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Riemannian metrics on an infinite dimensional
symplectic group

Manuel López Galván∗

Abstract

The aim of this paper is the geometric study of the symplectic op-
erators which are a perturbation of the identity by a Hilbert-Schmidt
operator. This subgroup of the symplectic group was introduced in
Pierre de la Harpe’s classical book of Banach-Lie groups. Throughout
this paper we will endow the tangent spaces with different Rieman-
nian metrics. We will use the minimal curves of the unitary group and
the positive invertible operators to compare the length of the geodesic
curves in each case. Moreover we will study the completeness of the
symplectic group with the geodesic distance.

1 Introduction

The symplectic group has many applications in quantum theory with in-
finitely many degrees of freedom, i.e. in canonical quantum field theory,
string theory, statistical quantum physics and solition theory. According to
Shale’s definitions [17], if we have a quantization R(.) of the real Hilbert
space Σ(H) it is of interest to determine the subgroups of the symplectic
group consisting of those g for which exists an unitary transformation Y (g)
such that R(gz) = Y (g)R(z)Y (g)−1 for all z ∈ H. Let |g| := (g∗g)1/2

be the absolute value operator, in [17] it was proved that in the case of
Fock-Cook quantization (see [5] for some background) the subgroup is {g :
|g| − 1 is Hilbert-Schmidt}.
In this paper we study a variant of this subgroup, in which g is only a
perturbation of the identity by a Hilbert-Schmidt operator. In classical finite
dimensional Riemannian theory it is well known the fact that given two points
there is a minimal geodesic curve that joins them and this is equivalent to
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the completeness of the metric space with the geodesic distance; this is the
Hopf-Rinow theorem. In the infinite dimensional case this is no longer true.
In [15] and [3], McAlpin and Atkin showed in two examples how this theorem
can fail. The main result of this paper establishes that if we consider the left
invariant metric in the restricted symplectic group then its geodesic distance
makes of the group a complete metric space. In the process to do it, we use
the existence of a smooth polar decomposition in the group; this will allow
us to define a mixed metric related to the unitary and positive part of the
group. In this way we will use minimality results of the restricted unitary
group U2(H) (see [2]) and we also prove some geometric properties of the
symplectic positive operators with different Riemannian metrics.

2 Background and definitions

Let H be an infinite dimensional real Hilbert space and let B(H) be the space
of bounded operators. Denote by B2(H) the Hilbert-Schmidt class

B2(H) = {a ∈ B(H) : Tr(a∗a) < ∞}

where Tr is the usual trace in B(H). This space is a Hilbert space with the
inner product

< a, b >= Tr(b∗a).

The norm induced by this inner product is called the 2-norm and denoted by

‖a‖2 = Tr(a∗a)1/2.

The usual operator norm will be denoted by ‖ ‖.
If A ⊂ B(H) is any subset of operators we use the subscript h (resp ah) to
denote the subset of Hermitian (resp. anti-Hermitian) operators of it, i.e.
Ah = {x ∈ A : x∗ = x} and Aah = {x ∈ A : x∗ = −x}.
We fix a complex structure; that is a linear isometry J ∈ B(H) such that,

J2 = −1 and J∗ = −J.

The symplectic form w is given by w(ξ, η) = 〈Jξ, η〉.
We denote by GL(H) the group of invertible operators, with GL(H)+ the
space of positive invertible operators, and by Sp(H) the subgroup of in-
vertible operators which preserve the symplectic form, that is g ∈ Sp(H) if
w(gξ, gη) = w(ξ, η). Algebraically

Sp(H) = {g ∈ GL(H) : g∗Jg = J} .
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This group is a Banach-Lie group and its Banach-Lie algebra is given by

sp(H) = {x ∈ B(H) : xJ = −Jx∗} .

Denote by HJ the Hilbert space H with the action of the complex field C

given by J , that is; if λ = λ1 + iλ2 ∈ C and ξ ∈ H we can define the action
as λξ := λ1ξ + λ2Jξ and the complex inner product as < ξ, η >C=< ξ, η >
−iw(ξ, η).
Denote by B(HJ) the space of bounded complex linear operators in HJ . A
straightforward computation shows that B(HJ ) consists of the elements of
B(H) which commute with J .
One property that we will use in this paper is the stability of the adjoint
operation. We give a short proof of this fact.

Proposition 2.1. If g ∈ Sp(H) then g∗ ∈ Sp(H).

Proof. The proof is a short computation using the definition, indeed if g ∈
Sp(H) then g∗J = Jg−1 and times by gJ we obtain gJg∗J = −1 then
gJg∗ = J .

The above proposition leads us to one of the most important properties of
the symplectic group, that is the stability under polar decompositions.

Corollary 2.2. If u|g| is the polar decomposition of an element in Sp(H)
then its unitary part u and its positive part |g| belong in Sp(H).

We consider now the restricted subgroup of Sp(H)

Sp2(H) = {g ∈ Sp(H) : g − 1 ∈ B2(H)} .

Since B2(H) is a Banach algebra, it is clear that this subgroup is also stable
for the adjoint operation and for the polar decomposition; we denote by

U2(HJ) = {g ∈ U2(H) : gJ = Jg} and

Sp+
2 (H) = {g ∈ Sp2(H) : g > 0}

its unitary part and positive part respectively where U2(H) is the classical
unitary group whose elements are Hilbert-Schmidt perturbations of the iden-
tity operator 1. It is obvious that the unitary part is a closed subgroup of
Sp2(H). In the infinite dimensional setting, this does not guarantee a nice
submanifold structure; in Proposition 3.3 we will prove that U2(HJ) is a
Banach-Lie subgroup of Sp2(H).
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Throughout this paper, if M is any submanifold of the symplectic group, we
will denote by b(g, v) the metric in each tangent space TgM . The length of
a smooth curve measured with the metric b will be denoted by

Lb(α) =

∫ 1

0

b(α(t), α̇(t))dt.

We define the geodesic distance between two points p, q ∈ M ⊆ Sp2(H) as
the infimum of the length of all piecewise smooth curves in M joining p to q,

db(p, q) = inf {Lb(α) : α ⊂ M,α(0) = p, α(1) = q} .

3 Local structure of Sp2(H)

Some of the following facts are have been well-known for general Schatten
ideals, more precisely the Banach-Lie group structure was noted in the book
[9]. Here we will complete some details for our case of the Hilbert-Schmidt
ideal.
Given g1, g2 ∈ Sp2(H), it is obvious that g1 − g2 belongs in B2(H); hence we
can endow the restricted symplectic group with the metric ‖g1 − g2‖2.

Proposition 3.1. The metric space (Sp2(H), ‖.‖2) is complete.

Proof. Let (xn) ⊂ Sp2(H) be a Cauchy sequence, then xn − 1 is a Cauchy
sequence in B2(H). From this, we can take x ∈ B2(H) such that xn −→ 1 +
x := x0 in ‖.‖2. It is clear that x0 verifies the algebraic relation x∗

0Jx0 = J ; to
complete the proof we will see that x0 is invertible. Indeed, from x∗

n ∈ Sp2(H)
we have xnJx

∗
n = J , then this relation is transferred through the limit to x0.

We can now define the inverse of x0 as x−1
0 := −Jx∗

0J , it verifies:

x−1
0 x0 = −Jx∗

0Jx0 = 1 and x0x
−1
0 = x0(−Jx∗

0J) = 1.

3.1 Differentiable structure

Now we will show that Sp2(H) has differentiable structure. Let us denote

sp2(H) = {x ∈ B2(H) : xJ = −Jx∗} .

It is clear that sp2(H) is a Banach-Lie subalgebra of B2(H).

Lemma 3.2. Sp2(H) is a Banach-Lie group.
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Proof. Let exp : B2(H) → 1+B2(H) be exp(x) = ex the exponential map. If
we compute the exponential on sp2(H), its image belongs in Sp2(H). Indeed,
if x verifies xJ = −Jx∗ then exJ = Je−x∗

= J(ex
∗

)−1 and thus exJex
∗

= J ;
moreover we have that ex−1 = x+x2/2+ ... ∈ B2(H). Since the exponential
is a local diffeomorphism (d0 exp = Id) there exists r < 1 such that

U = {x = log(g) : ‖g − 1‖2 < r}
exp
−→ V = {g ∈ 1 + B2(H) : ‖g − 1‖2 < r}

is an analytic diffeomorphism.
On the other hand if g ∈ Sp2(H) meets ‖g− 1‖2 < r (r < 1) the exponential
is a diffeomorphism and then its inverse is given by the logarithmic series
x = log(g) =

∑∞
n=1(−1)n (1−g)n

n
∈ B2(H) and satisfies the condition xJ =

−Jx∗. Therefore exp is one to one between U ∩ sp2(H) and V ∩Sp2(H). We
have found a local chart around 1. This construction can be translated to
any point in Sp2(H) using the left action of Sp2(H) on itself.

Since the exponential map exp : B2(HJ)ah → U2(HJ ) is surjective (see [2]),
it is clear that exp(sp2(H)ah) = U2(HJ).

Proposition 3.3. The unitary subgroup U2(HJ) is a Lie-subgroup of Sp2(H).

Proof. Let U be a neighboord of 0 in sp2(H) such that the exponential map
is a diffeomorphism, we can assume that U = {x ∈ sp2(H) : ‖x‖2 < r} for a
suitable r > 0. It is clear that we always have

exp(sp2(H)ah ∩ U) ⊆ U2(HJ) ∩ exp(U).

Conversely, suppose that g ∈ U2(HJ) ∩ exp(U) then g = ey for some y ∈ U ;
hence 1 = gg∗ = eyey

∗

and then ey = e−y∗ . Since −y∗ also belongs in U and
the exponential is one to one, we have that y = −y∗ and thus y ∈ sp2(H)ah.
Then we have exp(sp2(H)ah ∩ U) = U2(HJ) ∩ exp(U) and this implies that
U2(HJ) is a Lie-subgroup of Sp2(H) (see Prop. 4.4 in the book [4]).

4 The left invariant metric of Sp2(H)

Again, using the left action of Sp2(H) on itself, the tangent space at g ∈
Sp2(H) is

(TSp2(H))g = g.sp2(H) ⊂ B2(H).

We introduce the left invariant metric for v ∈ (TSp2(H))g by

I(g, v) := ‖g−1v‖2.
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This metric comes from the inner product

〈v, w〉g =
〈

g−1v, g−1w
〉

= tr((gg∗)−1vw∗).

In the followings steps we recall the metric spray of GL2(H) with the left
invariant metric, for more details see [1]. We will follow the notation of
Lang’s book [12]. For the metric expression g 7−→ Ig where Igv = (gg∗)−1v
we obtain the metric spray (see [14])

Fg(v) = vg−1v + gv∗Igv − vv∗(g∗)−1.

Using the polarization formula

Γg(v, w) = 1/2 {Fg(v + w)− Fg(v)− Fg(w)}

we obtain the bilinear form associated to the spray, that is for g ∈ GL2(H)
and v = gx, w = gy ∈ TgGL2(H),

2g−1Γg(gx, gy) = xy + yx+ x∗y + y∗x− xy∗ − yx∗.

The covariant derivative of the spray is Dtη = η̇−Γ(η, α̇) where α : (−ǫ, ǫ) →
GL2(H) is any smooth curve and η is a tangent field along α.

Proposition 4.1. If η is a field along a curve α we define β = α−1α̇ and µ =
α−1η, the fields at the identity, then the covariant derivate can be expressed
by

α−1Dtη = µ̇+ 1/2{[β, µ] + [β, µ∗] + [µ, β∗]}.

Proof. From the covariant derivate formula, we have

α−1Dtη = α−1η̇ − α−1Γ(αµ, αβ).

If we write η = αµ and α̇ = αβ, using the product rule to differentiate η we
obtain

α−1η̇ = α−1α̇µ+ µ̇ = βµ+ µ̇.

The above formula can be restricted to Sp2(H) preserving the tangent fields,
that is, Sp2(H) ⊂ GL2(H) is totally geodesic.

Proposition 4.2. If α ⊂ Sp2(H) is a curve and η a field along α then

Dtη ∈ (TSp2(H))α = α.sp2(H).
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Proof. Let β = α−1α̇ and µ = α−1η be the fields moved to sp2(H), we will
show that α−1Dtη ⊂ sp2(H). Indeed µ verifies µJ = −Jµ∗, if we derive,
we obtain µ̇J = −Jµ̇∗ and µ̇ is a Hilbert-Schmidt operator and that lies
in sp2(H). The brackets [β, µ], [β, µ∗], [µ, β∗] are all in sp2(H) since it is a
Banach-Lie algebra, then using the above proposition

α−1Dtη = µ̇+ 1/2{[β, µ] + [β, µ∗] + [µ, β∗]} ⊂ sp2(H).

This shows that the Riemannian connection given by the left invariant metric
in the group Sp2(H) matches the one ofGL2(H). Particularly the geodesics of
Sp2(H) are the same than those GL2(H); if g0 ∈ Sp2(H) and g0v0 ∈ g0.sp2(H)
are the initial position and the initial velocity then

α(t) = g0e
tv∗

0 et(v0−v∗
0
) ⊂ Sp2(H)

satisfies Dtα̇ = 0 (see [1]). In this context the Riemannian exponential for
g ∈ Sp2(H) is

Expg(v) = gev
∗

ev−v∗

with v ∈ sp2(H).

5 Metric structure in Sp+2 (H)

5.1 Sp+2 (H) as a submanifold of GL(H)+

It is not difficult to prove using the functional calculus that the exponential
map can be restricted to the Lie-algebra sp2(H)h making it diffeomorphic to
Sp+

2 (H); in this way
exp : sp2(H)h −→ Sp+

2 (H)

is a diffeomorphism. From the stability of the adjoint operation in Sp2(H)
(Proposition 2.1) we can restrict the natural action of the invertible group
to the set of positive invertible operators.

Lemma 5.1. The natural action l : Sp2(H)× Sp+
2 (H) −→ Sp+

2 (H) given by

(g, a) 7−→ gag∗

is well defined and transitive.

Proof. The map (g, a) 7−→ gag∗ is well defined as a direct consequence of
Proposition 2.1; it is clear that gag∗ ∈ Sp2(H) and it is positive. If X, Y ∈
Sp+

2 (H), we can assume thatX = ex, Y = ey where x, y ∈ sp2(H)h; then if we
consider the operator g = ex/2e−y/2 ∈ Sp2(H) it verifies that X = gY g∗.
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Now we endow the closed submanifold Sp+
2 (H) with a Riemannian metric;

if a ∈ Sp+
2 (H) and x ∈ TaSp

+
2 (H) =

{

a1/2 ln(a−1/2qa−1/2)a1/2 : q ∈ Sp+
2 (H)

}

we put the metric of positive operators (see [7] and [16]) given by

p(a, x) := ‖a−1/2xa−1/2‖2.

Remark 5.2. The above metric is invariant under the action of the group
Sp2(H), that is: if x ∈ TaSp

+
2 (H) then

p(gag∗, gxg∗) = p(a, x).

The curve γpq(t) = p1/2(p−1/2qp−1/2)tp1/2 = p1/2et(ln(p
−1/2qp−1/2))p1/2 ⊂ Sp+

2 (H)
joins p to q and its length is

Lp(γpq) = ‖ ln(p−1/2qp−1/2)‖2.

This curve is minimal among all curves in Sp+
2 (H) that join p to q. We will

give a short proof of this fact, the key is the following inequality.

Remark 5.3. (See [11]) If d expx denotes the differential of exponential at
x of the usual exponential map, then

p(ex, d expx(y)) = ‖e−x/2d expx(y)e
−x/2‖2 ≥ ‖y‖2. (5.1)

for any x, y ∈ B2(H)h.

Theorem 5.4. Let p, q ∈ Sp+
2 (H) then γpq ⊂ Sp+

2 (H) has minimal length
among all curves that joins p to q.

Proof. We can suppose that p = 1, then γ1q(t) = etx where x = ln(q) and its
length is ‖x‖2 = ‖ ln(q)‖2. If α is another curve that joins the same points,
then it can be written as α(t) = eβ(t) where β(t) = ln(α(t)) ⊂ sp2(H)h. Using
the above remark we have

Lp(γ1q) = ‖x− 0‖2 = ‖

∫ 1

0

β̇(t)dt‖2 ≤

∫ 1

0

‖β̇(t)‖2dt

and also
p(α, α̇) = p

(

eβ(t), d expβ(t)(β̇(t))
)

= ‖e−β(t)/2d expβ(t)(β̇(t))e
−β(t)/2‖2 ≥ ‖β̇(t)‖2.

It can be shown that the metric space (Sp+
2 (H), dp) is complete. This fact

was proved in [8] or [13] in another context; in this context we also can derive
from (5.1) the known inequality

dp(p, q) ≥ ‖ log p− log q‖2

for p, q ∈ Sp+
2 (H); the proof of completeness can be adapted easily, therefore

we omit them.
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5.2 Sp+2 (H) as submanifold of the ambient space

Here we will think Sp+
2 (H) as a submanifold of the real Hilbert space HR :=

R⊕ B2(H)h with the natural inner product

< λ+ a, µ+ b >= λµ+ Tr(b∗a).

From the action given by Lemma 5.1 we can define for each a ∈ Sp+
2 (H) the

map
πa : Sp2(H) → Sp+

2 (H), πa(g) = gag∗.

Observe that, since the action is transitive this map is onto and as in the
case of the full space of positive invertible operators B(H)+(see [6]), we have
that σa(b) = b1/2a−1/2 defines a global smooth section of πa. Note that this
map is well defined and its image belongs clearly to Sp2(H).
If g is any element in Sp+

2 (H), we can consider the real linear map

Πg : HR −→ HR, x 7−→
1

2

(

x+ gJxJg
)

.

This map is well defined and a short computation shows that the range
belongs to B2(H)h.

Lemma 5.5. The map Πg is idempotent and its range is g1/2sp2(H)hg
1/2.

Moreover, its adjoint map for the trace inner product is Πg−1. If g = 1 this
map is the orthogonal projection onto sp2(H)h.

Proof. First we prove that Πg is an idempotent map. Indeed, using the fact
that gJg = J ,

Π2
g(x) = Πg(

1

2

(

x+ gJxJg
)

) =
1

4

(

x+ gJxJg + gJ(x+ gJxJg)Jg
)

=

=
1

4

(

x+ 2gJxJg + (gJg)JxJ(gJg)
)

= Πg(x).

Now we will prove that Ran(Πg) = g1/2sp2(H)hg
1/2. Indeed, let g1/2xg1/2

with x ∈ sp2(H)h, then using that g1/2Jg1/2 = J (that is g1/2 ∈ Sp+
2 (H)) and

the relation of x with J we have

Πg(g
1/2xg1/2) =

1

2

(

g1/2xg1/2 + g1/2g1/2Jg1/2xg1/2Jg
)

= g1/2xg1/2.

Finally, note that the range is contained in g1/2sp2(H)hg
1/2;

1

2
(x+ gJxJg) = g1/2

1

2

(

g−1/2xg−1/2 + g1/2JxJg1/2
)

g1/2.

9



To conclude we must show that the expression in the bracket anti-commutes
with J , here we will use that J2 = −1 and the relation g1/2J = Jg−1/2 :

(

g−1/2xg−1/2 + g1/2JxJg1/2
)

J = −g−1/2JJxJg1/2 − Jg−1/2xg−1/2 =

= −J
(

g1/2JxJg1/2 + g−1/2xg−1/2
)

.

Now we will show that Π∗
g = Πg−1 ; first note that if x, y ∈ HR by the invariant

and cyclic properties of the trace we have

Tr(ygJxJg) = Tr(−JygJxJgJ) = Tr(JygJxg−1) = Tr(g−1JygJx)

= Tr(g−1JyJg−1x).

Then the inner product is

< Πg(x), y >= Tr

(

y
(1

2
(x+ gJxJg)

)

)

=
1

2
Tr

(

yx+ ygJxJg
)

=

=
1

2

(

Tr(yx) + Tr(g−1JyJg−1x)
)

.

On the other hand, we have

< x,Πg−1(y) >= Tr

(

1

2

(

y+g−1JyJg−1
)

x

)

=
1

2

(

Tr(yx)+Tr(g−1JyJg−1x)
)

.

5.2.1 Linear connection and geodesics

It is natural to consider a Hilbert-Riemann metric in Sp+
2 (H), which consists

of endowing each tangent space with the trace inner product. Therefore
the Levi-Civita connection of this metric is given by differentiating in the
ambient space HR and projecting onto TSp+

2 (H). For this, we define the
positive ambient metric as;

pamb(g, x) := ‖x‖2

were x ∈ TgSp
+
2 (H). Using the formula of the projector over its range and

Lemma 5.5, we can calculate the orthogonal projection onto TgSp
+
2 (H); that

is

ETgSp
+

2
(H) = Πg(Πg+Π∗

g−1)−1 = (Πg+Π∗
g−1)−1Π∗

g = (Πg+Πg−1−1)−1Πg−1 .

Then, if γ is a smooth curve in Sp+
2 (H) and X (t) is a smooth tangent field

along γ the covariant derivative is

D

dt
X (t) = Eγ(t)(Ẋ (t)).
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Proposition 5.6. A curve α is a geodesic of the Levi-Civita connection if
and only if it satisfies the differential equation

αα̈α+ Jα̈J = 0.

Proof. Using the last expression of the orthogonal projection E, we have

D

dt
α̇(t) = 0 ⇔ Πα−1(t)(α̈(t)) = 0 ⇔ α̈ + α−1Jα̈Jα−1 = 0.

The study of this equation will appear elsewhere.

5.2.2 Completeness of Sp+
2 (H) with the geodesic distance

Here we study the completeness of the metric space (Sp+
2 (H), dpamb

). It is
easy to verify that if we have any curve γ ⊂ Sp+

2 (H) that joins a to b, then

‖a− b‖2 ≤

∫ 1

0

‖γ̇(t)‖2dt = Lpamb
(γ).

From this inequality we have that

‖a− b‖2 ≤ dpamb
(a, b), for all a, b ∈ Sp+

2 (H). (5.2)

The key to prove the completeness will be the Proposition 3.1 and the exis-
tence of smooth sections σa.

Proposition 5.7. The metric space (Sp+
2 (H), dpamb

) is complete.

Proof. Let (xn) be a Cauchy sequence for the metric dpamb
, from equation

(5.2) we have that (xn) is a Cauchy sequence in ‖.‖2 and then from Proposi-
tion 3.1 we can take x ∈ Sp+

2 (H) such that ‖xn−x‖2 → 0. Using the continu-
ity of the global section σx, we have that ‖σx(xn)−1‖2 = ‖σx(xn)−σx(x)‖2 →
0. For n large we can take zn ∈ sp2(H) such that σx(xn) = ezn and then it is
clear using the previous fact that ‖zn‖2 → 0. Let γn(t) = etznxetzn

∗

be a curve
in Sp+

2 (H) that joins γn(0) = x and γn(1) = eznxezn
∗

= πx(σx(xn)) = xn;
then if we compute its length,

Lpamb
(γn) =

∫ 1

0

‖γ̇n(t)‖2dt =

∫ 1

0

‖zne
tznxetz

∗
n + etznxz∗ne

tz∗n‖2dt

≤ 2‖zn‖2‖x‖e
‖zn‖ → 0.

Then
dpamb

(xn, x) ≤ Lpamb
(γn) → 0.
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6 A Polar Riemannian structure

The polar decomposition of g ∈ Sp2(H) induces a diffeomorphism

Sp2(H)
ϕ

−→ U2(HJ)× Sp+
2 (H), g 7−→ (u, |g|).

This fact was noted in Prop.14 (iv) on page 98 of the book [9]. The unitary
group U2(HJ) is a Riemannian manifold with the metric given by the trace.
We can endow the product manifold U2(HJ)×Sp+

2 (H) with the usual product
metric, that is: if v = (x, y) ∈ TuU2(HJ )× T|g|Sp

+
2 (H) we put

P
(

(u, |g|), v
)

:=

(

‖u−1x‖22 + p(|g|, y)2
)1/2

=

(

‖x‖22 + ‖|g|−1/2y|g|−1/2‖22

)1/2

. (6.3)

This is the product metric in the Riemannian manifold U2(HJ) × Sp+
2 (H).

The map ϕ is an immersion, from this we can define a new Riemannian
metric in the group in the following way: if v, w ∈ (TSp2(H))g we put

〈v, w〉g := 〈dϕg(v), dϕg(w)〉(u,|g|).

It is clear that ϕ is an isometric map with the above metric and if α is any
curve in the group Sp2(H) we can measure its length as LP(ϕ ◦ α).

Theorem 6.1. Let g ∈ Sp2(H) with polar decomposition u|g| and suppose
that u = ex with x ∈ sp2(H)ah and ‖x‖ ≤ π, then the curve α(t) = etx|g|t ⊂
Sp2(H) has minimal length among all curves joining 1 to g, if we endow
Sp2(H) with the polar Riemannian metric (6.3).

Proof. By the polar decomposition, ϕ ◦ α(t) = (etx, |g|t) and its length is

LP(ϕ ◦ α) =

∫ 1

0

P
(

(etx, |g|t), (xetx, ln |g||g|t)
)

dt =
(

‖x‖22 + ‖ ln |g|‖22
)1/2

.

Let β be another curve that joins the same endpoints and suppose that
β = β1β2 is its polar decomposition where β1 ⊂ U2(HJ) and β2 ⊂ Sp+

2 (H),
then

LP(ϕ ◦ β) =

∫ 1

0

P
(

(β1, β2), (β̇1, β̇2)
)

dt =

∫ 1

0

(

‖β̇1‖
2
2 + p(β2, β̇2)

2
)1/2

dt.

Using the Minkowski inequality (see inequality 201 of [10]) we have,

∫ 1

0

(

‖β̇1‖
2
2 + p(β2, β̇2)

2
)1/2

dt ≥

({
∫ 1

0

‖β̇1‖2

}2

+

{
∫ 1

0

p(β2, β̇2)

}2)1/2
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=

(

L2(β1)
2 + Lp(β2)

2

)1/2

.

It is know that the geodesic curve etx has minimal length among all smooth
curves in U2(HJ) joining the same endpoints (see [2]); using this fact and
from Theorem 5.4 we have,

L2(β1) ≥ L2(e
tx) = ‖x‖2 and Lp(β2) ≥ Lp(e

t ln(|g|) = ‖ ln |g|‖2

then it is clear that LP(ϕ ◦ β) ≥ LP(ϕ ◦ α).

Remark 6.2. Let p, q ∈ Sp2(H), suppose that up|p| and uq|q| are their polar
decompositions, from the surjectivity of the exponential map we can choose
z ∈ sp2(H)ah such that uq = upe

z with ‖z‖ ≤ π, then the curve

αp,q(t) = upe
tz|p|1/2(|p|−1/2|q||p|−1/2)t|p|1/2 ⊂ Sp2(H)

has minimal length among all curves joining p to q.

The above fact shows that the curve αp,q is a geodesic of the Levi-Civita
connection of the polar metric. Its length is

(

‖z‖22 + ‖ ln |p|−1/2|q||p|−1/2‖
2

2

)1/2

.

From this, the geodesic distance is

dP(p, q) =
(

d2(up, uq)
2 + dp(|p|, |q|)

2
)1/2

.

Special case: normal speed. If the initial condition v ∈ sp2(H) is
normal, then the geodesics starting at the identity map coincide with the
geodesics from polar metric. Indeed, if v = x + y is the decomposition in
sp2(H)h ⊕ sp2(H)ah and v is normal a straightforward computation shows
that x commutes with y, thus we have

etv
∗

et(v−v∗) = etv = etxety.

This equation shows that the geodesic are one-parameter groups when the
initial speed is normal.

Proposition 6.3. The metric space (Sp2(H), dP) is complete.

13



Proof. Let (xn) ⊂ Sp2(H) be a Cauchy sequence with dP , if xn = uxn|xn| is
its polar decomposition, we have that

d2(uxn, uxm) ≤ dP(xn, xm) =
(

d2(uxn, uxm)
2 + dp(|xn|, |xm|)

2
)1/2

then the unitary part is a Cauchy sequence in (U2(HJ), d2) and by [2] it
is d2 convergent to an element u ∈ U2(HJ). Analogously the positive part
is a Cauchy sequence in (Sp+

2 (H), dp) then it is convergent to an element
g ∈ Sp+

2 (H). If we put x := ug ∈ Sp2(H) then,

dP(xn, x) =
(

d2(uxn, u)
2 + dp(|xn|, g)

2
)1/2

→ 0.

In the next steps we will compare the geodesic distance measured with the
polar metric versus the left invariant metric. To do it we need the following
proposition first.

Proposition 6.4. Given p, q ∈ Sp2(H), if we denote v := |p|−1/2|q||p|−1/2

we can estimate the geodesic distance dI by the geodesic distance dP as,

dI(p, q) ≤ c(p, q)dP(p, q)

where
c(p, q)2 = 2max

{

e4‖ ln(v)‖
(

‖p‖‖p−1‖
)2
, ‖p‖‖p−1‖

}

.

Proof. The proof consist of estimate LI(αp,q); if we derive αp,q we have,

α̇p,q = upze
tz|p|1/2et ln(v)|p|1/2 + upe

tz|p|1/2 ln(v)et ln(v)|p|1/2

and the inverse of the curve αp,q is

α−1
p,q = |p|−1/2e−t ln(v)|p|−1/2e−tzu−1

p .

After some simplifications we can write

α−1
p,qα̇p,q = |p|−1/2e−t ln(v)|p|−1/2z|p|1/2et ln(v)|p|1/2 + |p|−1/2 ln(v)|p|1/2.

Let x := |p|1/2et ln(v)|p|1/2, taking the norm and using the parallelogram rule
we have,

‖α−1
p,qα̇p,q‖

2
2 = ‖x−1zx+ |p|−1/2 ln(v)|p|1/2‖22

≤ 2
(

‖x−1zx‖22 + ‖|p|−1/2 ln(v)|p|1/2‖22
)

≤ 2
(

‖x−1‖2 ‖x‖2 ‖z‖22 + ‖|p|−1/2‖2 ‖ ln(v)‖22 ‖|p|1/2‖2
)

. (6.4)
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We can estimate ‖x‖2 and ‖x−1‖2 by

‖x‖2 ≤ ‖|p|1/2‖4 e2‖ ln(v)‖ = ‖p‖2e2‖ ln(v)‖

and
‖x−1‖2 ≤ ‖|p|−1/2‖4 e2‖ ln(v)‖ = ‖p−1‖2e2‖ ln(v)‖.

If we define

c(p, q)2 = 2max
{

e4‖ ln(v)‖
(

‖p‖‖p−1‖
)2
, ‖p‖‖p−1‖

}

.

from (6.4) and taking square roots we have,

‖α−1
p,qα̇p,q‖2 ≤ c(p, q)

(

‖z‖22 + ‖ ln(v)‖22
)1/2

= c(p, q)dP(p, q),

then
dI(p, q) ≤ LI(αp,q) ≤ c(p, q)dP(p, q).

7 The metric space (Sp2(H), dI)

In this section we will prove the main result of this paper, that is the
completeness of (Sp2(H), dI), it will be deduced from the completeness of
(U2(HJ), d2) and from Proposition 6.4. The next lemma is essential for the
proof.

Lemma 7.1. If (xn) ⊂ Sp2(H) is a Cauchy sequence in (Sp2(H), dI) then it
is a Cauchy sequence in (Sp2(H), ‖.‖2).

Proof. First we take W,U geodesic neighboords of 0 and 1 respectively such
that

Exp1 : W −→ U := Exp1(W ) ⊂ Sp2(H)

is a diffeomorphism. If (xn) is dI-Cauchy, given small ε there exist n(ε)
such that dI(x

−1
n xn+p, 1) = dI(xn+p, xn) < ε ∀p. Then we can suppose that

x−1
n xn+p ∈ U for all p. Let αp(t) = etv

∗
pet(vp−v∗p) = Exp1(tvp) with vp ∈ W be

the minimal curve that joins 1 to x−1
n xn+p, then

dI(x
−1
n xn+p, 1) = LI(αp) = ‖vp‖2 < ε.

We have

‖x−1
n xn+p − 1‖2 ≤

∫ 1

0

‖α̇p(t)‖2dt ≤

∫ 1

0

‖αp(t)‖‖α
−1
p α̇p(t)‖2dt,
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‖αp(t)‖ = ‖etv
∗
pet(vp−v∗p)‖ ≤ e3‖vp‖2 ≤ e3ε.

From this,
‖x−1

n xn+p − 1‖2 ≤ e3εε, for all p.

This fact shows that the sequence is bounded in the uniform norm; indeed
if we take ε0 such that the sequence belongs in the geodesic neighboord U ,
then there exists n0 (fixed) such that ‖x−1

n0
xn0+p − 1‖2 ≤ e3ε0ε0, for all p.

Then if m = n0 + p > n0, we have

|‖xn0
‖ − ‖xm‖| ≤ ‖xn0

− xm‖2 ≤ ‖xn0
‖‖x−1

n0
xn0+p − 1‖2 ≤ ‖xn0

‖e3ε0ε0;

then

‖xm=n0+p‖ ≤ |‖xm‖ − ‖xn0
‖|+ ‖xn0

‖ ≤ ‖xn0
‖(1 + e3ε0ε0) ∀p.

To complete the proof, if n is large, we have

‖xn+p − xn‖2 = ‖xn(x
−1
n xn+p − 1)‖2 ≤ ‖xn‖e

3εε ≤ Ke3εε ∀p.

Now we are in a position to obtain our main result.

Theorem 7.2. The metric space (Sp2(H), dI) is complete.

Proof. Let (xn) ⊂ Sp2(H) be a dI-Cauchy sequence, by the above lemma it
is ‖.‖2-Cauchy; then from Proposition 3.1 there exists x ∈ Sp2(H) such that

xn
‖.‖2
−→ x. Now we will show that xn

dP−→ x; indeed from the continuity of the
module we have that |xn| converges to |x| in ‖.‖2 and its unitary part uxn =
xn|xn|

−1 converges to ux = x|x|−1. The sequence |x|−1/2|xn||x|
−1/2 converges

to 1 and then the geodesic distance dp(|xn|, |x|) = ‖ ln(|x|−1/2|xn||x|
−1/2)‖2 →

0. By the equivalence of metrics in U2(HJ) (see [2] for a proof) we have

√

1−
π2

12
d2(uxn, ux) ≤ ‖uxn − ux‖2 ≤ d2(uxn, ux)

and then

dP(xn, x) =
(

d2(uxn, ux)
2 + dp(|xn|, |x|)

2
)1/2

−→ 0.

From Proposition 6.4 we have dI(x, xn) ≤ c(x, xn)dP(x, xn); now we will see
that c(x, xn) is uniformly bounded. Indeed, for n large we can suppose that
|xn| ≤ |x|+ 1 then according the notation of Proposition 6.4

vn = |x|−1/2|xn||x|
−1/2 ≤ |x|−1/2(|x|+ 1)|x|−1/2 = 1 + |x|−1

16



and by the monotonicity of the logarithm ln(vn) ≤ ln(1 + |x|−1) and then
‖ ln(vn)‖ ≤ ‖ ln(1 + |x|−1)‖ for all n. Finally we have

c(x, xn)
2 = 2max{ e4‖ ln(vn)‖

(

‖x‖‖x−1‖
)2
, ‖x‖‖x−1‖}

≤ 2max{ e4‖ ln(1+|x|−1)‖
(

‖x‖‖x−1‖
)2
, ‖x‖‖x−1‖}

is clearly uniformly bounded and then it is clear that dI(x, xn) → 0.
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