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Abstract. In this article we introduce the notion of multi-Koszul algebra
for the case of a locally finite dimensional nonnegatively graded connected
algebra, as a generalization of the notion of (generalized) Koszul algebras
defined by R. Berger for homogeneous algebras. This notion also extends
and generalizes the one recently introduced by the author and A. Rey, which
was for the particular case of algebras further assumed to be finitely gener-
ated in degree 1 and with a finite dimensional space of relations. The idea of
this new notion for this generality, which should be perhaps considered as
a probably interesting common property for several of these algebras, was
to find a grading independent description of some of the more appealing
features shared by all generalized Koszul algebras. It includes several new
interesting examples, e.g. the super Yang-Mills algebras introduced by M.
Movshev and A. Schwarz, which are not generalized Koszul or even multi-
Koszul for the previous definition given by the author and Rey in any natu-
ral manner. On the other hand, we provide an equivalent description of the
new definition in terms of the Tor (or Ext) groups, similar to the existing one
for homogeneous algebras, and we show that several of the typical homo-
logical computations performed for the generalized Koszul algebras are also
possible in this more general setting. In particular, we give a very explicit
description of the A∞-algebra structure of the Yoneda algebra of a multi-
Koszul algebra, which has a similar pattern as for the case of generalized
Koszul algebras. We also show that a finitely generated multi-Koszul alge-
bra with a finite dimensional space of relations is a K2 algebra in the sense
of T. Cassidy and B. Shelton.
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1302 Estanislao Herscovich

1 Introduction

Koszul algebras were introduced by S. Priddy in [31], motivated by the arti-
cle [22] of J.-L. Koszul. They seem to have a pervasive appearance in repre-
sentation theory (cf. [1], [2]), algebraic geometry (cf. [12]), quantum groups
(cf. [27]), and combinatorics (cf. [16]), to mention a few. These algebras are
necessarily quadratic, i.e. of the form T (V )/〈R〉, with R ⊆ V ⊗2. R. Berger
generalized in [3] the notion of Koszul algebras (cf. also [15]) for the case of
homogeneous algebras, i.e. algebras given by T (V )/〈R〉, with R ⊆ V ⊗N for
N ≥ 2. They were called generalized Koszul, or N -Koszul if the mention to the
degree of the relationswas to be indicated, and the caseN = 2 of the definition
introduced by Berger coincides with the one given by Priddy. The general def-
inition shares a lot of good properties with the one given by Priddy, justifying
the terminology (see for example [3,6]). In particular, the Yoneda algebra of an
N -Koszul algebra is finitely generated (in degrees 1 and 2), and its structure is
easily computed from that of the original algebra. We would like to point out
that the new class of algebras satisfying the Koszul property of Berger lacks
however of other interesting properties, e.g. they are not closed under taking
duals, or under considering graded Ore extensions, the Yoneda algebra of an
N -Koszul algebra is not formal for N ≥ 3, etc.
Nevertheless, it is still a natural question to ask if there exists an analogous
definition for much general types of algebras, which satisfy some of the good
homological properties satisfied by generalized Koszul algebras. In fact, in the
recent paper [19], A. Rey and the author have considered an extension of the
generalized Koszul property, called multi-Koszul, to the case of finitely gener-
ated nonnegatively graded connected algebras generated in degree 1 andwith
a finite dimensional space of relations, which coincides with the definition
given by Berger if the algebra is homogeneous. Even though the definition of
that article has several advantages, for it satisfied several homological prop-
erties as for the case of generalized Koszul algebras, it seemed to be a little ad
hoc, and also too restrictive, for it cannot be applied in much general contexts,
where the previous assumptions on the algebras do not hold (e.g. if the alge-
bra is not generated in degree 1). In this article we proceed in a completely
different manner to get rid of the hypotheses stated before and to consider all
locally finite dimensional nonnegatively graded connected algebras. In fact,
our main goal is to provide a collection of algebras which have a very similar
homological behaviour to one of the generalized Koszul algebras, for which
the Yoneda algebra structure (and even the A∞-algebra structure) is directly
deduced from that of the original algebra, in a similar fashion as the case of
generalized Koszul algebras (see Theorem 4.1, Proposition 4.4, and Theorem
4.8). Moreover, the Yoneda algebra of a multi-Koszul algebra is in fact finitely
generated if the multi-Koszul algebra in question is finitely generated with a
finite dimensional space of relations (see Proposition 3.31). Furthermore, our
construction of the multi-Koszul complex, and thus our definition of multi-
Koszul algebra, is independent of the (nonnegative) grading of the algebra,
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and it restricts to the notion introduced in [19] for the additional assumption
that the algebra is finitely generated in degree 1 and it has a finite dimensional
space of relations (see Proposition 3.20), which further implies that it coincides
with the definition given by Berger for homogeneous algebras, and thus with
the one given by Priddy for quadratic algebras. All these properties have pre-
cisely given shape to the definition, which in some sense consists of requiring
that the Tor (or Ext) groups should have an “optimal” behaviour and rela-
tions between them, in such a way that the standard homological techniques
of generalized Koszul algebras still hold. This is somehow the main result of
the present work and it gives a reason for this new definition, contrary to the
one given in [19], which could have seemed to be somehow arbitrary.
We would like to point out that even tough this new definition could still seem
to be rather restrictive, it allows several interesting examples, for it includes
the super Yang-Mills algebras introduced by M. Movshev and A. Schwarz in
[28] and further studied by the author in [18], which were one of the main mo-
tivations for the present work (see Example 3.22). These algebras are not gen-
erated in degree 1, so they cannot be multi-Koszul in the sense defined in [19],
and in particular they cannot be generalized Koszul either. We also admit that
our definition is probably not the most general possible and reasonable ex-
tension of the Koszul property for all locally finite dimensional nonnegatively
graded connected algebras, but all the interesting properties mentioned in the
previous paragraph make us believe that any sensible such general definition
of Koszul-like algebra in this general context, if it exists, should necessarily in-
clude our definition as a special case. That is also one of the main reasons why
we have refrained from calling this new family of algebras Koszul.
The contents of the article are as follows. We start by recalling in Section 2 sev-
eral well-known definitions and results about the category of gradedmodules
over a locally finite dimensional nonnegatively graded connected algebra.
Section 3 is devoted to the definition of multi-Koszul algebras and to prove
some properties for this family of algebras. In order to simplify the exposi-
tion and unify the left and right sides, it seems useful to work directly with
the minimal projective resolution of the algebra A as an A-bimodule, and to
derive from it the minimal projective resolutions of the left or right trivial A-
module k. The definition requires however several preliminary results about
the spaces that will provide the generators of these minimal projective resolu-
tions, which are in given in Subsection 3.1 and in the beginning of Subsection
3.2. The first main result, Proposition 3.24 (see also Proposition 3.25) gives a
(co)homological description of multi-Koszul algebras in term of their Tor (or
Ext) groups, which yields a left-right symmetry of the definition. Moreover, in
Subsection 3.4 we also provide several properties satisfied by these algebras,
and in particular we show that they are stable under free products (see Propo-
sition 3.30) and they are K2 algebras, in the sense defined by B. Cassidy and
T. Shelton in [10], if the algebras are further assumed to be finitely generated
with finite dimensional spaces of relations (see Proposition 3.31).
Finally, in Section 4 we provide an explicit description of the algebra structure,
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and further of A∞-algebra structure, of the Yoneda algebra of a multi-Koszul
algebra (see Theorem 4.1, Proposition 4.4, and Theorem 4.8). In particular, if
the multi-Koszul algebra is finitely generated generated in degree 1 and with
a finite number of relations, this description coincides with the A∞-algebra
structure of the Yoneda algebra derived from Prop. 3.21 in [19], as explained
in Rmk. 3.22, and from Rmk. 3.25 of the same article. The proofs we give here
in this more general setting are however completely different. The character-
ization of both structures given in the previous statements follows a similar
pattern to the one given for generalized Koszul algebras in [7], Prop. 3.1, and
[17], Thm. 6.5, which gives another indication that the homological behaviour
of the algebras satisfying this new definition is parallel to the one of general-
ized Koszul algebras.
Throughout this article k will denote a field, and all vector spaces will be
over k. Since there are several (confusing) notations concerning the natural
numbers (whether they contain the zero or not), we denote by N the strictly
positive integers (as G. Peano himself defined), and by N0 the nonnegative
integers (as set theoretic definitions may suggest). If n ∈ N0, we will also
write byN≥n (resp. N>n) the set of nonnegative integers strictly greater than n
(resp., greater than or equal to n). Moreover, V will always be a vector space,
and A a nonnegatively graded connected (associative) algebra over k (with
unit), to which we will usually just refer as an algebra, with irrelevant ideal
A>0 =

⊕

n>0An. The vector space spanned by a set of elements {vs : s ∈ S}
for some index set S, will be denoted by spank〈vs : s ∈ S〉 and the ideal I gen-
erated by a set of elements {as : s ∈ S} of an algebra A will be denoted
by 〈as : s ∈ S〉. All unadorned tensor products ⊗ will be considered over k,
unless otherwise stated. We shall typically denote the vector space V ⊗n by
V (n) for n ∈ Z, where we follow the convention V (n) = 0, if n < 0, and
V (0) = k, and an elementary tensor v1⊗· · ·⊗vn ∈ V (n) will be usually written
by v1 . . . vn. Finally, given two chain complexes (C•, d•)•∈Z and (C′

•, d
′
•)•∈Z

of modules over a ring, we say that both complexes coincide up to homological
degreem ∈ Z if Cn = C′

n and dn = d′n for all n ≤ m.
Wewould also like to thank the referee for a careful reading of this manuscript.

2 Preliminaries on minimal resolutions of graded algebras

In this section we shall recall some basic facts about the category of (bounded
below) graded modules over a nonnegatively graded connected algebra. We
refer to [9], Exp. 15, or [4] for all the proofs of the mentioned results. Even
though we impose the assumption that A is locally finite dimensional, most
of the results of this section hold without that hypothesis.
We recall that a graded vector space is a vector space W provided with a di-
rect sum decomposition of the formW = ⊕n∈ZWm. A nonzero element w in
Wm is called homogeneous of degree m, and we will write |w| = m. A mor-
phism of graded vector spaces of degree d from W to W ′ is just a linear map
f : W →W ′ such that f(Wm) ⊆W ′

m+d for allm ∈ Z. If we omit the degree of
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the morphism it will be understood that d = 0. A bigraded (co)homological vector
space is a vector spaceW together with a direct sum decomposition given by
W = ⊕(n,m)∈Z2Wn,m (resp., W = ⊕(n,m)∈Z2Wn

m). We may consider a graded
vector spaceW = ⊕m∈ZWm as a (co)homological bigraded vector space con-
centrated in (co)homological degree 0, i.e. Wn,m = Wm (resp., Wn

m = Wm) if
n = 0, and Wn,m (resp., Wn

m) vanishes otherwise. Given a nonzero element
w ∈ Wn,m (resp., w ∈ Wn

m) we will say that it has (co)homological degree n
and Adams degree m (this terminology comes from algebraic topology, see for
instance [23], p. 38), or, simply, bidegree (n,m). The first will be usually de-
noted by deg(w), whereas the second one will be written as |w|. A morphism
of (co)homological bigraded vector spaces of (co)homological degree d and Adams de-
gree d′ (or bidegree (d, d′)) from W to W ′ is just a linear map f : W → W ′

such that f(Wn,m) ⊆ W ′
n+d,m+d′ for all n,m ∈ Z. If we omit the degree of the

morphism it will be understood that d = d′ = 0. If we talk about the degree
of an element or a map, it is implicitly assumed that it is homogeneous. If
W = ⊕(n,m)∈Z2Wn,m is a homological bigraded vector space, it will be also
considered as a cohomological bigraded vector space where Wn

m = W−n,m,
for all n,m ∈ Z, and vice versa. By abuse of notation we may thus say that
w ∈Wn,m has cohomological degree−n.
If W is a graded vector space, we may consider the graded vector space
W#, called the graded dual, which has n-th homogeneous component (W−n)

∗,
where (−)∗ denotes the usual dual vector space operation. We will also
consider the analogous graded dual construction (−)# in the category of
(co)homological bigraded vector spaces, where in that case W# has compo-
nent of (co)homological degree n and Adams degree m given by (W−n,−m)∗

(resp., (W−n
−m)∗). If f : W → W ′ is morphism of graded vector spaces of

degree d, we get another morphism f# of graded vector spaces of the same
degree whose restriction to (W ′

−n)
∗ is given by (f |W−n−d

)∗. If f : W → W ′ is
morphism of (co)homological bigraded vector spaces of (co)homological de-
gree d, define the morphism f# of (co)homological bigraded vector spaces
of the same (co)homological degree given by f#(λ) = (−1)ddeg(λ)λ ◦ f for
λ homogeneous. Note that (g ◦ f)# = f# ◦ g# if f, g are morphisms of
graded vector spaces such that the composition makes sense, but (g ◦ f)# =
(−1)deg(f) deg gf# ◦ g# for f, g morphisms of (co)homological bigraded vec-
tor spaces such that the composition makes sense. We will thus apply the
Koszul sign rule to the (co)homological degree but not to the Adams degree.
This means in particular that, if W1, . . . ,Wn are locally finite dimensional
(co)homological bigraded vector spaces, there is an isomorphism cW1,...,Wn

:

W#
1 ⊗ · · · ⊗W#

n → (W1 ⊗ · · · ⊗Wn)
# of the form

cW1,...,Wn
(f1 ⊗ · · · ⊗ fn)(w1 ⊗ · · · ⊗ wn) = (−1)sf1(w1) . . . fn(wn),

where s =
∑n−1

i=1 deg(wi)(deg(fi+1)+ . . . deg(fn)). However, if we refrain from
applying the Koszul sign rule to any degree whatsoever of a homological bi-
graded vector space, we will just call it bigraded vector space.
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1306 Estanislao Herscovich

Fromnow on,Awill always denote a nonnegatively graded connected algebra
with unit 1. We shall further assume that the underlying graded vector space
of A is locally finite dimensional, i.e. A = ⊕n∈N0An, where dimk(An) < ∞ for
all n ∈ N0, and we shall follow the typical convention An = 0 for n < 0. This
means that there exists a locally finite dimensional positively graded vector
space V and a surjective morphism of graded algebras of the form π : T (V ) →
A, so A ≃ T (V )/I , where I ⊆ T (V ) is a homogeneous ideal of T (V ). Note
that for any graded vector space V the tensor algebra T (V ) = ⊕N∈N0V

(N)

is provided with two compatible gradings, other grading coming from the
previous direct sum decomposition, which we shall call special or tensor, and
whose N -th homogeneous component will be also denoted by T (V )N , and
another one coming from the grading on V , which we call usual and whose n-
th homogeneous components will be denoted by T (V )n. To avoid redundancy
we will always assume that the vector space V is canonically isomorphic to
A>0/(A>0.A>0) (as graded vector spaces). In this case we further have that
I ⊆ T (V )≥2 = T (V )>0.T (V )>0. Let us denote by R a space of relations of A, i.e.
a graded vector subspace of I which is isomorphic to I/(T (V )>0.I+I.T (V )>0)
under the canonical projection. It can be equivalently defined as a graded
vector subspace R ⊆ I satisfying that the ideal 〈R〉 of T (V ) generated by R
coincides with I and that

R ∩ (T (V )>0.R.T (V ) + T (V ).R.T (V )>0) = 0. (2.1)

Notice that the Hilbert series of R is thus uniquely determined, and the same
holds for its first nonvanishing homogeneous component. We may thus sup-
pose that A = T (V )/〈R〉, where R ⊆ T (V )≥2 is a graded vector subspace for
the usual grading. Note that the assumption that A is locally finite dimen-
sional implies that V (hence T (V )) is a locally finite dimensional nonnega-
tively graded vector space, and then R is also so.
A graded left (resp., right) A-module M =

⊕

n∈Z
Mn is a graded vector space

together with a left (resp., right) action of A on M such that AmMn ⊆ Mm+n

(resp.,MmAn ⊆ Mm+n), and we shall sometimes refer to them simply as left
(resp., right)A-modules. Moreover, in the rest of the section we will mostly deal
with left modules, which may be thus called just modules (or graded modules),
even though all the considerations apply verbatim to right modules. We will
denote by A-grMod the abelian category of graded left A-modules, where the
morphisms are the A-linear maps preserving the grading. The space of mor-
phisms in this category between two graded leftA-modulesM andM ′ will be
denoted by homA(M,M ′). This category is provided with a shift functor (−)[1]
defined by (M [1])n =Mn+1, where the underlying left A-module structure of
M [1] is the same as the one of M , and the action of the morphisms is trivial.
We shall also denote (−)[d] the d-th iteration of the shift functor. The graded
left A-moduleM is said to be left bounded, or also bounded below, if there exists
an integer n0 such that Mn = 0 for all n < n0. Notice that the graded left
A-modules which are left bounded form a full exact subcategory of A-grMod.
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Given graded left A-modules N and N ′, we recall the following notation:

HomA(N,N
′) =

⊕

d∈Z

homA(N,N
′[d]).

We remark that, ifN is finitely generated, thenHomA(N,N
′) = HomA(N,N

′),
where the last morphism space is the usual one for left A-modules by forget-
ting the gradings (see [30], Cor. 2.4.4).
The following result is the graded version of the Nakayama Lemma.

Lemma 2.1. Let M be a left bounded graded left A-module. If k ⊗A M = 0, then
M = 0.

Proof. See [4], Lemme 1.3 (see also [9], Exp. 15, Prop. 6). �

The left A-moduleM is said to be graded-free if it is isomorphic to a direct sum
of shifsA[−li] ofA. We remark that a bounded below graded leftA-moduleM
is graded-free if and only if its underlying module (i.e. forgetting the grading)
is free, if and only if it is projective (as a graded module or not), if and only
if TorA• (k,M) = 0 for all • ≥ 1 (or just • = 1). This will follow from the
comments on projective covers.
A surjective morphism f : M → M ′ in A-grMod is called essential if for each
morphism g : N → M in A-grMod such that f ◦ g is surjective, then g is also
surjective. As an application of the Nakayama Lemma we have the following
result which characterizes essential surjective maps.

Lemma 2.2. Let f : M → M ′ be a morphism in the category of graded left (resp.,
right)A-modules. Suppose thatM ′ is left bounded and that f is surjective and essen-
tial. Then idk ⊗A f (resp., f ⊗A idk) is bijective. Moreover, ifM is also left bounded,
the converse holds.

Proof. See [4], Lemme 1.5 (see also [9], Exp. 15, Prop. 7). �

Let M be a nontrivial object in A-grMod. A projective cover of M is a pair
(P, f) such that P ∈ A-grMod is projective and f : P → M is an essential sur-
jective morphism. We remark that every left bounded graded left A-module
M has a projective cover, which is unique up to (noncanonical) isomorphism
(cf. [9], Exp. 15, Thm. 2). Moreover, given M a bounded below left A-
module, a projective cover may be explicitly constructed as follows. Since
M 6= 0, the Nakayama lemma tells us that M/(A>0.M) ≃ k ⊗A M is a non-
trivial graded vector space. Consider a section s of the canonical projection
M → M/(A>0.M) ≃ k ⊗A M . Now, we define P = A ⊗ (k ⊗A M) together
with the A-linear map f : P → M given by f(a ⊗ v) = as(v), for a ∈ A
and v ∈ k ⊗A M . Using the previous lemma one directly gets that (P, f) is a
projective cover ofM .
Recall that a (graded) projective resolution (P•, d•) of a graded left A-module
M is minimal if d0 : P0 → M is a projective cover (or equivalently, it is essen-
tial) and each of the maps Pi → Ker(di−1) induced by di is also essential, for

Documenta Mathematica 18 (2013) 1301–1347



1308 Estanislao Herscovich

all i ∈ N. We want to remark the important fact that, by iterating the process
of considering projective covers for bounded below modules, one may easily
prove that any bounded below graded left A-module has a minimal projec-
tive resolution (see [4], Thm. 1.11). If the left A-module M has a minimal
projective resolution (P•, d•), given any other projective resolution (Q•, d

′
•) of

M there exists an isomorphism of (augmented) complexes Q• ≃ P• ⊕ H•,
where H• is acyclic (see [4], Prop. 2.2). Additionally, the minimality assump-
tion on the projective resolution implies that the differential of the induced
complex k ⊗A P• vanishes (see [9], Exp. 15, Prop. 10, or [4], Prop. 2.3), so if
(P•, d•) denotes such a minimal projective resolution, one also easily gets that
P• ≃ A ⊗ TorA• (k,M). Combining the results of the two previous sentences,
it is trivial to see that if (Q•, d

′
•) is a projective resolution of a graded left A-

moduleM having a minimal projective resolution, then the former is minimal
if and only if the induced differential of k ⊗A Q• vanishes.
IfN is left bounded, let (P•, d•) be a (minimal) graded projective resolution of
N . As usual, we denote

ExtiA(N,N
′) = Hi(HomA(P•, N

′)),

If the projective resolution of N is composed of finitely generated projective
leftA-modules, there is a canonical identification Ext•A(N,N

′) ≃ Ext•A(N,N
′).

Moreover, using a very simple duality argument one can see that, if M is a
bounded below graded left A-module, then there is a canonical isomorphism
of graded vector spaces

ExtiA(M,k) ≃ TorAi (k,M)#, (2.2)

for all i ∈ N0 (see [4], Eq. (2.15), but cf. also [9], Exp. 15, Prop. 2).
We recall the beginning of the minimal projective resolution of the trivial left
A-module k for any nonnegatively graded connected algebra A. The analo-
gous statements for the trivial right A-module k are immediate. We know that
it starts as

A⊗ V
δ1−→ A

δ0−→ k −→ 0,

where δ0 is the augmentation of the algebra A, V ≃ A>0/(A>0.A>0) is the
vector space spanned by a minimal set of (homogeneous) generators of A in-
dicated before, and δ1 is the restriction of the product ofA (see [9], Exp. 15, end
of Section 7). Furthermore, it is also well-known (and follows easily from the
definition) thatKer(δ1) ≃ I/(I.V ) (as graded vector spaces), so there is an iso-
morphism of graded vector spaces k ⊗A Ker(δ1) ≃ I/(T (V )>0.I + I.T (V )>0),
i.e. we have an isomorphism of graded vector spaces k ⊗A Ker(δ1) ≃ R
(see [13], Lemma 1, for complete expressions of the graded vector spaces
TorA• (k, k) for • ∈ N0, in terms of I and the irrelevant ideal T (V )>0). Hence,
A ⊗ R → Ker(δ1) is a projective cover, and the beginning of the minimal pro-
jective resolution of the trivial A-module k is of the form

A⊗R
δ2−→ A⊗ V

δ1−→ A
δ0−→ k −→ 0,
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where δ2 is induced by the usual map a⊗v1 . . . vn 7→ av1 . . . vn−1⊗vn (see [25],
Lemme 1.2.11). Moreover, both left and right minimal projective resolutions of
k regarded as a left or right A-module respectively can be obtained from the
minimal projective resolution (P b

• , δ
b
•) of A as an Ae-module easily. Indeed,

the minimal projective resolution of the trivial left (resp., right) A-module k is
given by P b

• ⊗A k (resp., k ⊗A P b
• ). The fact that it is projective resolution of

the trivial left (resp., right) A-module k follows easily from the standard fact
(see for instance [7], Prop. 4.1), that, since the augmented complex P b

• → A
is an exact and bounded below complex of projective right A-modules, it is
homotopically trivial as a complex of right A-modules, so P b

• ⊗A k → k is also
homotopically trivial, and thus exact. To prove the minimality claim we use
the fact we have already explained: a projective resolution Q• of a bounded
below graded left (resp., right) module M over a locally finite dimensional
nonnegatively graded algebra B is minimal if and only if k ⊗B Q• (resp.,
Q• ⊗B k) has vanishing differential. Now, by the minimality of P b

• , we get
that P b

• ⊗Ae k = k⊗AP
b
• ⊗A k has vanishing differential, which further implies

that P• = P b
• ⊗A k is minimal. Moreover, it is easy to see that the beginning of

the minimal projective resolution of the A-bimodule A is given by

A⊗R⊗A
δb2−→ A⊗ V ⊗A

δb1−→ A⊗A
δb0−→ A −→ 0, (2.3)

where δb0 is given by the multiplication ofA, δb1 is determined by δb1(a⊗v⊗a
′) =

av ⊗ a′ − a⊗ va′ and δb2 is the linear extension induced by a⊗ v1 . . . vr ⊗ a′ 7→
∑r

j=1 av1 . . . vj−1 ⊗ vj ⊗ vj+1 . . . vra
′.

3 Multi-Koszul algebras

3.1 Auxiliary results on subspaces of the tensor algebra

We recall the following obvious property.

Fact 3.1. Let V,W be two graded vector subspaces of a graded vector space U =
⊕n∈ZUn. Then, the intersection V ∩W is also a graded vector subspace of U such
that (V ∩W )n = Vn ∩Wn for n ∈ Z.

Let µ denote the multiplication of the tensor algebra T (V ), and, for n ≥ 2,
µ(n) : T (V )⊗n → T (V ) the (n − 1)-th iteration of µ, i.e. it is defined by
the recursive process given by µ(2) = µ and µ(i+1) = µ ◦ (idT (V ) ⊗ µ(i))

for i ∈ N≥2. Note that µ(n) is surjective (if V is nontrivial) but not in-
jective for all n ∈ N≥2. Given W1, . . . ,Wm vector subspaces of T (V ), we
shall denote by W1 . . .Wm the vector subspace of T (V ) given by the image
of the vector subspace W1 ⊗ · · · ⊗ Wm ⊆ T (V )⊗m under the map µ(m). If
W1 = · · · = Wm = W ⊆ T (V ), we shall denote W1 . . .Wm by W (m). In the
next sections we will be particularly interested in the case where V is a lo-
cally finite dimensional graded vector space, the tensor algebra T (V ) has the

Documenta Mathematica 18 (2013) 1301–1347



1310 Estanislao Herscovich

induced grading, and W1, . . . ,Wm are considered to be graded vector sub-
spaces. Since the product of the tensor algebra is denoted by the ⊗ symbol, it
is usual to denote this image also by W1 ⊗ · · · ⊗Wm, even though this prod-
uct differs in principle from the usual (external) tensor product of the vector
spaces W1, . . . ,Wm (e.g. take W1 = spank〈x, x

2〉, and W2 = spank〈x
2, x3〉.

Then, the vector subspace W1.W2 of T (V ) has basis {x3, x4, x5}, whereas the
usual tensor product W1 ⊗W2 has dimension 4). Even though this notation
is coherent in the sense that, given W1, . . . ,Wm vector subspaces of T (V ),
W1 ⊗ · · · ⊗ Wm denotes the vector subspace of T (V ) that consists of the el-
ements of T (V ) given by the sums of terms of the form w1 ⊗ · · · ⊗ wm, where
wi ∈ Wi, and the ⊗ symbol indicates the product of the tensor algebra T (V ),
we shall usually not use it and prefer usingW1 . . .Wm instead ofW1⊗· · ·⊗Wm

to avoid the already mentioned confusion and to emphasize the fact that we
are dealing with vector subspaces of T (V ). However, we will allow us to de-
note byW1⊗· · ·⊗Wm the spaceW1 . . .Wm in the particular case both of them
are (canonically) isomorphic as vector spaces (or as graded vector spaces if
the W1, . . . ,Wm are further assumed to be graded vector subspaces of T (V ),
where the grading of the tensor algebra comes from a grading of V ), since in
this situation there is no ambiguity. This will be the case if W1, . . . ,Wm are
tensor-intersection faithful, which is defined in the following paragraphs (see
Remark 3.5).
A word of caution should be stated here. GivenW1, . . . ,Wm vector subspaces
of T (V ) as before, and linear maps fi : Wi → W ′

i for i = 1, . . . ,m, where W ′
i

are arbitrary vector spaces, there may be no canonical manner to define a map
f1 . . . fm : W1 . . .Wm → W ′

1 ⊗ · · · ⊗W ′
m, since an element ofW1 . . .Wm could

be written inside T (V ) in inequivalent manners (see however Corollary 3.9).
Let U ⊆ T (V ) be a vector subspace of the tensor algebra on a vector space
V . We say that U is left tensor-intersection faithful (resp., right tensor-intersection
faithful) if (U.W1) ∩ (U.W2) = U.(W1 ∩W2) (resp., (W1.U) ∩ (W2.U) = (W1 ∩
W2).U ) for all vector subspaces W1,W2 ⊆ T (V ). Moreover, U is said to be
tensor-intersection faithful if it is left and right tensor-intersection faithful.
We have the following simple characterization of tensor-intersection faithful-
ness, that we will use extensively in the sequel. We suspect that it is well-
known among the experts but we were unable to find any reference whatso-
ever. In fact, all of the following results seem very natural to us, but we give a
detailed proof of them for convenience.

Proposition 3.2. Let U ⊆ T (V ) be a vector subspace of the tensor algebra. Then,
the following conditions are equivalent:

(i) U is left (resp., right) tensor-intersection faithful.

(ii) U ∩ (U.T (V )>0) = 0 (resp., U ∩ (T (V )>0.U) = 0).

(iii) Given I a finite set of indices, a linearly independent family {ui : i ∈ I} ⊆ U ,
and arbitrary elements wi ∈ T (V ) for i ∈ I , if

∑

i∈I ui⊗wi (resp.,
∑

i∈I wi⊗
ui) vanishes, then wi = 0 for all i ∈ I .
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Proof. The implication (i) ⇒ (ii) is clear. Indeed, it easily follows by consider-
ingW1 = k andW2 = T (V )>0.
We will now prove the implication (ii) ⇒ (iii). We shall only consider the
case corresponding to the assumption U ∩ (U.T (V )>0) = 0, because the other
case is analogous. Let {vs}s∈S be a basis of V . Given n ∈ N0, we will denote
by s̄ = (s1, . . . , sn) a typical element of Sn. Let us write

wi =
∑

n∈N0

∑

s̄∈Sn

ci,n,s̄ vs1 . . . vsn ,

where ci,n,s̄ ∈ k, such that the sum is of finite support, i.e. fixed i ∈ I , the
coefficients ci,n,s̄ are almost all zero. We have to prove that they are in fact
all zero. Let us suppose that this is not the case, and consider n0 the first
nonnegative integer satisfying that there exists i0 ∈ I and s̄0 ∈ Sn0 such that
ci0,n0,s̄0 6= 0. We will write s̄0 = (s0,1, . . . , s0,n0). On the one hand, we write

∑

i∈I

ui ⊗ wi =
∑

i∈I

∑

n∈N0

∑

s̄∈Sn

ci,n,s̄ ui ⊗ vs1 . . . vsn

=
∑

n∈N0

∑

s̄∈Sn

∑

i∈I

ci,n,s̄ ui ⊗ vs1 . . . vsn

=
∑

n≥n0

∑

s̄∈Sn

∑

i∈I

ci,n,s̄ ui ⊗ vs1 . . . vsn .

Since this sum vanishes, by the definition of the tensor algebra we also have
that the sum

∑

n∈N0

∑

s̄∈Sn

∑

i∈I

ci,n+n0,(s̄,s̄0) ui ⊗ vs1 . . . vsnvs0,1 . . . vs0,n0

vanishes, where (s̄, s̄0) denotes the (n + n0)-tuple (s1, . . . , sn, s0,1, . . . , s0,n0).
Thus,

∑

n∈N0

∑

s̄∈Sn

∑

i∈I

ci,n+n0,(s̄,s̄0) ui ⊗ vs1 . . . vsn = 0.

Define
ω>0 =

∑

n∈N

∑

s̄∈Sn

∑

i∈I

ci,n+n0,(s̄,s̄0) ui ⊗ vs1 . . . vsn ,

so
∑

n∈N0

∑

s̄∈Sn

∑

i∈I

ci,n+n0,(s̄,s̄0) ui ⊗ vs1 . . . vsn =
(

∑

i∈I

ci,n0,s̄0 ui
)

+ ω>0 = 0.

Thus, the sum
∑

i∈I ci,n0,s̄0 ui belongs to U and to U.T (V )>0, so it vanishes.
Now, since the {ui}i∈I form a linearly independent set, we get that ci,n0,s̄0 = 0
for all i ∈ I . This is a contradiction, by the assumption that ci0,n0,s̄0 6= 0.
Hence, all the coefficients ci,n,s̄ vanish, which proves that the corresponding
statement of item (iii) holds.
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Let us now prove the implication (iii) ⇒ (i). As before, we shall only prove
the implication for the left side conditions, for the other case is analogous.
We assume thus that U satisfies that, given I a finite set of indices, a linearly
independent family {ui : i ∈ I} ⊆ U , and arbitrary elements wi ∈ T (V ) for
i ∈ I , if

∑

i∈I ui ⊗ wi vanishes, then wi = 0 for all i ∈ I . We will prove that
in this case (U.W ) ∩ (U.W ′) = U.(W ∩ W ′). Note that (U.W ) ∩ (U.W ′) ⊇
U.(W ∩ W ′) is always true by obvious reasons. We shall prove the reverse
inclusion. Consider a element ω ∈ (U.W ) ∩ (U.W ′), and fix a basis {us}s∈S of
U . Then, there exists two finite subsets S1, S2 ⊆ S, and elements ws ∈ W for
s ∈ S1 and w′

s ∈W ′ for s ∈ S2, such that ω =
∑

s∈S1
us ⊗ws =

∑

s∈S2
us ⊗w′

s.
Setting ws = 0 if s ∈ S \ S1, and w′

s = 0 if s ∈ S \ S2, we may write ω =
∑

s∈S us ⊗ ws =
∑

s∈S us ⊗ w′
s, so

∑

s∈S us ⊗ (ws − w′
s) = 0. The assumption

implies that ws = w′
s for all s ∈ S, so ws ∈ W ∩ W ′ for all s ∈ S. Hence,

ω ∈ U.(W ∩W ′), which proves the assertion. The proposition is thus proved.
�

Example 3.3. The previous proposition immediately implies that V is a tensor-
intersection faithful vector subspace of the tensor algebra T (V ). Furthermore, it also
tells us that a graded vector subspace R ⊆ T (V ) of the tensor algebra on a positively
graded vector space V satisfying condition (2.1) (e.g. a space of relations R of an
algebra T (V )/I) is tensor-intersection faithful.

Remark 3.4. Note that if U ⊆ T (V ) satisfies that U ∩ (U.T (V )>0) = 0 (resp.,
U ∩ (T (V )>0.U) = 0), then any vector subspace U ′ of U trivially satisfies the same
condition. The proposition tells us thus that any vector subspace of a left (resp., right)
tensor-intersection faithful space is also left (resp., right) tensor-intersection faithful.
Moreover, it is clear that the productU1.U2 of two left (resp., right) tensor-intersection
faithful vector subspaces Ui ⊆ T (V ) for i = 1, 2, satisfies the same condition. By the
previous example we see that V (i) (for i ∈ N) is a tensor-intersection faithful vector
subspace of the tensor algebra T (V ).

Remark 3.5. The previous proposition immediately implies that if U ⊆ T (V ) is a
left (resp., right) tensor-intersection faithful space, and W ⊆ T (V ) is another sub-
space, then U.W (resp.,W.U ) is canonically isomorphic to the external tensor product
U ⊗W (resp.,W ⊗ U ).

In exactly the same manner as in the proof of the implication (iii) ⇒ (i) of
Proposition 3.2 we may argue to prove the following result.

Corollary 3.6. Let V be a vector space, and T (V ) the tensor algebra. Let us
consider two vector subspaces U ′ ⊆ U ⊆ T (V ) such that U is left (resp., right)
tensor-intersection faithful. Then, given any two vector subspacesW ′ ⊆W ⊆ T (V ),
we have that

(U ′.W ) ∩ (U.W ′) = U ′.W ′ (resp., (W.U ′) ∩ (W ′.U) =W ′.U ′),

as vector subspaces of T (V ).
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Proof. We shall only prove the implication for the left side conditions, for the
other case is analogous. Since U is left tensor-intersection faithful, the previ-
ous proposition tells us that, given I a finite set of indices, a linearly indepen-
dent family {ui : i ∈ I} ⊆ U , and arbitrary elements wi ∈ T (V ) for i ∈ I , if
∑

i∈I ui ⊗ wi vanishes, then wi = 0 for all i ∈ I . We recall that, by the pre-
vious Remark, U ′ satisfies the same property. We will prove that in this case
(U ′.W ) ∩ (U.W ′) = U ′.W ′.
Note that (U ′.W ) ∩ (U.W ′) ⊇ U ′.W ′ is always true by obvious reasons. We
shall prove the reverse inclusion. Consider a element ω ∈ (U ′.W ) ∩ (U.W ′),
and fix a basis {us}s∈S of U . We furthermore assume that there exists a subset
S′ ⊆ S such that {us′}s′∈S′ is a basis of U ′. Then, there exists two families of
almost all zero elements ws ∈ W ′ for s ∈ S and w′

s′ ∈ W for s′ ∈ S′, such that
ω =

∑

s∈S us ⊗ ws =
∑

s′∈S′ us′ ⊗ w′
s′ . Setting w

′
s = 0 if s ∈ S \ S′, we may

write ω =
∑

s∈S us ⊗ ws =
∑

s∈S us ⊗ w′
s, so

∑

s∈S us ⊗ (ws − w′
s) = 0. The

assumption now implies that ws = w′
s for all s ∈ S. Hence, ω ∈ U ′.W ′, which

proves the assertion. �

We have the following interesting corollaries of the previous proposition, the
first one of these being a direct consequence of the implication (ii) ⇒ (iii).

Corollary 3.7. Let V be a vector space, and T (V ) the tensor algebra. Let us
consider a left (resp., right) tensor-intersection faithful vector subspace U ⊆ T (V ). If
{Ui}i∈I is an arbitrary family of independent vector subspaces ofU , then the family of
vector subspaces of the tensor algebra given by {Ui.T (V )}i∈I (resp., {T (V ).Ui}i∈I )
is also independent.

Corollary 3.8. Let V be a vector space, and T (V ) the tensor algebra. Let us
consider a left (resp., right) tensor-intersection faithful vector subspace U ⊆ T (V ). If
{Wi}i∈I is an arbitrary family of independent vector subspaces of T (V ), then the fam-
ily of vector subspaces of the tensor algebra given by {U.Wi}i∈I (resp., {Wi.U}i∈I)
is also independent.

Proof. We shall prove the statement for the left tensor-intersection faithfulness
assumption on U , for the right case is completely parallel. Let wi ∈ Wi and
ui ∈ U be collections of almost all zero elements such that

∑

i∈I ui ⊗ wi van-
ishes. We have to prove that each term of the sum vanishes. Without loss of
generality we may assume that I is in fact finite, and that wi is nonvanishing
for all i ∈ I . Let {ūs}s∈S be a basis of U , and write ui =

∑

s∈S csiūs, where
csi ∈ k. We then have that

∑

i∈I

ui ⊗ wi =
∑

i∈I

∑

s∈S

csiūs ⊗ wi =
∑

s∈S

ūs ⊗
(

∑

i∈I

csiwi

)

.

Since U is left tensor-intersection faithful, we have that
∑

i∈I csiwi vanishes
for all s ∈ S. Taking into account that the family {Wi}i∈I is independent we
get that csiwi = 0 for all s ∈ S and i ∈ I , which yields that csi = 0 for all
s ∈ S and i ∈ I , for the elements wi are nonzero for all i ∈ I . So, ui = 0 for all
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i ∈ I , which in turn implies that ui⊗wi vanishes for all i ∈ I , which was to be
shown. The corollary is thus proved. �

Finally, we state the last consequence of Proposition 3.2.

Corollary 3.9. Let V be a vector space, T (V ) the tensor algebra, U ⊆ T (V ) a
left (resp., right) tensor-intersection faithful vector subspace, andW ⊆ T (V ). Given
arbitrary vector spaces U ′ andW ′, and linear maps f : U → U ′ and g : W → W ′,
then the linear map f ⊗ g : U.W → U ′ ⊗W ′ (resp., g ⊗ f : W.U → W ′ ⊗ U ′)
given by the usual expression (f ⊗ g)(

∑

i ui ⊗ wi) =
∑

i f(ui) ⊗ g(wi) (resp.,
(g ⊗ f)(

∑

i wi ⊗ ui) =
∑

i g(wi)⊗ f(ui)), where ui ∈ U , wi ∈ W , and I is a finite
set of indices, is well-defined, where as usual U.W (resp.,W.U ) denotes the product of
U andW inside T (V ), whereas U ′⊗W ′ (resp.,W ′⊗U ′) denotes the usual (external)
tensor product.

Proof. We shall prove the corollary under the left tensor-intersection faithful-
ness assumption on U , because the right case is analogous. Let ω ∈ U.W be
given in two different manners by the sum

∑

i∈I u
′
i ⊗ w′

i, where u′i ∈ U and
w′

i ∈ W , and I is a finite set of indices, and by the sum
∑

j∈J u
′′
j ⊗ w′′

j , where
u′′j ∈ U and w′′

j ∈ W , and J is another finite set of indices. We have to prove
that

∑

i∈I f(u
′
i) ⊗ g(w′

i) =
∑

j∈J f(u
′′
j ) ⊗ g(w′′

j ), as elements of the usual ten-
sor product U ′.W ′. Fix a basis {us}s∈S of U , and write u′i =

∑

s∈S c
′
sius and

u′′j =
∑

s∈S c
′′
sjus for all i ∈ I and j ∈ J , respectively, where c′si, c

′′
sj ∈ k. Then,

ω =
∑

i∈I

u′i ⊗ w′
i =

∑

s∈S

us ⊗
(

∑

i∈I

c′siw
′
i

)

,

and
ω =

∑

j∈J

u′′j ⊗ w′′
j =

∑

s∈S

us ⊗
(

∑

j∈J

c′′sjw
′′
j

)

.

Since U is a left tensor-intersection faithful vector subspace of the tensor alge-
bra, we have that

∑

i∈I

c′siw
′
i =

∑

j∈J

c′′sjw
′′
j ,

for all s ∈ S. Let us denote this element ws.
In particular, we have that

∑

i∈I

f(u′i)⊗ g(w′
i) =

∑

i∈I

∑

s∈S

c′sif(us)⊗ g(w′
i) =

∑

s∈S

f(us)⊗
(

∑

i∈I

c′sig(w
′
i)
)

=
∑

s∈S

f(us)⊗ g(ws) =
∑

s∈S

f(us)⊗
(

∑

j∈J

c′′sjg(w
′′
j )
)

=
∑

j∈J

∑

s∈S

c′′sjf(us)⊗ g(w′′
j ) =

∑

j∈J

f(u′′j )⊗ g(w′′
j ),

which was to be shown. �
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Remark 3.10. Under the assumptions of the previous corollary, Remark 3.5 tells us
that U.W is canonically isomorphic to U ⊗W (resp.,W.U is canonically isomorphic
toW ⊗ U ). Thus, the map f ⊗ g (resp., g ⊗ f ) given in the corollary is given by the
usual (external) tensor product of maps, which also justifies the tensor notation used.

3.2 The definition of multi-Koszul algebras

Given i ∈ N0 let us consider the family {∩N
j=0V

(j).R(i).V (N−j)}N∈N0 of graded
vector subspaces of T (V ). If i = 0, the previous family coincides with
{V (N)}N∈N0 , which is trivially seen to be independent. Moreover, if i ∈ N,
we claim that this family is also independent. Indeed, this follows from the
fact that the family {V (N).R(i)}N∈N0 of graded vector subspaces of T (V ) is
independent by Corollary 3.8, and the N -th member of the former family is
a vector subspace of the N -th member of the latter family. Note furthermore
that any family of vector subspaces of the previous ones is thus independent.
Set the graded vector subspace of T (V ) given by the direct sum

iT =
⊕

N∈N0

(

N
⋂

j=0

V (j).R(i).V (N−j)
)

. (3.1)

We may thus consider iT = ⊕N∈N0
iTN , where iTN = ∩N

j=0V
(j).R(i).V (N−j),

provided with another grading given by the index N of the previous direct
sum. Since each iTN is a graded vector space for the grading coming from
the grading on V , iT is in fact a bigraded vector space. We shall refer the
grading of iT coming from the grading on V as usual if more indications are
necessary, even though we shall call it in general the grading of iT , without
further specifications. On the other hand, we will refer to the new grading
given by (3.1) as special. Note that 0T = T (V ), and that the usual and special
gradings coincide in this case.
Given N ∈ N, we recall that a partition n̄ of N is a sequence of nonnegative
integers n̄ = (ni)i∈N ∈ N

(N)
0 of finite support (i.e. ni = 0 for all but a finite

number of indices i ∈ N) such that
∑

i∈N
ni = N . The length of the partition

n̄ is defined as the greatest positive integer l ∈ N such that nl 6= 0, and it is
denoted by l(n̄). We will denote by Parl(N) the set of partitions ofN of length
less than or equal to l, and we will write the set ParN (N) simply by Par(N). If
N = 0, we set Par(0) = ∅.
Finally, we will define the family {Ji}i∈N0 of graded vector subspaces of T (V )
recursively as follows. We set J0 = k. We shall first define the spaces indexed
by even integers. Suppose we have defined J0, J2, . . . J2i for some i ∈ N0.
Then, we set

J2(i+1) =

=
(

∑

N∈N

(

⋂

n̄ ∈ Par(i)
m̄ ∈ Pari+1(N)

V (m1).J2n1 . . . V
(mi).J2ni

.V (mi+1)
)

)

∩R(i+1). (3.2)
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On the other hand, we define

J2i+1 = (V.J2i) ∩ (J2i.V ), (3.3)

Notice that J1 = V , J2 = R and J3 = (V.R)∩(R.V ) as graded vector subspaces
of T (V ). On the other hand, note that by construction we have that J2j ⊆ R(j)

for all j ∈ N0, and thus J2j+1 ⊆ (V.R(j)) ∩ (R(j).V ), also for j ∈ N0.
Furthermore, we claim that the sum appearing in the definition (3.2) of J2i+2

is in fact direct. In order to prove so, note that
⋂

n̄ ∈ Par(i)
m̄ ∈ Pari+1(N)

V (m1).J2n1 . . . V
(mi).J2ni

.V (mi+1)

is trivially included in
N
⋂

l=0

V (l).J2i.V
(N−l),

as one sees just by considering partitions n̄ ∈ Par1(i). It suffices to prove
that the family given by these graded vector subspaces of T (V ) for N ∈ N, is
independent. But, since J2i ⊆ R(i), we see that

⋂N
l=0 V

(l).J2i.V
(N−l) ⊆ iTN for

all N ∈ N, we conclude that the sum appearing in (3.2) is in fact direct, so

J2(i+1) =

=
(

⊕

N∈N

(

⋂

n̄ ∈ Par(i)
m̄ ∈ Pari+1(N)

V (m1).J2n1 . . . V
(mi).J2ni

.V (mi+1)
)

)

∩R(i+1). (3.4)

Note that the direct summand appearing in the sum of the first term of the
intersection of the right member and corresponding to N = 1 is included in
(V.J2i) ∩ (J2i.V ), which coincides with J2i+1 by (3.3).
Moreover, we claim that

J2(i+1) =

=
(

⊕

N∈N≥2

(

⋂

n̄ ∈ Par(i)
m̄ ∈ Pari+1(N)

V (m1).J2n1 . . . V
(mi).J2ni

.V (mi+1)
)

)

∩R(i+1). (3.5)

The inclusion of the right member inside the left one is clear, so we only need
to prove the reverse inclusion. Let ω ∈ J2(i+1). By (3.4), we have that ω = ω1+
ω2, where ω1 ∈ J2i+1, and ω2 belongs to the first term of the intersection of the
right member of (3.5). We have to prove that ω1 vanishes. Since J2i+1 ⊆ V.R(i),
we get that ω1 ∈ V.R(i). Analogously, since

⋂

n̄ ∈ Par(i)
m̄ ∈ Pari+1(N)

V (m1).J2n1 . . . V
(mi).J2ni

.V (mi+1)
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is trivially included in

N
⋂

l=0

V (j).J2i.V
(N−l) ⊆ V (N).R(i),

we have that ω2 ∈ T (V )≥2.R(i). We also have that ω ∈ R(i+1) ⊆ R.R(i) ⊆
T (V )≥2.R(i). Hence, ω1 = ω − ω2 should be an element of the intersection of
V.R(i) and T (V )≥2.R(i), which is trivial by Proposition 3.2, so ω1 = 0, which
was to be shown.
The inclusions J2j ⊆ R(j), and J2j+1 ⊆ (V.R(j)) ∩ (R(j).V ), together with
Example 3.3 and Remark 3.4, imply the following useful result.

Lemma 3.11. Let {Ji}i∈N0 be the collection of graded vector subspaces of T (V )
defined by J0 = k and the recursive identities (3.2) and (3.3). For all i ∈ N0, Ji is a
tensor-intersection faithful vector subspace of T (V ).

Given j ∈ N0, let us consider the family of graded vector subspaces
{∩N

l=0V
(l).J2j+1.V

(N−l)}N∈N0 of the tensor algebra T (V ). Since the N -th
member of this family is trivially included in R(j).V (N+1), and the family
{R(j).V (N+1)}N∈N0 is independent by Corollary 3.8, the former family is in-
dependent. We define thus

j T̃ =
⊕

N∈N0

(

N
⋂

l=0

V (l).J2j+1.V
(N−l)

)

, (3.6)

which is considered as a bigraded vector space, where the first grading, which
will be called usual, comes from that of V , and the second one, called special,
comes from the direct sum decomposition of the definition. Note that 0T̃ =

S(T (V )>0) and 1T̃ = S(1T>0) as bigraded vector spaces, where S is the shift
functor for the special grading, i.e. S(E)N = EN+1. Furthermore, by (3.4) we
have that J2j ⊆ j−1T̃ for all j ∈ N.
We have the following simple result.

Lemma 3.12. Let {Ji}i∈N0 be the collection of graded vector subspaces of T (V )
defined by J0 = k and the recursive identities (3.2) and (3.3). For all i ∈ N≥2, we
have the inclusion

Ji ⊆ (R.Ji−2) ∩ (Ji−2.R).

Proof. The inclusion of the statement is equivalent to the two inclusions

Ji ⊆ R.Ji−2, and Ji ⊆ Ji−2.R.

We shall only prove the second one, for the other is completely analogous. Let
us first suppose that i is even. In this case, we trivially see from definition (3.2)
that

Ji ⊆ (Ji−2.T (V )>0) ∩R
( i
2 ),
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by only considering the partitions of length 1. On the other hand, since Ji−2 ⊆
R((i−2)/2), Corollary 3.6 and Lemma 3.11 yield that

Ji ⊆ (Ji−2.T (V )>0) ∩ (R( i−2
2 ).R) ⊆ Ji−2.R.

If i is odd, from (3.2) and (3.3) we easily show that

Ji ⊆ (Ji−2.T (V )>0) ∩ (V.R( i−3
2 ).R).

Using that Ji−2 ⊆ V.R( i−3
2 ), Corollary 3.6 and Lemma 3.11, we see that Ji ⊆

Ji−2.R, which was to be shown. The lemma is thus proved. �

Moreover, the previous lemma can also be strengthen in the next form.

Corollary 3.13. Let {Ji}i∈N0 be the collection of graded vector subspaces of T (V )
defined by J0 = k and the recursive identities (3.2) and (3.3). Then, for all i ∈ N0

and j ≥ i except if i is odd and j is even, we have the inclusion

Jj ⊆ (Jj−i.Ji) ∩ (Ji.Jj−i).

On the other hand, if i ∈ N is odd and j ≥ i is even, we have the contention

Jj ⊆ (T (V ).Jj−i.Ji) ∩ (Jj−i.T (V ).Ji) ∩ (Jj−i.Ji.T (V )),

and also the same inclusion for i and j − i interchanged.

Proof. We note that the condition for the first inclusion means that either i ∈
N0 is even and j ≥ i is arbitrary, or both i ∈ N and j ≥ i are odd.
Let us prove the first inclusion of the statement for i ∈ N0 even and j ≥ i. If i =
0, the inclusion is obvious, so we will assume that i ≥ 2. We shall only show
the contention Jj ⊆ Jj−i.Ji, for the other is analogous. By the previous lemma
we have that Jj ⊆ Jj−i.R

(i/2). We shall analyse two cases. If j is also even,
then Lemma 3.12 also shows that Jj ⊆ R((j−i)/2).Ji, which in turn implies that
Jj ⊆ Jj−i.Ji, by Corollary 3.6. If j is odd, then Jj ⊆ V.Jj−1 by definition, and,
since j − 1 is even, Lemma 3.12 tells us that Jj−1 ⊆ R((j−i−1)/2).Ji. Therefore,
Jj ⊆ V.R((j−i−1)/2).Ji. Corollary 3.6 now gives the desired contention in the
case that j is odd.
Let us now proceed to prove the first inclusion of the statement for i ∈ N odd
and j ≥ i also odd, which is the remaining case. We note however that this
case follows from the previously analysed case when i ∈ N is even and j ≥ i
is arbitrary, by interchanging i with j − i.
Let us now consider the second inclusion of the statement, which has the as-
sumption that i ∈ N is odd and j ≥ i is even. In this case, we will first show
the contention Jj ⊆ T (V ).Jj−i.Ji. By (3.5) we see that Jj ⊆ T (V ).Jj−1.V .
Since i − 1 is even, the previous lemma tells us that Jj−1 ⊆ Jj−i.R

((i−1)/2)),
so Jj ⊆ T (V ).Jj−i.R

((i−1)/2)).V . On the other hand, it is trivial to see from
the definitions (3.2) and (3.3) that Jj ⊆ T (V ).Ji. Now, using the inclusions
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Ji ⊆ R((i−1)/2)).V and T (V ).Jj−i ⊆ T (V ), together with Corollary 3.6, we
conclude that Jj ⊆ T (V ).Jj−i.Ji, which was to be shown. The inclusion
Jj ⊆ Jj−i.Ji.T (V ) is proved in an analogous manner.
Finally, we shall prove the inclusion Jj ⊆ Jj−i.T (V ).Ji, under the assumption
that i ∈ N is odd and j ≥ i is even. The definitions (3.2) and (3.3) tell us that
Jj ⊆ (T (V ).Ji) ∩R(j/2), and the latter is obviously included in

(T (V ).Ji) ∩ (R((j−i−1)/2).V.T (V ).V.R((i−1)/2)).

In the same manner, we have the inclusion Jj ⊆ (Jj−i.T (V )) ∩R(j/2), and the
latter is obviously included in

(Jj−i.T (V )) ∩ (R((j−i−1)/2).V.T (V ).V.R((i−1)/2)).

By Corollary 3.6 we get the desired contention. The corollary is thus proved.
�

In order to handle the elements of the graded vector spaces Ji we will use
the following notation. Let us suppose that W1, . . . ,Wm are graded vector
subspaces of T (V )>0. An element ω ∈ W1. . . . .Wm ⊆ T (V )>0 can be written
as a finite sum

∑

(ω)

ω(1)|ω(2)| . . . |ω(m−1)|ω(m),

where the elements ω(i) ∈ Wi for i = 1, . . . ,m. If the vector subspaces
Wj1 , . . . ,Wjl of T (V )>0 for 1 ≤ j1 < · · · < jl ≤ m, coincide with the graded
vector subspace V ⊆ T (V )>0, we shall typically denote this by writing a bar
over each of the factors ω(j1), . . . , ω(jl). Moreover, we shall usually omit the
sum, which will be implicitly assumed.
Let j ∈ N0. By (3.3), we see that, if ω ∈ J2j+1, then we may write it either in
the form ω = ω̄(1)|ω(2) or in the form ω = ω(1)|ω̄(2), where the sum is implicit
as explained before. We may thus consider the elements (π ⊗ idJ2j )(ω) ⊗ 1
and 1 ⊗ (idJ2j ⊗ π)(ω) in A ⊗ J2j ⊗ A, where π : T (V ) → A denotes the
canonical projection. They may be written as π(ω̄(1))|ω(2)|1 and 1|ω(1)|π(ω̄(2)),
respectively. Note that these elements are uniquely defined by Corollary 3.9.
We then get the map J2j+1 → A⊗ J2j ⊗A given by

ω 7→ π(ω̄(1))|ω(2)|1− 1|ω(1)|π(ω̄(2)),

which we may also simply write as

ω 7→ ω̄(1)|ω(2)|1− 1|ω(1)|ω̄(2),

using the obvious identification of V inside A. We shall denote by δb2j+1 :
A⊗ J2i+1 ⊗A→ A⊗ J2j ⊗A, the Ae-linear extension of the former. Note that
it is a morphism of graded A-bimodules. Moreover, notice that the morphism
δb1 given before coincides with the corresponding differential (denoted in the
same way) given in (2.3).
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On the other hand, for j ∈ N, we consider a map j−1T̃ → A ⊗ J2j−1 ⊗ A of
graded vector spaces given by the sum of the maps j−1T̃N → A⊗J2j−1⊗A of
graded vector spaces for allN ∈ N0, which we now define. Given ω ∈ j−1T̃N ,
then for all 0 ≤ l ≤ N , we may write it in the form ω = ωl

(1)|ω
l
(2)|ω

l
(3), where

ωl
(1) ∈ V (l), ωl

(2) ∈ J2j−1 and ωl
(3) ∈ V (N−l), where the sum is explicit as

explained before. For each 0 ≤ l ≤ N we may thus consider the element

(π|
V (l)

⊗ idJ2j−1 ⊗ π|
V (N−l)

)(ω) = π(ωl
(1))|ω

l
(2)|π(ω

l
(3)),

in A ⊗ J2j−1 ⊗ A. Again, note that these elements are uniquely defined by
Corollary 3.9. We have thus obtained a map

j−1T̃ → A⊗ J2j−1 ⊗A

of graded vector spaces formed by the sum of the maps

j−1T̃N → A⊗ J2j−1 ⊗A

given by

ω 7→
N
∑

l=0

π(ωl
(1))|ω

l
(2)|π(ω

l
(3)).

The inclusion J2j ⊆ j−1T̃ of graded vector spaces in turn induces a map of
graded vector spaces

J2j → A⊗ J2j−1 ⊗A

We shall denote by δb2j : A⊗ J2j ⊗A→ A⊗ J2j−1 ⊗A, the Ae-linear extension
of the former. Note that it is a morphism of graded A-bimodules. Note that
δb2 : A⊗ J2 ⊗A→ A⊗ J1 ⊗A coincides with the one given by the same name
in (2.3).
We have thus defined a collection of graded A-bimodules {KL−R(A)i =
A ⊗ Ji ⊗ A}i∈N0 provided with morphisms of graded A-bimodules δbi :
KL−R(A)i → KL−R(A)i−1 for i ∈ N.

Proposition 3.14. Let A be a locally finite dimensional nonnegatively graded al-
gebra, and let {Ji}i∈N0 be the collection of graded vector subspaces of T (V ) defined
by J0 = k and the recursive identities (3.2) and (3.3). We consider the collection
{KL−R(A)i = A⊗ Ji ⊗A}i∈N0 of graded A-bimodules provided with morphisms of
graded A-bimodules δbi : KL−R(A)i → KL−R(A)i−1 for i ∈ N, which were defined
in the three previous paragraphs. It gives in fact a complex of graded A-bimodules,
i.e. δbi−1 ◦ δ

b
i = 0 for i ∈ N≥2.

Proof. We have thus to prove that δbi−1 ◦ δ
b
i = 0 for i ∈ N≥2. By the exactness

of the complex (2.3), we get that the previous equality holds for i = 2. Let us
suppose that i ≥ 3. We first suppose that i is odd, and we further assume that
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ω ∈ Ji is given by ω =
∑

N∈N0
ωN =

∑

N∈N0
ω′N , where ωN ∈ V.(i−3)/2T̃N ,

ω′N ∈ (i−3)/2T̃N .V , and both sums have finite support. Then

(δbi−1 ◦ δ
b
i )(1|ω|1) = δbi−1(

∑

N∈N0

π(ω̄N
(1))|ω

N
(2)|1− 1|ω′N

(1)|π(ω̄
′N
(2)))

=
∑

N∈N0

ω̄N
(1)δ

b
i−1(ω

N
(2))− δbi−1(ω

′N
(1))ω̄

′N
(2)

=
∑

N∈N0

N
∑

l=0

ω̄N
(1)π(ω

N,l
(2) )|ω

N,l
(3) |π(ω

N,l
(4) )

−
∑

N∈N0

N
∑

l=0

π(ω′N,l
(1) )|ω′N,l

(2) |π(ω′N,l
(3) )ω̄N

(4).

By a direct telescopic cancellation, the last member coincides with
∑

N∈N0

ω̄N
(1)π(ω

N,N
(2) )|ωN,N

(3) |1−
∑

N∈N0

1|ω′N,0
(2) |π(ω′N,0

(3) )ω̄N
(4),

where we have set without loss of generality that ωN,N
(4) = 1 and ω′N,0

(1) = 1.
The sum vanishes, for Lemma 3.12 tells us that

ω =
∑

N∈N0

ω̄N
(1)ω

N,N
(2) |ωN,N

(3) ∈ R.Ji−2,

ω =
∑

N∈N0

ω′N,0
(2) |ω′N,0

(3) ω̄N
(4) ∈ Ji−2.R.

On the other hand, let i be even and and let ω ∈ Ji be of the form ω =
∑

N∈N0
ωN , where ωN ∈ (i−2)/2T̃N and the sum has finite support. We have

that

(δbi−1 ◦ δ
b
i )(1|ω|1) = δbi−1(

∑

N∈N0

N
∑

l=0

π(ωN,l
(1) )|ω

N,l
(2) |π(ω

N,l
(3) ))

=
∑

N∈N0

N
∑

l=0

π(ωN,l
(1) )δ

b
i−1(ω

N,l
(2) )π(ω

N,l
(3) )

=
∑

N∈N0

N
∑

l=0

π(ωN,l
(1) )ω̄

N,l
(2) |ω

N,l
(3) |π(ω

N,l
(4) )

−
∑

N∈N0

N
∑

l=0

π(ωN,l
(1) )|ω

N,l
(2) |ω̄

N,l
(3) π(ω

N,l
(4) ).

A telescopic cancellation tells us that the last member coincides with
∑

N∈N0

π(ωN,N
(1) )ω̄N,N

(2) |ωN,N
(3) |1−

∑

N∈N0

1|ωN,0
(2) |ω̄

N,0
(3) π(ω

N,0
(4) ),
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where we have set without loss of generality that ωN,N
(4) = 1 and ωN,0

(1) = 1. The
previous sum vanishes, since Lemma 3.12 implies that

ω =
∑

N∈N0

ωN,N
(1) ω̄N,N

(2) |ωN,N
(3) ∈ R.Ji−2,

ω =
∑

N∈N0

ωN,0
(2) |ω̄

N,0
(3) ω

N,0
(4) ∈ Ji−2.R.

This proves the proposition. �

By the previous statement (KL−R(A)•, δ
b
•) is a complex of graded A-

bimodules. It can also be regarded as an augmented complex δb0 :
KL−R(A)• → Awhere δb0 is given by themultiplication ofA, as in (2.3). Hence,
the augmented complexKL−R(A)• coincides with the minimal projective res-
olution of A as an A-bimodule up to homological degree 2. It will be called
the multi-Koszul bimodule complex of A.
We also define the (augmented) complex (K(A)•, δ•) (resp., (K(A)′•, δ

′
•)) of

graded free left (resp., right) A-modules given by (KL−R(A)• ⊗A k, δ
b
• ⊗A idk)

(resp., (k ⊗A KL−R(A)•, idk ⊗A δb•)), which will be called the left (resp., right)
multi-Koszul complex of A. We note that in either case the differentials are A-
linear maps preserving the degree. We also remark that the left (resp., right)
multi-Koszul complex of A coincides with the minimal projective resolution
of the left (resp., right) module k seen at the beginning of this section up to
homological degree 2.

Definition 3.15. Let A be a locally finite dimensional nonnegatively graded con-
nected algebra. We say that A is left (resp., right) multi-Koszul if the (augmented)
left (resp., right) multi-Koszul complex of A defined in the previous paragraphs pro-
vides a resolution of the trivial left (resp., right) A-module k, and in this case it is
called the left (resp., right) multi-Koszul resolution for A.

Remark 3.16. If A is left (resp., right) multi-Koszul, then the (augmented) left
(resp., right) multi-Koszul complex of A is in fact a minimal projective resolution of
the trivial left (resp., right) A-module k. Indeed, the left (resp., right) multi-Koszul
resolution forA is minimal, by the comments in the antepenultimate paragraph of Sec-
tion 2, because the induced differential of the complex k⊗AK(A)• (resp.,K(A)′•⊗Ak)
vanishes, due to (3.3) and (3.5). It is also straightforward to see that an algebra is left
(resp., right) multi-Koszul if and only if its left (resp., right) multi-Koszul complex
defined above is acyclic in positive homological degrees.

We have the following natural result, following the lines of [7], Thm. 4.4.

Proposition 3.17. Let A be a locally finite dimensional nonnegatively graded con-
nected algebra. The following statements are equivalent:

(i) A is left multi-Koszul.

(ii) The augmented multi-Koszul bimodule complex δb0 : KL−R(A)• → A is exact.
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(iii) A is right multi-Koszul.

Proof. We shall prove the equivalence of (i) and (ii), the equivalence between
(ii) and (iii) being analogous. Suppose that A is left multi-Koszul. Apply-
ing the functor (−) ⊗A k to the augmented multi-Koszul bimodule complex,
we obtain the (augmented) complex (K(A)•, δ•), which is exact when A is
left multi-Koszul. Since the A-bimodules KL−R(A)i are graded-free and left
bounded for all i ∈ N0, [7], Prop. 4.1, (or [4], Lemme 1.6) implies that the
augmented complex δb0 : KL−R(A)• → A is exact.
Assume now that the complex KL−R(A)• is exact in positive degrees. Since
δb0 : KL−R(A)• → A is exact, it is a projective resolution of A in the category of
graded left bounded right A-modules. Since A is a projective right A-module,
the complex δb0 : KL−R(A)• → A is homotopically trivial as a complex of
objects of graded right A-modules. Therefore, its image under the functor
(−) ⊗A k is a fortiori homotopically trivial (as a complex of vector spaces).
Since this image is the left multi-Koszul complex of A, it is exact in positive
homological degrees, so A is left multi-Koszul. �

By the previous results, we shall usually simply say that an algebraA is multi-
Koszul, unless wewant to emphasize the use of the corresponding complexes.

Remark 3.18. Suppose that A is left multi-Koszul. Since there is an obvious iso-
morphism of complexes of the form k⊗Ae KL−R(A)• ≃ k⊗AK(A)•, having in fact
vanishing differential, the comments in the antepenultimate paragraph of Section 2
tell us that the complex (KL−R(A)•, δ

b
•) is a minimal projective resolution of A in

the category of graded A-bimodules.

Remark 3.19. Let A = T (V )/〈R〉 be a locally finite dimensional nonnegatively
graded connected algebra. Let us we consider a different positive grading on V such
that R also remains a graded vector subspace of T (V )≥2 for the new grading on
V (e.g. we double the grading of V ). Since the condition (2.1) defining a space of
relations is also independent of the grading, we see that R is still a space of relations
for the algebra A provided with the new grading. This in turn implies that the multi-
Koszul complex of A is grading independent. In particular, A is multi-Koszul
for the former grading if and only if it is multi-Koszul for the new grading, which
we may roughly reformulate as stating that the multi-Koszul property introduced in
Definition 3.15 is also grading independent.

Before proceeding further we would like to state some comments on the pre-
vious definition. As it may have been noticed, we have used the same termi-
nology (i.e. left or right multi-Koszul) as the one introduced in [19], Def. 3.1
and Rmk. 3.3, where the nonnegatively graded connected algebras were fur-
ther assumed to be finitely generated in degree one and with a finite number
of relations. We claim that the new definition introduced here coincides with
the one considered in [19] if the algebras satisfy the assumptions of the latter
article.
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In order to do so, we shall use the following little variation of the notation
used in [19], Def. 3.1. Suppose for the moment that A = T (V )/〈R〉, where V
is a finite dimensional vector space considered to be concentrated in degree 1,
andR = ⊕s∈SRs ⊆ T (V )≥2 for S ⊆ N≥2, is a finite dimensional graded vector
space. For each s ∈ N≥2, we recall that the map ns : N0 → N0 is given by

ns(2j) = sj, ns(2j + 1) = sj + 1.

If s ∈ S, we will denote

J̃s
i =

ns(i)−s
⋂

l=0

V (l).Rs.V
(ns(i)−s−l),

for i ≥ 2, and J̃s
i = V (i) for i = 0, 1. Moreover, we define

J̃i =
⊕

s∈S

J̃s
i ,

if i ≥ 2, and J̃i = V (i), if i = 0, 1.
The differential of the left multi-Koszul complex (A ⊗ J̃•)•∈N0 introduced in
[19], Def. 3.1, will be denoted by δ̃•.

Proposition 3.20. Let A be a nonnegatively graded connected algebras, which is
further assumed to be finitely generated in degree one and with a finite number of re-
lations, i.e. A = T (V )/〈R〉, where V is a finite dimensional vector space considered
to be concentrated in degree 1, and R = ⊕s∈SRs ⊆ T (V )≥2 for S ⊆ N≥2, is a
finite dimensional graded vector space. Then, the left (resp., right) multi-Koszul com-
plex in the Definition 3.15 coincides with the left (resp., right) multi-Koszul complex
introduced in [19], Definition 3.1 (resp., Remark 3.3), which in turn implies that A
is left (resp., right) multi-Koszul in the sense of Definition 3.15 if and only if it is
left (resp., right) multi-Koszul in the sense introduced in [19], Definition 3.1 (resp.,
Remark 3.3).

Proof. We shall prove the statement for the left multi-Koszul complexes, the
right case being analogous. Actually, the equivalence of both right multi-
Koszul properties could also follow from the statement for the left case from
Proposition 3.17 and [19], Cor. 3.13.
Let us first note that the left multi-Koszul complex introduced in Definition
3.15 trivially coincides with the one considered in [19], Def. 3.1, up to ho-
mological degree 2. Note that J2 = R = J̃2. They further coincide up to
homological degree 3, since in this case

J3 = (V.R) ∩ (R.V ) =
⊕

s∈S

(V.Rs) ∩ (Rs.V ) =
⊕

s∈S

J̃s
3 = J̃3,

where we have used Fact 3.1, since V is concentrated in degree 1 and Rs in
degree s, and the differentials in homological degree 3 for both complexes
clearly coincide.
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Let us suppose that both complexes coincide up to homological degree d, i.e.
we have that Ji = J̃i and δi = δ̃i for i ≤ d.
Let us first assume that d is odd. We claim that

J̃2j+1 = (V.J̃2j) ∩ (J̃2j .V ), (3.7)

for j ∈ N0. Indeed, if j = 0 the previous identity is trivial, whereas for j ∈ N it
follows from a rather simple computation

(V.J̃2j) ∩ (J̃2j .V ) =
(

V.
(

⊕

s∈S

J̃s
2j

)

)

∩
(

(

⊕

s∈S

J̃s
2j

)

.V
)

=
(

⊕

s∈S

V.J̃s
2j

)

∩
(

⊕

s∈S

J̃s
2j .V

)

=
⊕

s∈S

(

(V.J̃s
2j) ∩ (J̃s

2j .V )
)

=
⊕

s∈S

J̃s
2j+1 = J̃2j+1,

where we have used Fact 3.1 in the antepenultimate equality, taking into ac-
count that V is concentrated in degree 1 and each J̃s

2j is concentrated in degree
ns(2j) = sj. Now, (3.3) and (3.7) tell us that Jd+1 = J̃d+1. It is trivial to verify
that the differentials also satisfy the identity δd+1 = δ̃d+1.
On the other hand, let us suppose that d is even. In this case we claim that

J̃2j =
(

⊕

N∈N

⋂

n̄ ∈ Par(j − 1)
m̄ ∈ Parj(N)

V (m1).J̃2n1 . . . V
(mj−1).J̃2nj−1 .V

(mj)
)

∩R(j), (3.8)

for all j ∈ N, which we prove as follows. It is trivially verified for j = 1, since
the right term in that case is just T (V )>0 ∩R, which coincides with J̃2 = R.
Let us consider j ≥ 2. We first show that the right member of (3.8) contains
the left one. Indeed, note that

V (m1).J̃2n1 . . . V
(mj−1).J̃2nj−1 .V

(mj)

trivially includes

V (m1).J̃s
2n1

. . . V (mj−1).J̃s
2nj−1

.V (mj),

for all s ∈ S, so the right member of (3.8) includes
(

⊕

N∈N

⋂

n̄ ∈ Par(j − 1)
m̄ ∈ Parj(N)

V (m1).J̃s
2n1

. . . V (mj−1).J̃s
2nj−1

.V (mj)
)

∩R(j),

for all s ∈ S, which trivially coincides with

(

⊕

N∈N>s(j−2)

N
⋂

l=0

V (l).Rs.V
(N−l)

)

∩R(j),
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for all s ∈ S. By Fact 3.1, the latter space is given by

⊕

N∈N>s(j−2)

(

N
⋂

l=0

V (l).Rs.V
(N−l) ∩R

(j)
N+s

)

,

for all s ∈ S.
On the other hand, note that (R(j))n is the direct sum of the independent vec-
tor subspaces {Rs1 . . . Rsj}s1+···+sj=n. This follows from a simple recursive
argument using Corollary 3.7. In particular, ω ∈ (R(j))n has to be written in a
unique manner as a sum of unique elements ωs1,...,sj ∈ Rs1 . . . Rsj , where we
assume that s1 + · · · + sj = n. It is thus trivial that ∩N

l=0V
(l).Rs.V

(N−l) is in-
cluded inR(j)

N+s ifN = s(j−1). Moreover, another application of Corollary 3.8
tells us that the intersection of them vanishes otherwise. This in turn implies
that

⊕

N∈N>s(j−2)

(

N
⋂

l=0

V (l).Rs.V
(N−l) ∩R

(j)
N+s

)

,

coincides with J̃s
2j for all s ∈ S, and we then conclude that the right member

of (3.8) contains the left one.
For the reverse inclusion, note first that the right member of (3.8) is trivially
included in

(

⊕

N∈N

N
⋂

l=0

V (l).J̃2j−1.V
(N−l)

)

∩R(j)

=
(

⊕

N∈N

N
⋂

l=0

⊕

s∈S

V (l).J̃s
2j−1.V

(N−l)
)

∩R(j)

=
(

⊕

N∈N

⊕

s∈S

N
⋂

l=0

V (l).J̃s
2j−1.V

(N−l)
)

∩R(j)

=
(

⊕

N∈N

⊕

s∈S

N+ns(2j−3)
⋂

l=0

V (l).Rs.V
(N+ns(2j−3)−l)

)

∩R(j),

where we used Fact 3.1 in the second equality, for V is concentrated in degree
1 and J̃s

2j−1 is concentrated in degree ns(2j − 1) = sj − s + 1. Using Fact 3.1
once more in the last member, we get that the latter should be the direct sum of
the intersection of the n-th homogeneous components of each corresponding
term, i.e. the intersection of the n-th direct summand of R(j) and

⊕

s∈Sj,n

n−s
⋂

l=0

V (l).Rs.V
(n−s−l) (3.9)

where Sj,n = {s ∈ S : ns(2j − 1) < n}. Note that if s ∈ Sj,n, then n > s
for j ≥ 2. As explained in the previous paragraph, a direct application of

Documenta Mathematica 18 (2013) 1301–1347



On the Multi-Koszul Property for Connected Algebras 1327

Corollary 3.7 tells us that the former intersection should coincide with

⊕

s∈S

(

n−s
⋂

l=0

(V (l).Rs.V
(n−s−l)) ∩ (R(j)

s )n
)

,

which is directly seen to be equal to

⊕

s∈S

(

n−s
⋂

l=0

(V (l).Rs.V
(n−s−l)) ∩ (R(j)

s )n
)

=
⊕

s∈S

(J̃s
2j)n = (J̃2j)n.

This proves that the left member of (3.8) contains the right one, and so the
equality of the assertion (3.8) holds.
Finally, (3.4) and (3.8) imply that Jd+1 = J̃d+1. It is also direct to check that the
differentials δd+1 and δ̃d+1 coincide. The proposition is thus proved. �

Remark 3.21. Since the previous definition of left or right multi-Koszul property
coincides with the one considered in [19] if the algebras satisfy the assumptions of the
latter article, by [19], Rmk. 3.4, we get that it also coincides with the corresponding
one given in [3], Def. 2.10 (or [5], Section 5), if the algebra is homogeneous. Thus, a
homogeneous algebra is left (resp., right) multi-Koszul if and only if it is generalized
left (resp., right) Koszul.

Example 3.22. We will provide a collection of examples of multi-Koszul algebras,
which was one of the main motivations of this article. The space of generators V of
these graded algebras does not lie in degree 1, so they cannot be considered as multi-
Koszul algebras for the definition given in [19] in any natural manner.
Given two nonnegative integers n, s ∈ N

2
0 \ {(0, 0)}, and a collection of symmetric

(s × s)-matrices (Γi
a,b), for i = 1, . . . , n (a, b = 1, . . . , s), the (associative) super

Yang-Mills algebra YM(n, s)Γ over an algebraically closed field k of characteristic
zero is defined as follows. Take V = V2 ⊕ V3 be a graded vector space over k, where
dimk(V2) = n and dimk(V3) = s, and choose in fact a (homogeneous) basis B =
B2 ∪ B3 of V , where B2 = {x1, . . . , xn} and B3 = {z1, . . . , zs}, with |xi| = 2 for all
i = 1, . . . , n, and |za| = 3 for all a = 1, . . . , s, We suppose further that the matrices
(Γi

a,b) satisfy the nondegeneracy assumption explained in the third paragraph before
Rmk. 1 of [18].
The graded algebra YM(n, s)Γ is given by the quotient of the graded free algebra
T (V ), by the homogeneous relations given by

r0,i =

n
∑

j=1

[xj , [xj , xi]]−
1

2

s
∑

a,b=1

Γi
a,b[za, zb],

r1,a =

n
∑

i=1

s
∑

b=1

Γi
a,b[xi, zb],

for i = 1, . . . , n and a = 1, . . . , s, respectively. The bracket [, ] denotes the graded
commutator, i.e. [a, b] = ab − (−1)|a||b|ba for a, b ∈ B. They have been previously
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considered by M. Movshev and A. Schwarz in [28] (see also the preprint article [29]
by M. Movshev).
Using the explicit description of the minimal projective resolution of the trivial module
k over the super Yang-Mills algebra YM(n, s)Γ (for (n, s) 6= (1, 0), (1, 1)) given in
[18], Prop. 2, and Corollary 3.27 given below, we see that these graded algebras are
multi-Koszul.

3.3 An equivalent description of multi-Koszul algebras

We would like to make some comments on the left multi-Koszul complex of
A. The obvious statements for the right multi-Koszul complex trivially hold.
First, given i ∈ N0, note that the map of graded vector spaces Ji+1 → Ker(δi)
given by the restriction of δi+1 is injective. This can be proved as follows. The
cases i = 0, 1 are immediate, so we will suppose that i ≥ 2. Furthermore, the
kernel of the restriction of δi+1 to Ji+1 is easily seen to be Ji+1 ∩ (I.Ji). The
first term of this intersection is included in R.Ji−1, by Lemma 3.12, whereas
the second is included in I.V.Ji−1 if i is odd, by (3.3), and it is included in
I.T (V )>0.Ji−1 if i is even, by (3.5). In both situations we have thus that I.Ji ⊆
I.T (V )>0.Ji−1. Then, the kernel of the restriction of δi+1 to Ji+1 is contained
in the intersection

(R.Ji−1) ∩ (I.T (V )>0.Ji−1) = (R ∩ (I.T (V )>0)).Ji−1,

where we have used Proposition 3.2 and Lemma 3.11. By the defining prop-
erty (2.1) of the space of relations the last space vanishes, and we thus get that
the restriction of δi+1 to Ji+1 is injective. This proves the claim.
For each i ∈ N0, let us now consider the map Ji+1 → k ⊗A Ker(δi) given
by the composition of Ji+1 → Ker(δi) and the canonical projection Ker(δi) →
k⊗AKer(δi). We claim that this composition is in fact injective if i is even. This
can be proved as follows. By the comments in the last paragraph of Section
2, we know that the mentioned map is in fact an isomorphism for i = 0 (and
also for i = 1). We shall suppose thus that i ≥ 2. Since i is even, the image
of the map Ji+1 → Ker(δi) is contained in V.Ji, so one sees that the kernel of
Ji+1 → k ⊗A Ker(δi) vanishes if and only if Ji ∩ Ker(δi) = 0, which follows
from the previous paragraph.
We have thus the following result.

Lemma 3.23. Let A = T (V )/〈R〉 be a locally finite dimensional nonnegatively
graded algebra and let (K(A)•, δ•) be its left multi-Koszul complex. Given i ∈ N0,
the map of graded vector spaces Ji+1 → Ker(δi) given by the restriction of δi+1 is
injective. Consider now the map of graded vector space given by the composition of
the previous morphism and the canonical projection Ker(δi) → k ⊗A Ker(δi). If i is
even or i = 1, it is injective. If i is odd and i ≥ 3, we note that the restriction to the
n-th homogeneous components of the previous composition map is injective if there
are no nontrivial homogeneous components of (Ker(δi))m form < n.
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The corresponding formulation of the lemma for the right multi-Koszul com-
plex of A is obvious, and we shall refer to the lemma whether we are consid-
ering the left or the right version. We may in fact prove one of the main result
of this section (cf. [19], Prop. 3.12):

Proposition 3.24. Let A = T (V )/〈R〉 be a locally finite dimensional nonnega-
tively graded algebra. Then A is left (resp., right) multi-Koszul if and only if there is
an isomorphism of graded vector spaces TorAi (k, k) ≃ Ji for all i ∈ N0.

Proof. We shall prove the statement for the left multi-Koszul property, since
the right one is analogous. Moreover, we will only show the “if” part, since the
converse follows immediately from the minimality of the (left) multi-Koszul
complex.
Assume the existence of the isomorphism of graded vector spaces in the state-
ment. We will prove that the left multi-Koszul complex is in fact a minimal
projective resolution of the trivial left A-module k. In fact, we will show that
K(A)• is a minimal projective resolution of k up to homological degree i for
all i ∈ N. Since the former coincides with such a minimal projective resolution
up to homological degree 2, we suppose that the statement is true for i ≥ 2.
By the comments on the construction of projective covers in Section 2, and
the assumption TorAi+1(k, k) ≃ Ji+1, there is an isomorphism of graded vector
spaces hi+1 : Ji+1 → k ⊗A Ker(δi).
If i ≥ 2 and i is even, the previous lemma tells us that the composition

Ji+1 →֒ Ker(δi) ։ k ⊗A Ker(δi), (3.10)

where the first map is the restriction of δi+1, is injective. Hence, the compo-
sition of this map with the inverse of hi+1 is an injective endomorphism of
graded vector spaces of Ji+1, so an isomorphism, since the latter is a locally
finite dimensional graded vector space. Hence, the composition map (3.10) is
also an isomorphism, so δi+1 is in fact a projective cover of Ker(δi).
We now assume that i ≥ 2 and i is odd. We consider as before the map of
graded vector spaces given by (3.10), which we denote by fi+1. Let us de-
note by (fi+1)n : (Ji+1)n → (k ⊗A Ker(δi))n the restriction to the n-th ho-
mogeneous components.We shall prove that (fi+1)n is an isomorphism for all
n ∈ N0 by induction on n. Note that, by the isomorphism TorAi+1(k, k) ≃ Ji+1

of graded vector spaces, it suffices to prove that (fi+1)n is injective, for an in-
jective map between finite dimensional vector spaces is automatically an iso-
morphism, since the corresponding n-th homogeneous components are finite
dimensional. Letnmin ∈ N be the first positive integer such that (Ji+1)nmin 6= 0.
Note that this in particular implies that (fi+1)n is injective for n < nmin. The
assumptionTorAi+1(k, k) ≃ Ji+1 implies thatKer(δi) is concentrated in degrees
greater that or equal to nmin. This in turn implies that (fi+1)nmin is injective by
Lemma 3.23. Let us thus assume that (fi+1)n is injective for n ≤ m for some
m ≥ nmin, so, again by the hypothesis TorAi+1(k, k) ≃ Ji+1, they should be in
fact isomorphisms, since the corresponding n-th homogeneous components
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are finite dimensional. We shall prove that (fi+1)m+1 is also injective. If this is
not the case, by the definition of the map (fi+1)m+1 and the inductive assump-
tion, we must have that the intersection (Ji+1)m+1∩(T (V )>0.Ji+1)m+1 is non-
trivial. However, since Ji+1 ⊆ R(i+1)/2, the previous intersection is included
in R(i+1)/2 ∩ (T (V )>0.R

(i+1)/2), which vanishes by the defining property (2.1)
of the space of relations. The proposition is thus proved. �

We now have the following immediate consequence of Proposition 3.24 and
the isomorphism (2.2).

Proposition 3.25. For a locally finite dimensional nonnegatively graded algebra
connected A with space of relations R, the following statements are equivalent:

(i) A is multi-Koszul,

(i) ExtiA(k, k) ≃ J#
i for all i ∈ N0, where (−)# denotes the graded dual of a

graded vector space.

Remark 3.26. Suppose further that A is a finitely generated multi-Koszul algebra
with a finite dimensional space of relations. Then, the multi-Koszul resolution forA is
composed of finitely generated projective A-modules, for each vector space Ji is finite
dimensional, so, by the comments in the penultimate paragraph of Section 2, there is
a canonical identification Ext•A(k, k) ≃ Ext•A(k, k).

We may also mention an easy corollary of the previous Lemma.

Corollary 3.27. LetA = T (V )/〈R〉 be a locally finite dimensional nonnegatively
connected graded algebra. Suppose that its left multi-Koszul complex (K(A)•, δ•) is
exact in homological degrees • = 1, . . . , N − 1 forN ∈ N≥2, and that δN is injective.
Then A is left multi-Koszul.

Proof. By the proof of Proposition 3.24, the exactness hypothesis is equivalent
to say that TorAi (k, k) ≃ Ji for all i = 1, . . . , N − 1. Moreover, the injectivity
of δN implies that that JN+1 vanishes, for the restriction of δN+1 to JN+1 is
injective, by Lemma 3.23, and its image lies in the Kernel of δN . This in turn
implies that Ji also vanishes for i ≥ N + 1, by the definitions (3.2) and (3.3).
In consequence, the left multi-Koszul complex (K(A)•, δ•) is exact in positive
degrees, so A is left multi-Koszul. �

3.4 Properties of multi-Koszul algebras

We have a direct consequence of the Proposition 3.17. Consider the (unique)
anti-morphism of (unitary) algebras τ : T (V ) → T (V ) such that τ |V = idV .
It is in fact an anti-automorphism of T (V ), and it further induces an algebra
anti-isomorphism τ̄ : A→ T (V )/〈τ(R)〉. In other words, it induces an isomor-
phism between the (usual) opposite algebra Aop of A and A◦ = T (V )/〈τ(R)〉.
Note that τ(R) ⊆ T (V )≥2 is clearly a space of relations of A◦. By the previous
isomorphism, we may thus say that A◦ is (also) the opposite algebra of A.

Documenta Mathematica 18 (2013) 1301–1347



On the Multi-Koszul Property for Connected Algebras 1331

Corollary 3.28. The algebra A◦ is multi-Koszul if and only if A is multi-Koszul.

Proof. It is an immediate consequence of Proposition 3.17. �

Since the length of aminimal projective resolution of k gives the global dimen-
sion ofA, the following proposition is an immediate consequence of Corollary
3.27.

Corollary 3.29. Let A be a locally finite dimensional nonnegatively graded alge-
bra. If the global dimension of A is 2, then A is multi-Koszul.

We also have the following result, which is a generalization of [19], Prop. 3.7,
andwhich shows that the multi-Koszul property is stable under free products.
The proof is completely parallel but we provide it for completeness.

Proposition 3.30. Let {Bs : s ∈ S}, where S is an index set, be a finite collection
of locally finite dimensional nonnegatively graded connected algebras such that Bs is
multi-Koszul for each s ∈ S. Then, the free product (i.e. the coproduct in the category
of graded algebras) A =

∐

s∈S B
s of the collection {Bs : s ∈ S} is a multi-Koszul

algebra.

Proof. Suppose Bs = T (V s)/〈Rs〉 for s ∈ S, is a multi-Koszul algebra, where
V s and Rs ⊆ T (V s)≥2 are locally finite dimensional positively graded vec-
tor spaces. By the definition of the free product, we may consider that
A = T (V )/〈R〉, where V = ⊕s∈SV

s and R = ⊕s∈SR
s. The canonical inclu-

sion Bs →֒ A is a morphism of graded algebras, and it makes A a free graded
(left or right) Bs-module. For s ∈ S, denote by Js

i the graded vector space
defined by the recursive equations (3.2) and (3.3) for the algebra Bs, and by Ji
the corresponding one defined for A.
Since the graded vector spaces V s are independent, by the definition of the
tensor algebra it is trivial to verify that Ji = ⊕s∈SJ

s
i for i ∈ N. If (K(Bs)•, δ

s
•)

is the multi-Koszul complex of Bs, which is acyclic in positive homologi-
cal degrees by assumption, we have that A ⊗Bs K(Bs)• = A ⊗ Js

• is also
acyclic in positive homological degrees, as we now show. By the Künneth
spectral sequence E2

p,q = TorB
s

p (A,Hq(K(Bs)•)) ⇒ Hp+q(A ⊗Bs K(Bs)•)
(see [33], Application 5.6.4). The exactness of the Koszul complex of Bs and
the freeness of the Bs-module A imply that E2

p,q = 0 if (p, q) 6= (0, 0), so
Hn(A⊗Bs K(Bs)•) = 0 for n ≥ 1.
We now note that the multi-Koszul complex (K(A)•, δ•) of the algebra A can
be decomposed asK(A)• = ⊕s∈SA⊗BsK(Bs)•, for • ≥ 1, and δ• = ⊕s∈Sδ

s
• for

• ≥ 2, the exactness of A⊗Bs K(Bs)• in positive homological degrees tells us
thatK(A)• is acyclic in homological degrees greater than or equal to 2. On the
other hand, the exactness of the multi-Koszul complex in homological degree
1 is automatically satisfied for a nonnegatively graded connected algebra. We
have thus that K(A)• is exact in positive homological degrees, so A is multi-
Koszul. �

Another interesting property for this class of algebras is the following.
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Proposition 3.31. Let A be a finitely generated nonnegatively graded connected
algebra such that its space of relations R is finite dimensional, and assume that A is
multi-Koszul. Then, the graded algebra Ext•A(k, k) = Ext•A(k, k) is generated by
Ext1A(k, k) and Ext

2
A(k, k), i.e. A is K2 (in the sense of Cassidy and Shelton).

Proof. LetEi (following the notation of the article [10], Section 4) be the matrix
with entries in I/(T (V )>0.I + I.T (V )>0) ≃ R given by the class of the matrix
with entries in T (V ) which is a lift of the composition δi−1 ◦ δi. By Lemma
3.12 we have the inclusion Ji ⊆ R.Ji−2, which implies that the matrix Ei rep-
resents an injective linear transformation of the form T (V ).Ji → T (V ).Ji−1,
so the rows Ei are linearly independent over k. The statement is now a direct
consequence of [10], Thm. 4.4. �

Remark 3.32. As explained in [19], Rmk. 3.24, the converse of the previous propo-
sition is not true in general (e.g. see the algebra B in [11], which is not multi-Koszul,
but it is 2-3-Koszul in the sense of [14]).

4 The A∞-algebra structure of the Yoneda algebra of a multi-

Koszul algebra

In this section, we shall provide a direct procedure to compute the complete
A∞-algebra structure of the Yoneda algebra Ext•A(k, k) of a multi-Koszul al-
gebra A. We will first compute the (plain) algebra structure by explicitly pro-
viding quasi-isomorphisms in both directions between the cochain complexes
HomA(K(A)•, k) and EndA(K(A)•). Then we shall compute the remaining
higher multiplications. In order to do so, it will be useful to profit from the
theory of A∞-algebras and A∞-coalgebras. Even though we refer for further
references to [24], or [32], we will provide a short introduction, in particular
for stating our (sign) conventions and notation. A more intensive study of the
A∞-algebra structure of the Yoneda algebra may be found in [26], to which
we also refer for further reading.
We recall that, since the cochain complex EndA(K(A)•) is a differential graded
algebra (or dg algebra for short), its cohomology has an algebra structure,
and further a structure of minimal A∞-algebra, defined via the theorem of
T. Kadeishvili in [21]. Following [26], any of these A∞-algebra structures on
the cohomology of EndA(K(A)•) is called a model. Kadeishvili also proved
in the mentioned article that any of these models on the cohomology ring
are in fact quasi-isomorphic. It can be shown that the algebra structure of
Ext•A(k, k) is in fact independent of the projective resolution of the trivial mod-
ule k used to compute it, and furthermore, the A∞-structure is also unique
up to quasi-isomorphism (see [26], Lemma 4.2, (a)). Moreover, the endo-
morphism dg algebra of any projective resolution of the trivial A-module k
is quasi-isomorphic to the graded dual B+(A)# of the bar construction of A,
as A∞-algebras (see [26], Lemma 4.2, (b)).
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4.1 The algebra structure

We will first compute the Yoneda product for the cohomology space
Ext•A(k, k). Just for convenience we recall that EndA(K(A)•) is the graded
algebra whose i-th homogeneous component EndiA(K(A)•) is given by

∏

j∈Z

HomA(K(A)j ,K(A)j−i),

for i ∈ Z, together with the multiplication induced by the composition and
the differential ∂ given as follows. If (fj)j∈Z ∈ EndiA(K(A)•), then the j-th
component of ∂((fj)j∈Z) ∈ Endi+1

A (K(A)•) is given by

δj−i ◦ fj − (−1)ifj−1 ◦ δj ,

where we remark that, by definition of the complex (K(A)•, δ•), δl vanishes
for l ≤ 0.
On the one hand, the augmentation map δ0 : K(A)• → k induces a quasi-
isomorphism, that we will denote φ, from EndA(K(A)•) to HomA(K(A)•, k).
So φ is given explicitly by the linear map which sends (fj)j∈Z ∈ EndiA(K(A)•)
to (−1)iδ0 ◦ fi. We remark that the differential of HomA(K(A)•, k) is given
by g 7→ (−1)ig ◦ δi+1 for g ∈ HomA(K(A)i, k). It is trivial to see that this is
a map of complexes, i.e. it commutes with the differentials, and furthermore
it respects the grading. That this is a quasi-isomorphism is a standard fact
on homological algebra (see [8], §5.2, Prop. 4; and the first paragraph of §7.1,
where it is done for the endomorphism dg algebra of an injective resolution,
but the analogous considerations hold for projective resolutions). Note that
the procedure described in the paragraph can be applied to any projective
resolution of k.
We will now show how to construct a linear map from HomA(K(A)•, k) to
EndA(K(A)•), that will be denoted by ψ. We first note that, since the differ-
ential of the complex HomA(K(A)•, k) vanishes, we have the obvious iden-
tification HomA(K(A)i, k) ≃ J#

i of graded vector spaces, where (−)# de-
notes the usual graded dual of a graded vector space. Let us consider an
element f ∈ HomA(K(A)i, k), where i ∈ N0, and we denote by f̄ ∈ J#

i

the corresponding element of the graded dual. We will construct elements
fj ∈ HomA(K(A)j ,K(A)j−i) for all j ∈ Z, such that (fj)j∈Z lies in fact in
the kernel of the differential ∂ of the dg algebra EndA(K(A)•) and such that
(−1)iδ0 ◦ fi = f . In order to do so, we will consider two cases.
Since the graded vector spaces Ji ⊆ T (V ) for i ∈ N0 are tensor-intersection
faithful, given i1, . . . , im ∈ N0, throughout this section we will use the identi-
fication Ji1⊗· · ·⊗Jim ≃ Ji1 . . . Jim (see Remark 3.5). If the nonnegative integer
i is even, then we define fj : K(A)j → K(A)j−i as follows. If j < i, we set
fj = 0. We now consider the case j ≥ i. We first note that, by Corollary 3.13,
Jj ⊆ Jj−i ⊗Ji. Hence, we have a map of graded vector spaces pfj,i : Jj → Jj−i

defined as the composition of the inclusion Jj ⊆ Jj−i ⊗ Ji and the map
idJj−i

⊗ f̄ . We then set fj to be A-linear map given by fj(a⊗ ω) = a⊗ pfj,i(ω).
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If the nonnegative integer i is odd, the map fj : K(A)j → K(A)j−i is given
as follows. If j < i, we also set fj = 0, so let us consider the case j ≥ i. If
j is odd, Corollary 3.13 tells us that Jj ⊆ Jj−i ⊗ Ji, so we consider again the
map pfj,i : Jj → Jj−i of graded vector spaces given by the composition of the
inclusion Jj ⊆ Jj−i ⊗ Ji and the map idJj−i

⊗ f̄ . We then set fj to be A-linear
map defined as fj(a ⊗ ω) = −a ⊗ pfj,i(ω). If j is even, by Corollary 3.13 we
have that Jj ⊆ T (V ) ⊗ Jj−i ⊗ Ji. We have in this case the map pfj,i : Jj →
A ⊗ Jj−i of graded vector spaces defined as the composition of the inclusion
Jj ⊆ T (V )⊗Jj−i ⊗Ji and π⊗ idJj−i

⊗ f̄ , where π : T (V ) → A is the canonical
projection. Set fj to be A-linear map given by fj(a⊗ ω) = a pfj,i(ω).
It is straightforward, but rather tedious, to show that the element (fj)j∈Z is in
the kernel of the differential of EndA(K(A)•) and such that (−1)iδ0◦fi = f . We
define thus the map ψ : HomA(K(A)•, k) → EndA(K(A)•) via ψ(f) = (fj)j∈Z.
It is trivially verified that this is a morphism of graded vector spaces, which
commutes with the differentials (for the image of ψ lies in the kernel of the
differential of its codomain and the domain has vanishing differential), and
the composition φ ◦ ψ is the corresponding identity map. Since φ is a quasi-
isomorphism, ψ satisfies the same property. Furthermore, the map induced by
ψ at the level of cohomology spaces is in fact the inverse of the corresponding
map induced by φ.
These maps allow us to explicitly compute the algebra structure of the Yoneda
algebra Ext•A(k, k), since given two elements in the Yoneda algebra which are
represented by f ∈ HomA(K(A)i, k) and g ∈ HomA(K(A)i′ , k), or more con-
cretely, by f ∈ J#

i and g ∈ J#
i′ , the product is just given by ψ(φ(f)φ(g)) ∈

HomA(K(A)i+i′ , k), or simply by the induced element in J#
i+i′ . This can be

written down in the following very explicit manner. In order to do so, we
recall that we will consider Ext•A(k, k) as a (cohomological) bigraded algebra
(i.e. a cohomological bigraded vector space provided with a multiplication,
unit and augmentation which respect both gradings), with one grading com-
ing from the cohomological degree, which will be called the cohomological grad-
ing, and another one coming from the original grading of the modules over A,
which will be called the Adams grading.
In the same manner, we consider that the space Ji is concentrated in homo-
logical degree i and the Adams grading coincides with the one induced by
the grading of V , which was the only one we considered before. We moreover
define the homological bigraded vector space J = ⊕i∈N0Ji, with the homolog-
ical and Adams gradings induced from the ones of the homological bigraded
vector spaces Ji for i ∈ N0. Note that J# = ⊕i∈N0J

#
i is a cohomological

bigraded vector space, where J#
i is concentrated in cohomological degree i.

As explained before, we will apply the Koszul sign rule to the cohomological
grading but not to the Adams grading.
Let i and i′ be two nonnegative integers. If either i or i′ is even, we shall
denote by ιi,i′ the inclusion map Ji+i′ ⊆ Ji ⊗ Ji′ given in Corollary 3.13.
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If both i and i′ are odd, we shall denote by ιi,i′ the composition of the in-
clusion map Ji+i′ ⊆ T (V ) ⊗ Ji ⊗ Ji′ given in Corollary 3.13 together with
the map ǫT (V ) ⊗ idJi

⊗ idJi′
, where ǫT (V ) : T (V ) → k denotes the aug-

mentation of the tensor algebra. In any case, ιi,i′ is a map of graded vector
spaces from Ji+i′ to Ji ⊗ Ji′ . This in turn induces a map of graded vector
spaces ι#i,i′ : (Ji ⊗ Ji′)

# → J#
i+i′ . Recall that, given V and W two locally

finite dimensional bigraded vector spaces, where the first one is the coho-
mological grading and the second one is the Adams grading, we denote by
cV,W : V # ⊗W# → (V ⊗ W )# the obvious isomorphism of bigraded vec-
tor spaces cV,W (f ⊗ g)(v ⊗ w) = (−1)deg(v) deg(g)f(v)g(w), where f, g, v, w
are homogeneous elements, and deg(−) denotes the cohomological degree of
the corresponding element. Now, by making use of the usual identification
ExtiA(k, k) ≃ J#

i of cohomological bigraded vector spaces and the previous
comments, we obtain the following result, which provides a description of
the structure of augmented cohomological bigraded algebra (i.e. a cohomological
bigraded vector space provided with a multiplication, unit and augmentation
which respect both gradings) of the Yoneda algebra.

Theorem 4.1. Let A be a multi-Koszul algebra, and let {Ji}i∈N0 be the collection of
graded vector subspaces of T (V ) defined by J0 = k and the recursive identities (3.2)
and (3.3). We utilize the usual identification ExtiA(k, k) ≃ J#

i for i ∈ N0, coming
from the use of the multi-Koszul resolution for A. Given i, i′ ∈ N0, let ιi,i′ : Ji+i′ →
Ji ⊗ Ji′ be the map of graded vector spaces introduced in the previous paragraph, and
cJi,Ji′

: J#
i ⊗ J#

i′ → (Ji ⊗ Ji′)
# be the usual identification of graded vector spaces

also recalled in the previous paragraph. Then, the restriction of the Yoneda product of
Ext•A(k, k) to J

#
i ⊗ J#

i′ is given by ι#i,i′ ◦ cJi,Ji′
.

Remark 4.2. It is easy to check that the algebra algebra structure for Ext•A(k, k)
given in the theorem coincides with the one deduced from [19], Prop. 3.21 and Rmk.
3.22, under the further assumptions that the algebra A is finitely generated in degree
1 with a finite dimensional space of relations. In particular, the previous algebra
structure also coincides with the one given in [7], Prop. 3.1, for the Yoneda algebra of
a generalized Koszul (homogeneous) algebra.

4.2 The A∞-algebra structure

We will now describe the A∞-algebra structure of the Yoneda algebra. First,
we note that the graded dual of a locally finite dimensional augmented co-
homological bigraded algebra is a coaugmented homological bigraded coalge-
bra (i.e. a homological bigraded vector space provided with a comultiplica-
tion, counit and coaugmentation which respect both gradings). Indeed, if
E = ⊕(n,m)∈Z2En

m is a locally finite dimensional augmented cohomological
bigraded algebra, then E# is a coaugmented homological bigraded coalge-
bra, where the comultiplication of E# is the composition of the graded dual
of the multiplication of E and c−1

E,E , the counit of E# is the graded dual of
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the unit of E, and the coaugmentation of E# is the graded dual of the aug-
mentation of E. The corresponding result given by interchanging the terms
“augmented cohomological bigraded algebra” and “coaugmented homolog-
ical bigraded coalgebra” (without the locally finite dimensional assumption)
also holds, with the obvious analogous definitions of mulplication, unit and
augmentation. Hence, one finds that the homological bigraded vector space J
is naturally a coaugmented homological bigraded coalgebra. The counit of J
is the canonical projection onto the J0 and the unit is the inclusion of J0 inside
J . Moreover, the comultiplication ∆ of J is given by ∆|Ji

=
∑i

l=0 ιl,i−l.
We will extend the coaugmented coalgebra structure on J to a minimal Adams
graded coaugmentedA∞-coalgebra on J . For the following definitions we refer to
[32], Chapitre 3, Section 3.1 (or also [24], Déf. 1.2.1.1, 1.2.1.8, using the obvious
equivalences between non(co)unitary objects and (co)augmented ones), even
though we do not follow the same sign conventions and they do not consider
any Adams grading (see for instance [26] for several uses of Adams grading
in A∞-algebra theory). Moreover, our definitions will be somehow more re-
stricted with respect to the gradings that the usual ones. We first recall that
an Adams graded augmented A∞-algebra structure on a cohomological bigraded
vector space A such that the cohomological grading is nonnegative and the
component of zero cohomological degree is just k (also lying in Adams degree
zero), is the following data:

(i) a collection of maps mi : A⊗i → A for i ∈ N of cohomological degree
2− i and Adams degree zero satisfying the Stasheff identities given by

∑

(r,s,t)∈In

(−1)r+stmr+1+t ◦ (id
⊗r
A ⊗ms ⊗ id⊗t

A ) = 0, (4.1)

for n ∈ N, where In = {(r, s, t) ∈ N0 × N× N0 : r + s+ t = n}.

(ii) a map η : k → A of bidegree (0, 0) such that

mi ◦ (id
⊗r
A ⊗ η ⊗ id⊗t

A )

vanishes for all i 6= 2 and all r, t ≥ 0 such that r + 1 + t = i, and

m2 ◦ (idA ⊗ η) = idA = m2 ◦ (η ⊗ idA).

(ii) a map ǫ : A→ k of bidegree (0, 0) such that ǫ ◦ η = idk, ǫ ◦m2 = ǫ⊗2, and
ǫ ◦mi = 0 for all i ∈ N \ {2}.

It is further called minimal ifm1 vanishes.
We recall that a family of linear maps {fi : C → Ci}i∈N, where C and Ci for
i ∈ N, are vector spaces, is called locally finite if, for all c ∈ C, there exists a
finite subset S ⊆ N, which depends on c, such that fi(c) vanishes for all i ∈
N \ S. An Adams graded coaugmented A∞-coalgebra structure on a homological
bigraded vector space C such that the homological grading is nonnegative
and the component of zero homological degree is just k (also lying in Adams
degree zero) is the following data:
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(i) a locally finite collection of maps∆i : C → C⊗i for i ∈ N of homological
degree i− 2 and Adams degree zero satisfying the following identities

∑

(r,s,t)∈In

(−1)rs+t(id⊗r
C ⊗∆s ⊗ id⊗t

C ) ◦∆r+1+t = 0, (4.2)

for n ∈ N.

(ii) a map ǫ : C → k of bidegree (0, 0) such that

(id⊗r
C ⊗ ǫ⊗ id⊗t

C ) ◦∆i

vanishes for all i 6= 2 and all r, t ≥ 0 such that r + 1 + t = i, and

(idC ⊗ ǫ) ◦∆2 = idC = (ǫ⊗ idC) ◦∆2.

(ii) amap η : k → C of bidegree (0, 0) such that ǫ◦η = idk,∆2◦η(1) = η(1)⊗2,
and∆i ◦ η(1) = 0 for all i ∈ N \ {2}.

An Adams graded coaugmented A∞-coalgebra C is called minimal if ∆1 = 0.
Note that the condition that the family {∆n}n∈N is locally finite follows from
the other data if we further suppose that Ker(ǫ) is positively graded for the
Adams degree.
Wewill not introduce the definitions of morphisms between (augmented)A∞-
algebras, neither for (coaugmented)A∞-coalgebras, and refer to [32], Sections
3.2 and 3.3 (Déf. 3.3, 3.4, and 3.11), or [24], Sections 1.2 and 1.3. We remark
however that these morphisms are further supposed to preserve the Adams
degree (cf. [26], Section 2).
Notice that the graded dualC# (as homological bigraded spaces) of anAdams
graded coaugmented A∞-coalgebra C is an Adams graded augmented A∞-
algebra. Indeed, the unit of C# is the graded dual of the counit of C and the
augmentation of C# is the dual of the coaugmentation of C. Moreover, for
n ∈ N, the multiplication mn of C# is the composition of the canonical map
cC,...,C : (C#)⊗n → (C⊗n)# and the graded dual of ∆n.
We shall now proceed to describe the A∞-coalgebra structure of J . In order to
do so, we first construct the following maps. Let n ≥ 3 and j̄ = (j1, . . . , jn) ∈
N

n
0 . We write jl = 2j′l + rl for all l = 1, . . . , n, where j′l ∈ N0 and rl ∈ {0, 1},

and consider the direct sum decomposition

⊕

N∈N≥2

(

⋂

m̄∈Parn+1(N)

V (m1) ⊗ J2j′1 ⊗ · · · ⊗ V (mn) ⊗ J2j′n ⊗ V (mn+1)
)

. (4.3)

Let pj̄N be the projection of the former vector subspace of the tensor algebra
onto the N -th direct summand for N ∈ N≥2.
If j̄ satisfies that jl is even for all 1 ≤ l ≤ n except for two integers 1 ≤
a < b ≤ n, for which ja, jb are odd, (3.5) tells us that Jj1+···+jn is included
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in (4.3). Moreover, it is trivial to see (using definition (3.3), Lemma 3.11 and
Proposition 3.2) that the n-th direct summand of the former vector space is
contained in J2j′1+1 ⊗ · · · ⊗ J2j′n+1. Let us denote by ι2j1+1,...,2jn+1 the map
of graded vector spaces from Jj1+···+jn to J2j′1+1 ⊗ · · · ⊗ J2j′n+1 given by the
composition of the inclusion of Jj1+···+jn in (4.3), the projection pīn, and the
inclusion of the n-th direct summand of (4.3) in J2j′1+1 ⊗ · · · ⊗ J2j′n+1. In other
words, given ī = (i1, . . . , in) ∈ N

n such that il is odd for all 1 ≤ l ≤ n, we
have defined a map ιi1,...,in of graded vector spaces from Ji1+···+in+2−n to
Ji1 ⊗ · · · ⊗ Jin . Suppose further that a = 1, that is, j1 is odd. Then, the N -th
direct summand of (4.3) is in fact contained in the N -th direct summand of

⊕

N∈N≥2

(

⋂

m̄∈Parn(N−1)

Jj1 ⊗ V (m1) ⊗ J2j′2 ⊗ . . .

· · · ⊗ V (mn−1) ⊗ J2j′n ⊗ V (mn)
)

, (4.4)

for allN ∈ N≥2, which coincides with

Jj1 ⊗
⊕

N∈N≥2

(

⋂

m̄∈Parn(N−1)

V (m1) ⊗ J2j′2 ⊗ · · · ⊗ V (mn−1) ⊗ J2j′n ⊗ V (mn)
)

,

by Proposition 3.2 and Lemma 3.11. Hence, we see that the restriction of pj̄n to
(4.3) coincides with the restriction of idJj1

⊗ p
(j2,...,jn)
n−1 to the same space. On

the other hand, if we assume that b = n, i.e. jn is odd, the restriction of pj̄n to
(4.3) coincides with the restriction of p(j1,...,jn−1)

n−1 ⊗ idJjn
to the same space.

Remark 4.3. Note that if ī = (1, . . . , 1) ∈ N
n, ι1,...,1 is just the composition of the

inclusion of R inside the tensor algebra with the canonical projection πn : T (V ) →
V (n). More generally, for i ∈ N even, consider ī = (i − 1, 1, . . . , 1) ∈ N

n (the last
n− 1 integers are 1’s). It is easy to check that ῑi : Ji → Ji−1⊗V

(n−1) coincides with
the composition of the inclusion Ji ⊆ Ji−1 ⊗ T (V )>0 with the map idJi−1 ⊗ πn−1.
Indeed, for the case ī = (i− 1, 1, . . . , 1), the direct sum decomposition (4.3) gives

⊕

N∈N≥2

(

N
⋂

m=0

V (m) ⊗ Ji−2 ⊗ V (N−m)
)

.

Moreover, the N -th direct summand of the former is trivially included in the N -th
direct summand of

⊕

N∈N≥2

Ji−1 ⊗ V (N−1),

for all N ∈ N≥2, by Proposition 3.2 and Lemma 3.11. Hence, the restriction of
idJi−1 ⊗ πn−1 to the first direct sum decomposition coincides with the projection pīn,
so the restriction of idJi−1 ⊗ πn−1 to Ji coincides with ῑi.
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The A∞-(co)algebra structure of J# (resp., J) is described in the next state-
ment.

Proposition 4.4. Let A be a multi-Koszul algebra, and let {Ji}i∈N0 be the collec-
tion of graded vector subspaces of T (V ) defined by J0 = k and the recursive identities
(3.2) and (3.3). Define J = ⊕i∈N0Ji, which is considered as a homological bigraded
vector space for the grading coming from the index i. By Theorem 4.1, it has the
structure of a coaugmented bigraded coalgebra, and we denote ∆2 the comultiplica-
tion coming from the multiplication given in the previous theorem. We consider that
∆1 vanishes. Given n ≥ 3 and ī = (i1, . . . , in) ∈ N

n such that il is odd for all
1 ≤ l ≤ n, let ιi1,...,in : Ji1+···+in+2−n → Ji1 ⊗ · · · ⊗ Jin be the map of graded vec-
tor spaces introduced in the paragraph before Remark 4.3, and ∆n|Ji

=
∑

ιi1,...,in ,
where the sum is indexed over all n-tuples of odd integers (i1, . . . , in) such that
i1 + · · · + in + 2 − n = i. Then J is a minimal Adams graded coaugmented
A∞-coalgebra. This in turn implies that J# is a minimal Adams graded augmented
A∞-algebra, where the multiplicationmn : (J#)⊗n → J# is the map whose restric-
tion to J#

i1
⊗ · · · ⊗ J#

in
is zero, if there is 1 ≤ l ≤ n such that il is even, and is

ι#i1,...,in ◦ cJi1 ,...,Jin
otherwise.

Proof. We first note that∆n has bidegree (n−2, 0) for all n ∈ N. Moreover, it is
easy to check that the family {∆n}n∈N is locally finite, sinceKer(ǫ) is positively
graded for the Adams degree.
Since ∆1 is zero, the first, second and third of the identities (4.2) simply mean
that J is a coassociative coalgebra for the comultiplication∆2, which is a direct
consequence of the previous theorem.
Suppose now that n ≥ 3. The assumption that ∆n vanishes on Ji if i is odd,
and that its image is included in the sum of tensors of n factors, each of which
has odd homological degree, tell us that the (n + 1)-th defining identity (4.2)
simplifies to give

n−1
∑

r=1

(−1)r(id⊗r
J ⊗∆2⊗id

⊗(n−r−1)
J )◦∆n = (idJ⊗∆n)◦∆2−(−1)n(∆n⊗idJ)◦∆2.

(4.5)
It suffices to show the previous identity restricted to each subspace Ji. Note
that the image of each term of the previous identity must be thus in the direct
sum of (independent) subspaces Ji1⊗· · ·⊗Jin+1 , where i = i1+· · ·+in+1+2−n.
Then, it suffices to prove (4.5) for the special case that we restrict to Ji and
we compose with the projection pi1,...,in+1 onto Ji1 ⊗ · · · ⊗ Jin+1 , where i =
i1+· · ·+in+1+2−n. We shall refer to this new identity also as the (i1, . . . , in+1)-
specialization of (4.5). By the assumption on the higher multiplications mn for
n ≥ 3, the image of any of the terms of (4.5) must be in the direct sum of the
subspaces Ji1 ⊗ · · · ⊗ Jin+1 , where there exists at most one 1 ≤ j ≤ n+ 1 such
that ij is even. If we compose the restriction of (4.5) to Ji with the projection
onto Ji1 ⊗ · · · ⊗ Jin+1 , the only cases left to consider are thus:

(i) all i1, . . . , in+1 are odd,

Documenta Mathematica 18 (2013) 1301–1347



1340 Estanislao Herscovich

(ii) i1 is even and i2, . . . , in+1 are odd,

(iii) in is even and i1, . . . , in are odd,

(iv) there is 1 < j < n + 1 such that ij is the only even integer among
i1, . . . , in+1.

Let us write how the composition of (n+1)-th defining identity (4.5) restricted
to Ji and the projection onto Ji1⊗· · ·⊗Jin+1 further simplifies in each case, and
how this identity follows from the construction of the higher comultiplication
∆n.
In case (i), the (i1, . . . , in+1)-specialization of (4.5) simplifies to give

pi1,...,in+1 ◦ (idJ ⊗∆n) ◦∆2|Ji
= (−1)npi1,...,in+1 ◦ (∆n ⊗ idJ ) ◦∆2|Ji

,

for all the terms of the left member of (4.5) vanish. By the Koszul sign rule this
identity is equivalent to the commutativity of the square

Ji1+···+in+1+2−n

ιi1,i2+···+in+1+2−n
//

ιi1+···+in+2−n,in+1

��

Ji1 ⊗ Ji2+···+in+1+2−n

idJi1
⊗ιi2,...,in+1

��

Ji1+···+in+2−n ⊗ Jin+1

ιi1,...,in⊗idJin+1
// Ji1 ⊗ · · · ⊗ Jin+1

Note that, since all i1, . . . , in+1 are odd the upper horizontal and the left verti-
cal maps are the plain inclusions. The commutativity easily follows from the
definitions. Indeed, consider the direct sum decomposition of the form

⊕

N∈N≥2

(

⋂

m̄∈Parn+2(N)

V (m1)⊗Ji1−1⊗· · ·⊗V (mn+1)⊗Jin+1−1⊗V
(mn+2)

)

, (4.6)

which trivially includes Ji1+···+in+1+2−n. Proposition 3.2 and Lemma 3.11 tell
us that theN -th direct summand of the former is trivially included in theN -th
direct summand of
⊕

N∈N≥2

(

⋂

m̄∈Parn(N−2)

Ji1⊗V
(m1)⊗Ji2−1⊗V

(m2)⊗· · ·⊗V (mn−1)⊗Jin−1⊗V
(mn)⊗Jin+1

)

,

for all N ∈ N≥2, which, also by Proposition 3.2 and Lemma 3.11, coincides
with

⊕

N∈N≥2

Ji1 ⊗
(

⋂

m̄∈Parn(N−2)

V (m1) ⊗ Ji2−1 ⊗ · · · ⊗ Jin−1 ⊗ V (mn)
)

⊗ Jin+1 .

Hence, by the comments at the end of the paragraph before Remark 4.3 we
see that the restriction of idJi1

⊗ p
(i2,...,in)
n−1 ⊗ idJin+1

to (4.6) coincides with the
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restrictions of p(i1,...,in)n ⊗ idJin+1
and of idJi1

⊗ p
(i2,...,in+1)
n to the same space.

This proves the claimed commutativity.
In case (ii), the (i1, . . . , in+1)-specialization of (4.5) simplifies to give

pi1,...,in+1 ◦ (∆2 ⊗ id
⊗(n−1)
J ) ◦∆n|Ji

= pi1,...,in+1 ◦ (idJ ⊗∆n) ◦∆2|Ji
,

for all the other terms trivially vanish. This identity is equivalent to the com-
mutativity of the square

Ji1+···+in+1+2−n

ιi1,i2+···+in+1+2−n
//

ιi1+i2,i3,...,in+1

��

Ji1 ⊗ Ji2+···+in+1+2−n

idJi1
⊗ιi2,...,in+1

��

Ji1+i2 ⊗ Ji3 ⊗ · · · ⊗ Jin+1

ιi1,i2⊗idJi3
⊗···⊗idJin+1

// Ji1 ⊗ · · · ⊗ Jin+1

The assumption on the integers i1, . . . , in+1 tells us that the horizontal maps
are the plain inclusions. The commutativity follows directly from the defini-
tions, but we provide a proof. Consider the direct sum decomposition

⊕

N∈N≥2

(

(

⋂

m̄∈Parn+2(N)

V (m1) ⊗ Ji1 ⊗ V (m2) ⊗ Ji2−1 ⊗ · · · ⊗ Jin+1−1 ⊗ V (mn+2)
)

∩
(

⋂

m̄∈Parn+1(N)

V (m1) ⊗ Ji1+i2−1 ⊗ V (m2) ⊗ Ji3−1 ⊗ · · · ⊗ Jin+1−1 ⊗ V (mn+1)
)

)

.

(4.7)

It contains Ji1+···+in+1+2−n. On the one hand, Proposition 3.2 and Lemma 3.11
tell us that the N -th direct summand of the former is trivially included in the
N -th direct summand of
⊕

N∈N≥2

Ji1⊗
(

⋂

m̄∈Parn+1(N)

V (m1)⊗Ji2−1⊗V
(m2)⊗· · ·⊗V (mn)⊗Jin+1−1⊗V

(mn+1)
)

,

for allN ∈ N≥2. On the other hand, it is obvious that theN -th direct summand
of (4.7) is contained in the N -th direct summand of
⊕

N∈N≥2

(

⋂

m̄∈Parn+1(N)

V (m1)⊗Ji1+i2−1⊗V
(m2)⊗Ji3−1⊗· · ·⊗Jin+1−1⊗V

(mn+1)
)

,

for all N ∈ N≥2. It is trivial to see that each independent family given by the
N -th direct summands of each of the two previous direct sum decompositions
is a subfamily of the independent family

{
⋂

m̄∈Parn(N)

Ji1 ⊗Ji2−1⊗V
(m1)⊗Ji3−1⊗V

(m2)⊗· · ·⊗Jin+1−1⊗V
(mn)}N∈N≥2

.
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The comments at the end of the paragraph before Remark 4.3 tell us that
the restriction of idJi1

⊗ p
(i2,...,in+1)
n to (4.7) coincides with the restrictions of

p
(i1+i2,i3,...,in+1)
n to the same space. This proves the claim.

Dually to (ii), under the assumptions of (iii), the (i1, . . . , in+1)-specialization
of (4.5) simplifies as

pi1,...,in+1 ◦ (id
⊗(n−1)
J ⊗∆2) ◦∆n|Ji

= pi1,...,in+1 ◦ (∆n ⊗ idJ ) ◦∆2|Ji
,

for all the other terms are easily seen to vanish. This identity is equivalent to
the commutativity of the square

Ji1+···+in+1+2−n

ιi1+···+in+2−n,in+1
//

ιi1,...,in−1,in+in+1

��

Ji1+···+in+2−n ⊗ Jin+1

ιi1,...,in⊗idJin+1

��

Ji1 ⊗ · · · ⊗ Jin−1 ⊗ Jin+in+1

idJi1
⊗···⊗idJin−1

⊗ιin,in+1
// Ji1 ⊗ · · · ⊗ Jin+1

Notice that the hypotheses on the integers i1, . . . , in+1 imply that the horizon-
tal maps are the plain inclusions. The commutativity is clear from the defini-
tions and follows by an analogous argument to the one given in the previous
paragraph.
Finally, in the case (iv), the (i1, . . . , in+1)-specialization of (4.5) gives

pi1,...,in+1 ◦ (id
⊗(j−2)
J ⊗∆2 ⊗ id

⊗(n−j+1)
J ) ◦∆n|Ji

= pi1,...,in+1 ◦ (id
⊗(j−1)
J ⊗∆2 ⊗ id

⊗(n−j)
J ) ◦∆n|Ji

,

for all the other terms are easily seen to vanish. This identity is equivalent to

(idJi1
⊗ · · · ⊗ idJij−2

⊗ ιij−1,ij ⊗ idJij+1
⊗ · · · ⊗ idJin+1

)

◦ ιi1,...,ij−2,ij−1+ij ,ij+1,...,in+1

= (idJi1
⊗ · · · ⊗ idJij−1

⊗ ιij ,ij+1 ⊗ idJij+2
⊗ · · · ⊗ idJin+1

)

◦ ιi1,...,ij−1,ij+ij+1,ij+2,...,in+1 , (4.8)

By the assumption on the integers i1, . . . , in+1 we have that the left maps of the
left and right compositions are inclusions. This identity is proved as follows.
Consider the direct sum decomposition

⊕

N∈N≥2

(

⋂

m̄∈Parn(N−2)

V
(m1) ⊗ Ji1−1 ⊗ V

(m2) ⊗ · · · ⊗ Jij−2−1 ⊗ V
(mj−1) ⊗ Jij−1

⊗ Jij ⊗ Jij+1 ⊗ V
(mj ) ⊗ Jij+2−1 ⊗ V

(mj+1) ⊗ · · · ⊗ V
(mn+1) ⊗ Jin+1−1 ⊗ V

(mn)
)

,

(4.9)
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which trivially includes Ji1+···+in+1+2−n. Furthermore, its N -th direct sum-
mand includes the N -th direct summand of the decomposition (4.3) corre-
sponding to j̄ = (i1, . . . , ij−2, ij−1+ij, ij+1, . . . , in+1) and j̄ = (i1, . . . , ij−1, ij+
ij+1, ij+2, . . . , in+1) for all N ∈ N≥2. So, the restriction of the projection
of this decomposition onto the n-th direct summand to the space (4.3) for
j̄ = (i1, . . . , ij−2, ij−1 + ij, ij+1, . . . , in+1) coincides with pj̄n, and the same ap-
plies if j̄ = (i1, . . . , ij−1, ij + ij+1, ij+2, . . . , in+1). This proves identity (4.8).
The properties satisfied by the counit and the augmentation are also clear. The
proposition is thus proved. �

Remark 4.5. Note that the pattern of the proof is, roughly, (the dual of) the one
given by [16], Thm. 4.5, even though our case is much involved. This similarity is for
us, however, another indication that this definition of multi-Koszul property resembles
the notion of generalized Koszul algebras given by Berger.

Remark 4.6. It is easy to check that the A∞-algebra structure for J# given in the
proposition coincides with the one given in [19], Rmk. 3.25, in the particular case
that A is finitely generated in degree 1 and has a finite dimensional space of relations.

The following definitions are the duals to the ones given by Kadeishvili in [20],
p. 235, and we refer to [32], Chapitre 3, Section 5, even though the sign con-
vention is different. We recall that a linear map τ : C → A of cohomological
degree 1 and Adams degree zero from a coaugmented Adams graded A∞-
coalgebra C to an augmented Adams graded dg algebra A is called a twisting
cochain (sometimes called homotopical or generalized twisting cochain) if the com-
position of τ with the augmentation ofA vanishes, the composition of the unit
of C with τ is also zero, and if

d ◦ τ =
∑

n∈N

µ(n) ◦ τ⊗n ◦∆n,

where d is the differential of A and µ(n) denotes the (n− 1)-th iteration of the
product of A, as explained for the tensor algebra at the beginning of Subsec-
tion 3.1. Note that the previous sum is finite when evaluated at c ∈ C, for
the family {∆i}i∈N is locally finite. We denote by B+(−) the bar construc-
tion of an augmented A∞-algebra and by Ω+(−) the cobar construction of an
augmented A∞-coalgebra. Moreover, τC : C → Ω+(C) indicates the universal
twisting cochain, given by the composition of the projection C → C/Im(η), the
shift and the canonical inclusion, where η denotes the coaugmentation of C
(see [32], Déf. 3.14). Dually, for an augmented Adams graded dg algebra A,
its universal twisting cochain is the map τA : B+(A) → A, given by the com-
position of the minus canonical projection onto Ker(ǫ), the shift and canoni-
cal inclusion, where ǫ denotes the augmentation of A (see [32], (2.23)). Then,
twisting cochains τ : C → A are in correspondence with morphisms of dg al-
gebras fτ : Ω+(C) → A via fτ ◦ τC = τ (see [32], Lemme 3.17). In this case we
may consider the twisted tensor productC⊗τ A, whose underlying vector space
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is given by the usual tensor product. We will consider it only in the case A has
vanishing differential. Under this assumption the twisted tensor product is
given by the complex of graded right A-modules for the regular right action
of A provided with a differential dτ defined as

∑

n∈N

(idC ⊗ µ(n)) ◦ (idC ⊗ τ⊗(n−1) ⊗ idA) ◦ (∆n ⊗ idA).

The following theorem must be well-known to the experts, but we sketch a
proof. It was announced by B. Keller at the X ICRA of Toronto, Canada, in
2002.

Theorem 4.7. Let C be a minimal Adams graded coaugmented A∞-coalgebra and
A be a nonnegatively graded connected algebra. Then, the following are equivalent:

(i) There is a quasi-isomorphism of Adams graded augmented minimal A∞-
algebras

Ext•A(k, k) → C#.

(ii) There is a twisting cochain τ : C → A such that the twisted tensor product
C ⊗τ A is a minimal projective resolution of the trivial right A-module k.

Proof. Let us show that (ii) ⇒ (i). First note that we have a morphism of
augmented dg algebras fτ : Ω+(C) → A, which in turn induces a morphism
of augmented dg coalgebras B+(fτ ) : B+(Ω+(C)) → B+(A). By [32], Thm.
3.25, we know that fτ is a quasi-isomorphism if and only if B+(fτ ) is so, if
and only if B+(Ω+(C)) ⊗fτ◦τΩ+(C)

A is acyclic (in the sense given by [32],
Déf. 1.26). Using the adjunction quasi-isomorphism ψ : C → B+(Ω+(C))
(see [32], Thm. 2.28, or [24], Lemme 1.3.2.3) we get that C ⊗τ A is quasi-
isomorphic to B+(Ω+(C)) ⊗fτ◦τΩ+(C)

A (see [32], Thm. 3.23 for the existence
of the map. The fact that it is a quasi-isomorphism follows easily, see for
instance [32], Thm. 2.8, (i)). Hence, the assumption that C ⊗τ A is acyclic
yields that the map B+(fτ ) : B+(Ω+(C)) → B+(A) is a quasi-isomorphism
of coaugmented dg coalgebras. If we consider the composition of the adjunc-
tion quasi-isomorphism ψ : C → B+(Ω+(C)) of coaugmented A∞-coalgebras
with the quasi-isomorphism B+(fτ ) we get thus a quasi-isomorphism of
coaugmented A∞-coalgebras C → B+(A), which in turn induces a quasi-
isomorphism of augmented A∞-algebras B+(A)# → C#. Using the quasi-
isomorphism Ext•A(k, k) → B+(A)# of augmented A∞-algebras given by the
theorem of Kadeishvili, we get the desired quasi-isomorphism of augmented
A∞-algebras. It further preserves the Adams degree for all the involved maps
preserve it.
We will now prove the converse. Suppose thus that f : Ext•A(k, k) → C#

is a quasi-isomorphism of minimal Adams graded augmented A∞-algebras.
This implies that we have a quasi-isomorphism of augmented A∞-algebras
g : B+(A)# → C#. Define τ as the twisting cochain composition of g# and
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the universal twisting cochain τA : B+(A) → A of A (see [32], Déf. 3.21 and
Lemme 3.22). Since g# is a quasi-isomorphism, we get that the map g# ⊗ idA
defines a quasi-isomorphism from C ⊗τ A to B+(A) ⊗τA A, which is always
acyclic (see for example [32], Thm. 3.19). See [32], Thm. 3.23 for the proof
that this map is a morphism of complexes of A-modules. The fact that it is a
quasi-isomorphism follows easily (see for instance [32], Thm. 2.8, (i)). Hence
C ⊗τ A is also acyclic. �

For the coaugmented A∞-coalgebra structure defined on J , we now set τ :
J → A as the linear map given by the composition of the canonical projection
J → J1 = V and the inclusion V ⊆ A. It is easy to check that τ is a twisting
cochain, and furthermore J ⊗τ A coincides with the right multi-Koszul com-
plex ofA. Indeed, we first note that the underlying homological bigraded vec-
tor space of J⊗τ A coincides with the corresponding one ofK(A)′•. Moreover,
the differential dτ restricted to Ji⊗A for i odd is trivially seen to coincide with
the differential b′i of K(A)′•. The case i even follows from Remark 4.3. Hence,
by Proposition 4.4 and the previous theorem we have the following result.

Theorem 4.8. Let A be a multi-Koszul algebra, and let {Ji}i∈N0 be the collection
of graded vector subspaces of T (V ) defined by J0 = k and the recursive identities
(3.2) and (3.3). Then the Adams graded augmented A∞-algebras Ext•A(k, k) and J

#

are quasi-isomorphic, where the structure of Adams graded augmentedA∞-algebra of
J# was given in Proposition 4.4.
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