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Universidad Nacional de Colombia.

Sede Bogotá.

Abstract

In this paper we extend some results obtained by Artamonov and
Sabitov for quantum polynomials to skew quantum polynomials and
quasi−commutative bijective skew PBW extensions. Moreover, we find
a counterexample to the conjecture proposed in [6].
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1 Introduction

This section is divided into three subsections, we recall the definition of
Γ−valuation, valuation and quantum polynomials. We review some funda-
mental properties of valuations and valuations of quantum polynomials (see
[4] and [6]).

1.1 Valuations

Let D be a division ring, D∗ the multiplicative group and Γ is a totally
ordered group (with additive notation and not necessarily commutative).

Definition 1.1. A function ν : D∗ → Γ is a Γ−valuation of D∗ if:

i) ν is surjective,

ii) ν (ab) = ν (a) + ν (b),

iii) ν (a+ b) ≥ min {ν (a) , ν (b)}.

Proposition 1.2. [14, 9] If ν is a Γ−valuation of D∗, then:

1) If ν (a) 6= ν (b), then ν (a+ b) = min{ν (a) , ν (b)}.

2) Λν := {a ∈ D; a = 0 or ν (a) ≥ 0} is a subring of D.

3) The group of units Uν := {a ∈ D∗; ν (a) = 0} is a subgroup of D∗.

4) Wν := {a ∈ D, a = 0 or ν (a) > 0} is a completely prime ideal of Λν
and Wν = Λν − Uν .

5) Λν is a local ring with unique maximal ideal Wν .

1.2 Valuations with values on Γ ∪ {∞}

Proposition 1.3. Let Γ be a totally ordered group with additive notation
ordere. Then Γ ∪ {∞} is an ordered additive monoid such that

x+∞ :=∞ =:∞+ x, for all Γ ∪ {∞},

and ∞ > x for all x ∈ Γ.

Definition 1.4 ([8]). Let R be a ring. By a valuation on R with values in
a totally ordered group Γ, the value group, we shall understand a function ν
on R with values in Γ ∪ {∞} subject to the conditions:

i) ν(a) ∈ Γ ∪ {∞} and ν assumes at least two values,

ii) ν (ab) = ν (a) + ν (b),
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iii) ν (a+ b) ≥ min {ν (a) , ν (b)}.

Proposition 1.5. [8, 9] If ν is a valuation of R, then:

1) ker ν := {a ∈ R; ν(a) =∞} is an ideal of R.

2) If ν(a+ b) > min{ν(a), ν(b)}, then ν(a) = ν(b).

3) Λν := {a ∈ R; ν (a) ≥ 0} is a subring of R.

4) The group of units Uν := {a ∈ R∗; ν (a) = 0} is a subgroup of R∗.

5) Wν := {a ∈ R, ν (a) > 0} is an ideal of Λν .

6) ker ν is a completely prime ideal of R and R/ker ν is an integral do-
main.

Proposition 1.6 ([8]). If ν is a Γ−valuation of D. Then Γ is abelian, if
and only if ν(a) = 0 for all a ∈ [D∗, D∗].

1.3 Quantum polynomials

Let D be a division ring with a fixed set α1, α2 , . . ., αn, n ≥ 2, of au-
tomorphimsms. Also, we have qij in D∗ for i, j = 1, 2, . . . , n fix elements,
satisfying the relations :

qii = qijqji = q ijrq jriqrij = 1

αi(αj(d)) = qijαj(αi(d))qji,

where q ijr = qijαj(qir) and d ∈ D. We set q = (qij) ∈ M (n,D) and
α = (α1, α2, . . . , αn).

Definition 1.7. The elements qij of the matrix q are called system of
multiparameters.

Definition 1.8 (Quantum polynomial ring). Denote by

Oq := Dq,α

[
x±11 , x±12 , . . . , x±1r , xr+1, . . . , xn

]
, (1.1)

the associative ring generated by D and by elements x±11 , x±12 , . . ., x±1r ,
xr+1, . . ., xn subject to the defining relations

xix
−1
i = x−1i xi = 1, 1 ≤ i ≤ r, (1.2)

xid = αi(d)xi, d ∈ D, i = 1, 2, . . . , n, (1.3)

xixj = qijxjxi, i, j = 1, 2, . . . , n. (1.4)

3



Definition 1.9. Let N be the subgroup in the multiplicative group D∗ of
the ring D generated by the derived subgroup [D∗, D∗] and by the set of
all elements of the form z−1σi(z) where z ∈ R∗ and i = 1, . . . , n. Λ :=
Dq,α [x1, x2, . . . , . . . , xn] is a general (generic) quantum polynomials ring if
the images of all multiparameters qij, 1 ≤ i < j ≤ n, are independent in the
multiplicative Abelian group D∗/N .

The ring Oq is a left and right Noetherian domain, it satisfies Ore Condi-
tion and it has a division ring of fractions F := Dq (x1, . . . , xn). We consider
ν : F ∗ → Γ a Γ−valuation with ν(D∗) = 0.

Theorem 1.10 ([6]). A valuation of a quantum division ring D, is Abelian
in the sense that the group Γ is Abelian.

Definition 1.11 ([4], [6]). Let ν1 : D∗ → Γ1 and ν2 : D∗ → Γ2 be two
valuations. Set ν1 ≥ ν2 if there exists an epimorphism of ordered groups
τ : Γ1 → Γ2 such that τν1 = ν2. It means that the diagram

D∗

ν2
��

ν1 // Γ1

τ~~
Γ2

is commutative.

Definition 1.12 ([4], [6]). A valuation ν has a maximal rank if τ is an
isomorphism in the previous definition.

Theorem 1.13 ([4]). A valuation ν : F ∗ → Γ of a general quantum division
ring Oq is has maximal rank if only if Γ ∼= Zn.

2 Completions of quantum polynomials

In this section ν : F ∗ → Zn is a maximal Zn−valuation.

Definition 2.1 ([6]). Let F be the set of all maps f : Zn → k and the zero
element such that supp f := {m ∈ Zn; f(m) 6= 0} is Artinian with respect to
the lexicographic order on Zn.

Theorem 2.2. F is a division ring containing F .

Proof. See [3] Theorem 3.4 and 3.7.

Expand the valuation ν to f ∈ F in the following way. If f ∈ F then
ν(f) the least element from supp f .

Definition 2.3 ([6]). The division ring F is called a completion of F with
respect to ν.
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Remark 2.4. If O := {f ∈ F ; ν(f) ≥ 0} and m := {f ∈ F ; ν(f) > 0},
then O is a subring in F and m is an ideal in O. Moreover, O/m ∼= k.

Let Rn be a vector space of all rows (r1, . . . , rn), ri ∈ R, of a length n
and Rn is equipped with the lexicographic order.

Theorem 2.5 ([10]). Let ≤Zn be a totally order in the additive group Zn.
Then there exists order preserving group embedding Zn → Rn.

Definition 2.6. [6] A totally order ≤Zn is essentially lexicographic if it
belongs to the orbit of the standard embedding of Zn in to Rn under the
action of the group GL(n,Z). i.e., if a, b ∈ Zn, a ≤Zn b if only if aA ≤ bA
for some fixed A in GL(n,Z) and ≤ the lexicographic order.

Conjecture 2.7 ([6]). A valuation ν is associated to an essentially lexico-
graphic order on Zn if and only if ∩i>1m

i = 0.

In the study of this conjecture we obtain the following results partial:

Proposition 2.8. If ν : R → Γ ∪ {∞} is a valuation of a ring R and Γ is
a Archimedean group with Wν := {a ∈ R, ν (a) > 0}, inf{ν(Wν)} 6= 0 and⋂
i≥1W i

ν := I, then ν(I) =∞.

Proof. Let Ai := ν(W i
ν) and λi := inf{Ai} be, then λ1 < λ2 < ... < λi

and iλ1 ≤ λi, indeed: (by induction over i) as inf{ν(Wν)} 6= 0 then
0 < λ1 ≤ ν(a) for all a ∈ Wν , hence λ1 < 2λ1 ≤ ν(ab) for all a, b ∈ Wν ,
therefore 2λ1 ≤ λ2, suppose that λi−1 < λi and iλ1 ≤ λi, then iλ1 <
(i+ 1)λ1 ≤ λi + λ1 ≤ ν(a) + ν(b) = ν(ab) for all a ∈ W i

ν and b ∈ Wν , then,
λi < λi+1 and (i+ 1)λ1 ≤ λi+1.

Now, suppose there exists b ∈ I such that ν(b) = λ <∞, so λ1 < λ and
as Γ is Archimedean there exists an integer m such that mλ1 > λ, therefore
λ /∈ Am, hence b /∈ Wm

ν , contradicting that b ∈ I.

Corollary 2.9. If ν : D → Γ∪{∞} is a valuation of a division ring D and
Γ is a Archimedean group with inf{ν(Wν)} 6= 0, then

⋂
i≥1W i

ν = 0.

Proof. 0 = ν(1) = ν(aa−1) = ν(a) + ν(a−1) for all a ∈ D∗, then ν(a) < ∞
for all a ∈ D∗, therefore ν(a) =∞ if only if a = 0.

Remark 2.10. In the Proposition 2.8 the condition inf{ν(Wν)} 6= 0 can be
replaced by inf{ν(W i

ν)} 6= 0 for any i > 0 in N.

Example 2.11. If we take lexicographic order on Z2 the order does not
have intersection property: consider A := {(x, y) ∈ Z2; (0, 0) < (x, y)} and
nA :=

∑n
i=1A with n > 0 , then nA = {(x, y) ∈ Z2; (0, n) ≤ (x, y)}. By in-

duction over n: If n = 2, then 2A = A \ {(0, 1)}, indeed: as min{A} = (0, 1)
then (0, 2) ≤ (x, y) with (x, y) ∈ 2A, thus 2A ⊆ A \ {(0, 1)}. Now, if (x, y)
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in 2A, then (x, y − 1) ∈ A, because x > 0 or x = 0 and y ≥ 2.

Suppose that nA = (n − 1)A \ {(0, n − 1)}, as min{nA} = (0, n) then
(0, n + 1) ≤ (x, y) with (x, y) ∈ (n + 1)A, thus (n + 1)A ⊆ nA \ {(0, n)}.
Now, if (x, y) in (n+ 1)A, then (x, y− 1) ∈ nA, because x > 0 or x = 0 and
y ≥ n+ 1. Consequently (n+ 1)A = {(x, y) ∈ Z2; (0, n+ 1) ≤ (x, y)}.

Hence, as (1, 0) ∈ nA for every n ≥ 1 since (0, n) < (1, 0) , then (1, 0) ∈
∩n>0nA.

It follows a counterexample to the conjecture, since a lexicographic order
is essentially lexicographic.

3 Skew PBW extensions

In this section we recall the definition and some basic properties of skew
PBW (Poincaré-Birkhoff-Witt) extensions, introduced in [11]. Some ring-
theoretic and homological properties of these class of noncommutative rings
have been studied in [12].

Definition 3.1. Let R and A be rings. We say that A is a skew PBW
extension of R (also called a σ − PBW extension of R) if the following
conditions hold:

(i) R ⊆ A.

(ii) There exists finitely many elements x1, . . . , xn ∈ A such A is a left
R-free module with basis

Mon(A) := {xu = xu11 · · ·xunn | u = (u1, . . . , un) ∈ Nn}.

In this case it also says that A is a left polynomial ring over R with
respect to {x1, . . . , xn} and Mon(A) is the set of standard monomials
of A. Moreover, x01 · · ·x0n := 1 ∈Mon(A).

(iii) For every 1 ≤ i ≤ n and r ∈ R − {0} there exists ci,r ∈ R − {0} such
that

xir − ci,rxi ∈ R. (3.1)

(iv) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn. (3.2)

Under these conditions we will write A := σ(R)〈x1, . . . , xn〉.
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Proposition 3.2. Let A be a skew PBW extension of R. Then, for every
1 ≤ i ≤ n, there exists an injective ring endomorphism σi : R → R and a
σi-derivation δi : R→ R such that

xir = σi(r)xi + δi(r),

for each r ∈ R.

Proof. See [11], Proposition 3.

The previous proposition gives the notation and the alternative name
given for the skew PBW extensions.

Definition 3.3. Let A be a skew PBW extension.

(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition
3.1 are replaced by

(iii’) For every 1 ≤ i ≤ n and r ∈ R − {0} there exists ci,r ∈ R − {0}
such that

xir = ci,rxi. (3.3)

(iv’) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi = ci,jxixj . (3.4)

(b) A is bijective if σi is bijective for every 1 ≤ i ≤ n and ci,j is invertible
for any 1 ≤ i < j ≤ n.

Definition 3.4. Let A be a skew PBW extension of R with endomorphisms
σi, 1 ≤ i ≤ n, as in Proposition 3.2.

(i) For u = (u1, . . . , un) ∈ Nn, σu := σu11 · · ·σunn , |u| := u1 + · · · + un. If
v = (v1, . . . , vn) ∈ Nn, then u+ v := (u1 + v1, . . . , un + vn).

(ii) For X = xu ∈ Mon(A), exp(X) := u and deg(X) := |u|.

(iii) If f = c1X1 + · · · + ctXt, with Xi ∈ Mon(A) and ci ∈ R − {0}, then
deg(f) := max{deg(Xi)}ti=1.

Theorem 3.5. Let A be a left polynomial ring over R w.r.t. {x1, . . . , xn}.
A is a skew PBW extension of R if and only if the following conditions
hold:

(a) For every xu ∈ Mon(A) and every 0 6= r ∈ R there exist unique
elements ru := σu(r) ∈ R− {0} and pu,r ∈ A such that

xur = rux
u + pu,r, (3.5)

where pu,r = 0 or deg(pu,r) < |u| if pu,r 6= 0. Moreover, if r is left
invertible, then ru is left invertible.
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(b) For every xu, xv ∈ Mon(A) there exist unique elements cu,v ∈ R and
pu,v ∈ A such that

xuxv = cu,vx
u+v + pu,v, (3.6)

where cu,v is left invertible, pu,v = 0 or deg(pu,v) < |u+ v| if pu,v 6= 0.

Proof. See [11], Theorem 7.

Proposition 3.6. Let A be a skew PBW extension of a ring R. If R is a
domain, then A is a domain.

Proof. See [12].

The next theorem characterizes the quasi-commutative skew PBW ex-
tensions.

Theorem 3.7. Let A be a quasi-commutative skew PBW extension of a
ring R. Then,

(i) A is isomorphic to an iterated skew polynomial ring of endomorphism
type, i.e.,

A ∼= R[z1; θ1] · · · [zn; θn].

(ii) If A is bijective, then each endomorphism θi is bijective, 1 ≤ i ≤ n.

Proof. See [12].

Corollary 3.8. Let A be a bijective and quasi-commutative skew PBW
extension of a ring R. If R is a left Ore domain, then A is a left Ore
domain.

Proof. By Theorem 3.7, A is isomorphic to an iterated skew polynomial ring
of automorphism type over a left Ore domain R.

Theorem 3.9. Let A be an arbitrary skew PBW extension of R. Then, A
is a filtered ring with filtration given by

Fm :=

{
R if m = 0

{f ∈ A | deg(f) ≤ m} if m ≥ 1
(3.7)

and the corresponding graded ring Gr(A) is a quasi-commutative skew PBW
extension of R. Moreover, if A is bijective, then Gr(A) is a quasi-commutative
bijective skew PBW extension of R.

Proof. See [12].

Theorem 3.10 (Hilbert Basis Theorem). Let A be a bijective skew PBW
extension of R. If R is a left (right) Noetherian ring then A is also a left
(right) Noetherian ring.

Proof. See [12].
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3.1 Skew quantum polynomials

In this subsection we recall the definition and some basic properties of skew
quantum polynomials ring over R, introduced in [12].We mention some re-
sults generalized for valuations of skew quantum polynomials and bijective
and quasi-commutative skew PBW extension.

Definition 3.11. Let R be a ring with matrix of parameters q := [qij ] ∈
Mn(R), n ≥ 2, such that qii = 1 = qijqji = qjiqij for each 1 ≤ i, j ≤ n and
suppose also that is given a system σ1, . . . , σn of automorphisms of R. The
skew quantum polynomials ring over R, denoted by

Rq,σ[x±11 , . . . , x±1r , xr+1, . . . , xn], (3.8)

is defined whit the following conditions:

i) R ⊆ Rq,σ[x±11 , . . . , x±1r , xr+1, . . . , xn],

ii) Rq,σ[x±11 , . . . , x±1r , xr+1, . . . , xn] is a free left R−module with basis {xu;xu =
xu11 · · ·xunn , ui ∈ Z, 1 ≤ i ≤ r and ui ∈ N for r + 1 ≤ i ≤ n},

iii) The x1, . . . , xn elements satisfy the defining relations

xix
−1
i = 1 = x−1i xi, 1 ≤ i ≤ r, (3.9)

xixj = qjixjxi 1 ≤ i, j ≤ n, (3.10)

xir = σi(r)xi, r ∈ R y 1 ≤ i ≤ n. (3.11)

When all automorphisms are trivial, we write Rq [x±11 , . . . , x±1r , xr+1, . . . ,
xn] and this ring is called the ring of quantum polynomials over R. If R = K
is a field, then Kq ,σ[x±11 , . . . , x±1r , xr+1, . . . , xn] is the algebra of skew quan-
tum polynomials. For trivial automorphisms we get the algebra of quantum
polynomials simply.

If r = n, Rq ,σ[x±11 , . . . , x±1n ] is called the n-multiparametric skew quantum
torus over R, when all automorphisms are trivial, is called the n−multipara-
metric quantum torus over R. If r = 0, Rq ,σ[x1, . . . , xn] is called the n-
multiparametric skew quantum space over R, when all automorphisms are
trivial is called n−multiparametric quantum space over R.

The algebra of quantum polynomials can be defined as a quasi-commutative
bijective skew PBW extension of the r-multiparameter quantum torus, or
also, as a localization of a quasi-commutative bijective skew PBW exten-
sion.
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Theorem 3.12. Rq,σ[x1, . . . , xn] ∼= R[z1; θ1] · · · [zn; θn], where

i) θ1 = σ1,
ii) θi : R[z1; θ1] · · · [zi−1; θi−1]→ R[z1; θ1] · · · [zi−1; θi−1],
iii) θi(zi) = qijzi, 1 ≤ i < j ≤ n, θi(r) = σi(r) for r ∈ R.

In particular, Rq[x1, . . . , xn] ∼= R[z1] · · · [zn; θn].

Proof. See [12].

Theorem 3.13. Rq,σ[x±11 , . . . , x±1r , xr+1 . . . , xn] is a ring of fractions of
B := Rq,σ[x1, . . . , xn] with respect to the multiplicative subset

S = {rxu; r ∈ R∗, xu ∈Mon{x1, . . . , xr}},

i.e,
Rq,σ[x±11 , . . . , x±1r , xr+1 . . . , xn] ∼= S−1B.

Proof. See [12].

Remark 3.14. Let Qr,nq ,σ(R) := Rq ,σ[x±11 , . . . , x±1r , xr+1, . . . , xn] and R be a
left (right) Noetherian ring, then Qr,nq ,σ(R) is left (right) Noetherian by The-
orem 3.10. Moreover, if R is a domain, then Qr,nq ,σ(R) is also a domain by
Theorem 3.6. Thus, if R is a left (right) Noetherian domain, then Qr,nq ,σ(R)
is a left (right) Ore domain.

Thus, Qr,nq ,σ(R) has a total division ring of fractions

Q(Qr,nq ,σ(R)) ∼= Q(A) := σ(R)(x1, . . . , xn),

where σ(R)(x1, . . . , xn) denotes the rational fractions ofA := σ(R)〈x1, . . . , xn〉.

3.2 Some properties

Definition 3.15. Let N be the subgroup in the multiplicative group R∗ of
the ring R generated by the derived subgroup [R∗, R∗] and by the set of all
elements of the form z−1σi(z) where z ∈ R∗ and i = 1, . . . , n.

Remark 3.16. N is a normal subgroup in R∗.

Definition 3.17. If the images of qij with 1 ≤ i < j ≤ n are independent
in the multiplicative Abelian group R̄ = R∗/N then, Rq,σ[x±11 , . . . , x±1r , xr+1,
. . . , xn] is a generic skew quantum polynomials ring.

Remark 3.18. If n=2 in Rq ,σ[x±11 , . . . , x±1r , xr+1, . . . , xn], of the previous
definition q = q12 is not a root of unity.

Proposition 3.19. For each a ∈ R∗ and σ endomorphism over R, σk(a) =
an with k ∈ N and n ∈ N .
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Proof.

σk(a) = a
(
a−1σ(a)

) (
(σ(a))−1σ2(a)

)
. . .
(

(σk−1(a))−1σk(a)
)

= an, with n ∈ N. (3.12)

Proposition 3.20. If u, v ∈ Zr × Nn−r and λ, µ ∈ R∗, then

(1) xix
u =

(∏n
j=1 q

uj
ji

)
nu · xuxi, for some nu ∈ N and for any 1 ≤ i ≤ n.

(2) (xu) (xv) =
(∏

i<j q
ujvi
ji

)
nu+v · xu+v, with nu+v ∈ N .

(3) (λxu) (µxv) = λµ
(∏

i<j q
ujvi
ji

)
n′ · xu+v, with n′ ∈ N .

Proof. Applying the Proposition 3.19 and note that xix
−1
j = q−1ji x

−1
j xi with

1 ≤ j ≤ r.

Proposition 3.21. Let f :=
∑

u∈Z λux
u be in Rq,σ[x±11 , . . . , x±1r , xr+1, . . . , xn]

and xi with 1 ≤ i ≤ r.

(1) If λu ∈ R, then

xifx
−1
i =

∑
u∈Zn

σi(λu)λ′ux
u,

where λ′u :=
(∏n

j=1 q
uj
ji

)
nu ∈ R∗.

(2) If λu ∈ R∗, then

xifx
−1
i =

∑
u∈Zn

λ′ux
u,

where λ′u ∈ R∗.

Proof. (1) Note that N ⊆ R∗ and

xifx
−1
i =

∑
σi(λu)xix

ux−i

=
∑
u∈Zn

σi(λu)

 n∏
j=1

q
uj
ji

nux
u,

where nu ∈ N .

(2) By item (1), σi(λu)λ′u ∈ R∗.
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Remark 3.22. If Q(Qr,nq ,σ(R)) exists and G denotes the multiplicative sub-
group in Q(Qr,nq ,σ(R))∗ generated by R∗ and x1, ..., xn. Then R∗ / G and
G/R∗ is a free abelian group with the base x1R

∗, . . . , xnR
∗.

Proposition 3.23. Let R be a left Ore domain and σ automorphisms over
R, then σ can be extended to Q(R) and is also an automorphism.

Proof. By universal property we have the following commutative diagram:

R

σ

��

ψ // Q(R)

σ̃

��

R

ψ
��

Q(R)

where ψ, σ are injective and σ̃
(
a
b

)
= σ(a)

σ(b) for a, b 6= 0 ∈ R. Therefore, ψ ◦ σ
is injective and so is σ̃.

If a
b ∈ Q(R), then a

b = ψ(b)−1ψ(a) = ψ(σ(b0))
−1ψ(σ(a0)) for a0, b0 6=

0 ∈ R, consequently,

a

b
= ψ(σ(b0))

−1ψ(σ(a0))

= σ̃(ψ(b0))
−1σ̃(ψ(a0))

= σ̃(ψ(b0)
−1ψ(a0))

= σ̃

(
a0
b0

)
.

Theorem 3.24. Let R be a left Ore domain and S = R− {0}, then

S−1(Rq,σ[x1, . . . , xn]) ∼= Q(R)q̃,σ̃[x1, . . . , xn],

where q̃ =
( qij

1

)
∈M (n,Q(R)).

Proof. By Theorem 3.12 Rq ,σ[x1, . . . , xn] ∼= R[z1; θ1] · · · [zn; θn], with each θi
bijective. Thus, if S = R− {0} then

S−1 (Rq ,σ[x1, . . . , xn]) ∼= S−1 (R[z1; θ1] · · · [zn; θn])

∼= S−1 (R) [z1; θ̃1] · · · [zn; θ̃n]

= Q (R) [z1; θ̃1] · · · [zn; θ̃n]
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where

θ̃1 : Q(R) → Q(R)

a

b
7→ θ̃1

(a
b

)
=
θ1(a)

θ1(b)
=
σ1(a)

σ1(b)
= σ̃1

(a
b

)
,

and

θ̃i : Q (R) [z1; θ̃1] · · · [zi−1; θ̃i−1] → Q (R) [z1; θ̃1] · · · [zi−1; θ̃i−1]

with
θ̃i

(a
b

)
= σ̃i

(a
b

)
y θ̃j (zi) =

qij
1
zi.

Therefore,

S−1(Rq ,σ[x1, . . . , xn]) ∼= Q(R)q̃ ,σ̃[x1, . . . , xn],

where q̃ =
( qij

1

)
∈M (n,Q(R)).

Proposition 3.25. Let R be a left Ore domain , there exists

φ : Rq,σ[x±11 , . . . , x±1n ]→ Q(R)q̃,σ̃[x±11 , . . . , x±1n ]

an injective ring homomorphism.

Proof. Let BR := Rq ,σ[x1, . . . , xn] and BQ(R) := Q(R)q̃ ,σ̃[x1, . . . , xn] be,

by Theorem 3.13 Rq ,σ[x±11 , . . . , x±1n ] ∼= S−11 BR with S1 = {rxu; r ∈ R∗,
xu ∈Mon{x1, . . . , xn}}, and Q(R)q̃ ,σ̃[x±11 , . . . , x±1n ] ∼= S−11′ BQ(R) with S1′ =
{rxu; r ∈ Q(R)∗, xu ∈Mon{x1, . . . , xn}}.

Now, consider the following diagram of ring homomorphisms:

R

ψ

��

� � // Rq ,σ[x1, . . . , xn]

ψ′

��

//ψ1
S−11 BR

ϕ

��
Q(R) �

� // Q(R)q̃ ,σ̃[x1, . . . , xn] //ψ1′
S−11′ BQ(R)

where ψ is the injection for the localization of R to the total ring fractions
Q(R), ψ′ the injection determined by the isomorphism of Theorem 3.24
where ψ′(axu) = a

1x
u, and ψ1, ψ1′ injections determined by the localizations

for BR and BQ(R) respectively.

As ψ′(S1) ⊆ S1′ , then ψ1′(ψ
′(S1)) ⊆ ψ1′(S1′) ⊆

(
S−11′ BQ(R)

)∗
, therefore,

by universal property there exists ϕ. If f =
∑
aux

u ∈ Rq ,σ[x1, . . . , xn] and
rxv ∈ S1 then,

13



ϕ

(
f

rxv

)
= ϕ

(∑
aux

u

rxv

)
= ψ1′(ψ

′(rxv))−1ψ1′

(
ψ′
(∑

aux
u
))

= ψ1′

(r
1
xv
)−1

ψ1′

(∑ au
1
xu
)

=
1
1
r
1x

v

∑ au
1 x

u

1
1

=

∑ au
1 x

u

r
1x

v

=
ψ′(f)

ψ′(rxv)
.

Also, ϕ is injective by ψ′ and ψ1′ are injective.

Need the following result for the subsequent theorem:

Proposition 3.26. Let R be a ring and S ⊂ R a multiplicative subset. If
Q := S−1R exists, then any finite set {q1, . . . , qn} of elements of Q posses a
common denominator, i.e., there exists r1, . . . , rn ∈ R and s ∈ S such that
qi = ri

s , 1 ≤ i ≤ n.

Proof. See [13], Lemma 2.1.8.

Theorem 3.27. Let R be a left Ore domain, then Q(Qn,nq,σ (R)) ∼= Q(Qn,nq̃,σ̃ (Q(R)).

Proof. With the notation of the proof in the Proposition 3.25 consider the
following diagram of ring homomorphisms

S−11 BR

ϕ

��

ψ2 // Q(S−11 BR)

ϕ′

��
S−11′ BQ(R)

ψ2′ // Q(S−11′ BQ(R))

where ψ2, ψ2′ are injections determined by the localizations of S−11 BR and
S−11′ BQ(R) respectively and ϕ the injection of the Proposition 3.25.

By Remark 3.14, S−11 BR and S−11′ BQ(R) are domain, now, if p1
q1
, p2q2 ∈

S−11 BR with p1
q1
6= 0, then p1 6= 0 and there exist f1 6= 0 and f2 ∈

BR such that f1p1 = f2p2. Then, f1q1
1

p1
q1

= f1p1
1 = f2q2

1 = f2q2
1

p2
q2
6= 0,

therefore S−11 BR is a Ore domain, similarly it has to S−11′ BQ(R). Thus,

if S2 = S−11 BR − {0} and S2′ = S−11′ BQ(R) − {0} as ϕ(S2) ⊆ S2′ , then

14



ψ2′(ϕ(S2)) ⊆ ψ2′(S2′) ⊆
(
Q(S−11′ BQ(R))

)∗
, hence, by universal property

there exists ϕ′ injective ring homomorphism.

Note that if f, g ∈ BR and axu, bxb ∈ S1, then

f
axu
g
bxv

=
( g

bxv

)−1 f

axu
=
bxv

g

f

axu
=
f ′

g′

and
f ′

g′
=

1

g′
f ′

1
=

(
g′

1

)−1 f ′
1

=
f ′

1
g′

1

,

where f ′, g′ ∈ BR by Remark 3.14 with r = 0. Similarly is obtained for
Q(S−11′ BQ(R)).

Therefore,

ϕ′
(
f

g

)
= ψ2′

(
ϕ
(g

1

))−1
ψ2′

(
ϕ

(
f

1

))
= ψ2′

(
ψ′(g)

1
1

)−1
ψ2′

(
ψ′(f)

1
1

)

=
1
1

ψ′(g)

ψ′(f)
1
1

=
ψ′(f)

ψ′(g)
.

Now, if f, 0 6= g ∈ S′1′BQ(R), applying Theorem 3.26 must be

f

g
=

∑ au
bu
xu∑ cv

dv
xv

=
1
s

∑ a′u
1 x

u

1
s′
∑ c′v

1 x
v

=

(∑ c′v
1
xv
)−1( 1

s′

)−1 1

s

∑ a′u
1
xu

=

(∑ c′v
1
xv
)−1(s′

1

1

s

)∑ a′u
1
xu =

(∑ c′v
1
xv
)−1(r′

r

)∑ a′u
1
xu

=

(∑ c′v
1
xv
)−1(1

r

r′

1

)∑ a′u
1
xu =

(
r

1

∑ c′v
1
xv
)−1(r′

1

∑ a′u
1
xu
)

=

(∑ rc′v
1
xv
)−1(∑ r′a′u

1
xu
)

=

∑ r′a′u
1 xu∑ rc′v
1 x

v
=
ψ′(f ′)

ψ′(g′)

= ϕ

(
f ′

g′

)
.

where f ′ =
∑

(r′a′u)xu y g′ =
∑

(rc′v)x
v, then ϕ is surjective. Hence

Q(Qn,nq ,σ(R)) ∼= Q(Qn,nq̃ ,σ̃(Q(R))).
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3.3 Valuations of skew quantum polynomials.

Theorem 3.28. Let R be a left Ore domain and ν : Q(Qn,nq,σ (R))∗ → Γ is a
valuation with ν(Q(R)∗) = 0, then Γ is Abelian.

Proof. Q(R) is a division ring and Q(Qn,nq ,σ(R)) ∼= Q(Qn,nq̃ ,σ̃(Q(R))), by Theo-
rem 1.10. Γ is Abelian.

Corollary 3.29. Let R be a left Ore domain, ν : Q(Qn,nq,σ (R))∗ → Γ a
valuation with ν(Q(R)∗) = 0 and Qn,nq̃,σ̃ (Q(R)) generic, then Γ is Abelian.

Theorem 3.30. Let R be a left Ore domain, a valuation ν : Q(Qn,nq,σ (R))∗ →
Γ with ν(Q(R)∗) = 0 and Qn,nq̃,σ̃ (Q(R)) generic. The valuation ν has maximal
rank if only if Γ ∼= Zn.

Proof. By Theorem 3.27. Q(Qn,nq ,σ(R)) ∼= Q(Qn,nq̃ ,σ̃(Q(R))) with Q(R) a di-
vision ring, by Theorem 1.13 the valuation ν has maximal rank if only if
Γ ∼= Zn.

3.4 Valuations of skew PBW extension.

Theorem 3.31. Let A = σ(R) 〈x1, . . . , xn〉 be a bijective and quasi-commutative
skew PBW extension of a ring R. If R is a left Ore domain and ν : Q(A)∗ →
Γ a valuation with ν(Q(R)∗) = 0, then Γ is Abelian

Proof. By Theorem 3.8 A is an Ore domain then, Q(A) exists and is a
division ring, by Remark 3.14. Q(A) ∼= Q(Qr,nq ,σ(R)) (in particular r = 0)
and by Theorem 3.28 Γ is abelian.

Corollary 3.32. Let A be a bijective skew PBW extension of a ring R. If R
is a left Ore domain and ν : Q(Gr(A))∗ → Γ a valuation with ν(Q(R)∗) = 0,
then Γ is Abelian.

Proof. By Theorem 3.9 Gr(A) is bijective and quasi-commutative.
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[11] Lezama O. & Gallego C., Gröbner bases for ideals of sigma-PBW ex-
tensions, Communications in Algebra, 39 (1), 2011, 50-75.

[12] Lezama O. & Reyes M., Some homological properties of skew PBW
extensions, Communications in Algebra, Vol. 42, 2014, 1200−1230.

[13] McConnell J. & Robson J., Non-commutative Noetherian Rings, Grad-
uate Studies in Mathematics, AMS, 2001.

[14] Schilling O. F., Noncommutative Valuation, Bull. Amer. Math. Soc.
Volume 51, Number 4 (1945), 229-324.

17


	1 Introduction
	1.1 Valuations
	1.2 Valuations with values on {}
	1.3 Quantum polynomials

	2 Completions of quantum polynomials
	3 Skew PBW extensions
	3.1 Skew quantum polynomials
	3.2 Some properties
	3.3 Valuations of skew quantum polynomials.
	3.4 Valuations of skew PBW extension.

	 References

