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[1] Density underflows in general and turbidity currents in particular differ from rivers in
that their governing equations do not allow a steady, streamwise uniform “normal”
solution. This is due to the fact that density underflows entrain ambient fluid, thus
creating a tendency for underflow discharge to increase downstream. Recently, however, a
simplified configuration known as the “turbidity current with a roof” (TCR) has been
proposed. The artifice of a roof allows for steady, uniform solutions for flows driven
solely by gravity acting on suspended sediment. A recent application of direct numerical
simulation (DNS) of the Navier-Stokes equations by Cantero et al. (2009) has revealed
that increasing dimensionless sediment fall velocity increases flow stratification, resulting
in a damping of the turbulence. When the dimensionless fall velocity is increased beyond
a threshold value, near-bed turbulence collapses. Here we use the DNS results as a means
of testing the ability of three Reynolds-averaged Navier-Stokes (RANS) models of
turbulent flow to capture stratification effects in the TCR. Results showed that the
Mellor-Yamada and quasi-equilibrium k-ε models are able to adequately capture the
characteristics of the flow under conditions of relatively modest stratification, whereas the
standard k-ε model is a relatively poor predictor of turbulence characteristics. As
stratification strengthens, however, the deviation of all RANS models from the DNS results
increases. All are incapable of predicting the collapse of near-bed turbulence predicted by
DNS under conditions of strong stratification. This deficiency is likely due to the inability
of RANS models to replace viscous dissipation of turbulent energy with transfer to internal
waves under conditions of strong stratification. Within the limits of modest stratification, the
quasi-equilibrium k-ε model is used to derive predictors of flow which can be incorporated
into simpler, layer-averaged models of turbidity currents.
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1. Introduction

1.1. Background

[2] Turbidity currents are sediment-laden, gravity-driven
underflows that occur in lakes and oceans. They are respon-
sible for delivering sediment into these subaqueous

environments, where they can shape the largest sedimentary
features on the modern earth [Middleton, 1993]. Complex in-
teractions between turbidity currents and their surrounding
environment take place as they travel and evolve. First of
all, the difference in density between the turbidity current
and the ambient fluid causes interfacial instability, which acts
to entrain ambient fluid into the current body. As a result, the
current thickens and becomes dilute. Second, these currents
actively exchange sediment with the bed surface material
by depositing sediment through downward settling and
entraining sediment through shear, creating depositional or
erosional features in the process. These interactions are keys
to explaining the formation of important subaqueous mor-
phologies such as submarine channels, levees, and canyons.
[3] One of the most important factors associated with these

interactions is the internal structure of the current. For exam-
ple, the near-bed velocity gradient and the turbulent energy de-
termine the erosive power of a current; the near-bed sediment
concentration determines settling flux onto the bed. On the
other hand, as the current evolves, settling and entrainment

1Department of Civil and Environmental Engineering, University of
Illinois at Urbana-Champaign, Urbana, Illinois, USA.

2Shell International Exploration and Production, Houston, Texas, USA.
3National Council for Scientific and Technological Research, Institute

Balseiro, San Carlos de Bariloche, Argentina.
4Shell Nigeria Exploration and Production, Lagos, Nigeria.
5Department of Geology, University of Illinois at Urbana-Champaign,

Urbana, Illinois, USA.

Corresponding author: T. Yeh, Shell International Exploration
and Production, 3333 Hwy 6 South, Houston, TX 77082, USA.
(tzu.hao.yeh@gmail.com)

©2013. American Geophysical Union. All Rights Reserved.
2169-9003/13/10.1002/jgrf.20126

1

JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE, VOL. 118, 1–24, doi:10.1002/jgrf.20126, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/158838212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


processes will in turn adjust its internal structure. Such a
system can be further complicated when the dispersive com-
ponent, sediment in our case, self-stratifies. Due to the ten-
dency for sediment to settle, the concentration tends to
decrease upward within the current body. This stratification
in density requires additional consumption of energy from
the mean flow in order to mix the concentration against the
density gradient. As turbulence dampens, the flow becomes
less effective at mixing momentum, resulting in a velocity pro-
file that varies more strongly in the vertical [Vanoni, 1946;
Einstein and Chien, 1955; Coleman, 1981, 1986; Lyn 1988].
[4] Various efforts have been devoted to understanding the

hydrodynamics as well as the morphodynamic response as-
sociated with turbidity currents through numerical modeling.
These studies are often composed of a depth-averaged,
three-equation model [Ellison and Turner, 1959; Pantin,
1979] for flow dynamics and an equation for bed movement.
For example, Imran et al. [1998] examined the condition for
self-channelization of turbidity currents on a submarine fan
using a two-dimensional three-equation model; Kostic and
Parker [2003] implemented the model as a submodel to
study the depositional pattern of fine material beyond a
prograding delta foreset; Bradford and Katopodes [1999]
extended the model to include multiple-grain sizes; Parker
et al. [1986] included an additional equation for the balance
of turbulent kinetic energy, resulting in a four-equation
model, to restrain unrealistic self-acceleration of turbidity
currents that appeared in the three-equation model. While
these depth-averaged models are more computationally effi-
cient and are often applied to large-scale simulations, various
empirical relations and/or assumptions are required to close
the problem, thus compromising the accuracy of the models.
An example is the use of a specified, constant near-bed con-
centration ratio, r0 = cb/C, where cb and C are the near-bed
and depth-averaged volumetric sediment concentration, re-
spectively. Such an assumption is intuitively inaccurate since
the value of r0 should vary at least with the grain size in the
flow. More specifically, for the same layer-averaged concen-
tration, an increase in sediment size should result in a higher
near-bed concentration as the particles become increasingly
difficult to keep in suspension in the flow. Similar arguments
can be made in regard to the use of a constant resistant
coefficient Cf when computing the bed shear stress.
[5] Finding suitable relations for these parameters, how-

ever, has been challenging. Field observations in the deep
water environment have recently become feasible [Xu et al.,
2004; Xu, 2010] but are nevertheless difficult to obtain due
to the unpredictable nature of turbidity currents and the depth
at which they often occur. Often, the evidence of an event is
only retrieved from the resulting deposit, i.e., turbidites, as
observed in surface expression cores or seismics [e.g.,
Babonneau et al., 2002; Fildani et al., 2006], or in outcrop
[e.g., Ito and Saito, 2006]. On the other hand, turbidity cur-
rents in the laboratory can be produced and recorded under
more controlled conditions. However, due to scale effects,
viscous effects tend to be overemphasized in laboratory tur-
bidity currents and hence limitations arise in regard to appli-
cation of the results at field scale.
[6] Several numerical efforts have attempted to address

this issue by using depth-resolving Reynolds-averaged
Navier-Stokes (RANS) models to capture certain level of de-
tails of turbulence, the vertical structure of the flow, and

hence reduce empiricism [e.g., Huang et al., 2004; Choi
and Garcia, 2002]. These models, when coupled with an
equation that accounts for mass conservation of the bed,
serve as a good tool for understanding and predicting the
morphodynamic responses in the deep water environment.
For example, Khan and Imran [2008] used a one-equation
turbulence closure with the Exner equation to investigate the
flow characteristics and the filling process of minibasins by
turbidity currents on the continental slope; Abd El-Gawad
et al. [2012a, 2012b] implemented the Mellor-Yamada model
at a field scale to examine the flow and depositional pattern in a
submarine-meandering channel.
[7] The stratification effects in these depth-resolving RANS

models are typically incorporated using a buoyancy produc-
tion term which, under stably stratified conditions, acts to
damp turbulent kinetic energy and reduce mixing. While these
models have achieved good results compared to laboratory
data and been widely applied to field-scale simulations, the
limitations to such an approach in capturing the stratification
effects have not been examined in detail. As a result, fine-
tuning of some parameters cannot be avoided in general to
ensure the success of such models. Moreover, the results
obtained from these models are usually problem-specific,
varying according to boundary and initial conditions. Hence,
they are not readily used to generate physically based rules
that enhance our basic knowledge on the nature of the flow
or improve modeling efficiency in large-scale simulations.

1.2. Turbidity Current With a Roof

[8] The concept of a turbidity current with a roof (TCR)
proposed by Cantero et al. [2009], hereinafter noted as
C09, is designed to provide this basic insight. A recapitula-
tion of their work is given as follows. The configuration for
TCR is shown in Figure 1. The tank is filled with fresh water
and, in the absence of sediment, the ambient fluid in the chan-
nel is still and the local pressure is hydrostatic. Upon the re-
lease of the sediment at the upstream end of the channel,
gravity drives the sediment to form a turbidity current which
travels down the slope. The sediment and water are free to
mix, but only within the channel. The roof of the channel
prevents further entrainment of the ambient water into the
channel, and hence sets a maximum thickness of the flow
(i.e., roof height). Under appropriate conditions, the near-
bed downward (depositional) sediment flux associated with
sediment fall velocity can be fully compensated for by
resuspension into the flow by turbulence, yielding zero net
sediment deposition on the channel bed.
[9] The flow in the channel is treated as a single-phase fluid

where the suspended particles are assumed to follow closely
the turbulence movement up to a fall velocity. In reality, this
is true only when the size of the particles is small compared to
the Kolmogorov scale of turbulence. For larger particles, sep-
aration between the particles and the fluid may lead to vortex
shedding and enhance turbulence [Gore and Crowe, 1991;
Nino and Garcia, 1998]. In C09 and the present work,
however, such effects are neglected regardless of the flow
conditions in order to investigate only the role of density
stratification on turbulence attenuation.
[10] In C09, the details of a rough boundary are not

modeled. The details of the region at the interface between
the bed and the flow are replaced with a thin molecular
sublayer, in which sediment can be sequestered. This is
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achieved by introducing an artificial “molecular” diffusivity
of sediment concentration. In this configuration, sediment is
deposited into, and entrained by turbulence from, this thin
“molecular” layer rather than the bed itself.
[11] In such a configuration, the turbidity current in the

channel can eventually reach normal (steady and streamwise
uniformwhen averaged over turbulence) conditions either suf-
ficiently far downstream or after a sufficient period of time has
passed. By focusing on this normal flow condition, which is
made possible by the presence of a roof, we can understand
the behavior, and in particular, that associated with sediment
stratification effects, of turbidity currents in a way that allows
extraction of useful generalities and information/rules. Due to
the presence of the roof, TCR does not give a precise model of
what may be found in natural turbidity currents. The results of
TCR are, however not problem-specific, but rather dependent
only on physically based dimensionless parameters.
[12] In this study, we investigate the performance and limita-

tions of RANS models in characterizing turbidity currents un-
der the setting of a TCR. Three of most widely implemented
turbulence closures for stratified flows are used here: standard
k-ε [Rodi, 1993], Mellor-Yamada [Mellor and Yamada, 1974,
1982] (referred to as M-Y hereinafter), and quasi-equilibrium
k-ε [Burchard et al., 1998] (referred to as QE k-ε hereinafter).
We examine the capability of these models to reproduce the
mean flow and turbulence fields given by the direct numerical
simulation (DNS) results from C09. It is found that all three
models can capture the stratification effects, but only up to a cer-
tain threshold. Two failings common to the RANS models used
in this study are identified. First of all, the “fish trap” effect
manifested in the sharp density gradient near the velocity
maximum separates the sediment concentration into two dis-
tinct regions. Such a phenomenon is associated with the
overemphasized reduction of the eddy diffusivity caused by the
structure of the closures. The artificial sequestration of the sedi-
ment in the near-bed region also implies errors when using these
models for large-scale flow and morphodynamic predictions.
[13] If the flow is stratified, a portion of the energy is also

transferred to and dissipated in the form of the internal waves.
Such a process is typically described by wave-wave theory
[Gregg, 1989;Müller et al., 1986], which is fully independent
from the classical turbulence energy cascade theory. For
weakly stratified shear flows like most natural turbidity

currents, turbulence dominates and the presence of internal
waves has rarely been considered in the literature as an addi-
tional energy sink. Under strongly stratified conditions, how-
ever, a treatment of the wave energy has to be incorporated to
account for the additional energy loss. This leads to the second
failing of the RANS models. It is found that beyond a criterion
where flow relaminarization occurs, significant errors arise in
all RANS model predictions, due to both inappropriate specifi-
cation of boundary conditions and the inability of RANS clo-
sures to capture the level of turbulence damping. By
examining the various length scales associated with turbulence
and buoyancy, we relate such failure to the inability of the
RANS models to describe energy dissipation due to
internal waves.
[14] The three models examined in this study represent a

small but representative (due to their popularity) subset of a
variety of second-moment turbulence closures. More re-
cently, the standard k-εmodel has been criticized for a degree
of lack of physical soundness, in that it uses small-scale tur-
bulence to determine the macroscale of turbulence [Mellor
and Yamada, 1982; Kantha, 2004]. The M-Y model rectified
this by introducing an equation for a macroscale length. In
addition to the differences in the length scale equations, the
role of stability functions is also crucial. We show that the
models which incorporate stability functions in the calcula-
tion of the eddy viscosity and eddy diffusivity, such as the
M-Y and QE k-ε models, outperform the standard k-ε model
in terms of agreement with the DNS results.
[15] The rest of the paper is laid out as follows. In section 2,

we introduce the governing equations and turbulence clo-
sures. We also derive and examine the boundary conditions
in our models in detail. In section 3, we review some of the
flow settings and important findings of C09 which set the
foundation for our model comparison. In section 4, numerical
methods and model validation using two special cases are
presented. Results for Regime I (below the threshold for the
failure of RANS models) and Regime II flow conditions
(above this threshold, as defined in section 3) are presented
and discussed in sections 5 and 6, respectively. In section
7, we apply the model to examine the sensitivity in flow
characteristics to variation in two important dimensionless
parameters, the dimensionless settling velocity and shear
Richardson number. The effect of multiple-grain sizes on

Figure 1. Configuration for turbidity current with a roof (TCR). A turbidity current driven by the excess
density of the water-sediment mixture evolves in the channel. By limiting water entrainment and imposing
complete sediment bypass conditions, an idealized normal flow condition can be achieved in the channel.
The diagram has been redrawn from Cantero et al. [2009].
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the mean flow and turbulent field is also examined. A sum-
mary and the conclusions of this study are given in section 8.

2. Problem Formulation

2.1. Governing Equations

[16] The problem can be described in terms of standard
Reynolds-averaged Navier-Stokes (RANS) equations for in-
compressible flow, with an additional consideration for the
change in density due to suspended sediment. For flows with
dilute suspensions, this effect can be approximated with ad-
ditional gravity terms in the momentum equations associated
with the Boussinesq approximation. In the cross-channel di-
rection y, we assume that all flow characteristics are uniform,
i.e., ∂ ( )/∂ y= 0, and the Reynolds-average velocity ν= 0. The
simplified RANS equations are given by

∂ρa
∂t

þ ρa
∂u
∂x

þ ∂w
∂z

� �
¼ 0; (1)

∂u
∂t

þ u
∂u
∂x

þ w
∂u
∂z

¼ � 1

ρa

∂p
∂x

þ ν
∂2u
∂x2

þ ∂2u
∂z2

� �

� 1

ρa

∂ ρau′
2

� �
∂x

þ
∂ ρau′w′
� �

∂z

0@ 1A
þ 1þ Rcð ÞgS0; (2)

∂w
∂t

þ u
∂w
∂x

þ w
∂w
∂z

¼ � 1

ρa

∂p
∂z

þ ν
∂2w
∂x2

þ ∂2w
∂z2

� �

� 1

ρa

∂ ρau′w′
� �

∂x
þ
∂ ρaw′2
� �

∂z

0@ 1A
þ 1þ Rcð Þg; (3)

where t is time; (x, z) are the streamwise and upward normal
coordinates, respectively; (u, w) are the Reynolds-averaged
velocities in the (x, z) direction; ρa and ρs are densities of
the ambient fluid and sediment, respectively; p is Reynolds-

averaged total pressure; ν is kinematic viscosity;�ρau′
2,�ρa

w′2 , and �ρau′w′ are Reynolds stresses associated with in-
stantaneous fluctuations in streamwise and upward normal
velocities (u′, w′); c is Reynolds-averaged total sediment
volume concentration; R= (ρs� ρa)/ρa (= 1.65 for quartz), g
is gravitational acceleration, and S0 is channel slope. In the
case where the suspension contains N size fraction ranges,
c ¼ ∑N

i¼1ci, where ci denotes the volume concentration in the
ith fraction range.
[17] Under steady, uniform flow and no-slip boundary con-

ditions, equation (1) gives w= 0. As a result, the momentum
equations simplify to

∂u
∂t

¼ ν
∂2u
∂z2

� 1

ρa

∂ ρau′w′
� �

∂z
þ RcgS0 (4)

p ¼ ρag zf � zþ R∫2hz cdz
� �

(5)

where zf= zf(x) is the free surface elevation and 2 h is the gap
height of the roof, as shown in Figure 1. Equation (5) describes
the total pressure as the sum of the hydrostatic pressure and an
added pressure due to the overlying submerged weight of the
suspended sediment. The hydrostatic part of the total pressure,

when introduced into equation (2), results in a pressure gradi-
ent which balances out the streamwise gravitational force in-
duced by the ambient fluid, and the remaining pressure
gradient associated with suspended sediment vanishes under
the uniform flow assumption. The sediment concentration in
this study is considered to be diluted and the particles in sus-
pension are assumed to be sufficiently small that they follow
closely the water movement up to a settling velocity. Under
these assumptions, the sediment concentration is governed
by the following conservation equation:

∂ci
∂t

� vsi
∂ci
∂z

¼ ν
Sc

∂2ci
∂z2

� ∂w′c′i
∂z

; i ¼ 1eN ; (6)

where vsi is the settling velocity for that range, c′i is the in-
stantaneous fluctuating part of concentration, and �w′c′i is
the Reynolds flux of that range. The Schmidt number is de-
fined as Sc= ν/νc, νc being the artificial molecular diffusivity
of sediment concentration as explained above.
[18] Now, let τb denote the mean shear stress on the bed

(z = 0) and τt define the corresponding shear stress on the roof
(z = 2 h), both signed so that they act to resist the downslope
pull of gravity. Integration of equation (4) in z for steady, uni-
form flow yields the following result for mean shear stress τ:

τ≡ρa ν
du

dz
� u′w′

� �
¼ �τt þ ρaRgS0∫

2h
z cdz: (7)

[19] Evaluating equation (7) at z = 0 gives

u*;avg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RCghS0

p
; (8)

whereC is the total concentration averaged over 2 h, and u*,avg
is a nominal shear velocity given as

u2*;avg ¼
1

2
u2*;t þ u2*;b

� �
; (9)

where the shear velocities u*,b and u*,t at the bed and roof are
related to the corresponding shear stresses τb and τt as

τb ¼ ρau
2
*;b; τt ¼ ρau

2
*;t: (10)

[20] The governing equations (4) and (6) are made dimen-
sionless using h and u*,avg; in addition, concentration is nor-
malized such that ĉi ¼ ci=C, giving

∂û
∂t̂

¼ ∂
∂ẑ

1

Reτ

∂û
∂ẑ

�
∧

u′w′

� �
þ ĉ; (11)

∂ĉi
∂t̂

� v̂si
∂ĉi
∂ẑ

¼ ∂
∂ẑ

�
∧

w′c′i þ 1

ReτSc

∂ĉi
∂ẑ

� �
; i ¼ 1eN ; (12)

where the hats denote dimensionless parameters, ĉ ¼ ∑N ĉi
and

Reτ ¼
u*;avgh

ν
(13)

denotes the shear Reynolds number. This parameter charac-
terizes the state of development of the turbulence of the flow.

2.2. Turbulence Closures

[21] The Reynolds stress and flux terms are modeled using
eddy diffusivities. In dimensionless forms, these are given by
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∧

u′w′ ¼ �ν̂t
∂û
∂ẑ

; (14)

∧

w′ci′ ¼ �ν̂tc
∂ĉi
∂ẑ

; i ¼ 1eN ; (15)

where ν̂t and ν̂tc are the eddy viscosity (eddy diffusivity of
momentum) and eddy diffusivity of sediment concentration,
respectively. Summing over all N size fractions, the total
Reynolds flux is given by

∧

w′c′ ¼ ∑N
i¼1

∧

w′ci′ ¼ �ν̂tc
∂ĉ
∂ẑ

: (16)

[22] In this study, we model ν̂t and ν̂tc using three differen-
tial models: standard k-ε [Rodi, 1993], level 2-1/2 [Mellor
and Yamada, 1974, 1982], and quasi-equilibrium k-ε
[Burchard et al., 1998]. The formulations and detailed de-
scription can be found in the corresponding literature. In
the following, we present the basic equations involved in
these models and the choice of coefficients.
2.2.1. Mellor-Yamada (M-Y)
[23] At level 2-1/2, theM-Ymodel assumes local equilibrium

for all turbulent characteristics except for turbulent kinetic
energy k. It also introduces an empirically based equation to
govern the variation of a master length scale used in the relation
for eddy viscosity. In dimensionless form, these read

∂q̂2

∂t̂
¼ ∂

∂ẑ
Sqq̂l̂ þ 1

Reτ

� �
∂q̂2

∂ẑ

� �
þ 2P̂ þ 2B̂ � 2ε̂ (17)

∂q̂2 l̂
∂t̂

¼ ∂
∂ẑ

Slq̂l̂ þ 1

Reτ

� �
∂q̂2 l̂
∂ẑ

 !
þ l̂ E1P̂ þ E3B̂
� �

� q̂3

B1
1þ E2

l̂

κL̂

 !2
0@ 1A (18)

where q̂2 ¼
∧

u′2 þ
∧

v′2 þ
∧

w′2 is twice the turbulent kinetic en-
ergy per unit mass; l̂ is the master length scale; and L̂ is a mea-
sure of the distance from the wall which takes the form
L̂ ¼ max ẑ; 2� ẑð Þ for the configuration in question. In addi-
tion, Sq, Sl, E1, E2, E3, and B1 are empirical coefficients given
in Table 1, and κ denotes the von Kármán constant. At steady
state, equation (17) describes the balance of energy as
governed by, beginning from the leftmost term, the energy
transport rate by diffusion, energy production rate P̂ , buoy-
ancy production rate B̂, and energy dissipation rate ε̂. The last
three terms are given by

P̂ ¼ �
∧

u′w′
∂û
∂ẑ

� �
; (19)

B̂ ¼ �Riτ
∧

w′c′; (20)

ε̂ ¼ q̂3

B1 l̂
; (21)

where

Riτ ¼ RCgh

u2*;avg
(22)

is the shear Richardson number, which characterizes the
degree of stratification. In stably stratified flows, B̂ < 0 ,

indicating that turbulent kinetic energy is consumed in order
to mix suspended sediment against the density gradient.
[24] For specified values of q̂ and l̂, the eddy viscosity and

eddy diffusivity are calculated using the relations

ν̂t ¼ l̂ q̂SM ; (23)

ν̂tc ¼ l̂ q̂SH ; (24)

where SM and SH are stability functions given by [Galperin
et al., 1988]

SM ¼
A1 1� 6A1

B1
� 3C1

� �
� 3A2GH B2 � 3A2ð Þ 1� 6A1

B1

� �
� 3C1 6A1 þ B2ð Þ

� �h i
1� 9GHA1A2ð Þ 1� 3A2 6A1 þ B2ð ÞGHð Þ½ �

(25)

SH ¼
A2 1� 6A1

B1

� �
1� 3A2GH 6A1 þ B2ð Þ (26)

and

GH ¼ Riτ
l̂

q̂

 !2
∂ĉ
∂ẑ

; (27)

[25] In the above relations, A1, A2, and B2 are empirical
constants given in Table 1.
[26] The flow is stably stratified when∂ĉ=∂ẑ≤0. In applying

M-Y to stable stratification, however, the constraint
GH>� 0.28 is imposed [Galperin et al., 1988]. For values
of GH below this threshold, turbulent energy is converted to
the energy of internal waves. We will discuss this in detail in
section 6.
[27] As noted above, the values of the coefficients used in

this study are listed in Table 1. The only difference from
those given by Mellor and Yamada [1982] is the value of
E3, which they set equal to E1. Their choice, however, has
been shown in previous studies to prevent homogeneous
shear flows from reaching steady state [Baumert and
Peters, 2000; Burchard, 2001]. Here we adopt the value de-
rived by Burchard [2001] under the above constraint and set
E3 = 5.093. The dimensionless parameter Sct in A2, is the
turbulent counterpart of the Schmidt number, defined as
Sct ¼ v̂t0=v̂tc0, where v̂t0 and v̂tc0 are eddy viscosity and eddy
diffusivity under neutral conditions, respectively. In the ab-
sence of density gradient, equation (26) show that the ratio
of ν̂t to ν̂tc is equal to Sct at any ẑ. Such invariance, however,
does not hold when the flow becomes stratified.
2.2.2. Standard k-ε
[28] This model consists of two additional equations beyond

mass and momentum balance, which correspond to the conser-
vation of the turbulent kinetic energy k and energy dissipation ε:

∂k̂
∂t̂

¼ ∂
∂ẑ

ν̂t
σk

þ 1

Reτ

� �
∂k̂
∂ẑ

 !
þ P̂ þ B̂ � ε̂ (28)

∂ε̂
∂t̂

¼ ∂
∂ẑ

ν̂t
σε

þ 1

Reτ

� �
∂ε̂
∂ẑ

� �
þ Cε1

ε̂

k̂
P̂ þ Cε3B̂
� �� Cε2

ε̂2

k̂
: (29)

[29] The eddy viscosity and eddy diffusivity are
calculated by
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ν̂t ¼ Cμ
k̂2

ε̂
(30)

and

ν̂tc ¼ Cμc
k̂2

ε̂
: (31)

[30] In the standard k-ε model, the values for empirical coef-
ficients σk, σε, Cε1, and Cε2 (listed in Table 2) are pure constants
calibrated from flows under neutral conditions [Rodi, 1993] and
Cμc=Cμ/Sct.Rodi [1993] suggested that the value ofCε3 ranges
between 0 and 1, where 0 corresponds to a horizontal flow.
2.2.3. Quasi-Equilibrium k-ε (QE k-ε)
[31] Following Burchard et al. [1998], we express

equations (30) and (31) in alternative forms using the
Kolmogorov-Prandtl relation

v̂t ¼ cμk̂
1=2 l̂ (32)

and

v̂tc ¼ cμck̂
1=2 l̂ ; (33)

where cμ and cμc stability functions resembling SM and SH,
respectively, in the M-Y model. The full dependency of cμ
are cμc on dimensionless turbulent shear number and turbu-
lent buoyancy number can be found in Burchard and
Baumert [1995] and Luyten et al. [1996]. For the sake of sim-
plicity and consistency, we assume these functions directly
relate to SM and SH according to the relations cμ ¼ ffiffiffi

2
p

SM
and cμc ¼

ffiffiffi
2

p
SH . Under the Kolmogorov hypothesis of local,

small-scale isotropy, the energy dissipation rate is modeled by

ε̂ ¼ c0μ

� �3 k̂3=2
l̂

; (34)

where c0μ is pure constant equal to cμ in the absence of
stratification effect, i.e., c0μ ¼ 3

ffiffiffi
2

p
A1 γ1 � C1ð Þ≈0:5465:

Substituting equation (34) into (32) and (33) and comparing
with equations (30) and (31), we get

Cμ ¼ c0μ

� �3
cμ (35)

and

Cμc ¼ c0μ

� �3
cμc: (36)

[32] It can be shown that in the absence of stratification ef-

fects, Cμ ¼ c0μ

� �4
≈0:09, a value identical to that in the stan-

dard k-ε model.

2.3. Boundary Conditions

[33] The first question regarding the boundary conditions
is where they should be applied. For most of the existing
RANS models, the closures do not describe the turbulence
field well into the viscous sublayer at the vicinity of the wall.
Instead, these models usually choose a reference distance b
away from the wall and apply boundary conditions according
to, for example, the logarithmic law. In order to minimize
contamination from the viscous sublayer, this reference dis-
tance should be sufficiently far away from the wall. For typ-
ical wall flows, at least under neutral conditions, the criterion

zþ ¼ Reτ b̂
� �

> 50, where b̂ ¼ b=h, diminishes the viscous

influence down to less than 10% [Pope, 2000] and can be
used for specifying b̂. However, this criterion is inappropriate
in the context of comparing with the DNS results from C09.
Due to the low value of Reτ used in C09 (a constraint im-
posed by the limitations of DNS), applying the criterion
would compromise a significant portion of the computational
domain (more than 25%). More importantly, as more sedi-
ment suspension concentrates toward the bed with increasing
value of v̂s, the choice of large b̂ cannot capture the sediment
concentration in that region and hence the driving force of the
flow within it. It should be noted that the choice of large b̂ is
much less problematic in open channel flows carrying dilute
suspensions, because the gravitational force acting on the
fluid, rather than the sediment, comprises the dominant driving
force. In this study, we set b̂ to twice the thickness of the vis-
cous sublayer, i.e., b̂ ¼ 23:2=Reτ≈0:129. While a small region
close to the walls may still be affected by the viscous effects,
the resulting velocity and turbulent characteristics at the center
and major portion of the channel are in good agreement with
those from DNS under neutral conditions (see section 4).
[34] The boundary conditions for the flow velocity are

given by the logarithmic law as

ûb ¼ ûjẑ¼b̂ ¼ û*;b
κ

ln Reτ û*;bb̂
� �

þ 5:5û*;b; (37)

ût ¼ ûjẑ¼2�b̂ ¼ û*;t
κ

ln Reτ û*;t b̂
� �

þ 5:5û*;t; (38)

where û*;b ¼ u*;b=u*;avg and û*;t ¼ u*;t=u*;avg are the
dimensionless shear velocity at the bed and roof,
respectively. From the momentum balance described by
equations (8) and (9), it is clear that the sum of the two
shear stresses should be equivalent to the total driving
force, i.e., u2*;b þ u2*;t ¼ 2RCghS0 ¼ 2u2*;avg , or in dimen-
sionless form,

û2*;b þ û2*;t ¼ 2: (39)

[35] The velocities at the boundaries remain indeterminate
without additional relations for û*;b and û*;t. To derive these
relations, we rewrite equation (11) at steady state, substitut-
ing the Reynolds stress using equation (14), and integrate at
the near-wall region to get

ν̂t þ 1

Reτ

� �
∂û
∂ẑ

� �				
ẑ¼b̂

¼ û2*;b � ∫b̂0 ĉdẑ ≈ û
2
*;b � b̂ (40)

ν̂t þ 1

Reτ

� �
∂û
∂ẑ

� �				
ẑ¼2�b̂

¼ �û2*;t þ ∫22�b̂ ĉdẑ ≈� û2*;t þ b̂: (41)

[36] The approximations made above are necessitated by
the fact that we do not have prior knowledge on the values

Table 1. Coefficients for the M-Y Model

M-Y Models Coefficients

A1 0.92
A2 A1(γ1�C1)/(γ1Sct)
B1 16.6
B2 10.1
C1 0.08
E1 1.8
E2 1.33
E3 5.093
γ1 0.22
Sq 0.2
Sl 0.2
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of the integrals, but justified as long as b̂ is sufficiently small.
This treatment allows precise prediction of shear stress under
neutral conditions but displays increasing error as v̂s in-
creases. In order to illustrate this, it is of value here to show
some computational results in advance. Figure 2 shows the
differences in the dimensionless total shear stresses at the
bed (̂z ¼ b̂) and the roof (̂z ¼ 2� b̂) between those obtained
from the above approximations and those using DNS. At
the roof, where stratification effects are small in almost
all cases (see section 3), approximation (41) works well.
On the other hand, near the bed where the stratification
effects are much more significant, the approximated
values increasingly deviate from DNS with increasing v̂s
. However, it can be argued that under moderate stratifi-
cation effects, these approximations are fairly reasonable.
At sufficiently large Reynolds number, the error can be
reduced by specifying a smaller b̂. With boundary condi-
tion (40), we integrate the steady version of equation (11)
twice in ẑ to obtain

ût ¼ ûb þ û2*;b � b̂
� �

∫2�b̂
b̂

1

ν̂t þ 1
Reτ

� � dẑ
� ∫2�b̂

b̂

1

ν̂t þ 1
Reτ

� � � ∫ẑ ′b̂ ĉdẑ
″

� �24 35dẑ ′; (42)

which, along with equations (37)–(39), can be solved itera-
tively for û*;b and û*;t.
[37] The condition of zero net sediment flux is imposed at

both boundaries:

v̂siĉijẑ¼b̂ ¼
∧

w′c′i
			
ẑ¼b̂

; (43)

v̂siĉijẑ¼2�b̂ ¼
∧

w′c′i
			
ẑ¼2�b̂

; i ¼ 1eN : (44)

[38] These conditions alone, however, do not ensure a
unique solution. The condition of conservation of total sedi-
ment concentration must also be implemented. This is given as

∫2�b̂
b̂ ĉidẑ ¼ pwci 2� 2b̂

� �
; i ¼ 1eN (45)

where pwci is the volumetric proportion of the sediment in the
ith fraction range in the water column. For flows containing
single particle size, pwc1 ¼ 1.
[39] The boundary conditions for the equations governing

the turbulence are obtained by assuming a near-wall balance
between energy production and dissipation. These are given by

q̂3
		
ẑ¼b̂

¼ B1 l̂ ν̂ t
∂û
∂ẑ

� �2
 !					

ẑ¼b̂

¼ B1κb̂ û2*;b � b̂ � 1

Reτ

∂û
∂ẑ

� �
ẑ¼b̂

� �
û*;b

κb̂
� αB̂b

û2*;b

 !
; (46)

q̂3
		
ẑ¼2�b̂

¼ B1 l̂ ν̂t
∂û
∂ẑ

� �2
 !					

ẑ¼2�b̂

¼ B1κb̂ �û2*;t þ b̂ � 1

Reτ

∂û
∂ẑ

� �
ẑ¼2�b̂

� �
� û*;t

κb̂
þ αB̂t

û2*;t

 !
;

(47)

ε̂jẑ¼b̂ ¼ ν̂t
∂û
∂ẑ

� �2
 !					

ẑ¼b̂

¼ û2*;b � b̂ � 1

Reτ

∂û
∂ẑ

� �
ẑ¼b̂

� �
û*;b

κb̂
� αB̂b

û2*;b

 !
; (48)

ε̂jẑ¼2�b̂ ¼ ν̂t
∂û
∂ẑ

� �2
 !					

ẑ¼2�b̂

¼ �û2*;t þ b̂ � 1

Reτ

∂û
∂ẑ

� �
ẑ¼2�b̂

� �
� û*;t

κb̂
þ αB̂t

û2*;t

 !
; (49)

k̂2
		
ẑ¼b̂

¼ ν̂t ε̂
Cμ

� �				
ẑ¼b̂

¼ 1

Cμ
û2*;b � b̂ � 1

Reτ

∂û
∂ẑ

� �
ẑ¼b̂

� �2

; (50)

k̂2
		
ẑ¼2�b̂

¼ ν̂ t ε̂
Cμ

� �				
ẑ¼2�b̂

¼ 1

Cμ
�û2*;t þ b̂ � 1

Reτ

∂û
∂ẑ

� �
ẑ¼2�b̂

� �2

; (51)

where B̂b ¼ �Riτ∑
i
v̂siĉbi and B̂t ¼ �Riτ∑

i
v̂siĉti represent

buoyancy production at the bed and roof, respectively, and
α is an empirical constant. In various geophysical flows as
well as sediment-laden flows, it has been observed that strat-
ification effects tend to increase the velocity gradient in the
near-wall region [e.g., Monin and Obukhov, 1954; Turner,
1973; Einstein and Chien, 1955; Vanoni, 1946]. Here we in-
clude such effects in the boundary conditions by introducing
a correction (�αB̂b=û2*;b at the bed andαB̂t=û2*;t at the roof) to
the velocity gradients under neutral conditions. This gives
the velocity gradient in the form of û*;b=κb̂ � αB̂b=û2*;b at
the bed and û*;b=κb̂ � αB̂b=û2*;b at the roof [Turner, 1973;
Yeh and Parker, 2013]. Note that in stably stratified flows,
both B̂b and B̂t are negative. This corresponds to an increase
in the magnitude of the velocity gradients at both boundaries.
[40] Finally, the boundary conditions for the master length

scale are given by

l̂
		
ẑ¼b̂

¼ l̂
		
ẑ¼2�b̂

¼ κb̂: (52)

[41] The dimensionless governing equations and boundary
conditions presented above indicate that the solutions are de-
pendent on the set of dimensionless parameters (Reτ, Riτ, v̂s, b̂,
Sct, and Sc). However, the reference height b̂ only appears in
the boundary conditions and does not have a strong influence

Table 2. Coefficients for the k-ε Model

Standard Quasi-equlibrium

Cε1 1.44
Cε2 1.92
Cε3 0 �1.4
σk 1.0
σε 1.3 1.08
c0μ --- 0.5465

Cμ 0.09 c0μ

� �3
cμ

Cμc Cμ/Sct c0μ

� �3
cμc
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on the stratification effects in the current body. The Schmidt
number Sc and turbulent Schmidt number Sct denote the effi-
ciency of the flow in mixing momentum versus sediment
mass at a molecular and turbulent level, respectively. For
sediment-laden flows, commonly used values for Sct range
between 0.7 and 1.3 [Cellino and Graf, 1999; Bombardelli
and Jha, 2009; Huang et al., 2004]. Here we set Sct=1. The
dependency of the solutions on Reτ becomes rather weakwhen
the value is sufficiently large. Such Reynolds invariance is
similar to those found in pipe flows and open channels, and
is likely true in sustained turbidity currents in nature.
[42] It can therefore be concluded that v̂s and Riτ are the dom-

inant parameters in the present problem. The dimensionless set-
tling velocity v̂s is a function of, among other things the grain
size, and thus encapsulates the tendency for the sediment to set-
tle. Higher values of v̂s create concentration profiles that aremore
biased toward the bed, so yielding higher stratification effects.
[43] Equations (8) and (22) can be used to show that the

shear Richardson number Riτ is equal to the inverse of slope:

Riτ ¼ 1

S0
: (53)

[44] It can be seen, after some algebraic substitutions, that
the appearance of Riτ is always accompanied by the concen-
tration gradient. For example, a reduction of (20) with (16)
yields the result

B̂ ¼ ν̂tcRiτ
∂ĉ
∂ẑ

: (54)

[45] In other words, in the absence of an internal density gra-
dient (associated with, e.g., thermohaline effects or suspended
sediment), Riτ would exert no influence on density stratifica-
tion regardless of its value. If the flow is stratified even just
slightly, increasing values of Riτ serve to magnify the impor-
tance of stratification effects up to several orders. In short,
the role of v̂s is to create a density gradient and associated strat-
ification effects; increasing value of Riτ acts to amplify them.
[46] It should be noted that the depth-averaged concentra-

tion C in and of itself plays no role in the dimensionless solu-
tions, but rather is absorbed into Riτ according to equation
(22). Instead, its influence is reflected in u*,avg and is revealed
only after conversion to dimensioned variables.

3. Revisiting the DNS Simulations

[47] Direct numerical simulations (DNS) were implemented
by C09 to investigate stratification effects and the associated
internal structure of turbidity currents under the setting of
TCR. The value of Reτ was set to 180 in all runs, a value
chosen to reflect computational costs. Although this value
appears relatively low in comparison to field or laboratory
scales, C09 demonstrated that the resulting Reynolds
number, defined as Re=Uh/ν where U is the depth-averaged
velocity, reaches the low end of the Reynolds invariance in
the case of unstratified flow. Based on this, they argued that
their results for both unstratified and stratified flow can be
extrapolated in more realistic scales. In both C09 and the
present work, the value of Riτ has been set equal set to
11.43, which according to equation (53), corresponds to a
5° slope. The effects of stratification on the mean flow and
turbulent characteristics were then examined by varying v̂s
from 0 (neutral condition) to 0.05 (extreme stratification).
The value of v̂s for each case as well as some key results
explained below are summarized in Table 3.
[48] Several key findings were reported by C09. The flows

modeled therein can be divided into two regimes. i.e.,
Regime I, for which v̂s is less than about 0.022 (correspond-
ing to cases 1–5 in Table 3), and Regime II, for which v̂s is
greater than about 0.022 (cases 6–10 in Table 3). The value
v̂s = 0.022 corresponds to a threshold, beyond which turbu-
lence in the lower half of the flow is not only damped but also
nearly extinguished over a region. More specifically, within
Regime II, turbulence is so strongly damped in the lower half
that a zone with near-vanishing Reynolds stress and
Reynolds flux appears. The only reason that sediment is
maintained in suspension at all in this range is the effect of
the artificial molecular diffusivity. This effect confines the
suspended to a thin layer near the bed. Cantero et al.
[2012] argued that this condition effectively corresponds to
a turbidity current that has dropped its sediment out and died.
[49] As v̂s increases from 0 up to this threshold value

(Regime I, corresponding to cases 1–5), the sediment
concentration profile gradually becomes biased toward the
bed, as compared to the uniform profile prevailing for neutral
conditions (i.e., case 0, corresponding to a finite concentra-
tion of suspended sediment with vanishing fall velocity).
The uneven driving force throughout the water column
results in an asymmetry of the velocity profile relative to
the centerline, with point of maximum velocity ẑu;max biased
toward the bed. The velocity profile below the maximum can
be fitted to a logarithmic law, but the effect of stratification is
reflected in a reduced value of κ computed from the velocity
gradient. The RMS of the velocity fluctuations, which
indicates the level of turbulence, decreases with increasing
v̂s within the lower half of the channel, due to damping of
turbulence caused by stratification effects. Within the upper
part of the channel, however, the turbulent kinetic energy
increases due to the deficit in both sediment concentration
and concentration relative to the lower part of the channel.
This deficit results in less stratification effects. Within this
regime, however, turbulence is maintained throughout the
water column.
[50] The flow changes dramatically as v̂s increases into the

range of Regime II (cases 6–10). In this regime, the above
tendencies for the mean flow characteristics are further
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Figure 2. Comparison of dimensionless total roof and bed
shear stresses as functions of dimensionless fall velocity at
distance b̂ away from the boundaries. Circles correspond to
different simulation cases in C09 and this study.
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enhanced, but even an adjusted version of the conventional
logarithmic law is no longer capable of describing the near-
bed velocity distribution. Moreover, a significant and sudden
drop in turbulent kinetic energy is observed in a zone near the
bed as the threshold is crossed. This phenomenon, which
may be referred to as flow relaminarization, is reflected in
the negligible contribution of the Reynolds stress to the total
shear stress and the Reynolds flux of suspended sediment to
the total flux. The extent of the region of nearly extinct is
found to increase with increasing v̂s . This sudden collapse
of turbulence as the threshold in v̂s is crossed has important
implications for sedimentology. Once the near-bed turbu-
lence has collapsed, no mechanism is available to resuspend
sediment when it settles on the bed. The result would be the
gradual extinction of the current itself, along with the
emplacement of a “massive,” i.e., structureless deposit that
is not reworked by bed load [Cantero et al., 2012].
[51] The results from C09 provide a basis for validating

and understanding the limits of RANS models in predicting
flow stratification effects and the internal structure of turbid-
ity currents. The comparisons in the next few sections follow
closely their study cases. In order to ensure the comparability
of the model results to C09, it is useful to clarify here some of
the differences between the two approaches.
[52] First of all, the governing equations presented in this

study are strictly 1-D. They describe the vertical structure
of the flow by assuming flow uniformity in the streamwise
and cross-channel directions. In C09, such uniformity is
achieved by setting a finite simulation domain and
implementing periodic boundary conditions in both direc-
tions. Therefore, although the dimensions involved in the
governing equations and the simulation domain differ be-
tween the two approaches, the flow characteristics which
the two systems aim to capture are identical and the results
are directly comparable.
[53] In principle, turbulence modeling using RANS

models is only applicable under fully turbulent flow condi-
tions. In particular, in the near-wall region where the viscous
effects cannot be neglected, special treatment is required.
Such treatment includes applying a wall function to describe
the near-wall behavior or switching to a low Reynolds num-
ber model where the flow in the near-wall region is resolved
[see e.g., Patel et al., 1985]. The flow settings examined in
C09 is in the lower end of the Reynolds invariant region,

and thus, discrepancy in the RANS and DNS results can be
expected in the near-wall region. However, instead of apply-
ing a low Reynolds number treatment, calculation within this
region is avoided by assigning a reference height (see section
2.3) and appropriate boundary conditions. Although such
treatment may seem less accurate, it has several practical
values. First of all, in simulations which are coupled with
mass conservation of the bed, the sediment entrainment rate
is typically referenced to a distance from the bed, due to dif-
ficulties in instrumentation [Garcia and Parker, 1991].
Hence, the flow field below that reference height is irrelevant
as long as the boundary conditions at the reference height are
appropriately specified. In addition, resolving flow into the
viscous sublayer requires very fine gridding, which makes
the approach computationally inefficient when applied at a
field scale.

4. Numerical Method and Validation

[54] The vertical profiles are obtained by solving equations
(11), (12), (17), (18), (28), and (29) numerically until conver-
gence to steady state is attained. Discretization is done using
a fully implicit finite volume method with a second-order
accurate total variation diminishing scheme [Versteeg and
Malalasekera, 2007]. Yeh and Parker [2013] have tested this
scheme in an investigation of stratification effects due to
suspended sediment in open channel flows. It is shown there
that in order to capture large gradients in the profiles as a re-
sult of strong stratification effects, small grids are required. In
other words, the accuracy of the model depends on both the
level of stratification and the dimensionless grid size dẑ .
With this in mind, a fine grid of 801 points uniformly distrib-
uted over the computational domain is used in all simulations
in this study. We use the time interval dt̂ ¼ 0:01.
[55] The model performance is tested with two limiting

cases: a fully turbulent flow under neutral conditions and a
fully “relaminarized” flow in the presence of strong stratifica-
tion. The latter case may seem somewhat idealized for self-
stratified flows, since the density gradient far away from the
bed is almost always too small to create stratification effects
strong enough to relaminarize the flow therein. Such strong
stratification effects throughout the whole water column can
be achieved, however, in the case of flows with externally
forced density gradients (e.g., imposed temperature gradient
over a Poiseulle flow). Here this case is tested for the sake
of model validation.
[56] The comparison for the neutral case (case 0) is shown in

Figure 3. It can be seen that all the RANS models predict ve-
locity profiles which agree well with DNS results. The turbu-
lent kinetic energy (TKE) profiles predicted by RANS are
overall in satisfactory agreement with DNS but show deviation
fromDNS near the boundaries due to viscous effects. For fully
relaminarized flows, the model results are compared with ana-
lytical solutions (see Appendix A). In the simulations, fully
relaminarized conditions are achieved by setting the eddy vis-
cosity to zero throughout the run. Figure 4 shows that the
RANS models with turbulence turned off reproduce precisely
the analytical solutions in the absence of turbulence. While the
outcome of this numerical experiment may seem obvious, it
demonstrates the potential of the present models to deal with
possible spatial transition from a turbulent regime to a fully
laminar regime in the presence of strong stratification.

Table 3. Settings and Partial Results From Cantero et al. [2009]

Case v̂s ĉb
a ẑu;max

b Cf
c

0 0 1 1 0.0085
1 0.005 1.06 0.97 0.0082
2 0.010 1.16 0.93 0.0079
3 0.0175 1.44 0.8 0.0074
4 0.02 1.59 0.74 0.0069
5 0.02125 1.71 0.71 0.0065
6 0.023 2.59 0.42 0.0061
7 0.025 2.75 0.42 0.0063
8 0.03 3.22 0.37 0.0068
9 0.035 3.61 0.32 0.0074
10 0.05 4.38 0.25 0.0102

aĉb, dimensionless near-bed (at ẑ ¼ b̂) concentration, equivalent to r0.
bẑu;max, location of velocity maximum.
cCf, flow resistance coefficient.
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5. Regime I Stratification

[57] The variation in the flow velocity and sediment concen-
tration for cases 1, 3, and 5 are shown in Figures 5 and 6, re-
spectively. The previously described flow characteristics are
clearly seen in the DNS solutions. With increasing settling
velocity, the sediment concentration profile becomes more
biased toward the bed, with an increase in the near-bed con-
centration ĉb from unity to approximately 1.7 for case 5. The
shift of driving force toward the lower part of the channel is
also reflected in the increasing asymmetry exhibited by the

velocity profiles. Based on the DNS results, the location for
the velocity maximum is found to drop below the channel
centerline to ẑu;max ¼ 0:71 for case 5.
[58] For weakly stratified flows, the mean flow characteris-

tics predicted by DNS are captured reasonably well by all
three RANS models. The difference between the standard
and QE k-ε models at this level of stratification is mainly
due to the choice of the parameters Cε3 and σε, since the
density gradient is small enough so that cμ≈c0μ. However, as
stratification effects increase, the choice of the stability
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Figure 3. Comparison of the model results versus DNS for neutrally stratified flow. (a) velocity profile;
(b) TKE profile.
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function becomes significant. In case 3, both M-Y and QE
k-ε capture the magnitude as well as the location of the
velocity maximum. On the other hand, the standard k-ε
model fails to accurately capture the level of stratification.
Such a lukewarm performance extends through Case 5 where
the model predicts a drop only to ẑu;max ¼ 0:9 as opposed a
drop to approximately ẑu;max ¼ 0:75 predicted by both
M-Y and QE k-ε (Figure 5c).
[59] Similar results are found in the concentration profiles.

The standard k-εmodel tends to overestimate the eddy diffu-
sivity and hence the degree of homogenization of sediment
concentration in the flow. As shown in Figure 6, this results

in underestimation of the near-bed concentration. It should
be noted that while M-Y and QE k-ε give predictions of
near-bed concentration the more closely reflect DNS, the
concentration profiles are not particularly well represented
by any of the RANS models. This is especially true under
strongly stratified conditions.
[60] Under such conditions, the RANS models tend to

produce two distinct concentration layers separated by a
large-density gradient (although this is not apparent for the
standard k-ε model due to the relatively weak stratification
effects). Unlike the formation of a lutocline in oceanic or
limnological flows, this results from underestimation of the
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Figure 5. Comparison of Regime I velocity profiles predicted by DNS against the RANS results predicted
from three models: Mellor-Yamada , k-ε, and QE k-ε. (a) case 1, (b) case 3, and (c) case 5.
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Figure 6. Comparison of Regime I concentration profiles predicted by DNS against the RANS results.
(a) case 1, (b) case 3, and (c) case 5.
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Reynolds stress and flux by the RANS models in the vicinity
of the velocity maximum. This phenomenon, which may be
termed the “fish trap effect,” inhibits the upward mixing of
sediment from the near-bed region. Due to the form of the clo-
sure relations (14) and (15), the location for zero Reynolds
stress and flux inevitably coincides with that of velocity max-
imum. This is inconsistent with the findings from C09, in
which it is shown (Figure 16a therein) that such a coinci-
dence occurs only under neutral conditions. As the flow be-
comes stratified, the locations of zero Reynolds stress and
zero velocity gradient become displaced. This indicates that
both mass and momentum are still being mixed by turbulence
at the velocity maximum. The RANS turbulence closures used
here completely shut off such processes. Such an effect is fur-
ther accentuated by the use of stability functions in the M-Y
and QE k-ε models. These stability functions, as given by
equations (25) and (26), describe the secondary damping
of turbulence, where the level of damping increases with
decreasing TKE. Figure 7 illustrates the variations in the
stability function cμc. For M-Y and QE k-ε, the distribu-
tion of cμc is nonuniform, with the low values found in
the vicinity of low TKE. The minimum of cμc is reduced
as the flow becomes more stratified (Figure 7b). Such bias
in the cμc profile places an emphasized damping on the
eddy diffusivity in the low-TKE region and therefore ac-
centuates the artificial lutocline.
[61] Comparisons of the TKE and eddy viscosity profiles

for cases 1 and 5 are shown in Figures 8 and 9, respectively.
The DNS estimate of the eddy viscosity is computed from

equations (14) and (15) as ν̂t ¼ �
∧

u′w′= ∂û=∂ẑð Þ, a definition
which perforce results in discontinuity at the velocity maxi-
mum. It can be seen that all RANSmodel results are generally
in good agreement with those from DNS when stratification
effects are weak. Close to the boundary, deviation from

DNS is observed due to the choice of b̂ , as discussed in the

previous section. In addition, the standard k-ε model tends to
overestimate TKE relative to DNS in the midchannel region,
so resulting in an eddy viscosity profile that significantly differs
from the others. Such results can be improved by fine-tuning the
coefficients. However, as shown in the comparison for themean
flow profiles, these errors in the turbulence characteristics do not
significantly affect the predictions in the flow velocity or sedi-
ment concentration, since the deviation from neutral conditions
is rather weak. At case 5, just before the flow transition to
Regime II, all RANS models tend to underestimate TKE and
the eddy viscosity above the discontinuity. Below the discon-
tinuity, it is intriguing to find that the RANS models predict
lower TKE but higher eddy viscosity compared to DNS.
This suggests that for the same energy level, energy is more
efficiently dissipated when the local density gradient is large.
These turbulence closures may thus become less suitable in
describing the energy balance therein under such conditions.
[62] To quantify the level of stratification represented by

the models, two dimensionless parameters are introduced:
the gradient Richardson number and the damping efficiency.
The gradient Richardson number is defined as

Rig ¼ �Riτ
∂ĉ
∂ẑ
∂û
∂ẑ

� �2 : (55)

[63] This parameter can be viewed as an alternative form
for the related flux Richardson number

Rif ¼ � Riτ ẇ′c′

u̇′w′
∂û
∂ẑ

� � ; (56)

which represents a ratio between the buoyancy and energy
production. In the RANS modeling presented here, equations
(14) and (15) and the assumption Sct= 1 ensure that the two
are equal to each other.
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Figure 7. Comparison of cμc profiles for (a) case 1 and (b) case 5. Higher damping is found in the vicinity
of velocity maximum for M-Y and QE k-ε. The value of cμc for the standard k-ε model is calculated using
equation (36).
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[64] The damping efficiency is defined asDE ¼ v̂t=v̂t0. The
relation between Rig and DE near the lower boundary is
shown in Figure 10. In case 1, the damping efficiency pre-
dicted by the M-Y and modified k-ε models resemble that
from DNS up to ẑ ¼ 0:5. Toward the velocity maximum,
Rig rapidly increases toward infinity and significant deviation
of the damping efficiency from DNS can be expected. In the
strongly stratified condition of case 5, however, these models
are able to capture the damping effect only above ẑ ¼ 0:5. As
seen in Figure 9b, substantial error relative to DNS is ob-
served below ẑ ¼ 0:5 due to the failure of these models to

account for the loss of energy under strongly stratified condi-
tions. One may argue that such discrepancy originates from
inappropriate boundary conditions specified for the RANS
models. Further numerical tests showed, however, that forc-
ing the boundary conditions used in RANS to match the
DNS results does not improve the discrepancy. Indeed, the
RANS predictions resulting from this forcing were found to
be clearly erroneous, in that the sediment concentration is
substantially overestimated in the lower part of the channel
and TKE is substantially underestimated in the upper part
of the midchannel. It is hence concluded that the turbulence
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Figure 8. Comparison of Regime I TKE profiles predicted by DNS against the RANS results. (a) case 1
and (b) case 5.
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Figure 9. Comparison of Regime I eddy viscosity profiles predicted by DNS against the RANS results.
(a) case 1 and (b) case 5. DNS estimate of the eddy viscosity is computed by ν̂t ¼ �
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closures themselves, rather than the boundary conditions, are
responsible for failure of the RANS models to reproduce the
DNS results under strongly stratified conditions.

6. Regime II Stratification

[65] With further increase in v̂s, the flow enters Regime II.
Figures 11 and 12 show a comparison of the DNS and RANS
results for mean flow and turbulent characteristics associated
with cases 6 and 10, respectively. In Regime II, the flow
obtained from DNS is characterized by near- or complete lo-
cal relaminarization near the bed, where the TKE is highly
(or sometimes completely) damped (compare Figures 8b,
11c, and 12c). In addition, the local TKE maximum in the
lower part of the channel characteristic of Regime I (seen in
Figure 8b) vanishes (Figures 11c and 12c). As the flow is
no longer able to suspend sediment by turbulence, suspended

sediment collapses to a thin near-bed layer, where suspension
is maintained by the effect of the artificial molecular diffusiv-
ity. A highly skewed, nose-like velocity profile with ẑu;max

very close to the bed is thus created (Figure 12a).
Comparisons between case 5 (highest value of v̂s within
Regime I) and case 6 (lowest value of v̂s within Regime II)
show that results from all RANSmodels reflect only the slight
change in v̂s (from 0.02125 in case 5 to 0.23 in case 6), and fail
to reflect the transition between two different flow regimes.
The velocity profiles show that a weak drop of 0.02–0.03 in
ẑu;max from v̂s ¼ 0:02125 to v̂s ¼ 0:023 is predicted using
the M-Y and QE k-ε models, whereas DNS predicts a drop
that is approximately 10 times larger. The RANS models also
fail to reproduce the damping of TKE below the velocity max-
imum. As v̂s increases, the discrepancy of the mean flow and
turbulent characteristics between the RANS models and
DNS is further enhanced (Figure 12). It should be kept in
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1; circles indicate the values at ẑ ¼ 0:75. The inset shows the values in the near-bed region. The leftmost
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Figure 11. Comparison of (a) velocity profile, (b) concentration profile, and (c) TKE profile for case 6.
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mind, however, that it was shown in Figure 2 that the bound-
ary conditions are partially responsible for failure in this case.
[66] The ratio between the Reynolds flux FRe ¼ �w′c′ and

viscous flux Fν= νcdc/dz of suspended sediment are shown in
Figure 13 for cases 5 and 6. The DNS results show that just
before relaminarization occurs, the near-bed sediment flux
due to turbulence, although highly damped, maintains values
that are larger than that associated with the artificial molecu-
lar viscosity. When the flow relaminarizes, the dominance of
Fν is seen for values of ẑ up to 0.4, indicating the sediment in
that region is no longer suspended by turbulence.
[67] We emphasize that the molecular flux is indeed artifi-

cial. The appropriate interpretation of the DNS results is that
for a given value of Riτ, sufficiently large values of v̂s result in
such strong stratification that the near-bed turbulence is

extinguished. In real flows, sediment would settle out not into
the thin layer dictated by the artificial molecular viscosity,
but instead to the bed itself, never to be reentrained. That
is, within Regime II, a self-sustaining turbidity current is no
longer possible [Cantero et al., 2012]. Figure 14, which
shows the ratio between the Reynolds stress τRe ¼ �ρau′w′

and the viscous stress τν = ρaν ∂ u/∂ z, illustrates the region
over which such a phenomenon occurs. As the flow transi-
tions into Regime II, the momentum flux is dominated by
the artificial molecular viscosity below ẑ≈0:35 in case 6. The
extent of such a region is found in C09 to increase with the level
of stratification (increasing v̂s in the present case). It is clear
from Figures 11c, 12c, 13b, and 14b that the RANS models
are unable to capture the phenomenon of collapse of near-bed
turbulence under conditions of strong self-stratification. As a
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Figure 12. Comparison of (a) velocity profile, (b) concentration profile, and (c) TKE profile for case 10.
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Figure 13. Model comparisons for FRe/Fν profiles. (a) Case 5 (Regime I) and (b) case 6 (Regime II).
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result, they fail to capture a phenomenon that should result in
(a) rainout of suspended sediment from the current without
reworking or resuspension, (b) emplacement of a structure-
less (massive) deposit, and (c) eventual extinction of the tur-
bidity current itself.
[68] A perusal of Figures 5, 6, 8, 9, 13, and 14 reveals that

even before the flow makes the transition to Regime II, the
RANS turbulence closures used here fail to fully describe
the turbulence field under strongly stratified conditions.
This failure is likely due to their inability to capture the tran-
sition of energy from turbulence to internal waves, a phe-
nomenon which has been observed in various geophysical
flows [Müller et al., 1986; Gregg, 1987, 1989]. This is illus-
trated in Figure 15. The right-hand side column of Figure 15
shows the production (P̂) and dissipation (̂ε) rates of TKE pre-
dicted by DNS for cases 5 and 6. It is apparent that as the flow
relaminarizes, the magnitude of both rates are significantly
reduced. Note that the depth-average velocity U reported in
C09 for cases 5 (= 17.48) and 6 (= 18.04) are of the same
order. This implies that the energy is likely to be more effi-
ciently transferred to and dissipated through internal waves.
The RANS models used in this study, which do not describe
the additional energy sinks, clearly fail to capture the reduc-
tions in P̂ and ε̂ (Figures 15a and 15c).
[69] More evidence of energy dissipation through internal

waves can be seen in the variation of the characteristic
length scales. Under non-stratified conditions, all energy-
containing eddies eventually lose their energy to viscous dis-
sipation at a length scale characterized by the Kolmogorov
scale lk = (ν3/ε)1/4. However, in the presence of density
stratification, the movement of the fluid particles is limited
not only by the largest scales possible (e.g., flow scale)
but also by the available energy to mix the excess density
against the density gradient. In other words, the maximum
excursion of a fluid particle is set by converting all its
(vertical) TKE to potential energy. This length scale is

characterized by the buoyancy scale lb ¼ w′2
� �1=2

=NBV

where NBV = (�Rg(∂ c/∂ z))1/2 is the Brunt-Väisälä fre-
quency. The scaling l ∼ q3/ε (equation (34)) allows the
buoyancy length scale to be expressed alternatively in

terms of the Ozmidov scale lo ¼ ε=N3
BV

� �1=2
.

[70] For turbulent length scales below this threshold, en-
ergy is dissipated in a fashion similar to a non-stratified flow.
With the increase in the level of stratification, the larger
scales are suppressed by the buoyancy force, whereas the
scales still below the buoyancy scale limit follow classical
turbulent behavior and dissipate energy through viscosity.
In the limiting case where the buoyancy scale becomes com-
parable to the Kolmogorov scale, the latter scaling fails and
energy is completely transferred to internal waves through
wave interactions. The dimensionless forms of the relevant
length scales can be written as

l̂ k ¼ 1

Re3τ ε̂

� �1=4

; (57)

l̂ b ¼
∧

w′2
� �1=2

=N̂ BV; (58)

l̂ o ¼ ε̂=N̂ 3
BV

� �1=2
; (59)

and

N̂ BV ¼ �Riτ
∂ĉ
∂ẑ

� �1=2

: (60)

[71] Figure 16 shows the comparison of variation of the
length scales as the flow transitions to Regime II. The
Kolmogorov scale in general is well captured by the QE k-ε
model. On the other hand, the discrepancy in the Ozmidov
scale is manifested in the underestimation near the TKE
minimum associated with the fish trap effect. The difference
in the magnitude of the two length scales given by DNS in
case 5 indicates that the dissipation of energy is still domi-
nated by turbulence, and the QE k-ε model is appropriate
for describing the flow and turbulence field. As the flow
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Figure 14. Model comparisons for τRe/τν profiles. (a) Case 5 (Regime I) and (b) case 6 (Regime II).
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relaminarizes, the two scales become comparable in the near-
bed region. Such phenomenon however is not reflected in the
length scales predicted by QE k-ε, where the dissipation
of energy-dominated turbulence persists.
[72] To further examine the level of scaling failure of the

RANS models as the stratification effect intensifies, we adopt
the criteria proposed in the experimental studies of Stillinger
et al. [1983]. In their grid turbulence experiment in a salt-
stratified flow, they determined the onset of the transition from
a fully turbulent field to internal waves by a break in the RMS

value of the density fluctuation (ρ′2 ¼ 0) from non-stratified
growth patterns. Complete transition is determined by zero
Reynolds flux ( ρ′w′ ¼ 0 ) since waves are capable of
transporting momentum but not mass. Using these character-
izations, they proposed three ranges for the wavelength l̂ t of
possible turbulent motions to describe energy dissipation
mechanisms: l̂ t > 1:4l̂ o corresponding to strong influence or
complete dominance of internal waves; 1:4l̂ o > l̂ t > 15:4l̂ k
corresponding to dominance of the energy cascade process
over internal wave motions, and 1:4l̂ o > 15:4l̂ k > l̂ t corre-
sponding to the dominance of energy dissipation by viscosity.
[73] In Figure 17, we plot for cases 1, 5, 6, and 10 the

bounding length scales and the corresponding three ranges,
as computed using the results of DNS. It can be seen in case
1 that 1:4l̂ o > 15:4l̂ k is satisfied everywhere in the vertical.

However, as stratification effects increase, the buoyancy-
related scale becomes comparable to or less than 15:4l̂ k in a
significant portion of the flow. Within such a region, a part of
the turbulent field is likely to dissipate energy through internal
wave motions. Note that the onset of this breakdown occurs in
case 5, before flow relaminarization is even observed. In this
case, overall agreement between RANS and DNS is found in
the velocity profile (Figure 5c), but RANS predictions deviate
from DNS below the velocity maximum, a region where the
magnitude of two length scales becomes comparable.
Comparison with Figures 5c and 6c further suggest that the
turbulence models perform reasonably well in the region
where the condition 1:4l̂ o≫15:4l̂ k is satisfied. As the flow
relaminarizes, the Ozmidov length scale is greatly reduced in
the near-bed region, which indicates that internal wave motions
are likely the main mechanism for energy dissipation.
However, due to the increasing bias of the concentration profile
toward the bed, the extent of such a region weakly decreases
with increasing v̂s (Figures 17c and 17d).
[74] The analysis presented here of the DNS results of C09

shows that the flow makes the transition from viscous dissi-
pation to transfer of energy to internal waves as v̂s increases
beyond a value of 0.022. More specifically, flows in
Regime II are characterized by the complete dominance by
internal waves in the lower water column, resulting in the
failure of the RANS model predictions. In principle, separate
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models are required to describe these two types of flows
[D’Asaro and Lien, 2000]: (a) stratified turbulence models
such as the RANS models presented in this study, which ad-
equately describe the turbulent field under weakly stratified
conditions and (b) wave-wave interaction models [e.g.,
Müller et al., 1986] which account for internal wave motion
for strongly stratified flows. The use of conventional RANS
models to describe the energy leakage from TKE to internal
waves requires reparameterization and special closures [e.
g., Baumert and Peters, 2004]. However, as pointed out by
Baumert and Peters [2004] and Baumert [2012b], the key
issue behind using such models to capture the wave motions
is possibly the standard two-way split approach of Reynolds
decomposition, which does not isolate the periodic oscillation
from the fluctuation term. By including a wave component in
the decomposition and treating both vortices and waves as col-
liding particles [Baumert, 2012a], Baumert [2012b] proposed a
three-equation model which describes the energy balance in
the coexistence of mean flow, turbulence, and internal waves.
Such a model, though still requiring further validation, may
serve to bridge the gap between the two mechanisms and
enhance our progress toward a unified theory.

7. Effect of Stratification on Flow Characteristics
of Turbidity Currents

[75] An important factor inmodeling large-scale turbidity cur-
rents and the resulting morphodynamics using layer-averaged
models is the characterization of several key flow parameters
such as the ratio of near-bed concentration to layer-averaged
concentration r0 and the bed resistance coefficient Cf [e.g.,
Fildani et al., 2006]. Empirical documentation of these
parameters is lacking, mainly due to the previously described
difficulties in the measurement of real-time events and scale
effects in laboratory experiments. In practice, applications
of layer-averaged formulations for turbidity currents often
invoke values for these parameters based on open channel
flows under carrying suspended sediment under uniform
conditions. However, it is clear that we cannot apply these
values with confidence, since the two types of flows differ
significantly in their internal structure.
[76] In this section, we provide a turbidity current based

analysis to provide predictive relations for r0 and Cf, using

results from the configuration of TCR. Here we specifically
define these parameters as

r0 ¼ ĉb ¼ cb
C

(61)

Cf ¼
u2*;t þ u2*;b

U 2 : (62)

[77] We assume that the threshold-settling velocity for
flow to relaminarize is universal at v̂s≈0:022 (it should be
noted, however, that results obtained later by the authors of
C09 show that this value increases weakly with increasing
shear Reynolds number and decreasing shear Richardson
number). For comparison purposes, we also retain the value
of Reτ of 180. We have performed the computations neces-
sary to quantify r0 and Cf and limited their computation to
values of v̂s below the threshold value. The best performing
model based on the analysis above, i.e., the QE k-ε model,
is used here for all calculations.
[78] The dependency of r0 and Cf on v̂s and Riτ is examined

in Figure 18. Figure 18a shows that the value of r0 increases
with both v̂s and Riτ. This demonstrates that both parameters
increase the effect of density stratification and cause the
concentration profile to become less uniform. Increase in
the value of v̂s , which directly describes the tendency for
the sediment to settle, is found to be more effective in biasing
the profile than increase in Riτ. On the other hand, the change
in Cf with increasing v̂s is not monotonic. At lower values of
v̂s, increasing stratification effects tend to reduce Cf, and thus
enhance the flow velocity due to the higher driving force in
the lower part of the channel. As v̂s increases and the sedi-
ment concentration becomes more and more biased toward
the bed, Cf increases due to the loss of the driving force in
major part of the channel. The values of Cf are found to be
lower than those reported in C09. This discrepancy is mainly
due to omission of the low-velocity region in the calculation
of U, a problem which can be avoided for sufficiently large
Reτ and small b̂.
[79] For turbidity currents in nature, the internal structure is

also affected by the composition of the grain sizes in the flow.
Fine material which requires a significant time to settle in still

Figure 18. Variation of (a) r0 and (b) Cf as functions of v̂s and Ri τ. The QE k-εmodel has been applied in
all simulations.
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water tends to lead to a relatively uniform concentration pro-
file, so reducing the overall density gradient and stratification
effects compared to coarser material. Here we examine these
effects using a mixture of two grain sizes. The dimensionless
settling velocity v̂s is set to 0.02 for the coarse material and
0.0001 for the fine material. The value of Riτ is set to 100
to accentuate the differences among different ratios of coarse
to fine material. The calculations were again done with the
QE k-ε closure model.
[80] Figure 19 shows velocity and total (including both

sizes) volume suspended sediment concentration profiles
for ratios of coarse to total material varying from 0 to 1.
The figure shows that the velocity and concentration profiles
differ significantly as the ratio changes. With increase of the
finer material in the flow, stratification effects weaken and the
mean flow characteristics approach those under neutral
conditions. Such a transition is accompanied by decrease in
the near-bed concentration and increase in the resistance
coefficient due to the reduction in depth-averaged velocity
U. The results shown here have demonstrated, along with
previous results due to Salaheldin et al. [2000], that fine ma-
terial plays an important role in sustaining turbulence. This
turbulence in turn keeps the coarse as well as fine material
in suspension. Therefore, a current with a sediment mixture
is likely to travel a much farther distance than that with only
coarser part of that mixture. Owing to this reason, natural tur-
bidity currents containing a sufficiently large fraction of mud
can travel hundreds of kilometers into the submarine envi-
ronment before dissipating, so emplacing long submarine
channels [Babonneau et al., 2002; Spinewine et al., 2011].
[81] Results from Figures 18 and 19 demonstrate the

variability of the parameters as a turbidity current evolves
downstream. They are important in understanding key fea-
tures such as upward and downstream fining of the deposit.

However, care must be taken when extrapolating these re-
sults to natural flows. First of all, the presence of a roof cre-
ates turbulence, resulting in a local TKE maximum which
is comparable to that at bed. Thus, in a way, the results
presented in this study is most applicable to natural turbidity
currents under Froude-supercritical conditions [see e.g.,
Sequeiros et al., 2010], where turbulence is created by the
flow entrainment at the interface of the current and the
ambient fluid. However, the effects of flow entrainment on
the flow structure and parameters, which is prohibited by
TCR, have not been fully understood. Second, the effect of
the depth-averaged concentration C in the TCR formulation
does not affect the level of stratification and flow structure.
For natural turbidity currents, however, the effects of total
sediment concentration can further modulate turbulence and
consequently influence morphordynamic processes. In
particular, high sediment concentration leads to hindered set-
tling and turbulence damping. This results in rapid deposition
without grain sorting in the lower part of the deposit [Lowe,
1982; Baas et al., 2004]. Such a mechanism, as opposed to
flow relaminarization due to self-stratification [Cantero
et al., 2012], has been one of the main hypotheses for the
structureless deposit found in the base of the Bouma
sequence [Bouma, 1962]. The current RANS models,
however, do not account for either mechanism. In order to
characterize the variability of the parameters for natural
turbidity currents, the effects of the above factors on the flow
structure must be understood to a better extent.

8. Conclusion

[82] Using the configuration of a turbidity current with a
roof (TCR), we examined the capability of Reynolds-averaged
Navier-Stokes (RANS) models to capture the internal structure
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of turbidity currents under conditions of self-stratification by
suspended sediment. Three turbulence closures, i.e., the
Mellor-Yamada (M-Y) scheme, the standard k-ε scheme, and
the quasi-equilibrium k-ε (QE k-ε) scheme, were implemented
and compared with the results of direct numerical simulation
(DNS) using the cases studied by C09.
[83] The DNS results of C09 studied the flow in the TCR

configuration, for which the shear Richardson number Riτ is
held constant at 11.4 but dimensionless fall velocity v̂s is
increased. They found that for a dimensionless fall velocity
below about 0.022, increasing v̂s resulted in increasing
stratification effects, with gradual damping of the turbulence
in the lower part of the flow. Here this regime is called
Regime I. Values of v̂s in excess of 0.022, i.e., Regime II,
corresponded to a radical modification of the flow, with
stratification effects so strong that turbulence is nearly or
completely extinguished in a substantial region near the bed.
Cantero et al. [2012] argued that such flows are unsustainable
in nature. This is because suspended sediment would rain out
without resuspension. The flow would thus lose its driving
force and die.Cantero et al. [2012] showed that the abrupt tran-
sition fromRegime I to Regime II can bemediated by either de-
clining slope or increasing width in the downstream direction.
[84] We show that for Regime I flow, both M-Y and QE k-ε

perform reasonably well in describing themean flow and turbu-
lent characteristics computed from DNS. As the level of strati-
fication increases, however, increasing deviation from DNS is
found in the region below the velocity maximum. The standard
k-εmodel, on the other hand, consistently underestimates strat-
ification effects. This result implies that the choice of the stabil-
ity functions may play a more important role than the choice of
the closure equations used in these two-equation models.
[85] In fact, the structural similarity inherent to the most

commonly used two-equation models has been demonstrated
in previous studies [Umlauf and Burchard, 2003; Kantha,
2004]. It has been shown that all these models belong to a
family with a generic structure consisting of a TKE equation
and a length scale equation. While the comparison and
selection of the optimal two-equation model for the present
problem is not the main purpose of this study, the similarity
in structure is at the root of two failings of the DNS models:
the “fish trap” effect within Regime I and the collapse of
near-bed turbulence within Regime II.
[86] The fish trap effect predicted by the RANS models is

manifested in terms of an upward normal profile of suspended
sediment which shows two regions, i.e., a region of relatively
high suspended sediment concentration below the velocity
maximum and a region of relatively low concentration above
it. These regions are separated by a relatively thin zone of
rapidly declining concentration. Although this zone gives the
appearance of a lutocline, comparison with DNS reveals that
it is an artifact of the generic structure of all three RANS, which
force the Reynolds stress to vanish precisely at the point of
velocity maximum. Neither this coincidence nor the apparent
lutocline were observed in the DNS simulations.
[87] The appearance of the fish trap effect in the RANS

models places limitations on their application to field-scale tur-
bidity currents. Under conditions of net sediment entrainment
from the bed, the fish trap effect tends to sequester the
suspended sediment below the velocity maximum. This incom-
pletemixing can be expected to affect the downstream evolution
of the current. It may be possible to overcome this limitation by

using a more advanced closure scheme, by using large-eddy
simulation [Armenio and Sarkar, 2002; Taylor et al., 2005],
or by considering convective flows with a vertical component
that are likely to occur in the field [Straub et al., 2011].
[88] Within Regime II, i.e., beyond the threshold v̂s

¼ 0:022, all three RANS models fail to capture the internal
structure of the flow. In particular, they fail to capture the
phenomenon of near or complete extinction of near-bed tur-
bulence. This failure is due in part to the inability of the
boundary conditions classically used in such models to accu-
rately describe the flow. But the result that the failure is not
remedied by forcing the flow to obey boundary conditions
obtained from DNS indicates that the models themselves
are insufficient to describe strong stratification effects.
[89] The RANS models used here are then further limited

in field applicability, in that they can be used neither to de-
scribe the fate of a flow when near-bed turbulence collapses
nor to characterize the type of sediment deposit they would
emplace. We relate this failure to the inability of the RANS
models to describe a transition from turbulence to internal
waves under conditions of strong stratification.
[90] The standard hypothesis of RANSmodels is that energy

is dissipated by the eddies at the fine scale of the turbulence and
that stratification effects simply modify this process. Under
conditions of sufficiently high stratification, however, the ver-
tical density gradient is so strong that vertical turbulent fluctu-
ations are greatly suppressed. Near-horizontal fluctuations then
transfer energy to internal waves. We show that (a) the DNS
predictions in Regime II are in the range for transfer to internal
waves and (b) the RANS models do not capture this transfer.
We suggest that a model which can describe the transition of
energy dissipation from the classical cascade model to full
wave interaction is required to capture the flow characteristics
under extreme stratified conditions and, in particular, the phe-
nomenon of collapse of near-bed turbulence.
[91] The internal structure of a turbidity current is highly

complex, particularly when the interactions between the cur-
rent and bedforms on the bed (such as dunes, antidunes, or
bars) become important. We should note that both the flow
configuration (TCR) and the benchmark tool (DNS) used in
this study are subject to several assumptions and simplifica-
tions, and the model results thus do not account for the full
complexity of natural turbidity currents. Having said that, the
TCR methodology presented here allows for a focused study
of the effect of stratification on the internal structure and flow
characteristics of turbidity currents. Moreover, the use of the
TCR configuration using both RANS and DNS yields valu-
able insight on the limitations of RANS turbulence closures
in modeling stratified flows. The results obtained here cannot
be directly translated to turbidity currents in nature, because
the presence of a roof precludes entrainment of ambient water
at the upper interface. They do, however, provide the basis for
future studies on more refined parameterization for field-scale
modeling of turbidity currents.

Appendix A

[92] Under fully relaminarized flow conditions, analytical
solutions can be derived using the same approach described
in C09, but with the boundary conditions as given in
section 2.3. The results are summarized below.
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[93] The dimensionless velocity and sediment concentra-
tion profiles are given by

û ¼ p1 exp �v̂sReτSc ẑ � 1ð Þð Þ þ p2ẑ þ p3½ � (A1)

and

ĉ ¼
�v̂sReτSc 1� b̂

� �
sinh �v̂sReτSc 1� b̂

� �� � exp �v̂sReτSc ẑ � 1ð Þð Þ; (A2)

where

p1 ¼
Reτ 1� b̂
� �

v̂sReτSc sinh �v̂sReτSc 1� b̂
� �� � ; (A3)

p2 ¼
�2 sinh �v̂sReτSc 1� b̂

� �� �
þ ût � ûbð Þ=p1

2 1� b̂
� � ; (A4)

and

p3 ¼
ûb
p1

� exp �v̂sReτSc b̂ � 1
� �� �

� p2b̂: (A5)

Notation

α empirical constant
ε energy dissipation rate [L2/T3]
ε̂ dimensionless energy dissipation rate
κ von Kármán constant
ν kinematic viscosity [L2/T]
νc molecular diffusivity [L2/T]
ν̂t dimensionless eddy viscosity
ν̂t0 dimensionless eddy viscosity

under neutral conditions
ν̂tc dimensionless eddy diffusivity
ν̂tc0 dimensionless eddy diffusivity under

neutral conditions
ρa density of ambient fluid [M/L3]
ρs density of sediment [M/L3]

σε, σk model coefficients
τ total mean shear stress [M/L/T2]
τν viscous stress [M/L/T2]
τRe Reynolds stress [M/L/T2]
τb total mean shear stress on the bed [M/L/T2]
τt total mean shear stress on the roof [M/L/T2]

A1, A2 model coefficients
B̂ dimensionless buoyancy production rate

B1, B2 model coefficients
B̂b near-bed buoyancy production rate
B̂t near-roof buoyancy production rate
b reference height [L]
b̂ dimensionless reference height
C depth-averaged sediment volume

concentration
Cε1, Cε2, Cε3 model coefficients

Cμ, Cμc model coefficients
Cf resistance coefficient
c Reynolds-averaged total sediment volume

concentration

ĉ normalized Reynolds-averaged total
sediment volume concentration

cμ, cμc stability functions
c0μ empirical constant
cb near-bed sediment volume concentration
ĉb normalized near-bed sediment volume

concentration
ci sediment volume concentration in the ith

size fraction
ĉi normalized sediment volume concentration in

the ith size fraction
DE damping efficiency
dt̂ dimensionless time step
dẑ dimensionless grid size

E1, E2, E3 model coefficients
Fν viscous flux [L/T]
FRe Reynolds flux [L/T]
g gravitational acceleration [L/T2]
h half roof height [L]
k turbulent kinetic energy [L2/T2]
k̂ dimensionless turbulent kinetic energy
L̂ measure of distance from the wall

¼ max ẑ; 2� ẑð Þð Þ
l̂ dimensionless master length scale
lb buoyancy length scale [L]
l̂ b dimensionless buoyancy length scale
lk Kolmogorov length scale [L]
l̂ k dimensionless Kolmogorov length scale
lo Ozmidov length scale [L]
l̂ o dimensionless Ozmidov length scale
l̂ t dimensionless wavelength for turbulent

motions
N total number of sediment size fractions

NBV Brunt-Väisälä frequency [1/T]
N̂ BV dimensionless Brunt-Väisälä frequency

P̂ dimensionless energy production rate
p Reynolds-averaged total pressure [M/L/T2]

pwci volumetric proportion of the sediment in the
ith fraction range

q̂ measure of dimensionless turbulent kinetic energy

per unit mass ¼
ffiffiffiffiffi
2k̂

p� �
R submerged specific gravity

Reτ shear Reynolds number
Riτ shear Richardson number
r0 near-bed sediment volume concentration

ratio
S0 channel slope

SH, SM stability functions
Sl, Sq model coefficients

Sc Schmidt number
Sct turbulent Schmidt number
t time [T]
t̂ dimensionless time

U depth-averaged streamwise velocity [L/T]
u Reynolds-averaged streamwise velocity [L/T]
û dimensionless streamwise velocity
u′ streamwise velocity fluctuation [L/T]
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u′2 streamwise Reynolds normal stress × (�1) [L2/T2]
u*,avg nominal shear velocity [L/T]
u*,b shear velocity at the bed [L/T]
û*;b dimensionless shear velocity at the bed
u*,t shear velocity at the roof [L/T]
û*;t dimensionless shear velocity at the roof
ûb dimensionless velocity at the bed
ût dimensionless velocity at the roof

u′w′ Reynolds shear stress × (�1) [L2/T2]
∧

u′w′ dimensionless Reynolds shear
stress × (�1)

v Reynolds-averaged transverse velocity [L/T]
vsi settling velocity of the ith size fraction [L/T]
v̂si dimensionless settling velocity of the ith size

fraction
w Reynolds-averaged upward normal velocity

[L/T]
w′ upward normal velocity fluctuation [L/T]

w′2 upward normal Reynolds normal stress × (�1)
[L2/T2]

w′c′i Reynolds flux × (�1) of the ith size fraction
[L/T]∧

w′c′i dimensionless Reynolds flux × (�1) of the ith size
fraction∧

w′c′ dimensionless total Reynolds flux × (�1)
x streamwise coordinate [L]
y transverse coordinate [L]
z upward normal coordinate [L]
ẑ dimensionless upward normal coordinate
z+ wall unit
zf free surface elevation [L]

ẑu;max dimensionless elevation for velocity maximum
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