
APPROXIMATION BY INVERTIBLE FUNCTIONS OF H∞

ARTUR NICOLAU AND DANIEL SUÁREZ

Abstract

We provide an analytic proof that if H∞ is the algebra of bounded analytic func-
tions on the unit disk, A is a Banach algebra and f : H∞→A is a Banach algebras
morphism with dense image, then f((H∞)−1) is dense in A−1.

1. Introduction

If A is a uniform algebra and n is a positive integer, consider the set Un(A) = {(a1, . . . , an) ∈
An : ∃(b1, . . . , bn) ∈ An with

∑n
j=1 ajbj = 1}. The Bass stable rank of A is

Bsr A = min{n : ∀a ∈ Un+1(A), ∃b ∈ An with (a1 + b1an+1, . . . , an + bnan+1) ∈ Un(A)},
with Bsr A = ∞ if there is no such n. An alternative and equivalent definition is the minimum
integer n such that for every onto morphism of Banach (or uniform) algebras f : A→B, the
induced map from Un(A) into Un(B) is onto (see [4]). This led naturally to define another
invariant of uniform algebras, where onto morphisms are replaced by morphism with dense
image [5]. Specifically, the dense stable rank of A (dsr A) is the minimum n such that for
every morphism of uniform algebras f : A→B with dense image, the induced application
from Un(A) into Un(B) has dense image. In general, Bsr A ≤ dsr A.

Let H∞ be the algebra of bounded analytic functions in the unit disk D with norm ‖f‖ =
supz∈D |f(z)|. In [16] Treil proved that Bsr H∞ = 1 and in [14] the second author proved
that dsr H∞ = 1. The proof of the latter uses part of a very complicated construction in
Treil’s theorem and topological tools such as Michael’s continuous selection theory and Čech
cohomology. So, we lacked a purely analytic proof of the equality dsr H∞ = 1, and it is the
purpose of this paper to provide such proof. Our techniques come from giving another twist
to machinery developed over the years by several authors within the theory of H∞.

The maximal ideal space of a uniform algebra A is

M(A) = {ϕ : A→C : ϕ is linear, multiplicative, and ϕ(1) = 1},
endowed with the weak ∗ topology induced by the dual space of A. It is known that M(A)
is a compact Hausdorff space, and the Gelfand transform ˆ : A→C(M(A)), defined by
â(ϕ) = ϕ(a), allows us to think of A as a closed subalgebra of C(M(A)). For a compact
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subset E ⊂ M(A) let AE be the closure in C(E) of the restriction algebra Â|E. The A-hull
of E is

Ê = {ϕ ∈ M(A) : |â(ϕ)| ≤ sup
E
|â| for all a ∈ A}

We say that E is A-convex if E = Ê. It is well-known that M(AE) = Ê (see [9, p. 39]).
As a consequence, we have that AE = AÊ for every closed set E ⊂ M(A). In [5] there are
several equivalent definitions of dsr A. It turns out that in the definition of dsr A it is enough
to consider only the restriction morphisms from A into AE, where E ⊂ M(A) is a closed
A-convex set. This means that dsr A is the minimum positive integer such that for every
closed A-convex set E ⊂ M(A), the restriction f 7→ f̂ |E maps Un(A) into a dense subset of
Un(AE).

Although some of the results in the paper are interesting by themselves, their main purpose
for this paper is to give an analytic proof of

Theorem A dsr H∞ = 1.

The main point in the proof is the following statement.

Theorem B Let 0 < η < δ < 1, γ > 0 and f, g ∈ H∞, with ‖g‖ ≤ 1, ‖f‖ ≤ K, such that

|f(z)| > γ if |g(z)| < δ .

Then given ε > 0 there exists F ∈ H∞ such that |f(z) − F (z)| < ε if |g(z)| < η and
C ≤ |F (z)| < C−1, where C > 0 depends on K, ε, γ, δ and η.

The main difficulty in the proof comes from the inner part I of the function f . When I
is an interpolating Blaschke product, one can use a slight variation of an argument of Treil
in [16]. When I is a general inner function, we use a result on approximation by quotients
of finite products of interpolating Blaschke products which may be of independent interest
(Theorem 3.3).

2. Technical lemmas

First we will collect some well known results which will be used along the paper. Let

ϕz(w) =
z − w

1− wz
, z, w ∈ D,

be the automorphism of the disk that interchanges 0 and z. The pseudohyperbolic distance
between the points z and w in the unit disk is given by ρ(z, w) = |ϕz(w)|. Schwarz’s
lemma states that any f ∈ H∞ with ‖f‖ ≤ 1 is a pseudohyperbolic contraction, that is,
ρ(f(z), f(w)) ≤ ρ(z, w) for any two points z, w ∈ D. A bounded analytic function in the unit
disk is called inner if it has radial limits of modulus 1 along almost every radius. Any inner
function can be factorized into a singular inner function, that is an inner function without
zeros, and a Blaschke product. Given a sequence {zn} of points in the unit disk D such that

∑
n

(1− |zn|) < ∞ ,
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the Blaschke product with zeros {zn} is defined as

B(z) = zm
∏

zn 6=0

zn

zn

zn − z

1− znz
.

Here m is the number of indexes n such that zn = 0. Let eiθ be a point in the unit circle and
h > 0. We will denote by Q = Q(eiθ, h) the angular square of side-length `(Q) = h given by

Q = {reit : 0 < 1− r < h, |t− θ| < h} .

A positive measure µ in the unit disk is called a Carleson measure if there exists a constant
C = C(µ) such that µ(Q) ≤ C`(Q), for any angular square Q in the unit disk. The infimum
of the constants C for which the above estimate holds, is called the Carleson intensity of the
measure µ, and will be denoted by ‖µ‖c. Carleson measures may be described in conformal
invariants terms, as those positive measures µ for which

sup
z∈D

∫

D

1− |z|2
|1− wz|2dµ(w) < ∞.

Moreover, this quantity is equivalent to ‖µ‖c. A sequence {zn} of points in the unit disk is
called interpolating if for any bounded sequence {wn} of complex numbers, there exists a
bounded analytic function f ∈ H∞ such that f(zn) = wn for all n. Let B be the Blaschke
product with zeros {zn}. These sequences were geometrically described by Carleson as those
that satisfy the following two conditions: infzn 6=zm ρ(zn, zm) > 0, and the measure

µB :=
∑

n

(1− |zn|2)δzn

is a Carleson measure, where δzn is the Dirac measure at zn. A Blaschke product is called an
interpolating Blaschke product if its zero sequence is an interpolating sequence. Equivalently,
the Blaschke product B with zeros {zn} is an interpolating Blaschke product if

inf
n

(1− |zn|2)|B′(zn)| > 0 .

A Blaschke product B is called a Carleson-Newmann Blaschke product (CNBP for short) if
it is a finite product of interpolating Blaschke products, or equivalently, if the measure µB

is a Carleson measure.

The hyperbolic distance between the points z, w in the unit disk is

h(z, w) = log
1 + ρ(z, w)

1− ρ(z, w)
.

We use the following notation for the %-hyperbolic neighborhood of a set E,

Ω%(E) = {z ∈ D : h(z, E) < %}.
Also, for a set E ⊂ D, the radial and the angular projections of E are {z/|z| : z 6= 0, z ∈ E}
and {|z| : z ∈ E}, respectively. Our first auxiliary result is a variation of a result by Carleson
[10, VIII, Thm. 3.2].
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Lemma 2.1. Given 0 < δ < 1, % > 0 and ε > 0, there exists η = η(δ, %, ε) > 0 with the
following property. If u ∈ H∞, with ‖u‖ ≤ 1, and V ⊂ D is an angular square such that

sup{|u(z)| : z ∈ Ω%(t(V ))} ≥ δ,

where t(V ) denotes the top side of V, then the length of the radial and angular projections
of {z ∈ V : |u(z)| < η} is smaller than ε`(V ). Moreover, fixed % > 0 and ε > 0, one can
take η(%, δ, ε) = δν for some ν = ν(%, ε) > 1.

Proof. Without loss of generality we may assume % > 1. By hypothesis there are zV ∈ t(V )
and z0 such that h(zV , z0) ≤ % and |u(z0)| ≥ δ. Let B be the hyperbolic disk centered at zV

of hyperbolic radius 1, that is, B = {z ∈ D : ρ(z, zV ) ≤ r}, where r = (e − 1)/(e + 1). We
claim that there exists a point w ∈ B such that

(2.1) |u(w)| ≥ δ̃,

where

(2.2) δ̃ = δ̃(δ, %) = exp

(
(log δ) log r−1

log(e2% + 1)− log(e2% − 1)

)
.

To prove (2.1), let us denote by ω(z, B,D\B) the harmonic measure from the point z ∈ D\B
of the set B in the domain D\B. If (2.1) does not hold for any w ∈ B, we would have

sup
B
|u| < δ̃ and using the subharmonicity of log |u|, it would follow that

log |u(z)| ≤ (log δ̃) ω(z, B,D\B),

for any point z ∈ D\B. One can easily check that

ω(z, B,D\B) =
log |ϕzV

(z)|−1

log r−1

and we would have

log |u(z)| ≤ (log δ̃)
log |ϕzV

(z)|−1

log r−1

for any z ∈ D\B. Since % > 1, one can check that δ > δ̃, and using that |u(z0)| ≥ δ and
h(zV , z0) ≤ %, it would follow that

log δ ≤ (log δ̃)
log |ϕzV

(z0)|−1

log r−1
≤ (log δ̃)

log e%+1
e%−1

log r−1
.

But (2.2) says that

log δ = (log δ̃)
log e2%+1

e2%−1

log r−1
,

which contradicts the above inequalities. So (2.1) holds.

The proofs for the angular and radial projections are similar. We write below the proof
for the angular projection and at the end we indicate the minor changes necessary to obtain
the proof for the radial projection.
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Let {Vn} = {Vk,j} denote the dyadic decomposition of V into angular squares, that is

Vk,j =

{
reiθ :

2πj

2k
`(V ) ≤ θ − θ0 <

2π(j + 1)

2k
`(V ), 0 < 1− r ≤ 2−k`(V )

}
,

for k ≥ 0, j = 0, . . . , 2k − 1. Here θ0 is the argument of the center of V . If N is a positive
integer, consider the symmetrical decomposition of each T (Vn) = {z ∈ Vn : |z| ≤ 1−`(Vn)/2},
the top half of Vn, into N2 angular rectangles, and denote by {Qj} the family of all the angular
rectangles so obtained (for all n). All these rectangles have comparable pseudohyperbolic
diameters, and it is clear that if dN denotes the maximum of these diameters, then dN→0
as N→∞.

Let η, with 0 < η < 1, to be determined later. Among all the rectangles Qj such that
infQj

|u| < η, let Fa be a maximal family such that no angular projection of Qj ∈ Fa is
contained in the angular projection of other Qk ∈ Fa. It is clear that the angular projection
of {z ∈ V : |u(z)| < η} is contained in the angular projection of Λ =

⋃Fa. The maximality
of Fa implies that the arc-length of ∂Λ is a Carleson measure with intensity bounded by
an absolute constant. Also, if Qj ∈ Fa and z ∈ Qj, Schwarz’s lemma implies that |u(z)| ≤
η + 2dN . Hence, if N = N(η) is chosen big enough so that dN < 1

2
(η1/2 − η), we get

(2.3) |u(z)| ≤ η1/2 for all z ∈ Qj

when Qj ∈ Fa. Suppose that z ∈ ∂Λ. Then there is Qk ∈ Fa with z ∈ ∂Qk. Using that
log x−1 ≤ 4(1− x) for 1/4 ≤ x < 1, we see that

∫

∂Λ

log |ϕz(ξ)|−2 |dξ|
(1− |ξ|2)

≤ 8

∫

∂Λ

1− |z|2
|1− ξz|2 |dξ| +

∑

Qj∈Fa, ρ(Qj ,Qk)≤1/4

∫

∂Qj

log |ϕz(ξ)|−2 |dξ|
(1− |ξ|2) .

Since the arc-length of ∂Λ is a Carleson measure with intensity bounded by a universal
constant, the first summand in the right member is bounded by an absolute constant. Since
dN < 1/4, all the ‘rectangles’ Qj involved in the second summand are contained in the
pseudohyperbolic ball of center z and radius 1/2. Also, if for any such Qj we denote by Lj

its angular projection on the ray Rz = {λz : 0 ≤ λ < 1}, it is easy to check that the integral
on ∂Qj is bounded by an absolute constant times the integral on Lj. Thus, the indexed sum
above is bounded by a constant times

∑
j

∫

Lj

log |ϕz(ξ)|−2 |dξ|
(1− |ξ|2) ≤

∫

ξ∈Rz , ρ(ξ,z)≤1/2

log |ϕz(ξ)|−2 |dξ|
(1− |ξ|2)

=

∫ 1/2

−1/2

log |w|−2 dw

(1− |w|2) ≤ C,(2.4)

where the equality comes from the change of variables w = z
|z|ϕz(ξ) (using the conformal

invariance of |dξ|/(1− |ξ|2)), and C > 0 is an absolute constant. Putting all together, there
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is an absolute constant C1 ≥ 1 such that

(2.5)

∫

∂Λ

log |ϕz(ξ)|−2 |dξ|
(1− |ξ|2) ≤ C1 for all z ∈ ∂Λ.

Rz

Qj Lj

z

V

∂D

ρ(w, z) < 1/2

Figure 1

We claim that

C1 log |u(z)| ≤ log(η1/2)

∫

∂Λ

log |ϕz(ξ)|−2 |dξ|
(1− |ξ|2)

≤ log(η1/2)

∫

∂Λ

1− |z|2
|1− ξz|2 |dξ|(2.6)

for all z ∈ D \ Λ. To prove the first inequality observe that since the left member is a
subharmonic function and the right member is harmonic on D \Λ, it is enough to show that
it holds for z ∈ ∂D ∪ ∂Λ. On ∂Λ it follows from (2.5) and (2.3) and on ∂D the left member
is ≤ 0 while the right member vanishes. For the second inequality use that log x−1 ≥ 1− x
when 0 < x < 1.
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If η1/2 < δ̃, (2.3) implies that the point w found in (2.1) is in D \ Λ. So, putting z = w in
(2.6) and using (2.1), we obtain

(2.7) C1 log δ̃ ≤ log(η1/2)

∫

∂Λ

1− |w|2
|1− ξw|2 |dξ|.

Since ρ(w, t(V )) ≤ (e− 1)/(e + 1), there is an absolute constant 0 < C2 ≤ 1 such that
∫

∂Λ

1− |w|2
|1− ξw|2 |dξ| ≥ C2

`(V )
length(∂Λ),

which together with (2.7) and (2.2) yields

length(∂Λ)

`(V )
≤ C1

C2

log δ̃

log(η1/2)

by (2.2)
=

2C1

C2

log δ

log η

log
(

e+1
e−1

)

log
(

e2%+1
e2%−1

) .

Setting η = δν , with

ν = ν(%, ε) =
2C1

C2

log
(

e+1
e−1

)

log
(

e2%+1
e2%−1

) 1

ε
,

we obtain length(∂Λ) ≤ ε`(V ), as desired. Observe that since C1 ≥ 1 and C2 ≤ 1, we have

ν ≥ 2 for any 0 < ε < 1. Hence, η1/2 = δν/2 < δ < δ̃, which is the restriction on η that we
needed to prove (2.7). This proves the lemma for the angular projection.

For the radial projection, instead of Fa we take Fr, a maximal family of angular rectangles
satisfying infQj

|u| < η, such that no radial projection of Qj ∈ Fr is contained in the radial
projection of other Qk ∈ Fr. In (2.4) Lj will denote the radial projection of Qj on the circle
Cz = {|z|eit : 0 ≤ t < 2π}, and after the change of variables w = z

|z|ϕz(ξ), the last integral

in (2.4) will be ∫���w− |z|
1+|z|2

���= |z|
1+|z|2 , |w|≤1/2

log |w|−2 |dw|
(1− |w|2) ,

which is also bounded independently of z. The rest of the proof is exactly the same as before.
At the end we will obtain the same value of ν, except for different constants C1 and C2. The
maximum between these two values of ν satisfies the lemma. ¤

The next two results on Blaschke products are essentially well known, but simple proofs are
presented for the sake of completeness.

Lemma 2.2. Let B be a Blaschke product and 0 < ε < 1. Suppose that Q ⊂ D is an angular
square such that |B(w)| > ε for some w ∈ Ω%(T (Q)), where T (Q) denotes the top half of Q.
Then there is a constant C%,ε depending only on % and ε such that µB(Q) ≤ C%,ε `(Q).

Proof. Let {zn} be the zero sequence of B. Using the inequality log x−1 ≥ 1− x, 0 ≤ x ≤ 1,
one deduces that

log |B(z)|−2 ≥
∑

n

(1− |z|2)(1− |zn|2)
|1− znz|2
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for any z ∈ D. Hence,

log ε−2 ≥
∑
zn∈Q

(1− |w|2)(1− |zn|2)
|1− znw|2 .

Since h(w, T (Q)) ≤ %, we have |1 − znw| ≤ c(%)(1 − |w|2) for any zn ∈ Q. Here c(%) is a
constant depending on %. So, we deduce

1− |w|2
|1− znw|2 ≥

c1(%)

`(Q)
,

where again c1(%) is a constant depending on %. Hence

log ε−2 ≥ c1(%)

`(Q)

∑
zn∈Q

(1− |zn|2)

and the lemma is proved. ¤

Corollary 2.3. Let B be a Blaschke product and 0 < ε < 1 such that for every zero z of B
there exists some point w with ρ(z, w) < % and |B(w)| > ε. Then B is a CNBP such that
‖µB‖c ≤ C%,ε, where C%,ε depends only on % and ε.

Proof. Since every square is contained in the union of two dyadic squares of comparable
size, it is enough to estimate µB(Q) for dyadic squares Q. Let Q be a fixed dyadic square
and F be the family of all the maximal dyadic squares V ⊂ Q such that there is some
zero of B in T (V ), the top half of V . Clearly, the interiors of these squares are pairwise
disjoint, so

∑
V ∈F `(V ) ≤ `(Q). Our hypothesis and the previous lemma then say that

µB(V ) ≤ C%,ε`(V ), where C%,ε is as in the lemma. Hence

µB(Q) = µB

( ⋃

V ∈F

V

)
≤ C%,ε

∑

V ∈F

`(V ) ≤ C%,ε`(Q).

¤
Lemma 2.4. Let µ be a Carleson measure of intensity at most 1. Given ε > 0 there is a
constant A depending only on ε such that

∫

|z−w|≥A(1−|z|)

(1− |z|2)
|1− wz|2 µ(w) < ε

for every z ∈ D.

Proof. Observe that if |z − w| ≥ 2n(1− |z|2), n = 1, 2, . . . , one has

1− |z|2
|1− wz|2 ≤

1

22n(1− |z|2) .

Fixed z ∈ D, let

An = An(z) = {w ∈ D : 2n+1(1− |z|2) ≥ |z − w| ≥ 2n(1− |z|2)}, n = 1, 2, . . .
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Then ∑

n≥k

∫

An

1− |z|2
|1− wz|2 dµ(w) ≤

∑

n≥k

µ(An)

22n(1− |z|2) .

Since µ(An) ≤ C2n+1(1− |z|2) for an absolute constant C > 0, the last sum can be bounded
by C

∑
n≥k

1/2n−1, and the result follows with A = 2k > 4C/ε. ¤

Let dA denote the normalized area measure on D, ∂ and ∂ the Cauchy-Riemann operators,
∇ be the gradient operator and ∆ = ∂∂ (i.e.: a quarter of the standard Laplacian operator).
The next result was essentially given by Treil [16].

Lemma 2.5. Let Ψ ∈ C∞(D) such that for some positive constants K1, K2, K3 one has

(1) ‖ |Ψ(z)| dA(z)‖c ≤ K1,

(2) ‖ (1− |z|)|∂Ψ(z)| dA(z)‖c ≤ K2,

(3) supz∈D(1− |z|)2|∂Ψ(z)| ≤ K3 and supz∈D(1− |z|)|Ψ(z)| ≤ K3.

Then there exists a ∈ C2(D) such that ∂a = Ψ and supz∈D |a(z)| ≤ C(K1, K2, K3).

Proof. For any positive integer n let φn : D→ [0, 1] be a C∞ function such that

φn(z) =

{
1 if |z| ≤ 1− 2−n

0 if |z| > 1− 2−(n+1)

and |∇φn(z)| ≤ C2n for some absolute constant C > 0. So, (1−|z|)|∇φn(z)| ≤ C. Condition
(1) implies that there exists a function bn ∈ C2(D) with ∂bn = φnΨ and ||bn||L∞(∂D) < C(K1)
(see [9, p. 230]). Hence, the Poisson integral un of bn is also bounded by C(K1) in the whole
closed unit disk. We have bn(z) = un(z)− gn(z), where

gn(z) =

∫

D
∆bn(w) log

∣∣∣∣
1− zw

z − w

∣∣∣∣
2

dA(w)

Since ∆bn = ∂(φnΨ), we have

|gn(z)| ≤
∫

D

[
C

1− |w| |Ψ(w)| + |∂Ψ(w)|
]

log

∣∣∣∣
1− zw

z − w

∣∣∣∣
2

dA(w) .

Split the above integral into
∫

D(z)
+

∫
D\D(z)

, where D(z) = {w : ρ(w, z) ≤ 1/2}. By (3)

∫

D(z)

[
C|Ψ(w)|
1− |w| + |∂Ψ(w)|

]
log

∣∣∣∣
1− zw

z − w

∣∣∣∣
2

dA(w) ≤
∫

D(z)

(CK3 + K3)

(1− |w|)2
log

∣∣∣∣
1− zw

z − w

∣∣∣∣
2

dA(w) .

The conformal invariance of the measure (1−|w|2)−2dA(w) immediately shows that the last
integral is uniformly bounded by some absolute constant times K3. Using the elementary
estimate log x−2 < c(1− x2) if 1/2 < x < 1, the second integral can be estimated by

∫

D\D(z)

[
C|Ψ(w)|
1− |w| + |∂Ψ(w)|

]
c

(1− |z|2)(1− |w|2)
|1− zw|2 dA(w),
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which by (1) and (2) is bounded by an absolute constant times K1 + K2. Hence, we deduce
that

sup
z∈D

|bn(z)| ≤ C(K1, K2, K3)

Now we may consider a weak star limit b ∈ L∞(D) of a suitable subsequence of bn. Then
||b||L∞(D) ≤ C(K1, K2, K3) and ∂b = Ψ in the sense of distributions. Since Ψ ∈ C∞(D),

applying the hypoellipticity of the operator ∂ (see [7, p. 270]), we obtain that in fact b ∈
C∞(D). ¤

3. Two approximation results

A more general, but non-quantitative version of the next theorem can be found in [15]. Given
a set E in the unit disk and a function f defined on E, we denote ||f ||E = sup{|f(z)| : z ∈ E}.
Theorem 3.1. Let g ∈ H∞ with ‖g‖ = 1 and 0 < α < β < 1. Given an analytic function f
on the set {|g| < β} with ‖f‖{|g|<β} ≤ 1 and ε > 0, there exists F ∈ H∞ such that

‖F − f‖{|g|<α} < ε

with ‖F‖ ≤ C, where C = C(α, β, ε).

Proof. For k = 1, 2, 3, 4 put γk = α + k(β − α)/5. So,

(3.1) α < γ1 < γ2 < γ3 < γ4 < β.

By Bishop’s construction in [1] there is an open region R ⊂ D such that

(1) {|g| < γ2} ⊂ R ⊂ {|g| < γ3},
(2) ∂R is a Carleson contour whose associated arc-length Carleson measure λ∂R satisfies

‖λ∂R‖c ≤ C, where C = C(γ2, γ3).

Since ∂R ⊂ {γ2 ≤ |g| ≤ γ3}, Schwarz’s Lemma implies that there is a positive constant η
depending on γj for j = 1, . . . , 4, such that

(3.2) ρ(∂R, {|g| ≤ γ1} ∪ {|g| ≥ γ4}) ≥ η.

Hence, the characteristic function of R can be modified in a η/2-pseudohyperbolic neighbor-
hood of ∂R in order to obtain a C∞ function 0 ≤ Φ ≤ 1 such that

(a) Φ ≡ 1 on {|g| ≤ γ1},
(b) Φ ≡ 0 on {|g| ≥ γ4},
(c) (1 − |z|)2|∆Φ(z)| ≤ C/η2 and (1 − |z|)|∂Φ(z)| ≤ C/η, where C > 0 is an absolute

constant,

(d) |∂Φ(z)| dA(z) and (1−|z|)|∆Φ(z)| dA(z) are Carleson measures with Carleson norms
bounded by a constant depending only on η and ‖λ∂R‖c.

For every positive integer n, consider the ∂-equation

(3.3) ∂an =
1

n
(γ1/g)nf∂Φ.
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Let Ψn denote the right member of (3.3). We shall see that Ψn fits into Lemma 2.5 with
constants Kj (j = 1, 2, 3) that depend only on α and β (independently of n). Since the

support of ∂Φ is contained in {γ1 ≤ |g| ≤ γ4} then |(γ1/g)nf | ≤ 1 on supp ∂Φ. Hence, since
|∂Φ(w)|dA(w) is a Carleson measure, we deduce condition (1) in Lemma 2.5. Moreover,
(3.2) implies that

ρ(supp ∂Φ, {|g| ≤ γ1} ∪ {|g| ≥ γ4}) ≥ η/2.

Thus, there is a positive constant cη depending only on η such that whenever z ∈ supp ∂Φ,
the closed (Euclidean) disk of center z and radius cη(1− |z|) is contained in {γ1 ≤ |g| ≤ γ4}.
The Cauchy integral formula for f ′(z) over the boundary of this ball easily yields

|f ′(z)| ≤ 1

cη(1− |z|) on supp ∂Φ.

We have

|∂Ψn| =

∣∣∣∣
[

1

n
(
γ1

g
)nf ′ − (

γ1

g
)n (

g′

g
)f

]
∂Φ +

1

n
(
γ1

g
)nf∂∂Φ

∣∣∣∣

≤
[

1

n
|f ′|+ |g′|

γ1

]
|∂Φ|+ 1

n
|∂∂Φ| ,

where the inequality holds because |g| ≥ γ1 on supp ∂Φ. Since (1−|z|)|g′(z)| ≤ ‖g‖ = 1, then
properties (c) and (d) of Φ imply that Ψn satisfies hypotheses (2) and (3) of Lemma 2.5 with
constants K1, K2 and K3 depending only on γ1, η and ‖λ∂R‖c. These three quantities depend
on the γj

′s, which in turn only depend on α and β, as claimed. Thus, the lemma says that
the equation (3.3) has a solution an with supD |an| ≤ C(α, β). Hence Fn := fΦ−n(g/γ1)

nan

is analytic on D, ‖Fn‖ ≤ 1 + nγ−n
1 C(α, β), and on the set {|g| < α}:

|Fn − f | = |fΦ− n(g/γ1)
nan − f |

= n|g/γ1|n|an|
≤ n(α/γ1)

nC(α, β) < ε

if we fix some n = n(α, β, ε) big enough. ¤

The proof of the next lemma is a modification of the construction in [11]. A feature to remark
is that the constant M in the lemma does not depend on any of the other parameters.

Lemma 3.2. There exists a positive integer M with the following property: for any Blaschke
product u and numbers 0 < β < 1 and ε > 0, there exists a factorization u = u0u1 . . . uM

and Carleson-Newman Blaschke products Bp and B∗
p for 1 ≤ p ≤ M , such that

(a) ∣∣∣∣up(z)− B∗
p(z)

Bp(z)

∣∣∣∣ < ε on {|u(z)| > β},
(b) ‖µu0‖c, ‖µBp‖c, ‖µB∗p‖c ≤ c1(ε, β),

(c) |Bp(z)|, |B∗
p(z)| ≥ c2(ε, β) > 0 on {|u(z)| > β},

where c1(ε, β) and c2(ε, β) only depend on ε and β.
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Proof. By a Möbius transformation of the variable z, we can assume without loss of generality
that |u(0)| ≥ β. Let M > 0 be a positive integer to be determined later. For n ≥ 1 an
integer, consider the angular squares

Qn,j =

{
reiθ :

2πj

Mn
≤ θ ≤ 2π(j + 1)

Mn
, 1− 1

Mn
≤ r < 1

}
,

where j = 0, . . . ,Mn − 1. Put

T (Qn,j) = {z ∈ Qn,j : |z| ≤ 1− `(Qn,j)/M},
where `(Qn,j) = 1/Mn. Notice that T (Qn,j) is the closure of Qn,j \

⋃
k{Qn+1,k : Qn+1,k ⊂

Qn,j}. The hyperbolic diameters diamh(T (Qn,j)) are roughly the same for all n, j. Let α,
with 0 ≤ α ≤ β, to be fixed later. Next we will run a stopping time argument to construct
a Carleson contour.

Step 1. Take % = %(M) > diamh(T (Qn,j)) for all n and j, to be determined later. Suppose
that Qn,j is maximal with respect to the property

(3.4) sup
Ω2%(T (Qn,j))

|u(z)| < α,

and then rename the M squares Qn+1,k ⊂ Qn,j by Sp
n,j, p = 1, . . . , M . Our condition on %

implies that

(3.5) sup{|u(z)| : z ∈ Ω%(T (Sp
n,j))} < α.

Step 2. Denote by Vk the maximal squares Qm,l ⊂ Sp
n,j such that

(3.6) sup
Ω%(T (Qm,l))

|u(z)| ≥ β.

Since |u(eiθ)| = 1 a.e., then

(3.7)
∑

`(Vk) = `(Sp
n,j),

where the sum is taken over all Vk contained in Sp
n,j. Put Rp

n,j = Sp
n,j \

⋃{Vk : Vk ⊂ Sp
n,j}.

Now for each Vk consider the maximal squares Qm,l ⊂ Vk, such that

(3.8) sup
Ω2%(T (Qm,l))

|u(z)| < α.

Hence, Lemma 2.1 tells us that if α = α(β, %) is small enough (in particular, much smaller
than β), then

(3.9)
∑

`(Qm,l) ≤ 1

2
`(Vk),

where the sum is taken over all Qm,l ⊂ Vk such that Qm,l satisfies (3.8). Condition (3.8) is
condition (3.4), so we repeat Step 1 with Qm,l and so forth. So, by induction, we obtain nested
families of M -adic angular squares which we denote as Sp

n,j if they appear in Step 1 and Vk if



APPROXIMATION BY INVERTIBLE FUNCTIONS OF H∞ 13

they do in Step 2. Also, we consider the intermediate region Rp
n,j = Sp

n,j \
⋃{Vk : Vk ⊂ Sp

n,j}.
For p = 1, . . . , M take Λp =

⋃
n,j Rp

n,j. By (3.6),

(3.10) Ω%

( ⋃
1≤p≤M

Λp

)
⊂ {|u(z)| < β}.

If z /∈ ⋃
1≤p≤M Λp there are two possibilities: either

z ∈ Vk \
⋃
{Q ⊂ Vk : Q satisfies (3.4)}

for some Vk or
z ∈ T (Qn,j)

where Qn,j is one of the maximal squares satisfying (3.4). In the first case there is some
w = w(z) such that h(w, z) ≤ diamh(T (Q)) + 2% and |u(w)| ≥ α. In the second case, we
observe that, by the maximality of Qn,j, the father of Qn,j does not satisfy (3.4) and hence
there exists a point w = w(z) such that h(w, z) ≤ 2 diamh(T (Q)) + 2% and |u(w)| ≥ α. So,
in both cases there exists w, with h(w, z) ≤ 4%, such that |u(w)| ≥ α. Let u0 be the Blaschke
product with zeros {

z : u(z) = 0 and z 6∈
⋃

1≤p≤M

Λp

}
.

By the above paragraph and Corollary 2.3, u0 is a CNBP with ‖µu0‖c ≤ C%,α.

Define up, for 1 ≤ p ≤ M , as the Blaschke product whose zeros are the zeros of u that
belong to the closure of Λp. Observe that by (3.7) the linear Lebesgue measure |∂Λp∩∂D| = 0,
and by (3.7) and (3.9) the arc-length of ∂Λp is a Carleson measure with intensity bounded
by an absolute constant K0 (independent of %, α, β or M).

Now, fixed δ ≥ 0, we pick points zν in ∂Λp located each δ/4 pseudohyperbolic units. More
concretely, fixed p = 1 . . . M , pick points zν of ∂Λp so that for every z ∈ ∂Λp there is zν such
that ρ(zν , z) < δ/2, and ρ(zn, zk) ≥ δ/4 if n 6= k. Let Bp be the Blaschke product with zeros
{zν}. Then ‖µBp‖c is bounded by some constant of the form CK0/δ, where C is an absolute
constant (and K0 is as above, also an absolute constant). We write K1 = CK0.

We next show that there is an absolute constant C2 such that

(3.11) sup{|Bp(z)| : z ∈ Λp} < e−C2/δ.

Indeed, if Q(z) is the angular square centered at z (for completeness, take Q(z) = D if
|z| ≤ 1/2), using the inequality log(1/x) > 1− x for 0 < x < 1, we have

log
1

|Bp(z)|2 >
∑

ν

(1− |z|2)(1− |zν |2)
|1− zνz|2 ≥ C

(1− |z|)
∑

zν∈Q(z)

(1− |zν |2),

for some absolute constant C > 0. Since 1 − |zν | ≥ c|zν+1 − zν |/δ for another absolute
constant c > 0, the last sum is bigger than a fixed proportion of the length of Q(z) ∩ ∂Λp

divided by δ, and since z ∈ Λp, this length is bigger than a fixed fraction of 1 − |z|. This
proves (3.11).
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Since the Carleson norm of the measure (δ/K1)µBp is at most 1, applying Lemma 2.4 we see
that there is an absolute constant A big enough so that

(3.12)

∫

{w: |z−w|≥A(1−|z|)}

(1− |z|2)
|1− wz|2 dµBp(w) <

C2

20δ

for every z ∈ D. Also, we can assume that A > 26. In order to simplify notation, for z, ω ∈ D
we write

a(z, ω) = 1− ρ(z, ω)2 =
(1− |z|2)(1− |ω|2)

|1− ωz|2 .

Let {wν} be the zero set of Bpup. Then

(3.13) log
1

|(Bpup)(z)|2 ≤
(

1 + 2 log
1

λ

) ∑
ν

a(z, wν)

if ρ(z, wν) ≥ λ > 0 for all ν [10, VII, Lemma 1.2], and

(3.14) (1− |z|2)(Bpup)
′

Bpup

(z) =
∑

ν

a(z, wν)

(
1− wνz

z − wν

)

if z 6∈ {wν}. Take

λ = λ(%) =
e% − 1

e% + 1
.

Let z ∈ D be such that

(3.15) inf
ξ∈Λp

h(z, ξ) ≥ % (i.e.: inf
ξ∈Λp

ρ(z, ξ) ≥ λ).

If % = %(M) is big enough, we have that whenever zν ∈ Rp
n,j satisfies |z − zν | < A(1 − |z|),

then `(Sp
n,j) < 1

M
(1 − |z|). Put ∆(z) = {ω ∈ D : |z − ω| < A(1 − |z|)} and let Iz be the

radial projection of ∆(z) into ∂D. It is clear that there is some absolute constant C0 > 1
such that |Iz| ≤ C0(1− |z|).

For p fixed, consider the family Mz of all the maximal angular squares Sp
n,j such that

there is some zν ∈ Rp
n,j ∩∆(z). Then the above paragraph yields

(3.16)
∑

Sp
n,j∈Mz

`(Sp
n,j) ≤

(1− |z|)
M

+ |Iz|
∞∑

k=1

M−k ≤ C ′
0

M
(1− |z|).

Hence,

∑

wν∈∆(z)

a(z, wν) ≤
∑

wν∈∆(z)

2(1− |wν |2)
1− |z| =

2

1− |z|
∑

wν∈Sp
n,j∈Mz

(1− |wν |2) =
2

1− |z|(J1 + J2),

where

J1 =
∑

Sp
n,j∈Mz

µBp(S
p
n,j) and J2 =

∑

Sp
n,j∈Mz

µup(S
p
n,j).
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∂D

R1

n,j

Qn,j

Vk

Figure 2

Since ‖µBp‖c ≤ K1/δ, equation (3.16) gives

J1 ≤ K1

δ

∑

Sp
n,j∈Mz

`(Sp
n,j) ≤

K1

δ

C ′
0

M
(1− |z|).

Since by construction the grandfather square of Sp
n,j is at h-distance at most 2% of a point w

with |u(w)| ≥ α, Lemma 2.2 tells us that µup(S
p
n,j) ≤ C(%, α)`(Sp

n,j). So (3.16) gives

J2 ≤ C(%, α)
∑

Sp
n,j∈Mz

`(Sp
n,j) ≤ C(%, α)

C ′
0

M
(1− |z|).

Consequently

(3.17)
∑

wν∈∆(z)

a(z, wν) ≤ C1

δM
+ C ′(%, α,M),

where C1 is an absolute constant and C ′(%, α,M) only depends on %, α and M . On the other
hand, if wν 6∈ ∆(z), that is |z − wν | ≥ A(1− |z|), then

|z| ≥ 1− |z − wν |
A

≥ 1− 2

A
.
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Since A ≥ 26 we obtain
∣∣∣∣∣∣

∑

wν 6∈∆(z)

a(z, wν)

(
1− wνz

z − wν

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

wν 6∈∆(z)

a(z, wν)

[
z +

1− |z|2
z − wν

]∣∣∣∣∣∣
≥

∑

wν 6∈∆(z)

a(z, wν)

[
|z| − 1− |z|2

|z − wν |
]
≥ (1− 2−4)

∑

wν 6∈∆(z)

a(z, wν)

≥ 9

10

∑

wν 6∈∆(z)

a(z, wν).(3.18)

Therefore, if z satisfies (3.15) with λ ≥ 1/2,

(1− |z|2)
∣∣∣∣
(upBp)

′(z)

(upBp)(z)

∣∣∣∣
by (3.14)
≥

∣∣∣∣∣∣
∑

wν 6∈∆(z)

a(z, wν)

(
1− wνz

z − wν

)∣∣∣∣∣∣
−

∑

wν∈∆(z)

a(z, wν)ρ(z, wν)
−1

by (3.18)
≥ 9

10

∑

wν 6∈∆(z)

a(z, wν)− 1

λ

∑

wν∈∆(z)

a(z, wν)

by (3.13)
≥ 9

10

(
1 + 2 log

1

λ

)−1

log
1

|(upBp)(z)|2 −
(

1

λ
+

9

10

) ∑

wν∈∆(z)

a(z, wν)

for λ ≥ 1/2
≥ 9

30
log

1

|(upBp)(z)|2 − 3
∑

wν∈∆(z)

a(z, wν)

by (3.17)
≥ 3

{
2

10
log

1

|(upBp)(z)| −
(

C1

δM
+ C ′(%, α, M)

)}
.

Let us assume in addition to (3.15) that log 1
|(upBp)(z)| = C2/2δ, where C2 is the constant of

(3.11). So, |(upBp)(z)| = e−C2/2δ and

(1− |z|2)|(upBp)
′(z)| ≥ 3e−C2/2δ

{
2

10

C2

2δ
−

(
C1

δM
+ C ′(%, α, M)

)}

= 3e−C2/2δ

{
1

δ

(
C2

10
− C1

M

)
− C ′(%, α, M)

}
.

Now we fix M big enough so that C2

10
− C1

M
> C2

20
. Since M can be chosen to be an absolute

constant, so does % = %(M) and λ. Since α depended only on % and β for (3.9) to hold, at
this point we have that α = α(β). So, actually C ′(%, α,M) = C ′(β). We should mention
that C ′ could be very big if so is M , but in any case, C ′ depends only on β once we have
chosen the absolute constant M . Therefore there is some δβ small enough such that for any
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δ < δβ the expression between keys is positive. Hence,

(3.19) (1− |z|2)|(upBp)
′(z)| > 3e−C2/2δ

{
1

δ

(
C2

20

)
− C ′(β)

}
= τ(δ, β) > 0

when δ < δβ, h(z, Λp) ≥ % and |(upBp)(z)| = e−C2/2δ.

Let ω be any point with |ω| = e−C2/2δ and consider Aω = (upBp − ω)/(1 − ωupBp). By
Frostman’s theorem [8], Aω is a Blaschke product for almost every point ω in this circle. If
Aω is a Blaschke product factorize Aω = CωDω, where the zeros of Cω are those zeros of Aω

whose hyperbolic distance to Λp is at least % (i.e.: condition (3.15)), and the zeros of Dω are
the zeros z of Aω for which

(3.20) inf
ξ∈Λp

h(z, ξ) < %.

If z is a zero of Cω then by (3.19),

(1− |z|2)|C ′
ω(z)| ≥ (1− |z|2)|A′

ω(z)| = (1− |z|2)
(1− |ω|2) |(upBp)

′(z)| ≥ τ(δ, β)

1− e−C2/δ
.

Consequently, Cω is an interpolating Blaschke product and ‖µCω‖c ≤ k = k(δ, β) (see [10,
VII]). On the other hand, if z is a zero of Dω, condition (3.20) says that there is some z∗ ∈ Λp

such that h(z, z∗) < %. But on Λp we have

|Dω| ≥ |Aω| =
∣∣∣∣

upBp − ω

1− ωupBp

∣∣∣∣ ≥
|ω| − |Bp|

2
≥ e−

C2
2δ − e−

C2
δ

2
= ϕ(δ) > 0

where the third inequality follows from (3.11). So, |Dω(z∗)| ≥ ϕ(δ) and consequently Coro-
llary 2.3 says that ‖µDω‖c ≤ C = C(%, δ). Since we have chosen % as an absolute constant,
then the last constant only depends on δ. Summing up, ‖µAω‖ ≤ ‖µCω‖ + ‖µDω‖ ≤ K =
K(δ, β).

If |ω| = e−C2/2δ is such that Aω is a Blaschke product, we rename Aω = B∗
p . We are

going to prove a lower bound for |Bp| when |u| ≥ β. If |u(z)| ≥ β then (3.10) says that
h(z, Λp) ≥ %, that is, condition (3.15) holds. So, if as before, we denote ∆(z) = {ω ∈ D :
|z − ω| < A(1− |z|)} and zν are the zeros of Bp, (3.17) already gave us

∑

zν∈∆(z)

a(z, zν) ≤ C1

δM
,

since the constant C ′(%, α, M) appearing in (3.17) comes from up, which is absent here. Also,
we have by (3.12) that ∑

zν 6∈∆(z)

a(z, zν) ≤ C2

20δ
.

Thus, as in (3.13), we have

log
1

|Bp(z)|2 ≤
(

1 + 2 log
1

λ

) ∑
ν

a(z, zν) ≤
(

1 + 2 log
1

λ

)(
C1

δM
+

C2

20δ

)
.
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Since we have chosen % so that λ = λ(%) > 1/2 then log λ−1 < 1, and since M was chosen so
that C2

10
− C1

M
> C2

20
, then C1

M
< C2

20
. Hence,

log |Bp(z)|−1 ≤ 3C2

2δ

(
1

20
+

1

20

)
≤ 3

20

C2

δ
,

or equivalently, |Bp(z)|−1 ≤ exp(3C2

20δ
). Consequently, on the set where |u| ≥ β we have

∣∣∣∣up −
B∗

p

Bp

∣∣∣∣ =
1

|Bp|

∣∣∣∣
w(Bpup)

2 − w

1− wBpup

∣∣∣∣ ≤
2|w|

|Bp|(1− |w|) ≤
2e−7C2/20δ

1− e−C2/2δ
= φ(δ),

where φ(δ) → 0 when δ → 0. Finally, the above inequalities easily show that B∗
p satisfies

condition (c) of the lemma. ¤
Theorem 3.3. Let u be an inner function. Given constants 0 < β < 1 and ε > 0, there
exist two Carleson-Newman Blaschke products B1 and B2 such that

(a) |u(z)−B1(z)/B2(z)| < ε if |u(z)| > β,

(b) ‖µB1‖c, ‖µB2‖c ≤ c1(ε, β),

(c) |B1(z)| ≥ c2(ε, β) and |B2(z)| ≥ c2(ε, β) if |u(z)| > β,

where c1(ε, β) and c2(ε, β) are positive constants only depending on ε and β.

Proof. By Frostman’s theorem [8] u can be uniformly approximated by Blaschke products,
so we can assume that u is a Blaschke product.

Observe that since the integer M in the previous lemma is an absolute constant, the
theorem follows immediately by choosing B1 = u0

∏M
p=1 Bp and B2 =

∏M
p=1 B∗

p . The constant
c1 here is M + 1 times the corresponding constant in the lemma, and c2 here is β times the
M -th power of the corresponding constant in the lemma. ¤

The origin of the above theorem can be traced to the Douglas-Rudin Theorem, which states
that every function whose modulus is 1 almost everywhere on ∂D can be approximated in
L∞(∂D)-norm by quotients of Blaschke products [6]. Later, in [12], Jones proved that the
Blaschke products can be chosen to be interpolating, with the additional kind of control
given by item (b) of the theorem. However, in his construction the zeros of B1 and B2

can be located in regions where |u| is close to 1. In [15] the second author proved that
there are interpolating Blaschke products satisfying (a), but without obtaining the control
on the constants given by (b) and (c). That is, Theorem 3.3 merges the main features of the
approximation results given in [12] and [15].

4. The proofs of Theorems A and B

If B is a Blaschke product we write Z(B) for the sequence of its zeros, and if a ∈ Z(B), let
Ba be the Blaschke product resulting from removing from B one factor

φa(z) =
a

a

(a− z)

(1− az)
(a 6= 0),
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and φa(z) = z if a = 0. Denote

δ(B) := inf{(1− |a|2)|B′(a)| : a ∈ Z(B)} = inf{|Ba(a)| : a ∈ Z(B)}.
By Carleson’s theorem [2] a Blaschke product B is interpolating if and only if δ(B) > 0. It
is easy to prove and well known that if δ(B) > 0 then µB is a Carleson measure of intensity
bounded by a constant depending on δ(B).

Lemma 4.1. Let B be a Blaschke product such that µB is a Carleson measure with intensity
bounded by M . Let g ∈ H∞, with ‖g‖ ≤ 1, and assume that

|B(z)| > γ if |g(z)| < δ ,

where γ and δ are fixed constants between 0 and 1. Then for any ε > 0 there exists a function
H ∈ H∞ and an absolute constant ν > 1 such that

|B(z)−H(z)| < ε if |g(z)| < δν

and C ≤ |H(z)| ≤ C−1, where C = C(M,γ, δ, ε).

Proof. Since µB =
∑

(1−|zn|)δzn is a Carleson measure then B is a finite product of interpo-
lating Blaschke products. More quantitatively, if the Carleson intensity of µB is bounded by
M , given 0 < β < 1, one can decompose the Blaschke product B into at most k0 = k0(M, β)
factors

B = B1 . . . Bk0

such that δ(Bi) ≥ β for i = 1, . . . , k0. Indeed, by taking [M ] + 1 if necessary, we can assume
that M is an integer. Thus, if Q ⊂ D is any angular square lying on ∂D, the top half of Q
contains at most 2M points of {zn}. It is then known (see the construction in [13, pp. 158-

159]) that {zn} splits into at most 8M sequences {z(j)
n }, j = 1, . . . , m ≤ 8M , such that for

each j,

ρ(z(j)
n , z

(j)
k ) ≥ 1/5 for n 6= k.

Let Aj be the Blaschke product with zeros {z(j)
n } (1 ≤ j ≤ m). By [10, VII, Thm. 1.1] there

is δ0 = δ0(M) > 0, such that δ(Aj) ≥ δ0 for all j. Our claimed factorization follows from the

fact that each Aj can be factorized as Aj = A1
jA

2
j , with δ(Ai

j) ≥ δ(Aj)
1/2 ≥ δ

1/2
0 (see [10, X,

Cor. 1.6]). Hence, fixed 0 < β < 1, it is sufficient to prove the lemma for each subfactor Bi,
i = 1, . . . , k0. That is, we may assume that δ(B) ≥ β, where 0 < β < 1 is an absolute
constant to be determined later.

Let {Q} be the decomposition of the unit disk into dyadic angular squares of the form

Q =

{
reiθ :

2πj

2k
≤ θ <

2π(j + 1)

2k
, 0 < 1− r ≤ 2−k

}
, j = 0, . . . , 2k − 1, k ≥ 0.

Observe that the pseudohyperbolic diameter of

T (Q) = {reiθ ∈ Q : 2−k−1 < 1− r ≤ 2−k}
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is bounded by an absolute constant α0 < 1. Since |Ba(a)| > β for all a ∈ Z(B), by Schwarz’s
Lemma |Ba(z)| > (β −α0)/(1− βα0) for any z ∈ T (Qa). So, if β = β(α0) is close enough to
1, we can assume that

(4.1) inf{|Ba(z)| : z ∈ T (Qa)} > α
1/2
0

for every a ∈ Z(B). Hence, each T (Q) contains at most one single zero of B. We pick
the dyadic squares Q containing a zero, say a, of B in its top part and rename them as
{Qa : B(a) = 0}. If a, b are distinct zeros of B, the inequalities ρ(a, b) ≥ |Ba(a)| ≥ β imply
that

ρ(T (Qa), T (Qb))→1 when β→1 .

Therefore, if β = β(α0) is close enough to 1, we have

(4.2) ρ(T (Qa), T (Qb)) ≥ α
1/2
0 .

For each zero a of B we will construct a slit Γa = Ha ∪ Va consisting of an angular arc Ha

and a radial arc Va such that

(4.3) inf{|Ba(z)| : z ∈ Γa} ≥ α
1/2
0 .

Since |Ba(a)| ≥ β, a well known application of Hall’s lemma (see [10, VIII]) to the function Ba

gives that if β = β(α
1/2
0 ) is chosen sufficiently close to 1,

|{eiθ ∈ ∂D : reiθ ∈ Qa with |Ba(re
iθ)| < α

1/2
0 }| < `(Qa)

2
.

Consequently, there exists a radial line V ′
a in Qa such that |Ba(z)| ≥ α

1/2
0 for any z ∈ V ′

a.
We consider the angular arc Ha from the point a to V ′

a and the portion Va of V ′
a that goes

from Ha to the unit circle. Write Γa = Ha ∪ Va. So, (4.3) holds by construction and (4.1).
See Figure 3.

Let a and b be different zeros of B. Observe that since by (4.3), ρ(b, z) ≥ |Ba(z)| ≥ α
1/2
0

for any z ∈ Va, then ρ(b, Va) ≥ α
1/2
0 . Hence ρ(T (Qb), Va) ≥ (α

1/2
0 − α0)/(1 − α0α

1/2
0 ). So, if

|a| ≤ |b|,
ρ(Qb, Va) = ρ(T (Qb), Va) ≥ α

1/2
0 − α0

1− α0α
1/2
0

,

while by (4.2),

ρ(Ha, Hb) ≥ ρ(T (Qa), T (Qb)) ≥ α
1/2
0

and

ρ(Ha, Vb) ≥ ρ(T (Qa), Vb) ≥ α
1/2
0 − α0

1− α0α
1/2
0

.

Thus, in addition to (4.3), the slits {Γa : a ∈ Z(B)} satisfy

(4.4) ρ(Γa, Γb) ≥ α1 :=
α

1/2
0 − α0

1− α0α
1/2
0

.
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Also, observe that since α0 is fixed at the beginning as an absolute constant, so are β = β(α0)
and α1 = α1(α0). For a fixed τ = τ(γ) < min{α1/4, γ/2}, let us consider

Γ̃a = {z ∈ D : ρ(z, Γa) ≤ τ}.
The region Γ̃a looks like a conical neighborhood of the slit Γa. Since τ < α1/4, (4.4) implies
that Γ̃a ∩ Γ̃b = ∅ whenever a and b are two different zeros of B. Also, since τ < γ/2, the
hypothesis that |B(z)| > γ when |g(z)| < δ yields

(4.5) {z : ρ(z, Z(B)) ≤ τ} ∩ {z : |g(z)| < δ} = ∅.
For each zero a of B consider a branch of log ϕa(z) defined in D\Γa that jumps 2πi when z
crosses Γa\{a}. By regularization we can obtain a smooth function ψa on D with ψa ≡ log ϕa

in D\Γ̃a, Re ψa ≡ log |ϕa| in {z : ρ(z, a) ≥ τ/4}, |ψa| ≤ C, and

0 ≤ Im ψa ≤ 4π

(1− |z|)|∂ψa(z)| ≤ C,(4.6)

(1− |z|)2|∆ψa(z)| ≤ C,(4.7)

where C = C(τ) is an absolute constant only depending on τ . The Blaschke condition
implies that the sum ψ(z) :=

∑
a ψa(z) converges uniformly on compact sets of the unit

disk. Observe that |Re ψ(z)| ≤ C(β) for any z ∈ D.

By Lemma 2.1 there is an absolute constant ν0 > 1 such that if Q is an angular square
and any of the sets

{r : ∃ reit ∈ Q, |g(reit)| < δν0}, {eit : ∃ reit ∈ Q, |g(reit)| < δν0},
has length bigger than `(Q)/8 then

(4.8) |g(z)| < δ on {z ∈ Q : 1− |z| ≥ `(Q)/4}.
Let Ω be any connected component of {z : |g(z)| < δν0} (showed in Figure 3). Claim: the
number of slits Γa, a ∈ Z(B), which meet Ω is bounded by a constant C = C(τ) (independent
of Ω). To prove the Claim let Q be a minimal angular square containing Ω, and observe that
if a ∈ Z(B), `(Qa) ≥ `(Q)/10 and Γa∩Ω 6= ∅, then Γa must meet {z ∈ Q : 1−|z| < `(Q)/10}.
Since this set has bounded hyperbolic diameter, (4.4) implies that the number of such zeros
is bounded by a constant C(τ). On the other hand, if a ∈ Z(B) with 1− |a| < `(Q)/100, an
argument of Treil [16] will show that Γa cannot meet Ω. Indeed, if Γa ∩ Ω 6= ∅, taking the
angular square Ra whose base has the same center as Qa and twice its length, the angular or
the radial projection of Ra∩Ω must have length ≥ `(Ra)/4. Hence, (4.8) says that |g(z)| < δ
on {z ∈ Ra : 1− |z| ≥ `(Q)/4}. Consequently |g(a)| < δ, which is a contradiction because a
is a zero of B.

Fix z0 ∈ Ω and let log B be a suitable branch of the logarithm of B on Ω with log B(z0) =
ψ(z0). Since (4.5) implies that | log ϕa − ψa| ≤ 4π on {|g| < δν0} and Ω is an arbitrary
component, the above Claim proves that

(4.9) | log B(z)− ψ(z)| ≤ C1(τ) if |g(z)| < δν0 .
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∂D

Ha

a

Va
Ω

Qa

Figure 3

Next, consider the equation ∂b = ∂ψ. Since {Γ̃a : a ∈ Z(B)} are pairwise disjoint, it follows
from (4.6) and (4.7) that

(1− |z|)|∂ψ(z)| ≤ C = C(τ),

(1− |z|)2|∆ψ(z)| ≤ C = C(τ) .

Also, since the support of ∂ψ is contained in ∪Γ̃a and
∑

Z(B)(1 − |a|)δa is a Carleson mea-

sure with intensity bounded by a constant depending only on β, then |∂ψ(z)| dm(z) and
|∆ψ(z)|(1−|z|) dm(z) are Carleson measures with intensity bounded by C(β, τ). So, apply-
ing Lemma 2.5, we obtain a function b with ∂b = ∂ψ such that

sup{|b(z)| : z ∈ D} ≤ C ′(β, τ) .

Hence, the function h = ψ − b is analytic, and by (4.9) satisfies

| log B(z)− h(z)| ≤ C1(β, τ) if |g(z)| < δν0 .

Observe also that

sup
D
|Re h(z)| ≤ sup

D
|Re ψ(z)|+ ||b||∞ < C2(β, τ).

Applying Theorem 3.1, for any ε > 0 there exists a function G = Gε ∈ H∞ with ||G||∞ <
C3 = C3(β, τ, δ, ε), such that

| log B(z)− h(z)−G(z)| ≤ ε if |g(z)| < δν0+1 .
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At this point we can choose ν = ν0 + 1, and recalling that τ depends only on γ, and β
is an absolute constant, we actually have that the dependency of the above constant is
C3 = C3(γ, δ, ε). Therefore, using the basic inequality |ez−1| ≤ |z|e|z|, if |g(z)| < δν we have

|B(z)− exp(h(z) + G(z))| ≤ ε exp[ε + Re (h(z) + G(z))]

≤ ε exp(2ε + | log |B(z)| |) ≤ εe2ε

γ
.

So, taking H = exp(h + G) completes the proof. ¤
Lemma 4.2. Let f ∈ H∞ with ‖f‖ ≤ 1. Given ε > 0 and 0 < γ < 1, there is a Blaschke
product B and an invertible function G ∈ (H∞)−1 such that

(a) ‖f −GB‖ < ε,

(b) 1 ≥ |G| ≥ c(ε) on D, where c(ε) > 0 depends only on ε,

(c) |B| > γ/2 when |f | > γ.

Proof. First observe that by restricting ε < γ/2, (a) and (b) imply (c), since when |f | > γ,

|B| ≥ |GB| ≥ |f | − |f −GB| > γ − ε > γ/2.

Let f = f0v be the outer-inner factorization of f , and factorize further f0 = f1f2, where fj

(j = 1, 2) are outer functions such that on ∂D,

|f1| =
{ |f | if ε/2 < |f | ≤ 1

1 if |f | ≤ ε/2

and

|f2| =
{

1 if ε/2 < |f | ≤ 1
|f | if |f | ≤ ε/2.

Hence, for almost every point of the unit circle we have, ε/2 ≤ |f1| ≤ 1, and 0 ≤ |f2| ≤ ε/2
or |f2| = 1. If fε = (f2 − ε)/(1− εf2) then

|fε| ≥ ε/2

|1− εf2| ≥
ε

4
a.e. on ∂D.

Now let f1fε = Gu, with G outer and u inner. Then |G| = |f1fε| ≥ ε2/8 a.e. on ∂D, and
since G is outer, also on D. Additionally,

|f −Guv| = |f1f2v − f1fεv| = |f1v| |f2 − fε| = |f1v|ε
∣∣∣∣
1− f 2

2

1− εf2

∣∣∣∣ ≤
2ε

1− ε
≤ 4ε,

where the last inequality comes from ε < γ/2 < 1/2. Since every inner function can be
uniformly approximated by Blaschke products, we can approximate uv by a Blaschke product
B so that (a) follows. ¤
Lemma 4.3. Let f, g ∈ H∞, with ‖g‖ ≤ 1, such that

|f(z)| > γ if |g(z)| < δ .

Then given ε > 0 there exists F ∈ H∞ such that



24 ARTUR NICOLAU AND DANIEL SUÁREZ

(a) |f(z)− F (z)| < ε if |g(z)| < δν, where ν is the absolute constant of Lemma 4.1,

(b) C−1 < |F (z)| < C, for any point z ∈ D, where C = C(‖f‖, γ, δ, ε).

Proof. There is no loss of generality if we assume ‖f‖ ≤ 1. By Lemma 4.2 there are G ∈ H∞

and a Blaschke product B such that c(ε) < |G| < 1 on D, |B| > γ/2 on {|g| < δ}, and

(4.10) ‖f −GB‖ < ε.

By Theorem 3.3 there are Carleson-Newman Blaschke products B1 and B2, with the inten-
sities of the Carleson measures µB1 and µB2 bounded by M = M(ε, γ), such that

(4.11) |B −B1/B2| < ε and |Bj| > c2 = c2(ε, γ/4) if |B| > γ/4

for j = 1, 2. Let ε1 < c2/2 to be chosen later. By Lemma 4.1 there are Hj ∈ H∞ for
j = 1, 2 such that |Bj − Hj| < ε1 if |g| < δν and C−1 < |Hj| < C on D, with C =
C(M, c2, δ, ε1) = C(γ, δ, ε1). Therefore the function F = GH1H

−1
2 satisfies condition (b) of

the lemma. Besides, when |g| < δν ,

|H2| ≥ |B2| − |H2 −B2| > c2 − ε1 > c2/2,

and consequently

|H1H
−1
2 −B1B

−1
2 | ≤ |H−1

2 | |H1 −B1|+ |B1| |H−1
2 −B−1

2 |
≤ 2ε1

c2

+
2ε1

c2
2

< ε(4.12)

if we choose ε1 = ε1(ε, γ) small enough. Hence, (4.12), (4.11) and (4.10) say that when
|g| < δν ,

|F − f | ≤ |GH1H
−1
2 −GB1B

−1
2 |+ |GB1B

−1
2 −GB|+ |GB − f | < 3ε,

as claimed. ¤

Proof of Theorem B. The purpose of the theorem is to remove the restriction |g| < δν

from (a) of Lemma 4.3, and replace it by |g| < η for an arbitrary η ∈ (0, δ). If δ ≥ η1/ν

the result follows immediately from Lemma 4.3. So, the strategy of the proof consists on
iterating a process of approximation in order to arrive to a situation in which the above
inequality holds. If δ < η1/ν consider the parameter

r =

(
δν

η

) 1
ν−1

.

Then r < 1 and solving from δ > η yields r > δ. Observe also that
(

δ
r

)ν
= η

r
. Let g1 = g/r

and

Ω = {z ∈ D : |g| < r} = {z ∈ D : |g1| < 1}.
If O ⊂ Ω is a connected component of Ω, then it is conformally equivalent to D, and by
restriction, we can think of the functions in H∞ as functions of H∞(O). Thus, g1|O ∈ H∞(O)
has norm 1. Since |f |O| > γ when |g1|O| < δ/r, Lemma 4.3 says that there is FO ∈ H∞(O)
such that |FO − f |O| < ε on {z ∈ O : |g1(z)| < (δ/r)ν} and C0 < |FO| < C−1

0 , where C0 > 0
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depends on K, γ, δ, η and ε. Since this holds for every component O of Ω, we actually get
F ∈ H∞(Ω) so that

|F − f |Ω| < ε on {|g1| < (δ/r)ν = η/r} = {|g| < η}
and C0 < |F | < C−1

0 on Ω. Write α = min{C0/2, ε}. By Theorem 3.1 there is F1 ∈ H∞ such
that |F1 − F | < α on {|g| < (r + δ)/2} and ‖F1‖ ≤ K1, where K1 is a constant depending
on C0, r, δ and α. Then |F1| ≥ C0/2 on {|g| < (r + δ)/2} and |F1 − f | < 2ε on {|g| < η}.

We can iterate this process with f replaced by F1, γ replaced by C0/2 and δ replaced by
δ1 = (r + δ)/2. At the n-step we will have:

(4.13) δn =
1

2

[(
δν
n−1

η

) 1
ν−1

+ δn−1

]
,

where δ0 = δ, and Fn ∈ H∞ such that

(4.14) |Fn − Fn−1| < 2ε on {|g| < η}, (with F0 = f),

|Fn| ≥ Cn/2 on {|g| < δn}, and ‖Fn‖ ≤ Kn, where Cn, Kn > 0 depend on n, K, ε, γ, δ and
η. Observe that (4.14) implies that |Fn− f | < 2nε on {|g| < η}. We can keep repeating this
process as long as δn < 1. Indeed, if there is n0 such that δn0 ≥ 1 for the first time, then

|Fn0 − f | < 2n0ε on {|g| < η},
|Fn0| ≥ Cn0/2 on {|g| < δn0} = D,

and
‖Fn0‖ ≤ Kn0 ,

where Cn0 and Kn0 only depend on the parameters stated in the lemma and n0. Thus, the
lemma will follow if we show that there is an integer n0 depending only on δ and η such that
δn0 ≥ 1 for the first time. Clearly, it is enough to show that δn→∞ as n→∞. We recall that

δ > η implies r =
(

δν

η

) 1
ν−1

> δ, and since δ1 is the average between δ and r then δ1 > δ = δ0.

The recursive definition of δn then gives that δn > δn−1. Therefore, this sequence either
tends to infinity or has a finite positive limit. Suppose that lim δn = ` < ∞. Then taking
limits in (4.13) we obtain

` =
1

2

[(
`ν

η

) 1
ν−1

+ `

]
,

from which ` = 0 or η. But this is not possible because ` > δ0 = δ > η. ¤

Lemma 4.4. If n is a positive integer, for 1 ≤ j ≤ n let 0 < ηj < δj < 1 and f, gj ∈ H∞

such that ‖gj‖ ≤ 1, ‖f‖ ≤ K and |f | > γ > 0 on the set ∩n
j=1{|gj| < δj}. Then, given ε > 0

there exists F ∈ H∞ such that

|F − f | < ε on
n⋂

j=1

{|gj| < ηj},

and
Cn ≤ |F | ≤ C−1

n ,
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where Cn > 0 is a constant independent of f (it depends on K, γ, ε, δj, ηj, 1 ≤ j ≤ n).

Proof. We will argue by induction on n. For n = 1 the statement is precisely Theorem B.
So suppose that the statement holds for n− 1, and consider Ω = {z ∈ D : |gn(z)| < δn}. If
O ⊂ Ω is a connected component, then

|f |O| > γ on
n−1⋂
j=1

{|gj| < δj} ∩ O.

By inductive hypothesis then there is FO ∈ H∞(O) such that

|FO − f |O| < ε on
n−1⋂
j=1

{|gj| < ηj} ∩ O

and Cn−1 ≤ |FO| ≤ C−1
n−1 on O, where the dependencies of Cn−1 are the ones stated in the

lemma. Since this holds for every component O ⊂ Ω, we obtain a function F0 ∈ H∞(Ω) so
that

(4.15) |F0 − f |Ω| < ε on
n−1⋂
j=1

{|gj| < ηj} ∩ Ω

and Cn−1 ≤ |F0| ≤ C−1
n−1 on Ω. Since

Ω = {|gn| < δn} ⊃ {|gn| < (δn + ηn)/2},
Theorem 3.1 says that there exists F1 ∈ H∞ such that

(4.16) |F1 − F0| < α = min{Cn−1/2, ε} on {|gn| < (δn + ηn)/2}.
and

(4.17) ‖F1‖ ≤ C(ηn, δn, α, Cn−1).

Thus,

|F1| ≥ |F0| − |F0 − F1| ≥ Cn−1/2 on {|gn| < (δn + ηn)/2},
and Theorem B gives us F ∈ H∞ such that

(4.18) |F − F1| < ε on {|gn| < ηn}
and Cn ≤ |F | ≤ C−1

n , where Cn > 0 depends on Cn−1, δn, ηn and the constant of (4.17),
which makes it clear that Cn only has the dependencies stated in the lemma. Also, (4.18),
(4.16) and (4.15) yield

|F − f | ≤ |F − F1|+ |F1 − F0|+ |F0 − f | < 3ε

on
⋂n

j=1{|gj| < ηj}. ¤

Proof of Theorem A. Let E ⊂ M(H∞) be a closed H∞-convex set and f ∈ (H∞
E )−1

be an invertible function. We must show that f̂ can be uniformly approximated on E by
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restrictions of invertible functions in H∞. By the density of Ĥ∞|E in H∞
E we can assume

that f ∈ H∞ and infE |f̂ | = γ > 0. Consider the set

K = {x ∈ M(H∞) : |f̂(x)| ≤ γ/2}.
Since E ⊂ M(H∞) \K is H∞-convex, then for every x ∈ K there is gx ∈ H∞ with ‖gx‖ ≤ 1
such that ĝx(x) > supE |ĝx|. Choose numbers δx and ηx such that

(4.19) |ĝx(x)| > δx > ηx > sup
E
|ĝx|.

The sets Vx = {y ∈ M(H∞) : |ĝx(y)| > δx}, with x ∈ K, form an open covering of K.
Hence, by compactness there are x1, . . . , xn ∈ K such that K ⊂ Vx1 ∪ . . . ∪ Vxn , that is,

{|f̂ | ≤ γ/2} ⊂ ⋃n
j=1{|ĝxj

| > δxj
}. So, taking complements in M(H∞) we have |f̂ | > γ/2 on⋂n

j=1{|ĝxj
| ≤ δxj

}. Applying Lemma 4.4 we see that given ε > 0 there is F ∈ (H∞)−1 such
that

|F − f | < ε on
n⋂

j=1

{|gxj
| < ηxj

}.

If G denotes the M(H∞)-closure of
⋂n

j=1{|gxj
| < ηxj

}, by continuity, |F̂ − f̂ | ≤ ε on G. The

density of D in M(H∞) and (4.19) imply that G is a neighborhood of E. Hence, |F̂ − f̂ | ≤ ε
on E and the theorem is proved. ¤
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