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Semi-quantum approach for fast atom diffraction: solving the rainbow divergence
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In this work we introduce a distorted wave method, based on the Initial Value Representation
(IVR) approach of the quantum evolution operator, in order to improve the semiclassical description
of rainbow effects in diffraction patterns produced by grazing scattering of fast atoms from crystal
surfaces. The proposed theory, named Surface Initial Value Representation (SIVR) approximation,
is applied to He atoms colliding with a LiF(001) surface along low indexed crystallographic channels.
For this collision system the SIVR approach provides a very good representation of the quantum
interference structures of experimental projectile distributions, even in the angular region around
classical rainbow angles where common semiclassical methods diverge.

PACS numbers: 34.35.+a,79.20.Rf, 34.10.+x

I. INTRODUCTION

The diffraction of fast atoms from crystal surfaces un-
der grazing incidence conditions has been the focus of
extensive experimental and theoretical research [1–14]
since its unexpected observation a few years ago [15, 16].
From the theoretical point of view, different methods
have been employed to simulate experimental data of
this phenomenon, now known as grazing-incidence fast
atom diffraction (GIFAD or FAD) [17]. They range
from full quantum treatments in terms of a wave packet
propagation [3, 16, 18] to semiclassical approximations
[1, 4] based on the use of classical projectile trajectories.
Among these last theories we can mention the Surface
Eikonal (SE) approximation [4, 19], which is a distorted
wave method that makes use of the eikonal wave function
to represent the elastic collision with the surface, while
the motion of the fast projectile is classically described
by considering axially channeled trajectories for differ-
ent initial positions. The SE approach includes a clear
description of the main mechanisms of the FAD process,
being simpler to evaluate than a full quantum calculation
[3, 18]. It has been applied to investigate FAD patterns
for different collision systems [19–22], showing a reason-
able agreement with the experiments in all the considered
cases.
In spite of the successful performance of the SE ap-

proach for the simulation of FAD patterns, a weakness of
the theory is its deficient description of the rainbow ef-
fect, which affects the intensity of the outermost diffrac-
tion maxima when these maxima are close to the clas-
sical rainbow angles [22], i.e. the extreme deflection an-
gles of the classical projectile distribution . Such a de-
ficiency, widely studied in atom-surface scattering [23],
is a characteristic of the classical representation of the
collision dynamics, which introduces a singularity at rain-
bow angles as a consequence of the presence of a point of
accumulation of classical trajectories (caustics), produc-
ing cusped rainbow peaks in the angle-resolved scattering
probability. In quantum mechanics, instead, these sharp

rainbow peaks are replaced by smooth maxima that dis-
play an exponentially decaying behavior outside classical
rainbow angles, just on the dark side, i.e. in the region
of classically forbidden transitions [24]. The goal of this
article is to develop a semi-quantum approximation for
FAD, based on the Initial Value Representation (IVR)
method by Miller [25], which can solve the drawback of
the SE model without losing the simple description of
the interference process in terms of classical scattering
trajectories.

The IVR method represents a practical way of intro-
ducing quantum effects, such as interferences and classi-
cal forbidden processes, in classical dynamic simulations
[26]. Taking as starting point the Feynman path inte-
gral formulation of quantum mechanics, the basic idea of
the IVR method is to introduce the standard Van Vleck
approximation [27, 28] of the quantum evolution opera-
tor without considering any additional assumption. That
is, within the IVR model the full quantum time evolu-
tion operator is replaced by the Van Vleck propagator in
terms of classical trajectories with different initial condi-
tions, which is evaluated numerically without using the
common stationary phase approximation [26]. Precisely,
this IVR strategy makes it possible to avoid the clas-
sical rainbow divergence, incorporating an approximate
description of classically forbidden transitions in terms of
real-valued trajectories [25]. The IVR solution has been
successfully applied to different branches, providing accu-
rate transition probabilities for several atomic, molecular
and nuclear processes [25, 26, 29–33]. In most of these
cases, IVR results are in excellent agreement with the
corresponding full quantum values.

In this paper we extend the IVR method to deal with
FAD processes by using the IVR time evolution operator
in the frame of a time-dependent distorted-wave formal-
ism. The approach proposed here, named Surface-Initial
Value Representation (SIVR) approximation, is applied
to evaluate FAD patterns for He atoms grazing imping-
ing on a LiF(001) surface. This collision system will be
used as a benchmark of the SIVR theory, comparing the
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results with available experimental data and with values
derived within the SE approach.
The article is organized as follows. The theoretical

formalism is derived in Sec. II. Results are presented
and discussed in Sec. III, while in Sec. V we outline
our conclusions. Atomic units (a.u.) are used unless
otherwise stated.

II. THEORETICAL MODEL

When an atomic projectile (P ) grazingly impinges on
a crystal surface (S) with an incidence energy E, the
scattering state of the projectile,

∣∣Ψ+
i (t)

〉
, satisfies the

time-dependent Schrödinger equation for the Hamilto-
nian

H = − 1

2mP
∇2

~R
+ VSP (~R), (1)

where ~R denotes the position of the center of mass of
the incident atom, mP is projectile mass, and VSP is the
surface-projectile interaction. The sign ”+” in the scat-
tering state indicates that it satisfies outgoing asymp-
totic conditions for the elastic collision process, verifying
as initial condition that at t = 0, when the projectile is
far from the surface, Ψ+

i tends to the state Φi, where

Φj(~R, t) = (2π)−3/2 exp(i ~Kj · ~R− iEt), j = i(f) (2)

is the initial (final) unperturbed wave function, with ~Ki

( ~Kf ) the initial (final) momentum and E = K2
i /(2mP ) =

K2
f/(2mP ).
In the Schrödinger picture of quantum mechanics,

the scattering state at a given time t can be formally
expressed in terms of the evolution operator U(t) =
exp(−iH t) as

∣∣Ψ+
i (t)

〉
= U(t) |Φi(0)〉 (3)

for t ≥ 0. A semiclassical expression of this equation can
be obtained by applying the IVR method, as summarized
in Ref. [26], to represent the evolution operator U(t).
Within the IVR approach, the scattering state of Eq. (3)
becomes

∣∣Ψ+
i (t)

〉
≃

∣∣∣Ψ(IV R)+
i (t)

〉
= (2πi)−3/2

∫
d
−→
R o

∫
d
−→
Ko

× (JM (t))
1/2

Φi(
−→
R o, 0) exp(iSt)

∣∣∣ ~Rt

〉
,(4)

where ~Rt ≡ ~Rt(
−→
R o,

−→
Ko) is the time-evolved position of

the incident atom at a given time t, which is obtained by
considering a classical trajectory with starting position

and momentum
−→
R o and

−→
Ko, respectively. In Eq. (4) the

function St ≡ St(
−→
R o,

−→
Ko) denotes the classical action

along the trajectory

St =

t∫

0

dt′

[ −→P 2
t′

2mP
− VSP ( ~Rt′)

]
, (5)

where
−→P t is the classical projectile momentum at the

time t,
−→P t = mPd ~Rt/dt, while the function

JM (t) = det

[
∂ ~Rt(

−→
R o,

−→
Ko)

∂
−→
Ko

]
(6)

is a Jacobian factor (a determinant) evaluated along

the classical trajectory ~Rt, which is associated with the
Maslov phase. This Jacobian factor can be expressed as
JM (t) = |JM (t)| exp(iνtπ), where |JM (t)| is the modulus
of JM (t) and νt is an integer number that accounts for
the sign of JM (t) at a given time t. In this way, νt rep-
resents a time-dependent Maslov index, satisfying that
every time that JM (t) changes its sign along the trajec-
tory, νt increases by 1.

In this work we use the IVR state of Eq. (4) to de-
scribe the quantum scattering state within the frame-
work of the time-dependent distorted-wave formalism
[34]. Hence, the distorted-wave amplitude for the elastic
transition from the initial state Φi to the final state Φf

can be expressed as

A
(SIV R)
if = −i

+∞∫

0

dt
〈
Φf (t) |VSP |Ψ(IV R)+

i (t)
〉
. (7)

By replacing Eq. (4) in Eq. (7) and explicitly solving the

integration on the spatial coordinate ~R, which leads to a
Dirac delta function in the coordinate space, the SIVR
transition amplitude per unit of surface area reads

A
(SIV R)
if =

1

S

∫

S

d
−→
R os

∫
d
−→
Ko a

(SIV R)
if (

−→
R o,

−→
Ko), (8)

where
−→
R o =

−→
R os +Zoẑ is the starting position, at t = 0,

of the projectile trajectory, with
−→
R os and Zo the compo-

nents parallel and perpendicular, respectively, to the sur-
face plane, the ẑ versor oriented perpendicular to the sur-
face, aiming towards the vacuum region, and Zo → +∞.

In Eq. (8) the position
−→
R os is integrated on a given area

S of the surface plane, the starting momentum
−→
Ko satis-

fies the energy conservation, i.e.
∣∣∣−→Ko

∣∣∣ ≡ K0 =
√
2mPE,

and

a
(SIV R)
if (

−→
R o,

−→
Ko) = −

+∞∫

0

dt
|JM (t)|1/2 eiνtπ/2

(2πi)9/2
VSP ( ~Rt)

× exp
[
i
(
ϕ
(SIV R)
t −−→

Q · −→R o

)]
, (9)

is the SIVR transition amplitude associated with the clas-

sical path ~Rt ≡ ~Rt(
−→
R o,

−→
Ko), where

−→
Q = ~Kf − ~Ki is the

projectile momentum transfer and ϕ
(SIV R)
t = Et+St−∆t

is the SIVR phase, with ∆t = ~Kf · ( ~Rt −
−→
R o).
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After some steps of algebra, the SIVR phase can be
expressed as

ϕ
(SIV R)
t =

t∫

0

dt′
[

1

2mP

(
~Kf −−→P t′

)2

− VSP ( ~Rt′)

]
,

(10)
which helps to reduce numerical uncertainties due to the

fact that the component of ~Ki parallel to the surface is
much higher than the perpendicular one. It is interesting
to note that in Eq. (9), the Jacobian factor JM (t) goes
to zero as the Maslov index νt changes discontinuously,
making the integrand be continuos at such a point [31].
The SIVR differential probability, per unit of surface

area, for elastic scattering with final momentum ~Kf in
the direction of the solid angle Ωf ≡ (θf , ϕf ) is obtained

from Eq. (8) as dP/dΩf = K2
f

∣∣∣A(SIV R)
if

∣∣∣
2

, where θf and

ϕf are the final polar and azimuthal angles, respectively,
with ϕf measured with respect to the x̂ axis along the
incidence direction in the surface plane. A schematic
depiction of the process and the angular coordinates is
displayed in Fig. 1.

III. RESULTS

We apply the SIVR method to 4He atoms elastically
scattered from a LiF(001) surface under axial surface
channeling conditions. This collision system has been
widely investigated with FAD [1–4, 18–20, 35] and will
be considered as a benchmark for the theory.
The SIVR transition amplitude was obtained from

Eq. (8) employing the MonteCarlo technique to eval-

uate the ~Ros and
−→
Ko integrals. The integration on

~Ros was done using random values obtained from a

Gaussian distribution, while the integral on
−→
K0 was

solved making use of the change of variables
−→
K0 =

K0(cos θo cosϕo, cos θo sinϕo,− sin θo), with θo and ϕo

varying uniformly around the incidence direction, in a
range determined from the uncertainty principle. That
is, the θo and ϕo variables were integrated in the angular
ranges ∆θo ≃ ±10(Kisdz)

−1 and ∆ϕo ≃ ±5(Kisdy)
−1,

respectively, around the incidence direction, whereKis =
Ki cos θi is the initial momentum parallel to the surface,
θi is the glancing incidence angle, and dy and dz are the
lattice parameters in the directions ŷ and ẑ, respectively,
both of them perpendicular to the incidence channel (x̂

axis). More than 4 × 105 values of ~Ros and
−→
Ko were

used in the calculation of A
(SIV R)
if for each incidence

condition, determined by the initial momentum ~Ki. It

involved the sum of the a
(SIV R)
if amplitudes correspond-

ing to different values of ~Ros and
−→
Ko that lead to the

same final momentum ~Kf . This was done using a grid
of 100 × 100 points for the angles θf and ϕf . Every

transition amplitude a
(SIV R)
if was evaluated numerically

along the classical trajectory ~Rt(
−→
R o,

−→
Ko) from Eq. (9).

In such a calculation, the evaluation of the determinant
JM (t) represents the numerical bottleneck.
A key quantity to describe the experimental FAD pat-

terns is the potential VSP , which is here determined from
a pairwise additive hypothesis by adding individual con-
tributions corresponding to the interaction of the pro-
jectile with the different solid ions. Within this model,
successfully employed in FAD from insulator surfaces
[20, 21], the surface-projectile potential takes into ac-
count the static and polarization contributions. The
static potential, derived by assuming that the electronic
densities of the particles remain frozen during the colli-
sion, was evaluated as the sum of the electrostatic, kinetic
and exchange potentials [36]. While in previous articles
[20, 21] only local electronic density contributions were
considered, in this paper we incorporate no local terms
to evaluate the kinetic and exchange potentials, as given
by the Lee-Lee-Parr [37] and Becke [38] models, respec-
tively. In turn, the polarization potential, due to the
rearrangement of the projectile electron density induced
by the presence of target ions, was derived as in Ref. [21].
In addition, in the calculation of the static and polariza-
tion contributions we have considered a surface rumpling,
with a displacement distance extracted from the ab-initio
calculation of Ref. [19]. Details of the surface-potential
calculation will be publish elsewhere [39].

As our main interest lies in analyzing the performance
of the SIVR approach to describe rainbow effects, first
we focus on the mechanism of supernumerary rainbows,
which is associated with the SIVR amplitude derived
from Eq. (8) by considering an area S equal to only
one reduced unit cell [1, 19, 21]. In Fig. 2 we compare
SIVR projectile distributions for a reduced unit cell with
experimental data from Ref. [1] for incidence along the
[100] channel with two different impact energies. The
SIVR spectra, as a function of the deflection angle Θ de-
fined as Θ = arctan(ϕf /θf ), present well defined peaks,
which can be identified as supernumerary rainbow max-
ima [1]. The positions and relative intensities of such
peaks are in quite good agreement with the experimen-
tal data, even the rainbow maximum which presents the
highest intensity. In contrast with previous semiclassical
calculations [1, 4, 19, 40], within the SIVR approximation
the rainbow peak is described as a smoothed maximum
that takes into account the decreasing intensity on the
dark side of the classical rainbow angle Θrb [24]. The an-
gle Θrb corresponds to the largest deflection suffered for
projectiles moving along classical trajectories with ini-

tial momentum ~Ki, so that projectile paths ending with
deflections Θ larger than Θrb are classically forbidden.
Notice that despite the fact that no convolution was in-
troduced in the SIVR spectra of Fig. 2, the SIVR prob-
ability displays a smooth behavior in the whole angular
range, with a gentle change of slope as a function of Θ,
in accord with the experimental distribution. Theoretical
spectra are expected to be symmetric with respect to the
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incidence direction, which corresponds to the deflection
angle Θ = 0, while the experimental data are affected
by experimental uncertainties that partially break such
a mirror symmetry.

Similar agreement between the SIVR and experimental
distributions is also observed for incidence along the [110]
channel, as shown in Fig. 3. For this impact direction,
the position and relative intensity of the rainbow peak
are properly reproduced by the SIVR approach. How-
ever, there is a slight shift in the positions of the in-
ternal maxima, which is associated with a failure of the
surface-projectile interaction model for this channel. As
discussed in previous articles [3, 20, 35], FAD patterns
are extremely sensitive to the corrugation of the surface
potential across the incidence direction. Small differences
in the potential can strongly modify the positions of su-
pernumerary rainbow maxima, particularly, the internal
ones, and this effect is more evident for incidence along
the [110] channel [20].

With the aim of comparing the SIVR approach with
previous semiclassical theories [4, 19, 20], in Fig. 4 we
display angular projectile distributions obtained with
the SIVR and SE methods, both of them including the
supernumerary rainbow mechanism only, that is, derived

by integrating ~Ros on a reduced unit cell. In the case of
the semiclassical SE approximation, to study the role of
the Maslov phase in this new context, we have consid-
ered two versions: one incorporating the Maslov phase
[19] and the other without it [4, 20]. Within the SE ap-
proximation, the Maslov phase represents a correction

term φ
(SE)
M = νoπ/2 that was added to the phase of the

scattering state in order to take into account the phase
change suffered by the wave as it passes through a focus,
with νo the Maslov index defined as in Ref. [41]. From
Fig. 4 we observe that, like other semiclassical theories
[1, 17, 40], both versions of the SE approach produce an
abrupt increase of the probability at classical rainbow
angles ±Θrb, with null probability outside this angular
range, on the dark side of the rainbow angle. This defi-
ciency is completely solved by the SIVR method, which
gives rise to smooth rainbow peaks with softened decay-
ing intensities for deflection angles larger than Θrb. The
most important point to remark about the SIVR method
is that the numerical integration on the starting momen-

tum
−→
K0, included in Eq. (8), regularizes the divergence

of the transition amplitude close to Θrb, in such a way
that forbidden trajectories as well as the so called Airy
behavior of the quantum transition amplitude are auto-
matically taken into account [26].

Moreover, from Fig. 4 we found that the experimen-
tal positions of supernumerary rainbow maxima are well
described by the SE approach without the Maslov correc-
tion term [4, 20]. But the agreement deteriorates when

the Maslov phase φ
(SE)
M is added to the SE theory, turn-

ing the central minimum into a maximum, in contrast
with the experiment. On the contrary, the present SIVR
approximation does incorporates a similar Maslov phase

φM (t) = νtπ/2 as a function of time along the classical
trajectory. But this phase emerges naturally, together
with the factor |JM (t)|, in the derivation of Eq. (9), be-
coming in fact essential to obtain proper projectile distri-
butions within the SIVR method. Therefore, the present

results seem to indicate that the incorporation of φ
(SE)
M

in the SE approach is unbalanced, in a certain manner,
and it would be better to disregard it.
So far we have described the mechanism of supernu-

merary rainbows only, but as it happens for most of the
diffraction phenomena, FAD patterns have two different
origins: supernumerary rainbows and Bragg diffraction
[1]. Both mechanisms are included in the SIVR descrip-
tion and can be analyzed separately, like in the SE ap-
proach [21]. In Eq. (8) the integration region on the
surface plane, S, is in principle determined by the size
of the initial wave packet of incident projectiles [42]. By
considering this area as composed by n identical reduced

unit cells, each of them centered on a different site ~Xsj

of the crystal surface, we can express the corresponding
SIVR transition amplitude as

A
(SIV R)
if,n = A

(SIV R)
if,1 Sn( ~Qs), (11)

where A
(SIV R)
if,1 is derived from Eq. (8) by evaluating the

~Ros-integral over one reduced unit cell, while the function

Sn( ~Qs) =
1

n

n∑

j=1

exp
[
−i ~Qs. ~Xsj

]
(12)

takes into account the crystallographic structure of the

surface, with ~Qs the component of ~Q parallel to the sur-
face plane. Each factor in Eq. (11) describes a differ-

ent mechanism. The factor A
(SIV R)
if,1 is related to su-

pernumerary rainbows and carries information on the
shape of the interaction potential across the incidence

channel, while the factor Sn( ~Qs) is associated with the
Bragg diffraction and provides information on the spac-
ing between surface atoms only. As the component of the
momentum transfer along the incidence channel is neg-

ligible, we can approximate Sn( ~Qs) ≈ Sn(Qtr), where
Qtr = Kf cos θf sinϕf is the component of the trans-
ferred momentum transversal to the incidence channel on
the surface plane. For scattering along the [110] channel
this function reads

S[110]
n (Qtr) =

sin(ntrβ)

ntr sinβ
, (13)

while for incidence along the [100] channel it reads

S[100]
n (Qtr) = (n2

tr + 1)−1

[
n2
tr

sin(ntrβ)

ntr sinβ
+

cos(ntrβ)

cosβ

]
,

(14)
where ntr is the number of reduced unit cells along
the transverse direction (fixed as an odd number) and
β = Qtr d/2, with d the spatial lattice periodicity of the
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channel. Hence, in both directions Sn(Qtr) gives rise to
Bragg maxima placed at

Qtrd = m2π, (15)

with m an integer number. The width of these diffrac-
tion peaks is affected by the number of reduced unit cells
reached by the incident wave packet, i.e. the larger ntr

is, the narrower the Bragg peaks are.
To visualize the above behavior, in Fig. 5 we display

the SIVR distribution obtained from Eq. (8) by integrat-

ing ~Ros on an area S formed by three reduced unit cells.
In this case, the SIVR spectrum presents Bragg maxima
as superimposed structures to the supernumerary con-
tribution. Resolved Bragg peaks can be observed in ex-
perimental projectile distributions for low values of the
perpendicular energy E⊥ = E sin2 θi, associated with the
motion normal to the surface plane [19]. But for higher
perpendicular energies, like the ones considered in Figs. 2
and 3, discrete Bragg peaks originated from the interfer-
ence of trajectories from different reduced unit cells are
not present in the experimental distributions due to the
limits in spatial resolution of the detector [21]. Therefore,
only supernumerary rainbow contributions are visible in
the experimental spectra of such figures.

IV. CONCLUSIONS

We have developed a semi-quantum approximation
based on the IVR method of Miller´s [25] to deal with
FAD from crystal surfaces. The proposed approach -
the SIVR approximation - solves the rainbow singular-

ities originated by the classical description of the pro-
jectile dynamics, preserving a simple semi-quantum pic-
ture of the main mechanisms of the process. In order
to test the reliability of the SIVR method, we have ap-
plied it to keV He atoms colliding under grazing incidence
with a LiF(001) surface, for which there are available
experimental data. The surface potential was derived
from a pairwise additive model, including non local ki-
netics and exchange contributions, polarization and rum-
pling. From the comparison of calculated angular spec-
tra with experimental projectile distributions for two dif-
ferent low-indexed crystallographic directions of the LiF
surface we conclude that the SIVR approach provides
a very good representation of the FAD patterns in the
whole angular range, without requiring the use of con-
volutions to smooth the theoretical curves. Therefore,
the SIVR method might be considered as an attractive
alternative to quantum wave packet propagations, offer-
ing a realistic description of FAD patterns, even around
classical rainbow angles.

We also found that the use of the Maslov correction
term in the SE approximation might be inadequate, while
in the SIVR approximation the Maslov phase emerges as
a function of the projectile position along the classical
trajectory, playing an essential role.

Acknowledgments

M.S.G. is kindly grateful to Marcos Saraceno for his
helpful suggestion. M.S.G and J.E.M acknowledge fi-
nancial support from CONICET, UBA, and ANPCyT of
Argentina.

[1] A. Schüller and H. Winter, Phys. Rev. Lett. 100, 097602
(2008).

[2] J.R. Manson, H. Khemliche, and P. Roncin, Phys. Rev.
B 78, 155408 (2008).
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FIG. 2: (Color online) Angular projectile distribution, as a
function of the deflection angle Θ, for 4He atoms scattered
from LiF(001) along the [100] direction with the glancing in-
cidence angle θi = 0.71 deg. Two different impact energies
are considered: (a) E = 7.3 keV; (b) E = 8.6 keV. Solid
red line, SIVR results for the supernumerary rainbow mecha-
nism, derived by integrating the starting position ~Ros over a
reduced unit cell; shadow gray line, experimental data from
Ref. [1]. Vertical arrows, positions of the classical rainbow
angles ±Θrb.

FIG. 3: (Color online) Similar to Fig. 2 for 4He atoms scat-
tered from LiF(001) along the [110] channel. The incidence
energy and angle are E = 7.5 keV and θi = 0.67 deg., re-
spectively. The experimental data were extracted from Ref.
[19].
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FIG. 4: (Color online) Similar to Fig. 2 (b) considering
different theoretical descriptions of the supernumerary rain-
bow mechanism. Solid red line, SIVR approximation; dashed
green line, SE approach; dash-dotted blue line, SE approach
without including the Maslov correction term, as explained
in the text. All the theories evaluated integrating the starting
position ~Ros over a reduced unit cell.

FIG. 5: (Color online) Similar to Fig. 2 (a) comparing the
contributions of the different mechanisms. Dashed red line,
SIVR results derived from Eq. (8) by integrating the starting

position
−→
R os over a reduced unit cell (supernumerary rainbow

contribution); solid blue line, similar by using an extended
integration area, as explained in the text. Dotted vertical
lines, theoretical peak positions based on the Bragg condition
(Eq. (15)).


