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ABSTRACT 

The already reported monomeric complex Co(SDZ)2bpy (1) and the novel ternary complex 

Co(SDZ)2(6MQ)2 (2) (SDZ = sulfadiazine; bpy = 2,2′-bipyridine and 6MQ = 6-methoxyquinoline) 

have been synthesized in order to study their magnetic properties. X-ray diffraction method 

indicates that in both compounds the SDZ acts as a bidentate ligand coordinating through the 

sulfonamide and the pyrimidinic N-atoms giving raise a CoN6 coordination sphere. The complexes 

have been characterized based on elemental analyses, FTIR, UV-Visible spectroscopy and 

thermogravimetric analysis (TGA, only for 2). Both compounds, 1 and 2, have been characterized 

magnetically and they show slow relaxation of the magnetization below 9 and 6 K, respectively. 

 

Keywords – sulfadiazine, slow relaxation of the magnetization, single-ion magnets, Co (II) 

complexes, X-Ray structure. 

 

 

1. Introduction 

 

Since the discovery of single-molecule magnets (SMMs), molecular magnets that exhibit slow 

relaxation of the magnetization and magnetic hysteresis below the so-called blocking temperature 

(TB), there has been a crescent interest in understanding the magnetic properties of mono and 

polynuclear coordination compounds.
 [1]

 The SMM behavior comes from the existence of an energy 

barrier (U) that prevents reversal of the molecular magnetization at low temperatures, which 

depends on the high ground spin state (ST) and magnetic anisotropy of the entire molecule (U = 

|D|·S
2
 for integer S and U = |D|·(S

2
-1/4) for non-integer S).

[1b]
 Earliest attempts to enhance U 

consisted on increasing the total spin, which was achieved by increasing the number of 

ferromagnetically coupled metal centers. However, the control of the total anisotropy in 

polymetallic systems was extremely difficult and the increase in S led to a decrease in the magnetic 
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anisotropy in most cases. 
[2] 

In view of this, in the last years a new class of SMMs has emerged, 

named single-ion magnets (SIMs), where only a paramagnetic center is present and is responsible 

for SMM-like behavior. 
[3]

 Although the majority of the reported SMMs (mono and polynuclear) 

are lanthanide-based coordination compounds, 
[4] 

the search for new SIMs has been extended to 

transition metals complexes, for example Fe(II), 
[5]

 Co(II), 
[6]

 Ni(II) 
[7]

 and Mn(II) 
[8]

. Despite the 

impressive values of the relaxation barrier observed in mononuclear transition-metal complexes (as 

high as 226 cm
-1

 for an Fe(I) complex, with a TB = 4.5 K), 
[9]

 further improvement of their SIM 

properties is still required. 

Co(II) complexes are good candidates for the construction of SIMs due to their large 

magnetic anisotropy, which arises from the significant orbital contribution to the total magnetic 

moment. 
[10] 

The magnetic properties of these complexes are greatly influenced by the coordination 

environments of Co(II) ions. For example, distorted octahedral Co(II) compounds can exhibit 

positive axial magnetic anisotropy (D > 0) and field-induced slow relaxation of the magnetization. 

[11]
 Trigonal prismatic coordination geometries, in contrast, lead to high negative values of D and 

therefore, they are very appropriate for the preparation of SIMs. 
[12]

 In fact, although the highest 

effective energy barrier exhibited by a Co(II) complex has been observed in a tetrahedral compound 

(Ueff = 118 cm
-1

 at zero dc field), 
[13]

 trigonal prismatic Co(II) complexes have also showed 

interesting SMM properties. 

In addition to the coordination geometry, the coordinated ligands also influence the sign and 

magnitude of the magnetic anisotropy, thereby modulating the corresponding magnetic dynamics. 

The ligands chosen for this work are sulfonamides, which have been used as antibacterial for a long 

time. The metallic complexation of this family of compounds has brought to the sight a very wide 

range of biological properties, as well as magnetic properties. We have previously reported the 

structure and physicochemical characterization of some metal complexes of sulfonamides with 

different metals. 
[14]

 Recently, we have also reported the study of the aquatic toxicity, antimicrobial 

activities and cytotoxicity study in osteoblast-like cells in a cobalt complex with sulfaquinoxaline 

and 2,2′-Bipyrimidine as ligands. 
[15]

 Other similar complexes with sulfadiazine and sulfamethazine 

have also been reported. 
[16] 

Relative to the 6MQ ligand, Cu(II), Ni(II), Zn(II) 
[17] 

 and Hg(II) complexes with 6MQ as ligand 

were reported, but only the crystal structure of the compound containing mercury was discussed. 
[18]

 

With the aim of expanding the previously mentioned studies and to study the effect of different 

coordination geometries in the magnetic properties of Co(II) compounds, two ternary complexes of 

Co(II) with SDZ and 2,2′-bipyridine or 6-methoxyquinoline as ligands have been prepared, 

[Co(SDZ)2bpy] (1) and [Co(SDZ)2(6MQ)2] (2). The crystal structure of 1 was already published, 

but its magnetic properties were not studied.
 [19]

 The characterization of complex 2 by means of X-

ray diffraction, thermogravimetry, FTIR and UV–Vis spectroscopies is also discussed.  
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2. Results and discussion 

Although the crystal structure of complex 1 has already been published, structural features of this 

compound will be described in detail to understand the magnetic properties. The description will be 

based on our crystal data (CCDC 1430627).  

 

2.1. Structure 

Figure 1 and 2 show the coordination sphere of each metal center bonded to the ligands together 

with the used scheme label. In both cases, the Co(II) ion exhibits a CoN6 coordination sphere. 

Calculation of the degree of distortion of the CoN6 coordination polyhedra with respect to five ideal 

six-vertex polyhedra with the help of the SHAPE software 
[20]

 indicates that compound 1 is closer in 

shape to the trigonal prism (TPR-6) geometry, while 2 fits in better way to the octahedron (OC-6) 

one. For 1 values of 9.285 and 4.642 were calculated, while for 2 the calculation led to values of 

4.174 and 16.804, for the OC-6 and the TPR-6 polyhedra, respectively (see table S1 in the 

Supporting Information).  

Table 1 collects the experimental bond distances and angles around the cobalt atom 

determined by XRD for complexes 1 and 2. For 1 the coordination sphere of the Co(II) cation 

consists of the bpy Nitrogen atoms at a distance of 2.137 (2) and 2.112 (2) Å and four nitrogen 

atoms from two SDZ molecules at 2.195(2) and 2.22(2) Å distances, completing the trigonal prism 

geometry. In the case of 2, the Co(II) atom is located on an inversion center octahedrally 

coordinated by six nitrogen atoms. In the axial positions are located two 6MQ at Co–N110 distance 

of 2.209 (2) Å and four equatorial SDZ nitrogen atoms (Co–N27 2.222(2) Å and Co–N21 2.100(2) 

Å). The fact that the Co(II) atom is located at an inversion center, makes equivalent the two 6MQ 

and the SDZ ligands. 

Furthermore, the lattice of both complexes is stabilized by the presence of intermolecular 

hydrogen bonds (see table S2 in the ESI). Besides, the 3D structure of 1 displays intermolecular 

π···π aniline-aniline (4.000 (2) Å) and bpy-bpy interactions (4.258 (2) Å) (Figure S1, ESI). In 2, 

π···π interactions were observed between the quinolinic (3.931 (4) Å; see fig S1 in the ESI) and the 

pyrimidinyl rings of adjacent molecules (3.719 (3) Å).  
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Figure 1. Left: Perspective view of complex 1 with displacement ellipsoids at the 50% probability 

level. Hydrogen atoms have been omitted for the sake of clarity. Right: Trigonal prismatic CoN6 

coordination sphere in 1. 

 

Table 1. Selected bond lengths (Å) and angles (°). 

Complex 1     

Co–N26 2.137 (1) N26–Co–N27 61.58 (1) 

Co–N27 2.198 (1) N31–Co–N312 76.30 (1) 

Co–N31 2.138 (1) C211–S28–N27 108.42 (1) 

Co–N312 2.112 (1) C111–S18–N17 107.72 (1) 

Co–N17 2.223 (1)   

Co–N16 2.153 (1) N31–C36–C37–N312 15.26 (1) 

S28–N27 1.616 (1)   

    

Complex 2     

Co–N21 2.100 (2) N21–Co1–N27   61.99 (1) 

Co–N27 2.222 (2) N21–Co1–N27’ 118.01 (1) 

Co–N110 2.209 (2) C211–S28–N27 108.63 (1) 

S28–N27 1.611 (1)   
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Figure 2. Left: Coordination sphere of complex 2 with displacement ellipsoids at the 30% 

probability level (H-atoms are omitted for clarity). Right: Distorted octahedron CoN6 coordination 

sphere.  

 

2.2. Magnetic Properties 

 

The temperature dependence of MT for complexes 1 and 2 were measured in an applied field of 0.1 

T and are displayed in Figure 3. The MT values at room temperature of 2.78 and 2.96 cm
3
·K·mol

-1
, 

respectively for 1 and 2, fall within the expected range for high spin d
7
 Co(II) ions (S = 3/2). 

[21]
 

Upon cooling, the MT product of complex 1 remains almost constant until around 150 K and then 

starts decreasing to reach a value of 2.06 cm
3
·K·mol

-1
 at 4.5 K. On the other hand, the MT product 

of complex 2 decreases in the whole temperature range, reaching a value of 1.91 cm
3
·K·mol

-1
 at 4.5 

K. The observed behavior is most likely due to spin-orbit coupling effects, but it could also be due 

to intermolecular antiferromagnetic interactions. 
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Figure 3. Variable-temperature magnetic susceptibility data for complexes 1 (top) and 2 (bottom). 

The red solid line is generated from the best fit to the following Hamiltonian: H   [  
      

    ]          

  

In order to determine the magnitude and sign of the anisotropy parameter (D), isofield 

magnetization measurements were performed (Figure 4). The magnetization curves for complex 1 

are almost superimposable, which has been typically related to the absence of anisotropy. However, 

it has been seen in bibliography that highly anisotropic systems can also lead to the same results. [8, 

11d] All efforts to extract the value of the anisotropy parameter from these curves were unfruitful. 

Regarding complex 2, the magnetization data at different fields (0-9 T) and temperatures (2-7 K) 

were analyzed simultaneously to the following Hamiltonian using the PHI program: 
[22]

 

    [  
 -        ]   (  

 -  
 )          (Equation 1) 

where S is the spin ground state, D and E are the axial and transverse magnetic anisotropies, 

respectively, μB is the Bohr magneton and H the applied magnetic field. The best fit of the data led 

to different sets of parameters: D = -81.6 cm
-1

, E = 1.99 cm
-1

, g = 2.78 and D = +81.1 cm
-1

, E = 2.01 

cm
-1

, g = 2.78, which differ in the sign of D. The fit of the susceptibility data of 2 led to similar 

values, D = |78.9| cm
-1

 and g = 2.54, thus confirming the magnitude of D (Figure 3). However, it 

was impossible to unequivocally know the sign of D from the magnetic data. 
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Figure 4. M vs H plots for 1 (top) and 2 (bottom) at different temperatures. Solid points represent 

the experimental data while the lines are generated connecting the data obtained with the PHI 

program for the indicated Hamiltonian and parameters. Inset: M vs H/T plot for 1. Solid lines are 

only a guide for the eye. 

With the aim of knowing if these compounds show slow relaxation of the magnetization or 

not, dynamic alternating-current (ac), magnetic measurements were performed as a function of 

both, temperature and frequency (Figures 5 and 6 and Figure S2). Despite the expected large 

anisotropy of the Co(II) ions, these complexes did not show any out-of-phase ”M signal under zero 

external field, which may be due to the fast resonant zero field quantum tunneling of the 

magnetization (QTM) through degenerate energy levels. This QTM relaxation process is forbidden 

for Kramers doublets such as Co(II) ions (the zero-field tunnel splitting is zero), but could be turned 

on by dipolar effects and hyperfine interactions. When the ac measurements were performed in the 

presence of a small external dc field of 1000 Oe to fully or partly suppress the QTM relaxation 

process, compounds 1 and 2 showed slow relaxation of the magnetization below 9 and 6 K, 

respectively.  
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Figure 5. Top: Temperature dependence of the molar out-of-phase ac magnetic susceptibility (”M) 

for 1 under an applied field of Hdc = 1000 Oe at different frequencies. Inset: Arrhenius plot (black 

lines) for the relaxation times. The red line corresponds to the best fit to Orbach plus Raman 

processes. Bottom: Cole-Cole plots. Solid lines represent the best fit of the experimental data to the 

generalized Debye model. 
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Figure 6. Top: Temperature dependence of the molar out-of-phase ac magnetic susceptibility (”M) 

for 2 under an applied field of Hdc = 1000 Oe at different frequencies. Inset: Arrhenius plot (black 

lines) for the relaxation times. The blue line corresponds to the best fit to the Raman process. 

Bottom: Cole-Cole plots. Solid lines represent the best fit of the experimental data to the 

generalized Debye model. 

 

The relaxation times (τ) were extracted from the fit of the frequency dependence of M at each 

temperature to the generalized Debye model (Figures 5 and 6, insets and Table S3). The fit of the 

linear portions of the data afforded effective energy barriers for the reversal of the magnetization of 

50.6 K (35.2 cm
-1

) and 13.7 K (7.0 cm
-1

) with τ0 values of 4.61·10
-8

 s and 1.79·10
-6

 s, respectively 

for 1 and 2. As expected, the Arrhenius plots constructed from the temperatures and frequencies of 

the maxima observed for the M lead to similar results. For complex 1, the M signals do not go to 

zero below the maxima; they increase up to 2 K, which indicates that the QTM process has not been 

fully eliminated.   

The Cole-Cole diagrams for both compounds exhibit semicircular shapes that can be fitted by 

using the generalized Debye model (Figures 5 and 6). This fit provides a value for the α parameter, 

which is related to the width of the distribution of relaxation times, so that α = 1 corresponds to an 

infinitely wide distribution of relaxation times, whereas α = 0 represents a relaxation with a single 

time constant. The obtained α values in the range 0.22 (4.4 K) – 0.04 (8.5 K) and 0.21 (2 K) – 0.06 

(5.6 K), respectively for 1 and 2, suggest the existence of multiple relaxation processes (Table S3). 

In view of this, the experimental relaxation times were fitted to equations that take into account the 
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presence of different relaxation times. Although QTM is not fully suppressed in complex 1, the best 

fit in the 4.4-8.5 K range was obtained considering both Orbach and Raman processes (Equation 2) 

and led to the following set of parameters: b = 0.067, n = 6.24, τ0= 2.93·10
-8

 s and Ueff= 65.4 K. 

 

 -        
- 
     -       ⁄   (Equation 2) 

 

For complex 2, the obtained energy barrier of 13.7 K is much lower than the expected value 

from the energy gap between the Ms = ± 1/2 and Ms = ± 3/2 levels (energy gap = 2D = 162 cm
-1

 = 

233 K), which indicates that the relaxation cannot take place through an Orbach mechanism. The 

relaxation times were fitted to the Raman process (equation 3) and following recent works,
 [23]

 the 

simultaneous presence of direct and Raman processes was also considered (equation 4). The best 

fitting parameters were: b = 857.1 and n = 2.339 for equation 3 (Figure 6) and a = 1607, b = 297 

and n = 2.84 for equation 4. In general, n=9 is expected for Kramers ions, 
[24]

 but depending on the 

structure of the levels, n values between 1 and 6 can be considered as reasonable. 
[25]

 

        (Equation 3) 

           (Equation 4) 

The obtained energy barrier values fall within the range of experimental values observed for 

octahedral and trigonal prismatic Co(II) SIMs (Table S4). 
[11], [12], [26]

 It is interesting to note that all 

the octahedral Co(II) ions, independently of the sign of D, need a static external field to show SIM 

behavior. The large magnetic anisotropy of the octahedral Co(II) ions usually leads to Kramers 

ground doublets that are well separated from the first excited states, with energy gaps larger than 

typical acoustic phonon energies (the Orbach mode is therefore hindered). The spin-relaxation of 

these complexes has been usually explained by an admixture of single phonon direct processes and 

optical acoustic Raman-like processes, like in complex 2. In these cases, the hyperfine interactions 

open paths for magnetic relaxation that would otherwise be forbidden by time reversal symmetry 

(direct processes), but they mask relaxation phenomenon at zero field. 
[23]

 On the other hand, for 

trigonal prismatic Co(II) SIMs, several relaxation modes such as Orbach, Raman and QTM have 

been admitted. 
[12d]

 

 

2.3 Electronic Spectroscopy 

 

The UV-Vis spectra of the complexes were recorded in aqueous solution. The nature of the 

d-d metal transitions was studied by analyzing the visible diffuse reflectance (V-DR) of the 

complexes (Figures S3 and S4). In the 190 – 340nm spectral range, the UV-Vis spectrum of 1 

displays bands at 240, 254, 292 and 304nm (ε =5.3·10
4
, 5.3·10

4
, 2.6·10

4
 and 1.9·10

4 
M

-1
cm

-1
, 



European Journal of Inorganic Chemistry 10.1002/ejic.201600777

 

respectively), while the spectrum of 2 shows features at 202, 228, 260 and 326nm (ε = 1.7·10
5
, 

1.2·10
5
, 4.4·10

4
 and 2·10

4 
M

-1
cm

-1
, respectively). In both cases the bands observed at lower than 

340nm are assigned to intraligand π-π* transitions. The V-DR of 1 shows two bands at 482 and 540 

nm, which may tentatively be assigned to 
4
T1g(F)→

4
T1g(P) and 

4
T1g(F)→

4
A2g transitions, 

respectively. For the compound 2 the V-DR exhibits only one broad band centered at 490nm, 

assignable to the 
4
T1g (F) →

4
T1g (P) transition. These bands are in agreement with the partially 

allowed d-d transitions of the d
7 

six-coordinated Co (II) complexes. 
[27]

 

 

2.4. Thermogravimetric Analysis 

The analysis of TG and DTG curves of 2 indicates decomposition in three steps (Figure S5). 

The first one (142.0 ºC) corresponds to a weight loss of 34.7% consistent with the evolution of the 

two 6MQ ligands (loss of weight calculated 36.4%). The second step (282.1 ºC) observed in TG 

curve is compatible with a weight loss of 21.1 % and might be attributed to the decomposition of 

the anilinic group of the two SDZ (calculated 21.3%). The last incomplete step (419.2 ºC) probably 

corresponds to the decomposition of the remaining organic groups; loss of weight observed 31.43% 

(calculated 35.8%). The decomposition process yields cobalt monoxide as the final residue, as 

suggested by its FTIR spectra. 

 

CONCLUSIONS 

 

Two single-ion magnets based on Cobalt (II) with sulfadiazine and 2,2′-bipyridine (1) or 6-

methoxyquinoline (2) have been synthesized. X-ray diffraction method indicates that the 

sulfadiazine (SDZ) acts as a bidentate ligand coordinating through the sulfonamide and the 

pyrimidinic N-atoms giving rise to a CoN6 coordination sphere. The lattice in both compounds is 

stabilized by the presence of intermolecular hydrogen bonds and π···π interactions. Magnetic 

studies have showed slow relaxation of the magnetization below 9 and 6 K, respectively. 

3. Experimental 

3.1. Synthesis of the complexes 

 

Synthesis of 1 – [Co(SDZ)2bpy] 

Complex 1 was prepared following a different synthesis compared with that previously reported 
[19]

. 

The compound was obtained by direct reaction of ethanolic solutions of sulfadiazine sodium salt 

(NaSDZ), bpy and CoCl2·6H2O in 1:1:1 molar ratio. An orange precipitate was separated by 

centrifugation, washed several times with ethanol and its elemental microanalysis was performed. 

The slow evaporation of the mother solution provided well-developed orange crystals, which 

showed that the obtained compound was already reported. 
[19] 

Analytical calculation for 
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CoC30H26N10O4S2: C, 50.49%; H, 3.67%; N, 19.63%; S, 8.97%. Found: C, 50.59%; H, 3.61%; N, 

19.51%; S, 8.846%. The yield was 81.4%. FT-IR data (cm
-1

): υas (NH2) 3417, υs (NH2) 3350 and 

3320, υ (C=N and C=C) 1652 to 1549, υas (SO2) 1325 and 1296, υs (SO2) 1142 and 1135, υ (CoN) 

412.        

 

Synthesis of 2 – [Co(SDZ)2(6MQ)2] 

The complex was prepared by adding methanolic solutions of NaSDZ (0.75mmol) and 6MQ 

(1.75mmol) to a methanolic solution containing CoSO4·7H2O (0.75mmol). The reaction was 

refluxed for 4 h and then, the resulting light orange solid was filtered, washed several times with 

methanol and subjected to elemental microanalysis. Mother solution was allowed to stand at room 

temperature and after slow evaporation, light orange crystals suitable for X-ray diffraction 

appeared. Analytical calculation for CoC40H28N10O6S2: C, 54.73%; H, 4.36%; N, 15.96%; S, 7.31%. 

Found: C, 54.34%; H, 4.21%; N, 15.90%; S, 7.192%. The yield of the synthesis was 89.1%. FT-IR 

data (cm
-1

): υas (NH2) 3454, υs (NH2) 3348, υ (C=N and C=C) 1635 to 1500, υas (SO2) 1320, υs 

(SO2) 1130.        

 

3.2. Materials and methods 

The FTIR spectra were carried out with an EQUINOX 55 spectrophotometer, in the range 

from 4000 to 400 cm
-1

 using the KBr pellet technique, with a spectral resolution of 4 cm
-1

. 

Elemental (C, H, N and S) analyses were performed on a Leco CHNS-932 microanalyzer. The UV-

Vis spectra were measured on aqueous solutions (10 μM), using a Hewlett–Packard 8452-A diode 

array spectrophotometer. The Vis-Diffuse reflectance spectra were recorded with MgO as reference 

with the help of a Shimadzu UV300 spectrophotometer. Variable-temperature magnetic 

susceptibility (4.5–300 K) measurements were carried out with a Quantum Design SQUID MPMS-

7 T device. Magnetization measurements at different temperatures and magnetic fields and 

alternating current magnetic measurements (oscillating ac field of 3.5 Oe) were performed on a 

PPMS 6000 (Physical Property Measurement System) magnetometer. Thermogravimetric 

measurements were performed using a Shimadzu TGA-50 unit at a heating rate of 5°C/min. and 

nitrogen flow of 50 ml/min.  

 

3.2.2 X-ray diffraction data 

Data for complexes were collected on an Agilent Gemini Diffractometer with an EOS CCD detector 

equipped with a graphite-monochromated Mo Kα (λ= 0.71073 Å) radiation. X-ray diffraction 

intensities were collected (ω scans with θ and κ-offsets), integrated and scaled with CRYSALISPRO 

[28] 
suite of programs. The unit cell parameters were obtained by least-squares refinement (based on 

the angular settings for all collected reflections with intensities larger than seven times the standard 
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deviation of measurement errors). Data were corrected empirically for absorption employing the 

multi-scan method implemented in CRYSALISPRO. The structures were solved by direct methods 

with SHELXS-97 
[29]

 and the molecular models refined by full-matrix least-squares procedure on F² 

with SHELXL-97. 
[29] 

The hydrogen atoms were positioned stereo-chemically and refined with the 

riding model. All the attempts to recrystallize the compound 2 from different solvents and 

temperatures yielded crystals with two or more domains which produced X-ray data of limited 

quality as consequence. The best data were obtained from a crystal obtained from the mother 

solution of the reaction in methanol as previously described. Crystal data and refinement results are 

summarized in Table 2. CIF files with details of the crystal structures reported in this paper have 

been deposited with the Cambridge Crystallographic Data Centre, under deposition numbers 

CCDC1430627 (1) and 1430628 (2). The complementary structural data of complex 1 which had 

been published earlier by Ran et al. [19] can be found under CCDC 977532. 

 

Table 2. Crystal data and structure refinement for complexes 1 and 2. 

Compound 1 2 

Empiric formula CoC30H26N10O4S2 CoC40H28N10O6S2 

Formula weight 713.11 875.84 

Temperature 293 K 293 K 

Wavelength 0.71073 Å 0.71073 Å 

Crystal system Triclinic Monoclinic 

Space group P-1 P 21/n 

Unit Cell dimensions a = 10.282 Å 

b = 12.401 Å 

c = 12.877 Å 

α=75.50° 

β = 82.31° 

γ = 73.52º 

a = 8.7968(8) Å 

b = 21.5595(15) Å 

c = 10.3300(8) Å 

 

β =94.154(7)° 

Volume 1641.9 Å³ 1955.55 Å³ 

Z, Density (calculated) 2, 1.558 g cm
-3

 4, 1.489 g cm
-3

 

Absorption coefficient 0.758 mm
-1

 0.609 mm
-1

 

F(000) 734 906 

Crystal size 0.196 x 0.112 x 0.053 mm
3
 0.331 x 0.216 x 0.053 mm

3
 

 range for data collection 3.046 to 29.263º 3.087 to 25.996º 

Index ranges -13 ≤ h ≤ 14 

-16 ≤ k ≤ 17 

-16 ≤ l ≤ 16 

-7 ≤ h ≤ 10  

-26 ≤ k ≤ 24 

-12 ≤ l ≤ 9    

Reflections collected / unique 12325 / 6888 [R(int)=0.0293] 8679 / 3830 [R(int)=0.0631] 

Completeness to θ = 25.242º 99.8 % 99.7 % 

Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents 

Max. and min. transmission 1 and 0.96837 1 and 0.9174 

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2 

Data/restraints/parameters 6888 / 22 / 512 3830 / 0 / 268 
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Goodness-of-fit on F2 0.959 1.254 

Final R indices [I > 2σ(I)]
a
 R1 = 0.0419, wR2 = 0.0924   R1 = 0.1081, wR2 = 0.1959 

R indices (all data)
a
 R1 =0.0693, wR2 = 0.1071 R1 = 0.1527, wR2 =  0.2172 

Largest diff. peak and hole 0.286 and -0.286 e.Å
-3

 0.668 and -0.453 e.Å
-3

 

a
R1=Σ||Fo|-|Fc||/Σ|Fo|, wR2=[Σw(|Fo|

2
-|Fc|

2
)

2
/Σw(|Fo|

2
)

2
]

1/2 
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