VALUATIONS OF SKEW QUANTUM POLYNOMIALS

Cristian Arturo Chaparro Acosta
crachaparroac@unal.edu.co
Seminario de Álgebra Constructiva- SAC ${ }^{2}$.
Departamento de Matemáticas.
Universidad Nacional de Colombia.
Sede Bogotá.

Abstract

In this paper we extend some results obtained by Artamonov and Sabitov for quantum polynomials to skew quantum polynomials and quasi-commutative bijective skew PBW extensions. Moreover, we find a counterexample to the conjecture proposed in [6].

Keywords: Skew $P B W$ extensions, skew quantum polynomials, Ore domains, valuations, completions.

Contents

1 Introduction 2
1.1 Valuations 2
1.2 Valuations with values on $\Gamma \cup\{\infty\}$ 2
1.3 Quantum polynomials 3
2 Completions of quantum polynomials 4
3 Skew $P B W$ extensions 6
3.1 Skew quantum polynomials 9
3.2 Some properties 10
3.3 Valuations of skew quantum polynomials. 16
3.4 Valuations of skew $P B W$ extension. 16
References 16

1 Introduction

This section is divided into three subsections, we recall the definition of Γ-valuation, valuation and quantum polynomials. We review some fundamental properties of valuations and valuations of quantum polynomials (see [4] and [6]).

1.1 Valuations

Let D be a division ring, D^{*} the multiplicative group and Γ is a totally ordered group (with additive notation and not necessarily commutative).

Definition 1.1. A function $\nu: D^{*} \rightarrow \Gamma$ is a Γ-valuation of D^{*} if:
i) ν is surjective,
ii) $\nu(a b)=\nu(a)+\nu(b)$,
iii) $\nu(a+b) \geq \min \{\nu(a), \nu(b)\}$.

Proposition 1.2. [14, 9] If ν is a Γ-valuation of D^{*}, then:

1) If $\nu(a) \neq \nu(b)$, then $\nu(a+b)=\min \{\nu(a), \nu(b)\}$.
2) $\Lambda_{\nu}:=\{a \in D ; a=0$ or $\nu(a) \geq 0\}$ is a subring of D.
3) The group of units $\mathcal{U}_{\nu}:=\left\{a \in D^{*} ; \nu(a)=0\right\}$ is a subgroup of D^{*}.
4) $\mathcal{W}_{\nu}:=\{a \in D, a=0$ or $\nu(a)>0\}$ is a completely prime ideal of Λ_{ν} and $\mathcal{W}_{\nu}=\Lambda_{\nu}-\mathcal{U}_{\nu}$.
5) Λ_{ν} is a local ring with unique maximal ideal \mathcal{W}_{ν}.

1.2 Valuations with values on $\Gamma \cup\{\infty\}$

Proposition 1.3. Let Γ be a totally ordered group with additive notation ordere. Then $\Gamma \cup\{\infty\}$ is an ordered additive monoid such that

$$
x+\infty:=\infty=: \infty+x, \text { for all } \Gamma \cup\{\infty\}
$$

and $\infty>x$ for all $x \in \Gamma$.
Definition 1.4 ([8]). Let R be a ring. By a valuation on R with values in a totally ordered group Γ, the value group, we shall understand a function ν on R with values in $\Gamma \cup\{\infty\}$ subject to the conditions:
i) $\nu(a) \in \Gamma \cup\{\infty\}$ and ν assumes at least two values,
ii) $\nu(a b)=\nu(a)+\nu(b)$,
iii) $\nu(a+b) \geq \min \{\nu(a), \nu(b)\}$.

Proposition 1.5. [8, 9] If ν is a valuation of R, then:

1) ker $\nu:=\{a \in R ; \nu(a)=\infty\}$ is an ideal of R.
2) If $\nu(a+b)>\min \{\nu(a), \nu(b)\}$, then $\nu(a)=\nu(b)$.
3) $\Lambda_{\nu}:=\{a \in R ; \nu(a) \geq 0\}$ is a subring of R.
4) The group of units $\mathcal{U}_{\nu}:=\left\{a \in R^{*} ; \nu(a)=0\right\}$ is a subgroup of R^{*}.
5) $\mathcal{W}_{\nu}:=\{a \in R, \nu(a)>0\}$ is an ideal of Λ_{ν}.
6) ker ν is a completely prime ideal of R and $R / \operatorname{ker} \nu$ is an integral domain.

Proposition 1.6 ([8]). If ν is a Γ-valuation of D. Then Γ is abelian, if and only if $\nu(a)=0$ for all $a \in\left[D^{*}, D^{*}\right]$.

1.3 Quantum polynomials

Let D be a division ring with a fixed set $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, n \geq 2$, of automorphimsms. Also, we have $q_{i j}$ in D^{*} for $i, j=1,2, \ldots, n$ fix elements, satisfying the relations :

$$
\begin{gathered}
q_{i i}=q_{i j} q_{j i}=\boldsymbol{q}_{i j r} \boldsymbol{q}_{j r i} \boldsymbol{q}_{r i j}=1 \\
\alpha_{i}\left(\alpha_{j}(d)\right)=q_{i j} \alpha_{j}\left(\alpha_{i}(d)\right) q_{j i},
\end{gathered}
$$

where $\boldsymbol{q}_{i j r}=q_{i j} \alpha_{j}\left(q_{i r}\right)$ and $d \in D$. We set $\boldsymbol{q}=\left(q_{i j}\right) \in \mathscr{M}(n, D)$ and $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Definition 1.7. The elements $q_{i j}$ of the matrix \boldsymbol{q} are called system of multiparameters.

Definition 1.8 (Quantum polynomial ring). Denote by

$$
\begin{equation*}
\mathcal{O}_{q}:=D_{q, \alpha}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right], \tag{1.1}
\end{equation*}
$$

the associative ring generated by D and by elements $x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}$, x_{r+1}, \ldots, x_{n} subject to the defining relations

$$
\begin{gather*}
x_{i} x_{i}^{-1}=x_{i}^{-1} x_{i}=1,1 \leq i \leq r, \tag{1.2}\\
x_{i} d=\alpha_{i}(d) x_{i}, d \in D, i=1,2, \ldots, n, \tag{1.3}\\
x_{i} x_{j}=q_{i j} x_{j} x_{i}, i, j=1,2, \ldots, n . \tag{1.4}
\end{gather*}
$$

Definition 1.9. Let N be the subgroup in the multiplicative group D^{*} of the ring D generated by the derived subgroup $\left[D^{*}, D^{*}\right]$ and by the set of all elements of the form $z^{-1} \sigma_{i}(z)$ where $z \in R^{*}$ and $i=1, \ldots, n . \quad \Lambda:=$ $D_{\boldsymbol{q}, \alpha}\left[x_{1}, x_{2}, \ldots, \ldots, x_{n}\right]$ is a general (generic) quantum polynomials ring if the images of all multiparameters $q_{i j}, 1 \leq i<j \leq n$, are independent in the multiplicative Abelian group D^{*} / N.

The ring \mathcal{O}_{q} is a left and right Noetherian domain, it satisfies Ore Condition and it has a division ring of fractions $F:=D_{\boldsymbol{q}}\left(x_{1}, \ldots, x_{n}\right)$. We consider $\nu: F^{*} \rightarrow \Gamma$ a Γ-valuation with $\nu\left(D^{*}\right)=0$.

Theorem 1.10 ([6]). A valuation of a quantum division ring D, is Abelian in the sense that the group Γ is Abelian.

Definition 1.11 ([4], [6]). Let $\nu_{1}: D^{*} \rightarrow \Gamma_{1}$ and $\nu_{2}: D^{*} \rightarrow \Gamma_{2}$ be two valuations. Set $\nu_{1} \geq \nu_{2}$ if there exists an epimorphism of ordered groups $\tau: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $\tau \nu_{1}=\nu_{2}$. It means that the diagram

is commutative.
Definition 1.12 ([4], [6]). A valuation ν has a maximal rank if τ is an isomorphism in the previous definition.

Theorem 1.13 ([4]). A valuation $\nu: F^{*} \rightarrow \Gamma$ of a general quantum division ring \mathcal{O}_{q} is has maximal rank if only if $\Gamma \cong \mathbb{Z}^{n}$.

2 Completions of quantum polynomials

In this section $\nu: F^{*} \rightarrow \mathbb{Z}^{n}$ is a maximal \mathbb{Z}^{n}-valuation.
Definition 2.1 ([6]). Let \mathscr{F} be the set of all maps $f: \mathbb{Z}^{n} \rightarrow k$ and the zero element such that supp $f:=\left\{m \in \mathbb{Z}^{n} ; f(m) \neq 0\right\}$ is Artinian with respect to the lexicographic order on \mathbb{Z}^{n}.

Theorem 2.2. \mathscr{F} is a division ring containing F.
Proof. See [3] Theorem 3.4 and 3.7.
Expand the valuation ν to $f \in \mathscr{F}$ in the following way. If $f \in \mathscr{F}$ then $\nu(f)$ the least element from supp f.

Definition 2.3 ([6]). The division ring \mathscr{F} is called a completion of F with respect to ν.

Remark 2.4. If $\mathcal{O}:=\{f \in \mathscr{F} ; \nu(f) \geq 0\}$ and $\mathbf{m}:=\{f \in \mathscr{F} ; \nu(f)>0\}$, then \mathcal{O} is a subring in \mathscr{F} and \mathbf{m} is an ideal in \mathcal{O}. Moreover, $\mathcal{O} / \mathbf{m} \cong k$.

Let \mathbb{R}^{n} be a vector space of all rows $\left(r_{1}, \ldots, r_{n}\right), r_{i} \in \mathbb{R}$, of a length n and \mathbb{R}^{n} is equipped with the lexicographic order.

Theorem 2.5 ([10]). Let $\leq_{\mathbb{Z}^{n}}$ be a totally order in the additive group \mathbb{Z}^{n}. Then there exists order preserving group embedding $\mathbb{Z}^{n} \rightarrow \mathbb{R}^{n}$.

Definition 2.6. [6] A totally order $\leq_{\mathbb{Z}^{n}}$ is essentially lexicographic if it belongs to the orbit of the standard embedding of \mathbb{Z}^{n} in to \mathbb{R}^{n} under the action of the group $G L(n, \mathbb{Z})$. i.e., if $a, b \in \mathbb{Z}^{n}, a \leq_{\mathbb{Z}^{n}} b$ if only if $a A \leq b A$ for some fixed A in $G L(n, \mathbb{Z})$ and \leq the lexicographic order.

Conjecture 2.7 ([6]). A valuation ν is associated to an essentially lexicographic order on \mathbb{Z}^{n} if and only if $\cap_{i>1} \boldsymbol{m}^{i}=0$.

In the study of this conjecture we obtain the following results partial:
Proposition 2.8. If $\nu: R \rightarrow \Gamma \cup\{\infty\}$ is a valuation of $a \operatorname{ring} R$ and Γ is a Archimedean group with $\mathcal{W}_{\nu}:=\{a \in R, \nu(a)>0\}, \inf \left\{\nu\left(\mathcal{W}_{\nu}\right)\right\} \neq 0$ and $\bigcap_{i \geq 1} \mathcal{W}_{\nu}^{i}:=I$, then $\nu(I)=\infty$.

Proof. Let $A_{i}:=\nu\left(\mathcal{W}_{\nu}^{i}\right)$ and $\lambda_{i}:=\inf \left\{A_{i}\right\}$ be, then $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{i}$ and $i \lambda_{1} \leq \lambda_{i}$, indeed: (by induction over i) as $\inf \left\{\nu\left(\mathcal{W}_{\nu}\right)\right\} \neq 0$ then $0<\lambda_{1} \leq \nu(a)$ for all $a \in \mathcal{W}_{\nu}$, hence $\lambda_{1}<2 \lambda_{1} \leq \nu(a b)$ for all $a, b \in \mathcal{W}_{\nu}$, therefore $2 \lambda_{1} \leq \lambda_{2}$, suppose that $\lambda_{i-1}<\lambda_{i}$ and $i \lambda_{1} \leq \lambda_{i}$, then $i \lambda_{1}<$ $(i+1) \lambda_{1} \leq \lambda_{i}+\lambda_{1} \leq \nu(a)+\nu(b)=\nu(a b)$ for all $a \in \mathcal{W}_{\nu}^{i}$ and $b \in \mathcal{W}_{\nu}$, then, $\lambda_{i}<\lambda_{i+1}$ and $(i+1) \lambda_{1} \leq \lambda_{i+1}$.

Now, suppose there exists $b \in I$ such that $\nu(b)=\lambda<\infty$, so $\lambda_{1}<\lambda$ and as Γ is Archimedean there exists an integer m such that $m \lambda_{1}>\lambda$, therefore $\lambda \notin A_{m}$, hence $b \notin \mathcal{W}_{\nu}^{m}$, contradicting that $b \in I$.

Corollary 2.9. If $\nu: D \rightarrow \Gamma \cup\{\infty\}$ is a valuation of a division ring D and Γ is a Archimedean group with $\inf \left\{\nu\left(\mathcal{W}_{\nu}\right)\right\} \neq 0$, then $\bigcap_{i \geq 1} \mathcal{W}_{\nu}^{i}=0$.

Proof. $0=\nu(1)=\nu\left(a a^{-1}\right)=\nu(a)+\nu\left(a^{-1}\right)$ for all $a \in D^{*}$, then $\nu(a)<\infty$ for all $a \in D^{*}$, therefore $\nu(a)=\infty$ if only if $a=0$.

Remark 2.10. In the Proposition 2.8 the condition $\inf \left\{\nu\left(\mathcal{W}_{\nu}\right)\right\} \neq 0$ can be replaced by $\inf \left\{\nu\left(\mathcal{W}_{\nu}^{i}\right)\right\} \neq 0$ for any $i>0$ in \mathbb{N}.

Example 2.11. If we take lexicographic order on \mathbb{Z}^{2} the order does not have intersection property: consider $A:=\left\{(x, y) \in \mathbb{Z}^{2} ;(0,0)<(x, y)\right\}$ and $n A:=\sum_{i=1}^{n} A$ with $n>0$, then $n A=\left\{(x, y) \in \mathbb{Z}^{2} ;(0, n) \leq(x, y)\right\}$. By induction over n: If $n=2$, then $2 A=A \backslash\{(0,1)\}$, indeed: as $\min \{A\}=(0,1)$ then $(0,2) \leq(x, y)$ with $(x, y) \in 2 A$, thus $2 A \subseteq A \backslash\{(0,1)\}$. Now, if (x, y)
in $2 A$, then $(x, y-1) \in A$, because $x>0$ or $x=0$ and $y \geq 2$.
Suppose that $n A=(n-1) A \backslash\{(0, n-1)\}$, as $\min \{n A\}=(0, n)$ then $(0, n+1) \leq(x, y)$ with $(x, y) \in(n+1) A$, thus $(n+1) A \subseteq n A \backslash\{(0, n)\}$. Now, if (x, y) in $(n+1) A$, then $(x, y-1) \in n A$, because $x>0$ or $x=0$ and $y \geq n+1$. Consequently $(n+1) A=\left\{(x, y) \in \mathbb{Z}^{2} ;(0, n+1) \leq(x, y)\right\}$.

Hence, as $(1,0) \in n A$ for every $n \geq 1$ since $(0, n)<(1,0)$, then $(1,0) \in$ $\cap_{n>0} n A$.

It follows a counterexample to the conjecture, since a lexicographic order is essentially lexicographic.

3 Skew $P B W$ extensions

In this section we recall the definition and some basic properties of skew PBW (Poincaré-Birkhoff-Witt) extensions, introduced in [11]. Some ringtheoretic and homological properties of these class of noncommutative rings have been studied in [12].

Definition 3.1. Let R and A be rings. We say that A is a skew $P B W$ extension of R (also called a $\sigma-P B W$ extension of R) if the following conditions hold:
(i) $R \subseteq A$.
(ii) There exists finitely many elements $x_{1}, \ldots, x_{n} \in A$ such A is a left R-free module with basis

$$
\operatorname{Mon}(A):=\left\{x^{u}=x_{1}^{u_{1}} \cdots x_{n}^{u_{n}} \mid u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}\right\}
$$

In this case it also says that A is a left polynomial ring over R with respect to $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\operatorname{Mon}(A)$ is the set of standard monomials of A. Moreover, $x_{1}^{0} \cdots x_{n}^{0}:=1 \in \operatorname{Mon}(A)$.
(iii) For every $1 \leq i \leq n$ and $r \in R-\{0\}$ there exists $c_{i, r} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{i} r-c_{i, r} x_{i} \in R \tag{3.1}
\end{equation*}
$$

(iv) For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}-c_{i, j} x_{i} x_{j} \in R+R x_{1}+\cdots+R x_{n} . \tag{3.2}
\end{equation*}
$$

Under these conditions we will write $A:=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

Proposition 3.2. Let A be a skew $P B W$ extension of R. Then, for every $1 \leq i \leq n$, there exists an injective ring endomorphism $\sigma_{i}: R \rightarrow R$ and a σ_{i}-derivation $\delta_{i}: R \rightarrow R$ such that

$$
x_{i} r=\sigma_{i}(r) x_{i}+\delta_{i}(r)
$$

for each $r \in R$.
Proof. See [11], Proposition 3.
The previous proposition gives the notation and the alternative name given for the skew $P B W$ extensions.

Definition 3.3. Let A be a skew $P B W$ extension.
(a) A is quasi-commutative if the conditions (iii) and (iv) in Definition 3.1 are replaced by
(iii') For every $1 \leq i \leq n$ and $r \in R-\{0\}$ there exists $c_{i, r} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{i} r=c_{i, r} x_{i} \tag{3.3}
\end{equation*}
$$

(iv') For every $1 \leq i, j \leq n$ there exists $c_{i, j} \in R-\{0\}$ such that

$$
\begin{equation*}
x_{j} x_{i}=c_{i, j} x_{i} x_{j} \tag{3.4}
\end{equation*}
$$

(b) A is bijective if σ_{i} is bijective for every $1 \leq i \leq n$ and $c_{i, j}$ is invertible for any $1 \leq i<j \leq n$.

Definition 3.4. Let A be a skew $P B W$ extension of R with endomorphisms $\sigma_{i}, 1 \leq i \leq n$, as in Proposition 3.2.
(i) For $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{N}^{n}, \sigma^{u}:=\sigma_{1}^{u_{1}} \cdots \sigma_{n}^{u_{n}},|u|:=u_{1}+\cdots+u_{n}$. If $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{N}^{n}$, then $u+v:=\left(u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right)$.
(ii) For $X=x^{u} \in \operatorname{Mon}(A), \exp (X):=u$ and $\operatorname{deg}(X):=|u|$.
(iii) If $f=c_{1} X_{1}+\cdots+c_{t} X_{t}$, with $X_{i} \in \operatorname{Mon}(A)$ and $c_{i} \in R-\{0\}$, then $\operatorname{deg}(f):=\max \left\{\operatorname{deg}\left(X_{i}\right)\right\}_{i=1}^{t}$.

Theorem 3.5. Let A be a left polynomial ring over R w.r.t. $\left\{x_{1}, \ldots, x_{n}\right\}$. A is a skew $P B W$ extension of R if and only if the following conditions hold:
(a) For every $x^{u} \in \operatorname{Mon}(A)$ and every $0 \neq r \in R$ there exist unique elements $r_{u}:=\sigma^{u}(r) \in R-\{0\}$ and $p_{u, r} \in A$ such that

$$
\begin{equation*}
x^{u} r=r_{u} x^{u}+p_{u, r}, \tag{3.5}
\end{equation*}
$$

where $p_{u, r}=0$ or $\operatorname{deg}\left(p_{u, r}\right)<|u|$ if $p_{u, r} \neq 0$. Moreover, if r is left invertible, then r_{u} is left invertible.
(b) For every $x^{u}, x^{v} \in \operatorname{Mon}(A)$ there exist unique elements $c_{u, v} \in R$ and $p_{u, v} \in A$ such that

$$
\begin{equation*}
x^{u} x^{v}=c_{u, v} x^{u+v}+p_{u, v} \tag{3.6}
\end{equation*}
$$

where $c_{u, v}$ is left invertible, $p_{u, v}=0$ or $\operatorname{deg}\left(p_{u, v}\right)<|u+v|$ if $p_{u, v} \neq 0$.
Proof. See [11], Theorem 7.
Proposition 3.6. Let A be a skew $P B W$ extension of a ring R. If R is a domain, then A is a domain.

Proof. See [12].
The next theorem characterizes the quasi-commutative skew $P B W$ extensions.

Theorem 3.7. Let A be a quasi-commutative skew $P B W$ extension of a ring R. Then,
(i) A is isomorphic to an iterated skew polynomial ring of endomorphism type, i.e.,

$$
A \cong R\left[z_{1} ; \theta_{1}\right] \cdots\left[z_{n} ; \theta_{n}\right]
$$

(ii) If A is bijective, then each endomorphism θ_{i} is bijective, $1 \leq i \leq n$.

Proof. See [12].
Corollary 3.8. Let A be a bijective and quasi-commutative skew $P B W$ extension of a ring R. If R is a left Ore domain, then A is a left Ore domain.

Proof. By Theorem 3.7, A is isomorphic to an iterated skew polynomial ring of automorphism type over a left Ore domain R.

Theorem 3.9. Let A be an arbitrary skew $P B W$ extension of R. Then, A is a filtered ring with filtration given by

$$
F_{m}:= \begin{cases}R & \text { if } m=0 \tag{3.7}\\ \{f \in A \mid \operatorname{deg}(f) \leq m\} & \text { if } m \geq 1\end{cases}
$$

and the corresponding graded ring $\operatorname{Gr}(A)$ is a quasi-commutative skew $P B W$ extension of R. Moreover, if A is bijective, then $G r(A)$ is a quasi-commutative bijective skew $P B W$ extension of R.
Proof. See [12].
Theorem 3.10 (Hilbert Basis Theorem). Let A be a bijective skew PBW extension of R. If R is a left (right) Noetherian ring then A is also a left (right) Noetherian ring.
Proof. See [12].

3.1 Skew quantum polynomials

In this subsection we recall the definition and some basic properties of skew quantum polynomials ring over R, introduced in [12]. We mention some results generalized for valuations of skew quantum polynomials and bijective and quasi-commutative skew $P B W$ extension.

Definition 3.11. Let R be a ring with matrix of parameters $q:=\left[q_{i j}\right] \in$ $M_{n}(R), n \geq 2$, such that $q_{i i}=1=q_{i j} q_{j i}=q_{j i} q_{i j}$ for each $1 \leq i, j \leq n$ and suppose also that is given a system $\sigma_{1}, \ldots, \sigma_{n}$ of automorphisms of R. The skew quantum polynomials ring over R, denoted by

$$
\begin{equation*}
R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right], \tag{3.8}
\end{equation*}
$$

is defined whit the following conditions:
i) $R \subseteq R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$,
ii) $R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ is a free left R-module with basis $\left\{x^{u} ; x^{u}=\right.$ $x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}, u_{i} \in \mathbb{Z}, 1 \leq i \leq r$ and $u_{i} \in \mathbb{N}$ for $\left.r+1 \leq i \leq n\right\}$,
iii) The x_{1}, \ldots, x_{n} elements satisfy the defining relations

$$
\begin{gather*}
x_{i} x_{i}^{-1}=1=x_{i}^{-1} x_{i}, 1 \leq i \leq r, \tag{3.9}\\
x_{i} x_{j}=q_{j i} x_{j} x_{i} 1 \leq i, j \leq n, \tag{3.10}\\
x_{i} r=\sigma_{i}(r) x_{i}, r \in R y 1 \leq i \leq n . \tag{3.11}
\end{gather*}
$$

When all automorphisms are trivial, we write $R_{q}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots\right.$, $\left.x_{n}\right]$ and this ring is called the ring of quantum polynomials over R. If $R=K$ is a field, then $K_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ is the algebra of skew quantum polynomials. For trivial automorphisms we get the algebra of quantum polynomials simply.

If $r=n, R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ is called the n-multiparametric skew quantum torus over R, when all automorphisms are trivial, is called the n-multiparametric quantum torus over R. If $r=0, R_{q, \sigma}\left[x_{1}, \ldots, x_{n}\right]$ is called the n multiparametric skew quantum space over R, when all automorphisms are trivial is called n-multiparametric quantum space over R.

The algebra of quantum polynomials can be defined as a quasi-commutative bijective skew $P B W$ extension of the r-multiparameter quantum torus, or also, as a localization of a quasi-commutative bijective skew $P B W$ extension.

Theorem 3.12. $R_{\boldsymbol{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right] \cong R\left[z_{1} ; \theta_{1}\right] \cdots\left[z_{n} ; \theta_{n}\right]$, where
i) $\theta_{1}=\sigma_{1}$,
ii) $\theta_{i}: R\left[z_{1} ; \theta_{1}\right] \cdots\left[z_{i-1} ; \theta_{i-1}\right] \rightarrow R\left[z_{1} ; \theta_{1}\right] \cdots\left[z_{i-1} ; \theta_{i-1}\right]$,
iii) $\theta_{i}\left(z_{i}\right)=q_{i j} z_{i}, 1 \leq i<j \leq n, \theta_{i}(r)=\sigma_{i}(r)$ for $r \in R$.

In particular, $R_{q}\left[x_{1}, \ldots, x_{n}\right] \cong R\left[z_{1}\right] \cdots\left[z_{n} ; \theta_{n}\right]$.
Proof. See [12].
Theorem 3.13. $R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1} \ldots, x_{n}\right]$ is a ring of fractions of $B:=R_{q, \sigma}\left[x_{1}, \ldots, x_{n}\right]$ with respect to the multiplicative subset

$$
S=\left\{r x^{u} ; r \in R^{*}, x^{u} \in \operatorname{Mon}\left\{x_{1}, \ldots, x_{r}\right\}\right\}
$$

i.e,

$$
R_{\boldsymbol{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1} \ldots, x_{n}\right] \cong S^{-1} B
$$

Proof. See [12].
Remark 3.14. Let $Q_{q, \sigma}^{r, n}(R):=R_{\boldsymbol{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ and R be a left (right) Noetherian ring, then $Q_{q, \sigma}^{r, n}(R)$ is left (right) Noetherian by Theorem 3.10. Moreover, if R is a domain, then $Q_{q, \sigma}^{r, n}(R)$ is also a domain by Theorem 3.6. Thus, if R is a left (right) Noetherian domain, then $Q_{q, \sigma}^{r, n}(R)$ is a left (right) Ore domain.

Thus, $Q_{q}^{r, n}(R)$ has a total division ring of fractions

$$
Q\left(Q_{q, \sigma}^{r, n}(R)\right) \cong Q(A):=\sigma(R)\left(x_{1}, \ldots, x_{n}\right)
$$

where $\sigma(R)\left(x_{1}, \ldots, x_{n}\right)$ denotes the rational fractions of $A:=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

3.2 Some properties

Definition 3.15. Let N be the subgroup in the multiplicative group R^{*} of the ring R generated by the derived subgroup $\left[R^{*}, R^{*}\right]$ and by the set of all elements of the form $z^{-1} \sigma_{i}(z)$ where $z \in R^{*}$ and $i=1, \ldots, n$.

Remark 3.16. N is a normal subgroup in R^{*}.
Definition 3.17. If the images of $q_{i j}$ with $1 \leq i<j \leq n$ are independent in the multiplicative Abelian group $\bar{R}=R^{*} / N$ then, $R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}\right.$, $\left.\ldots, x_{n}\right]$ is a generic skew quantum polynomials ring.

Remark 3.18. If $\mathrm{n}=2$ in $R_{\boldsymbol{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$, of the previous definition $q=q_{12}$ is not a root of unity.

Proposition 3.19. For each $a \in R^{*}$ and σ endomorphism over $R, \sigma^{k}(a)=$ an with $k \in \mathbb{N}$ and $n \in N$.

Proof.

$$
\begin{align*}
\sigma^{k}(a) & =a\left(a^{-1} \sigma(a)\right)\left((\sigma(a))^{-1} \sigma^{2}(a)\right) \ldots\left(\left(\sigma^{k-1}(a)\right)^{-1} \sigma^{k}(a)\right) \\
& =a n, \text { with } n \in N \tag{3.12}
\end{align*}
$$

Proposition 3.20. If $u, v \in \mathbb{Z}^{r} \times \mathbb{N}^{n-r}$ and $\lambda, \mu \in R^{*}$, then
(1) $x_{i} x^{u}=\left(\prod_{j=1}^{n} q_{j i}^{u_{j}}\right) n_{u} \cdot x^{u} x_{i}$, for some $n_{u} \in N$ and for any $1 \leq i \leq n$.
(2) $\left(x^{u}\right)\left(x^{v}\right)=\left(\prod_{i<j} q_{j i}^{u_{j} v_{i}}\right) n_{u+v} \cdot x^{u+v}$, with $n_{u+v} \in N$.
(3) $\left(\lambda x^{u}\right)\left(\mu x^{v}\right)=\lambda \mu\left(\prod_{i<j} q_{j i}^{u_{j} v_{i}}\right) n^{\prime} \cdot x^{u+v}$, with $n^{\prime} \in N$.

Proof. Applying the Proposition 3.19 and note that $x_{i} x_{j}^{-1}=q_{j i}^{-1} x_{j}^{-1} x_{i}$ with $1 \leq j \leq r$.

Proposition 3.21. Let $f:=\sum_{u \in \mathbb{Z}} \lambda_{u} x^{u}$ be in $R_{q, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}, x_{r+1}, \ldots, x_{n}\right]$ and x_{i} with $1 \leq i \leq r$.
(1) If $\lambda_{u} \in R$, then

$$
x_{i} f x_{i}^{-1}=\sum_{u \in \mathbb{Z}^{n}} \sigma_{i}\left(\lambda_{u}\right) \lambda_{u}^{\prime} x^{u}
$$

where $\lambda_{u}^{\prime}:=\left(\prod_{j=1}^{n} q_{j i}^{u_{j}}\right) n_{u} \in R^{*}$.
(2) If $\lambda_{u} \in R^{*}$, then

$$
x_{i} f x_{i}^{-1}=\sum_{u \in \mathbb{Z}^{n}} \lambda_{u}^{\prime} x^{u}
$$

where $\lambda_{u}^{\prime} \in R^{*}$.
Proof. (1) Note that $N \subseteq R^{*}$ and

$$
\begin{aligned}
x_{i} f x_{i}^{-1} & =\sum \sigma_{i}\left(\lambda_{u}\right) x_{i} x^{u} x^{-i} \\
& =\sum_{u \in \mathbb{Z}^{n}} \sigma_{i}\left(\lambda_{u}\right)\left(\prod_{j=1}^{n} q_{j i}^{u_{j}}\right) n_{u} x^{u}
\end{aligned}
$$

where $n_{u} \in N$.
(2) By item (1), $\sigma_{i}\left(\lambda_{u}\right) \lambda_{u}^{\prime} \in R^{*}$.

Remark 3.22. If $Q\left(Q_{\dot{q}, \sigma}^{r, n}(R)\right)$ exists and G denotes the multiplicative subgroup in $Q\left(Q_{q, \sigma}^{r, n}(R)\right)^{*}$ generated by R^{*} and x_{1}, \ldots, x_{n}. Then $R^{*} \triangleleft G$ and G / R^{*} is a free abelian group with the base $x_{1} R^{*}, \ldots, x_{n} R^{*}$.

Proposition 3.23. Let R be a left Ore domain and σ automorphisms over R, then σ can be extended to $Q(R)$ and is also an automorphism.

Proof. By universal property we have the following commutative diagram:

where ψ, σ are injective and $\widetilde{\sigma}\left(\frac{a}{b}\right)=\frac{\sigma(a)}{\sigma(b)}$ for $a, b \neq 0 \in R$. Therefore, $\psi \circ \sigma$ is injective and so is $\tilde{\sigma}$.

If $\frac{a}{b} \in Q(R)$, then $\frac{a}{b}=\psi(b)^{-1} \psi(a)=\psi\left(\sigma\left(b_{0}\right)\right)^{-1} \psi\left(\sigma\left(a_{0}\right)\right)$ for $a_{0}, b_{0} \neq$ $0 \in R$, consequently,

$$
\begin{aligned}
\frac{a}{b} & =\psi\left(\sigma\left(b_{0}\right)\right)^{-1} \psi\left(\sigma\left(a_{0}\right)\right) \\
& =\widetilde{\sigma}\left(\psi\left(b_{0}\right)\right)^{-1} \widetilde{\sigma}\left(\psi\left(a_{0}\right)\right) \\
& =\widetilde{\sigma}\left(\psi\left(b_{0}\right)^{-1} \psi\left(a_{0}\right)\right) \\
& =\widetilde{\sigma}\left(\frac{a_{0}}{b_{0}}\right)
\end{aligned}
$$

Theorem 3.24. Let R be a left Ore domain and $S=R-\{0\}$, then

$$
S^{-1}\left(R_{\boldsymbol{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]\right) \cong Q(R)_{\widetilde{\boldsymbol{q}}, \widetilde{\sigma}}\left[x_{1}, \ldots, x_{n}\right]
$$

where $\widetilde{\boldsymbol{q}}=\left(\frac{q_{i j}}{1}\right) \in \mathscr{M}(n, Q(R))$.
Proof. By Theorem $3.12 R_{q, \sigma}\left[x_{1}, \ldots, x_{n}\right] \cong R\left[z_{1} ; \theta_{1}\right] \cdots\left[z_{n} ; \theta_{n}\right]$, with each θ_{i} bijective. Thus, if $S=R-\{0\}$ then

$$
\begin{aligned}
S^{-1}\left(R_{\boldsymbol{q}, \sigma}\left[x_{1}, \ldots, x_{n}\right]\right) & \cong S^{-1}\left(R\left[z_{1} ; \theta_{1}\right] \cdots\left[z_{n} ; \theta_{n}\right]\right) \\
& \cong S^{-1}(R)\left[z_{1} ; \widetilde{\theta_{1}}\right] \cdots\left[z_{n} ; \widetilde{\theta_{n}}\right] \\
& =Q(R)\left[z_{1} ; \widetilde{\theta_{1}}\right] \cdots\left[z_{n} ; \widetilde{\theta_{n}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\widetilde{\theta_{1}}: Q(R) & \rightarrow Q(R) \\
\frac{a}{b} & \mapsto \tilde{\theta}_{1}\left(\frac{a}{b}\right)=\frac{\theta_{1}(a)}{\theta_{1}(b)}=\frac{\sigma_{1}(a)}{\sigma_{1}(b)}=\widetilde{\sigma_{1}}\left(\frac{a}{b}\right),
\end{aligned}
$$

and

$$
\widetilde{\theta_{i}}: Q(R)\left[z_{1} ; \widetilde{\theta_{1}}\right] \cdots\left[z_{i-1} ; \widetilde{\theta_{i-1}}\right] \rightarrow Q(R)\left[z_{1} ; \widetilde{\theta_{1}}\right] \cdots\left[z_{i-1} ; \widetilde{\theta_{i-1}}\right]
$$

with

$$
\tilde{\theta}_{i}\left(\frac{a}{b}\right)=\widetilde{\sigma}_{i}\left(\frac{a}{b}\right) \text { y } \tilde{\theta}_{j}\left(z_{i}\right)=\frac{q_{i j}}{1} z_{i} .
$$

Therefore,

$$
S^{-1}\left(R_{q, \sigma}\left[x_{1}, \ldots, x_{n}\right]\right) \cong Q(R)_{\widetilde{\boldsymbol{q}}, \widetilde{\sigma}}\left[x_{1}, \ldots, x_{n}\right]
$$

where $\widetilde{\boldsymbol{q}}=\left(\frac{q_{i j}}{1}\right) \in \mathscr{M}(n, Q(R))$.
Proposition 3.25. Let R be a left Ore domain, there exists

$$
\phi: R_{\boldsymbol{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \rightarrow Q(R)_{\widetilde{\boldsymbol{q}}, \widetilde{\sigma}}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]
$$

an injective ring homomorphism.
Proof. Let $B_{R}:=R_{q, \sigma}\left[x_{1}, \ldots, x_{n}\right]$ and $B_{Q(R)}:=Q(R)_{\widetilde{q}, \widetilde{\sigma}}\left[x_{1}, \ldots, x_{n}\right]$ be, by Theorem $3.13 R_{\boldsymbol{q}, \sigma}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \cong S_{1}^{-1} B_{R}$ with $S_{1}=\left\{r x^{u} ; r \in R^{*}\right.$, $\left.x^{u} \in \operatorname{Mon}\left\{x_{1}, \ldots, x_{n}\right\}\right\}$, and $Q(R)_{\widetilde{q}, \widetilde{\sigma}}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \cong S_{1^{\prime}}^{-1} B_{Q(R)}$ with $S_{1^{\prime}}=$ $\left\{r x^{u} ; r \in Q(R)^{*}, x^{u} \in \operatorname{Mon}\left\{x_{1}, \ldots, x_{n}\right\}\right\}$.

Now, consider the following diagram of ring homomorphisms:

where ψ is the injection for the localization of R to the total ring fractions $Q(R), \psi^{\prime}$ the injection determined by the isomorphism of Theorem 3.24 where $\psi^{\prime}\left(a x^{u}\right)=\frac{a}{1} x^{u}$, and $\psi_{1}, \psi_{1^{\prime}}$ injections determined by the localizations for B_{R} and $B_{Q(R)}$ respectively.

As $\psi^{\prime}\left(S_{1}\right) \subseteq S_{1^{\prime}}$, then $\psi_{1^{\prime}}\left(\psi^{\prime}\left(S_{1}\right)\right) \subseteq \psi_{1^{\prime}}\left(S_{1^{\prime}}\right) \subseteq\left(S_{1^{\prime}}^{-1} B_{Q(R)}\right)^{*}$, therefore, by universal property there exists φ. If $f=\sum a_{u} x^{u} \in R_{q, \sigma}\left[x_{1}, \ldots, x_{n}\right]$ and $r x^{v} \in S_{1}$ then,

$$
\begin{aligned}
\varphi\left(\frac{f}{r x^{v}}\right) & =\varphi\left(\frac{\sum a_{u} x^{u}}{r x^{v}}\right) \\
& =\psi_{1^{\prime}}\left(\psi^{\prime}\left(r x^{v}\right)\right)^{-1} \psi_{1^{\prime}}\left(\psi^{\prime}\left(\sum a_{u} x^{u}\right)\right) \\
& =\psi_{1^{\prime}}\left(\frac{r}{1} x^{v}\right)^{-1} \psi_{1^{\prime}}\left(\sum \frac{a_{u}}{1} x^{u}\right) \\
& =\frac{\frac{1}{1}}{\frac{r}{1} x^{v}} \frac{\sum \frac{a_{u}}{1} x^{u}}{\frac{1}{1}} \\
& =\frac{\sum \frac{a_{u}}{1} x^{u}}{\frac{r}{1} x^{v}} \\
& =\frac{\psi^{\prime}(f)}{\psi^{\prime}\left(r x^{v}\right)}
\end{aligned}
$$

Also, φ is injective by ψ^{\prime} and $\psi_{1^{\prime}}$ are injective.

Need the following result for the subsequent theorem:
Proposition 3.26. Let R be a ring and $S \subset R$ a multiplicative subset. If $Q:=S^{-1} R$ exists, then any finite set $\left\{q_{1}, \ldots, q_{n}\right\}$ of elements of Q posses a common denominator, i.e., there exists $r_{1}, \ldots, r_{n} \in R$ and $s \in S$ such that $q_{i}=\frac{r_{i}}{s}, 1 \leq i \leq n$.

Proof. See [13], Lemma 2.1.8.
Theorem 3.27. Let R be a left Ore domain, then $Q\left(Q_{q, \sigma}^{n, n}(R)\right) \cong Q\left(Q_{\widetilde{q}, \tilde{\sigma}}^{n, n}(Q(R))\right.$.
Proof. With the notation of the proof in the Proposition 3.25 consider the following diagram of ring homomorphisms

where $\psi_{2}, \psi_{2^{\prime}}$ are injections determined by the localizations of $S_{1}^{-1} B_{R}$ and $S_{1^{\prime}}^{-1} B_{Q(R)}$ respectively and φ the injection of the Proposition 3.25.

By Remark 3.14, $S_{1}^{-1} B_{R}$ and $S_{1^{\prime}}^{-1} B_{Q(R)}$ are domain, now, if $\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}} \in$ $S_{1}^{-1} B_{R}$ with $\frac{p_{1}}{q_{1}} \neq 0$, then $p_{1} \neq 0$ and there exist $f_{1} \neq 0$ and $f_{2} \in$ B_{R} such that $f_{1} p_{1}=f_{2} p_{2}$. Then, $\frac{f_{1} q_{1}}{1} \frac{p_{1}}{q_{1}}=\frac{f_{1} p_{1}}{1}=\frac{f_{2} q_{2}}{1}=\frac{f_{2} q_{2}}{1} \frac{p_{2}}{q_{2}} \neq 0$, therefore $S_{1}^{-1} B_{R}$ is a Ore domain, similarly it has to $S_{1^{\prime}}^{-1} B_{Q(R)}$. Thus, if $S_{2}=S_{1}^{-1} B_{R}-\{0\}$ and $S_{2^{\prime}}=S_{1^{\prime}}^{-1} B_{Q(R)}-\{0\}$ as $\varphi\left(S_{2}\right) \subseteq S_{2^{\prime}}$, then
$\psi_{2^{\prime}}\left(\varphi\left(S_{2}\right)\right) \subseteq \psi_{2^{\prime}}\left(S_{2^{\prime}}\right) \subseteq\left(Q\left(S_{1^{\prime}}^{-1} B_{Q(R)}\right)\right)^{*}$, hence, by universal property there exists φ^{\prime} injective ring homomorphism.

Note that if $f, g \in B_{R}$ and $a x^{u}, b x^{b} \in S_{1}$, then

$$
\frac{\frac{f}{a x^{u}}}{\frac{g}{b x^{v}}}=\left(\frac{g}{b x^{v}}\right)^{-1} \frac{f}{a x^{u}}=\frac{b x^{v}}{g} \frac{f}{a x^{u}}=\frac{f^{\prime}}{g^{\prime}}
$$

and

$$
\frac{f^{\prime}}{g^{\prime}}=\frac{1}{g^{\prime}} \frac{f^{\prime}}{1}=\left(\frac{g^{\prime}}{1}\right)^{-1} \frac{f^{\prime}}{1}=\frac{\frac{f^{\prime}}{1}}{\frac{g^{\prime}}{1}},
$$

where $f^{\prime}, g^{\prime} \in B_{R}$ by Remark 3.14 with $r=0$. Similarly is obtained for $Q\left(S_{1^{\prime}}^{-1} B_{Q}(R)\right)$.

Therefore,

$$
\begin{aligned}
\varphi^{\prime}\left(\frac{f}{g}\right) & =\psi_{2^{\prime}}\left(\varphi\left(\frac{g}{1}\right)\right)^{-1} \psi_{2^{\prime}}\left(\varphi\left(\frac{f}{1}\right)\right) \\
& =\psi_{2^{\prime}}\left(\frac{\psi^{\prime}(g)}{\frac{1}{1}}\right)^{-1} \psi_{2^{\prime}}\left(\frac{\psi^{\prime}(f)}{\frac{1}{1}}\right) \\
& =\frac{\frac{1}{1}}{\psi^{\prime}(g)} \frac{\psi^{\prime}(f)}{\frac{1}{1}} \\
& =\frac{\psi^{\prime}(f)}{\psi^{\prime}(g)} .
\end{aligned}
$$

Now, if $f, 0 \neq g \in S_{1^{\prime}}^{\prime} B_{Q(R)}$, applying Theorem 3.26 must be

$$
\left.\begin{array}{rl}
\frac{f}{g} & =\frac{\sum \frac{a_{u}}{b_{u}} x^{u}}{\sum \frac{\frac{v}{v}}{d_{v}} x^{v}}=\frac{\frac{1}{s} \sum \frac{a_{u}^{\prime}}{1} x^{u}}{\frac{1}{s^{\prime}} \sum \frac{c_{v}^{\prime}}{1} x^{v}}=\left(\sum \frac{c_{v}^{\prime}}{1} x^{v}\right)^{-1}\left(\frac{1}{s^{\prime}}\right)^{-1} \frac{1}{s} \sum \frac{a_{u}^{\prime}}{1} x^{u} \\
& =\left(\sum \frac{c_{v}^{\prime}}{1} x^{v}\right)^{-1}\left(\frac{s^{\prime}}{1} \frac{1}{s}\right) \sum \frac{a_{u}^{\prime}}{1} x^{u}=\left(\sum \frac{c_{v}^{\prime}}{1} x^{v}\right)^{-1}\left(\frac{r^{\prime}}{r}\right) \sum \frac{a_{u}^{\prime}}{1} x^{u} \\
& =\left(\sum \frac{c_{v}^{\prime}}{1} x^{v}\right)^{-1}\left(\frac{1}{r} \frac{r^{\prime}}{1}\right) \sum \frac{a_{u}^{\prime}}{1} x^{u}=\left(\frac{r}{1} \sum \frac{c_{v}^{\prime}}{1} x^{v}\right)^{-1}\left(\frac{r^{\prime}}{1} \sum \frac{a_{u}^{\prime}}{1} x^{u}\right) \\
& =\left(\sum \frac{r c_{v}^{\prime}}{1} x^{v}\right)^{-1}\left(\sum \frac{r^{\prime} a_{u}^{\prime}}{1} x^{u}\right) \\
& =\frac{\sum \frac{r^{\prime} a_{u}^{\prime}}{1} x^{u}}{\sum \frac{r r_{v}^{\prime}}{1}} x^{v} \\
& =\varphi\left(\frac{\psi^{\prime}\left(f^{\prime}\right)}{\psi^{\prime}\left(g^{\prime}\right)}\right. \\
g^{\prime}
\end{array}\right) .
$$

where $f^{\prime}=\sum\left(r^{\prime} a_{u}^{\prime}\right) x^{u}$ y $g^{\prime}=\sum\left(r c_{v}^{\prime}\right) x^{v}$, then φ is surjective. Hence $Q\left(Q_{q, \sigma}^{n, n}(R)\right) \cong Q\left(Q_{\tilde{q}, \tilde{\widetilde{\sigma}}}^{n, n}(Q(R))\right)$.

3.3 Valuations of skew quantum polynomials.

Theorem 3.28. Let R be a left Ore domain and $\nu: Q\left(Q_{q, \sigma}^{n, n}(R)\right)^{*} \rightarrow \Gamma$ is a valuation with $\nu\left(Q(R)^{*}\right)=0$, then Γ is Abelian.

Proof. $Q(R)$ is a division ring and $Q\left(Q_{q, \sigma}^{n, n}(R)\right) \cong Q\left(Q_{\tilde{q}, \tilde{\widetilde{\sigma}}}^{n, n}(Q(R))\right)$, by Theorem 1.10. Γ is Abelian.

Corollary 3.29. Let R be a left Ore domain, $\nu: Q\left(Q_{q, \sigma}^{n, n}(R)\right)^{*} \rightarrow \Gamma a$ valuation with $\nu\left(Q(R)^{*}\right)=0$ and $Q_{\tilde{q} \tilde{\sigma}}^{n, n}(Q(R))$ generic, then Γ is Abelian.

Theorem 3.30. Let R be a left Ore domain, a valuation $\nu: Q\left(Q_{q, \sigma}^{n, n}(R)\right)^{*} \rightarrow$ Γ with $\nu\left(Q(R)^{*}\right)=0$ and $Q_{\tilde{q}, \tilde{\sigma}}^{n, n}(Q(R))$ generic. The valuation ν has maximal rank if only if $\Gamma \cong \mathbb{Z}^{n}$.

Proof. By Theorem 3.27. $Q\left(Q_{\boldsymbol{q}, \sigma}^{n, n}(R)\right) \cong Q\left(Q_{\widetilde{\boldsymbol{q}}, \widetilde{\sigma}}^{n, n}(Q(R))\right)$ with $Q(R)$ a division ring, by Theorem 1.13 the valuation ν has maximal rank if only if $\Gamma \cong \mathbb{Z}^{n}$.

3.4 Valuations of skew $P B W$ extension.

Theorem 3.31. Let $A=\sigma(R)\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be a bijective and quasi-commutative skew $P B W$ extension of a ring R. If R is a left Ore domain and $\nu: Q(A)^{*} \rightarrow$ Γ a valuation with $\nu\left(Q(R)^{*}\right)=0$, then Γ is Abelian

Proof. By Theorem $3.8 A$ is an Ore domain then, $Q(A)$ exists and is a division ring, by Remark 3.14. $Q(A) \cong Q\left(Q_{q, \sigma}^{r, n}(R)\right)$ (in particular $r=0$) and by Theorem 3.28Γ is abelian.

Corollary 3.32. Let A be a bijective skew $P B W$ extension of a ring R. If R is a left Ore domain and $\nu: Q(G r(A))^{*} \rightarrow \Gamma$ a valuation with $\nu\left(Q(R)^{*}\right)=0$, then Γ is Abelian.

Proof. By Theorem 3.9 $G r(A)$ is bijective and quasi-commutative.

References

[1] Artamonov V. A., Serre's Quantum Problem, Uspehi Mat. Nauk. 53 (1998), N 4, 3-76.
[2] Artamonov V. A., General quantum polynomials: irreducible modules and Morita-equivalence, Izv. RAN, Ser. Math. 63 (1999), N 5, 3-36.
[3] Artamonov V. A., Automorphisms of the skew field of rational quantum functions, Sbornik: Mathematics 191: 12 (2000).
[4] Artamonov V. A., Valuations on quantum fields, Commun. Algebra, 29 (2001), N 9.
[5] Artamonov V. A., Actions of Hopf algebras on general quantum Mal'tsev power series and quantum planes. J. Math. Sci. (2006). 134, N 1. p. 1773-1798.
[6] Artamonov V. A., Quantum polynomial, Advances in Algebra and Combinatorics, World Scientific, (2008).
[7] Cohn P. M., Algebraic Numbers and Algebraic Functions. Chapman \& Hall, $2-6$ boundary Row, London, 1991.
[8] Cohn P. M., Skew Fields Theory of General Division Rings, Cambridge University Press, 1995.
[9] Freddy Van Oystaeyen, Algebraic geometry for associative algebras. Marcel Dekker Inc. NY, (2000), 302 pp.
[10] Kokorin A. I. \& Kopytov V. M., Linearly ordered groups. Moscow: Nauka, (1972).
[11] Lezama O. \& Gallego C., Gröbner bases for ideals of sigma-PBW extensions, Communications in Algebra, 39 (1), 2011, 50-75.
[12] Lezama O. \& Reyes M., Some homological properties of skew PBW extensions, Communications in Algebra, Vol. 42, 2014, 1200-1230.
[13] McConnell J. \& Robson J., Non-commutative Noetherian Rings, Graduate Studies in Mathematics, AMS, 2001.
[14] Schilling O. F., Noncommutative Valuation, Bull. Amer. Math. Soc. Volume 51, Number 4 (1945), 229-324.

