 2 sexually dimorphic GH-dependent liver genes: left, a female-

predominant gene (Cyp2b9); right, male predominant gene (Cyp2d9). No differences in levels or
sexual dimorphism were evidenced between genotypes (*, P = .0001 vs females for both
genotypes; n = 5 and 4 for female and 4 and 4 for male, Drd2'*"'*** and lacDrd2KO,

respectively).

Atgl) and 2 lipogenic (Fas and Lpl) enzymes. Our results
showed that both lipolytic enzymes were decreased in ad-
ipose tissue but not in livers from lacDrd2KO females
compared with those in Drd2!™x® controls (Figure 5, E
and F), whereas Lpl mRNA expression was decreased in
both tissues from the lacDrd2KO female mouse, and no
significant differences were found in Fas mRNA levels
(Figure 5, E and F).

Male mice showed no differences in body weight, fat
mass depots, or food intake among genotypes (Supple-
mental Figure 2, C-E).

LacDrd2KO female mice have increased food
intake and hypothalamic Npy mRNA levels

Daily food intake was increased in 3- and 5-month-old
female lacDrd2KO mice compared with that in Drd2'o<*/1lox?
controls (Figure 6A). We therefore studied the expression
of orexigenic (Ppo and Npy) and anorexigenic («MSH

(Figure 7A). However, lacDrd2KO
mice showed glucose intolerance, as
evidenced by higher blood glucose
levels compared with those in
Drd2'9XP1oxP [ittermates, 30 and 60
minutes after the ip glucose load (P =
.05 and .02, respectively, P interaction (genotype X
time) = .00002) (Figure 7A).

No differences in basal insulin levels were found, but
glucose overload stimulated insulin secretion in all
Drd2'oP1XP females tested, and only in 3 of 6 lacDrd2KO
littermates (Figure 7B).

To assess the effects of lactotrope D2R deficiency on
insulin action in vivo, we measured the changes in plasma
glucose concentrations after a single ip injection of insulin.
Asshown in Figure 7C, glucose disappearance curves were
similar in both genotypes.

Discussion

Central nervous circuits assess and integrate peripheral
metabolic, endocrine, and neuronal signals to modify en-
ergy intake and expenditure to match energy demands.
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Figure 4. LacDrd2KO female mice have increased body weight and adiposity. A, Body weight
curves of female lacDrd2KO (n = 12) and Drd2'*™ (n = 8) mice. Two-way ANOVA showed a

significant interaction (genotype X age), Pieraction < -0001; *, P = .03 vs age-matched

Drd2'*®°*P mice. On the right, representative images. B, Gonadal and retroperitoneal fat and
liver weight in female Drd2'*'°" and lacDrd2KO 5- and 11-month-old mice (n = 5 and 5 for
5-month-old and 5 and 10 for 11-month-old mice, respectively). *, P < .05 vs Drd2'®o® mice
for each tissue, at each age. C, Representative images of H&E-stained histological samples of

gonadal adipose tissue. D, gonadal adipocyte distribution according to size; 11-month-old

lacDrd2KO mice had larger adipocytes compared with Drd2'*®® (n = 4 and 4). E, Oil Red
staining of liver sections from Drd2'**'°" and lacDrd2KO 11-month-old mice. F, Triglyceride (TG)

content in livers from 11-month-old Drd2'**°x* and lacDrd2KO female mice (n = 6 and 7,

respectively). *, P = .044 vs Drg2'o®1ox?,

Many components of the neuroendocrine system act as
metabolic regulators of food intake (28, 29). In particular,
prolactin may be a major factor mediating the hyperpha-
gia associated with pregnancy and lactation (2, 30). The
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presence of prolactin receptors in
brain areas associated with the reg-
ulation of energy balance and food
intake, as well as in both white and
brown adipose tissue, liver, and pan-
creas raises the possibility that pro-
lactin is involved in the energy bal-
ance, acting at different levels (31).
In the brain, prolactin receptors have
been localized in the striatum as well
as in a number of hypothalamic nu-
clei associated with food intake and
metabolism, including the arcuate
nucleus, the ventromedial hypothal-
amus, the paraventricular hypotha-
lamic nucleus, and the dorsomedial
hypothalamus (DMH). In addition,
intracerebroventricular  prolactin
administration increases food intake
in rats (32), and the absence of pro-
lactin receptors is accompanied by a
progressive reduction in body weight
in rats, females being affected to a
greater degree than males (5).
Dopamine is also a physiologi-
cally relevant mediator of feeding be-
havior (15). It has been shown that
an increase in dopamine signaling
promotes feeding behavior, whereas
a decrease has the opposite effect
(33), and hormones implicated in
regulating the homeostatic system
impinge on dopamine neurons; for
example, leptin and insulin directly
inhibit dopamine neurons (15).
Studies of dopaminergic function
have implicated nigrostriatal dopa-
minergic pathways in feeding (34),
whereas mesolimbic dopaminergic
pathways (mainly the dopamine
neurons in the ventral tegmental area
that project to the nucleus accum-
bens) seem to be involved in higher-
order aspects of feeding, such as mo-
tivation and reward (15, 35). Mice
with selective inactivation of the ty-
rosine hydroxylase gene, the rate-
limiting enzyme in dopamine biosyn-

thesis, become hypophagic and die of starvation at 3 to 4
weeks (20). Furthermore, it has also been reported that
deficits in striatal D2R density accelerate the onset of com-
pulsive food seeking in rats with unrestricted access to
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Figure 5. LacDrd2KO female mice have increased serum triglyceride and NEFA levels. Serum triglycerides (TG; n = 6 and 6) (A), cholesterol (n = 6

Lpl

in ad libitum fed 11-month-old Drd2'*"°** and lacDrd2KO female mice,

* P =< .05 vs Drd2'>®® EAdipose tissue Hsl, Atgl, Fas, and Lp/ mRNA expression levels in ad libitum fed 11-month-old Drd2'9"°* and
lacDrd2KO female mice. *, P < .04 vs Drd2'™ (n = 11 and 11, respectively). F, Liver Hs/, Atgl, Fas, and Lp/ mRNA expression levels in ad
libitum—fed 11-month-old Drd2'”®** and lacDrd2KO female mice. *, P < .03 vs Drd2'™°* (n = 6 and 7, respectively).

palatable high-fat food (14) and might contribute to re-
ward hypofunction in obese individuals. These data reveal
the complex participation of dopamine circuits in food
acquisition.

We previously noted that chronic hyperprolactinemia
in female Drd2 ™'~ mice was not accompanied by an in-
crease in body weight or food intake (27). Therefore, we
have now used a selective lactotrope D2R knockout
mouse model to circumvent the overlapping effects of cen-
tral D2R disruption on food intake. We demonstrate that
female mice with selective lactotrope Drd2 disruption and
life-long hyperprolactinemia had increased food intake
and adiposity, suggesting that the hyperphagic effect of
prolactin may be more clearly evidenced when the action
of dopamine on central D2Rs is preserved.

In the lacDrd2KO female mouse, we found increased
prolactin secretion and a preserved GH axis. These data,
together with those reported earlier in the study on male
lacDrd2KO mice (21), indicate that this cell-specific mu-
tant mouse model completely lacks D2R function in pi-
tuitary lactotropes while maintaining normally acting
D2Rs in the nervous system.

In lacDrd2KO female mice, food intake was increased
at 3 months of age and at 5 months body weight was higher
than that for age-matched controls. This difference was

maintained, and by 11 months of age the increase in body
weight was approximately 24%. Progesterone, which
may stimulate food intake (36), was only marginally in-
creased in the present transgenic model. There were no
differences in body length, but a marked increase in fat
mass depots in lacDrd2KO mice. In contrast, we have
previously reported that in adult Drd2™'~ female mice
there are no differences in body weight or food intake
compared with those in paired wild-type adult female mice
(12, 27), and we now also report that fat mass is not in-
creased in the global knockout mouse. Because both mu-
tant mouse strains have chronic hyperprolactinemia, the
observed differences in food intake and adiposity might be
related to the participation of central D2Rs, which are
functional only in the lacDrd2KO model.

In this regard, we found that neural expression of neu-
ropeptides involved in food intake and regulated by pro-
lactin or dopamine was selectively modified in lacDrd2KO
mice. Neuropeptide Y (NPY) is a potent orexigenic neu-
ropeptide and, centrally applied, stimulates food intake
(37). The major sites of its neuronal hypothalamic expres-
sion are the arcuate nucleus and the DMH. Prolactin re-
ceptors are found in NPY-containing neurons in the
DMH, and both suckling (37) and prolactin (38) may ac-
tivate Npy gene expression at this site. In the present ex-
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Figure 6. LacDrd2KO female mice have increased food intake and hypothalamic Npy mRNA
levels. A, Food intake was increased in female lacDrd2KO compared with Drd2'°*'*® mice at 3
(n = 4 and 8, respectively) and 5 (n = 6 and 7, respectively) months of age; P = .0047 for the
effect of genotype. B, Representative immunohistochemical analysis of a section of the
intermediate pituitary stained with anti-aMSH antibody. Immunostained melanotrope number
was similar in 11-month-old female lacDrd2KO and Drd2'9*"**" mice. AL, anterior pituitary lobe;
IL, intermediate lobe; NL, neural lobe. C, Hypothalamic Npy, Ppo, and Pomc mRNA expression
levels in 5- and 11-month-old Drd2'o*°* and lacDrd2KO female mice. *, P = .040 vs

Drd2'o?1oxP (n=petween 5 and 7).

periments, there was an increase in hypothalamic Npy
mRNA in lacDrd2KO female mice in concordance with
increased prolactin levels and food intake. We are aware
of the limitations of measuring gene expression in the
whole hypothalamus, which includes both the arcuate nu-
cleus, DMH, and other nuclei; and different expression
patterns might be found in each neuron subpopulation.
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We also studied the hypothalamic
expression of Ppo, the precursor of
orexins A and B (39). Orexin A does
not merely affect eating behavior but
also has a role in sleep regulation, and
a deficiency in orexin neurotransmis-
sion results in the sleep disorder nar-
colepsy (40). Neurons in the lateral
hypothalamus showing prolactin im-
munoreactivity have been shown to
coexpress orexins (41). We found no
change in hypothalamic Ppo mRNA
levels in lacDrd2KO mice, in contrast
with the decline observed in the global
Drd2™'~ mice (12).

aMSH is a 13-amino acid peptide
produced by posttranslational pro-
cessing of POMC in the intermediate
pituitary lobe and the central ner-
vous system. It reduces food con-
sumption and stimulates catabolism
acting on the melanocortin 3 and 4
receptors. It is expressed primarily in
the arcuate nucleus of the hypothal-
amus and expressed and secreted to
the peripheral circulation by the in-
termediate lobe of the pituitary. Its synthesis and secretion
in the intermediate pituitary is constitutively inhibited by
the D2R (42). In accordance, in total Drd2™'~ and not
lacDrd2KO mice, the intermediate pituitary content of
this anorexigenic peptide was decreased, indicating a
higher release into the circulation (12).

POMC is also an anorexigenic factor, and both «MSH

receptor (Mc4r) and Pomic knockout
mice are obese (43, 44). Hypotha-
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Figure 7. LacDrd2KO female mice have glucose intolerance but conserved insulin sensitivity. A,
Intraperitoneal GTT (2 mg/q) in fasted Drd2'**'*** and lacDrd2KO female mice (n = 6 and 6, for
each group). Two-way ANOVA with repeated-measures design. *, P < .05 vs time matched
Drd2'*°ox* mice. B, Glucose (3 mg/g ip) stimulated insulin secretion in all 7-month-old Drd2'>
loxr female mice and in 3 of 6 lacDrd2KO mice. Differences were not significant by two-way
ANOVA. C, ITT in Drd2'9®°x* and lacDrd2KO female mice: mice were injected with 1 U/kg body
weight human insulin, and blood glucose was measured at different times. No significant
differences were found (n = 7 and 5, respectively).

loss of D2R in the central nervous
system mediates a decrease in Ppo
mRNA levels and an increase in
aMSH levels, and these 2 anorexi-
genic events may offset to some ex-
tent the effect of prolactin on food
intake.
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Furthermore, our data suggest that there may be leptin
resistance in the present hyperprolactinemic model, sim-
ilar to that reported in pregnancy and lactation (3, 45).
Increased fat mass is associated with elevated leptin levels,
and leptin normally increases hypothalamic POMC and
decreases NPY (45, 46) to suppress appetite. The lack of
change in Pomcexpression and the increase in Npy mRNA
levels observed may be related to the high prolactin levels,
which in pregnancy or lactation induce a state of leptin
resistance to meet the metabolic demands of the dams (45).

Marked adipose accumulation was observed in the
lacDrd2KO female mouse. This may be a direct conse-
quence of increased food intake and/or increased fat ab-
sorption or altered energy expenditure. Higher food in-
take and adiposity have been associated with elevated
serum prolactin levels. Prolactin stimulates fat deposition
in female rats, pigeons, and ring doves (31), and hyperp-
rolactinemia in men and nonpregnant women may be ac-
companied by weight gain (47). Furthermore, in prolactin
receptor knockout mice, a reduction in body weight is
associated with a reduction in total abdominal fat, and
prolactin receptors have been described in adipocytes (1).
Nevertheless, life-long hyperprolactinemia was present in
both D2R knockout models and increased adiposity was
not observed in the global knockout mouse. It is plausible
that the GHRH-GH axis, which is impaired in the
Drd2~"~ but not in the lacDrd2KO model (27), may in-
crease insulin sensitivity and prevent adiposity in the first
model as opposed to the second.

Interestingly, in adipose tissue from lacDrd2KO female
mice, we observed an increase in the percentage of large fat
cells. Large adipocytes have been linked to type 2 diabetes
risk (48). Even though there are limitations to the mea-
surements of enzyme mRNA levels, and enzyme phos-
phorylation (hormone-sensitive lipase/phosphorylated
hormone-sensitive lipase ratio) or enzyme activities might
more accurately define the lipogenic or lipolytic status, our
results show that increased storage of lipids might be the
consequence of the decreased lipolytic enzyme expression
found in adipose tissue from lacDrd2KO female mice,
whereas the unexpected decrease in Lp/ mRNA levels both
in adipose tissue and liver in this genotype is probably
associated with high prolactin levels. Prolactin inhibits
lipoprotein lipase activity in human white adipose tissue
and rat hepatocytes (49, 50), and furthermore, lipoprotein
lipase deficiency leads to hypertriglyceridemia (51), as
found in our selective knockout model.

Increased adiposity has been linked to insulin resistance
(52), but even though lacDrd2KO mice had glucose in-
tolerance and decreased insulin response to glucose over-
load, insulin resistance was not seen with the ITT. This
result may be indicative of defective insulin secretion at the
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level of the pancreatic B-cell. Intolerance to glucose is ob-
served in chronic hyperprolactinemic pituitary-grafted
rats (53) and also in prolactin receptor—deficient mice
(54), highlighting the complex and unresolved participa-
tion of prolactin in carbohydrate metabolism.

In conclusion, this work reveals an important role of
prolactin in food intake and adiposity accretion, which
may be fundamental in the metabolic adaptations to preg-
nancy and lactation. Furthermore, our study illustrates the
value of studying cell-specific mutant mice to disentangle
physiological and pathophysiological mechanisms other-
wise masked in null allele mutants or in animals treated
with pervasive pharmacological agents.

Acknowledgments

Address all correspondence and requests for reprints to:
Damasia Becu-Villalobos, Institute of Biology and Experimental
Medicine-Consejo Nacional de Investigaciones Cientificas y
Técnicas, Vuelta de Obligado 2490, Buenos Aires 1428, Argen-
tina. E-mail: dbecu@dna.uba.ar.

This work was supported by the Consejo de Investigaciones
Cientificas y Tecnicas (Grant PIP 640 [2009] to D.B.V.), Agencia
Nacional de Promocion Cientifica y Técnica, Buenos Aires, Ar-
gentina (D.B.V. and M.R.), Fundacién Fiorini (D.B.V.), Inter-
national Research Scholar Grant of the Howard Hughes Medical
(M.R.), and the Tourette Syndrome Association (M.R.).

Disclosure Summary: The authors have nothing to disclose.

References

1. Ben-Jonathan N, LaPensee CR, LaPensee EW. What can we learn from
rodents about prolactin in humans? Endocr Rev. 2008;29:1-41.

2. Woodside B. Prolactin and the hyperphagia of lactation. Physiol
Behav. 2007;91:375-382.

3. Naef L, Woodside B. Prolactin/leptin interactions in the control of
food intake in rats. Endocrinology. 2007;148:5977-5983.

4. Grattan DR. The actions of prolactin in the brain during pregnancy
and lactation. Prog Brain Res. 2001;133:153-171.

5. Freemark M, Fleenor D, Driscoll P, Binart N, Kelly P. Body weight
and fat deposition in prolactin receptor-deficient mice. Endocrinol-
ogy. 2001;142:532-537.

6. Byatt JC, Staten NR, Salsgiver W], Kostelc JG, Collier R]J. Stimu-
lation of food intake and weight gain in mature female rats by bovine
prolactin and bovine growth hormone. Am | Physiol. 1993;264:
E986-E992.

7. Gerardo-Gettens T, Moore B], Stern JS, Horwitz BA. Prolactin stim-
ulates food intake in a dose-dependent manner. Am | Physiol. 1989;
256:R276-R280.

8. Matsuda M, Mori T, Sassa S, Sakamoto S, Park MK, Kawashima S.
Chronic effect of hyperprolactinemia on blood glucose and lipid
levels in mice. Life Sci. 1996;58:1171-1177.

9. Ling C, Hellgren G, Gebre-Medhin M, et al. Prolactin (PRL) receptor
gene expression in mouse adipose tissue: increases during lactation and
in PRL-transgenic mice. Endocrinology. 2000;141:3564-3572.

10. Kelly MA, Rubinstein M, Asa SL, et al. Pituitary lactotroph hyper-

The Endocrine Society. Downloaded from press.endocrine.org by [${individua User.displayName}] on 05 May 2015. at 09:26 For persona use only. No other uses without permission. . All rights reserved.


mailto:dbecu@dna.uba.ar

doi:

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

10.1210/en.2013-1707

plasia and chronic hyperprolactinemia in dopamine D2 receptor-
deficient mice. Neuron. 1997;19:103-113.

Cristina C, Diaz-Torga G, Baldi A, et al. Increased pituitary vascular
endothelial growth factor-A in dopaminergic D2 receptor knockout
female mice. Endocrinology. 2005;146:2952-2962.
Garcia-Tornadu I, Diaz-Torga G, Risso Gs, et al. Hypothalamic
orexin, OX1, aMSH, NPY and MCRs expression in dopaminergic
D2R knockout mice. Neuropeptides. 2009;43:267-274.

Bello EP, Mateo Y, Gelman DM, et al. Cocaine supersensitivity and
enhanced motivation for reward in mice lacking dopamine D2 au-
toreceptors. Nat Neurosci. 2011;14:1033-1038.

Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like
reward dysfunction and compulsive eating in obese rats. Nat Neu-
rosci. 2010;13:635-641.

Palmiter RD. Is dopamine a physiologically relevant mediator of
feeding behavior? Trends Neurosci. 2007;30:375-381.

Phillips AG, Nikaido RS. Disruption of brain stimulation-induced feed-
ing by dopamine receptor blockade. Nature. 1975;258:750-751.
Zigmond MJ, Stricker EM. Deficits in feeding behavior after intra-
ventricular injection of 6-hydroxydopamine in rats. Science. 1972;
177:1211-1214.

Wise RA, Colle LM. Pimozide attenuates free feeding: best scores
analysis reveals a motivational deficit. Psychopharmacology (Berl).
1984;84:446-451.

Ungerstedt U. Adipsia and aphagia after 6-hydroxydopamine in-
duced degeneration of the nigro-striatal dopamine system. Acta
Physiol Scand Suppl. 1971;367:95-122.

Zhou QY, Palmiter RD. Dopamine-deficient mice are severely hy-
poactive, adipsic, and aphagic. Cell. 1995;83:1197-1209.

Noain D, Pérez-Millan MI, Bello EP, et al. Central dopamine D2 receptors
regulate growth-hormone-dependent body growth and pheromone sig-
naling to conspecific males. | Neurosci. 2013;33:5834-5842.

Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-
throughput Cre reporting and characterization system for the whole
mouse brain. Nat Neurosci. 2010;13:133-140.

Luque GM, Pérez-Millan MI, Ornstein AM, Cristina C, Becu-Vil-
lalobos D. Inhibitory effects of antivascular endothelial growth fac-
tor strategies in experimental dopamine-resistant prolactinomas.
J Pharmacol Exp Ther. 2011;337:766-774.

Lacau-Mengido IM, Mejia M, Diaz-Torga G, et al. Endocrine stud-
ies in ivermectin-treated heifers from birth to puberty. | Anim Sci.
2000;78:1-8.

Waxman D], Holloway MG. Sex differences in the expression of he-
patic drug metabolizing enzymes. Mol Pharmacol. 2009;76:215-228.
Ramirez MC, Luque GM, Ornstein AM, Becu-Villalobos D. Differ-
ential neonatal testosterone imprinting of GH-dependent liver proteins
and genes in female mice. | Endocrinol. 2010;207:301-308.
Diaz-Torga G, Feierstein C, Libertun C, et al. Disruption of the D2
dopamine receptor alters GH and IGF-I secretion and causes dwarf-
ism in male mice. Endocrinology. 2002;143:1270-1279.

Cone RD. The central melanocortin system and energy homeostasis.
Trends Endocrinol Metab. 1999;10:211-216.

Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low M]. The
arcuate nucleus as a conduit for diverse signals relevant to energy homeo-
stasis. [nt | Obes Relat Metab Disord. 2001;25(suppl 5):S63-S67.
Garcia MC, Lopez M, Gualillo O, Seoane LM, Diéguez C, Sefaris
RM. Hypothalamiclevels of NPY, MCH, and prepro-orexin mRNA
during pregnancy and lactation in the rat: role of prolactin. FASEB
J.2003;17:1392-1400.

Ben-Jonathan N, Hugo ER, Brandebourg TD, LaPensee CR. Focus
on prolactin as a metabolic hormone. Trends Endocrinol Metab.
2006;17:110-116.

Sauvé D, Woodside B. The effect of central administration of pro-
lactin on food intake in virgin female rats is dose-dependent, occurs
in the absence of ovarian hormones and the latency to onset varies
with feeding regimen. Brain Res. 1996;729:75-81.

Narayanan NS, Guarnieri DJ, DiLeone R]. Metabolic hormones,

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

endo.endojournals.org 839

dopamine circuits, and feeding. Front Neuroendocrinol. 2010;31:
104-112.

Hnasko TS, Perez FA, Scouras AD, et al. Cre recombinase-mediated
restoration of nigrostriatal dopamine in dopamine-deficient mice
reverses hypophagia and bradykinesia. Proc Natl Acad Sci USA.
2006;103:8858-8863.

Schwartz MW, Woods SC, Porte D Jr, Seeley R], Baskin DG. Central
nervous system control of food intake. Nature. 2000;404:661-671.
Hirschberg AL. Sex hormones, appetite and eating behaviour in
women. Maturitas. 2012;71:248-256.

Chen P, Smith MS. Regulation of hypothalamic neuropeptide Y
messenger ribonucleic acid expression during lactation: role of pro-
lactin. Endocrinology. 2004;145:823-829.

Li C, Chen P, Smith MS. Neuropeptide Y and tuberoinfundibular
dopamine activities are altered during lactation: role of prolactin.
Endocrinology. 1999;140:118-123.

Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors:
a family of hypothalamic neuropeptides and G protein-coupled re-
ceptors that regulate feeding behavior. Cell. 1998;92:573-585.
Taheri S, Zeitzer JM, Mignot E. The role of hypocretins (orexins) in sleep
regulation and narcolepsy. Annu Rev Neurosci. 2002;25:283-313.
Risold PY, Griffond B, Kilduff TS, Sutcliffe JG, Fellmann D. Pre-
prohypocretin (orexin) and prolactin-like immunoreactivity are co-
expressed by neurons of the rat lateral hypothalamic area. Neurosci
Lett. 1999;259:153-156.

Cote TE, Felder R, Kebabian JW, et al. D-2 dopamine receptor-
mediated inhibition of pro-opiomelanocortin synthesis in rat inter-
mediate lobe. Abolition by pertussis toxin or activators of adenylate
cyclase. | Biol Chem. 1986;261:4555-4561.

Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in
the mouse model of pro-opiomelanocortin deficiency responds to
peripheral melanocortin. Nat Med. 1999;5:1066-1070.

Chen AS, Metzger JM, Trumbauer ME, et al. Role of the melano-
cortin-4 receptor in metabolic rate and food intake in mice. Trans-
genic Res. 2000;9:145-154.

Augustine RA, Ladyman SR, Grattan DR. From feeding one to feed-
ing many: hormone-induced changes in bodyweight homeostasis
during pregnancy. | Physiol. 2008;586:387-397.

Schwartz MW, Seeley R], Woods SC, et al. Leptin increases hypo-
thalamic pro-opiomelanocortin mRNA expression in the rostral ar-
cuate nucleus. Diabetes. 1997;46:2119-2123.

Doknic M, Pekic S, Zarkovic M, et al. Dopaminergic tone and obe-
sity: an insight from prolactinomas treated with bromocriptine. Eur
J Endocrinol. 2002;147:77-84.

Laurencikiene J, Skurk T, Kulyté A, et al. Regulation of lipolysis in
small and large fat cells of the same subject. ] Clin Endocrinol Metab.
2011;96:E2045-E2049.

Ling C, Svensson L, Odén B, et al. Identification of functional pro-
lactin (PRL) receptor gene expression: PRL inhibits lipoprotein
lipase activity in human white adipose tissue. | Clin Endocrinol
Metab. 2003;88:1804-1808.

Julve J, Robert MQ, Llobera M, Peinado-Onsurbe J. Hormonal
regulation of lipoprotein lipase activity from 5-day-old rat hepato-
cytes. Mol Cell Endocrinol. 1996;116:97-104.

Weinstock PH, Bisgaier CL, Aalto-Setild K, et al. Severe hypertri-
glyceridemia, reduced high density lipoprotein, and neonatal death
in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with
impaired very low density lipoprotein clearance in heterozygotes.
J Clin Invest. 1995;96:2555-2568.

Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to
insulin resistance and type 2 diabetes. Nature. 2006;444:840—846.
Reis FM, Reis AM, Coimbra CC. Effects of hyperprolactinaemia on
glucose tolerance and insulin release in male and female rats. | En-
docrinol. 1997;153:423-428.

Freemark M, Avril I, Fleenor D, et al. Targeted deletion of the PRL
receptor: effects on islet development, insulin production, and glu-
cose tolerance. Endocrinology. 2002;143:1378-1385.

The Endocrine Society. Downloaded from press.endocrine.org by [${individua User.displayName}] on 05 May 2015. at 09:26 For persona use only. No other uses without permission. . All rights reserved.



