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ON THE EXISTENCE OF EXTREMALS FOR THE CRITICAL SOBOLEV
IMMERSION WITH VARIABLE EXPONENTS

JULIÁN FERNÁNDEZ BONDER

ABSTRACT. In this work we review some recent results conserning the existence problem
of an extremal for the immersion W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω) in the critical range, i.e. A = {x∈
Ω : q(x) = p∗(x)} 6= /0, where p∗(x) = N p(x)/(N− p(x)) is the critical Sobolev exponent.

1. INTRODUCTION

In this paper we review some recent results on the existence problem for extremals of the
Sobolev immersion Theorem for variable exponents W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω). By extremals
we mean functions where the following infimum is attained

S(p(·),q(·),Ω) := inf
v∈W 1,p(x)

0 (Ω)

‖∇v‖p(x),Ω

‖v‖q(x),Ω
. (1.1)

Here Ω⊂RN is a bounded open set and the variable exponent spaces Lq(x)(Ω) and W 1,p(x)
0 (Ω)

are defined in the usual way. We refer to the book [5] for the definition and properties of
these spaces.

The critical exponent is defined as usual by

p∗(x) =

{
N p(x)

N−p(x) if p(x)< N,

∞ if p(x)≥ N.

When the exponent q(x) is subcritical, i.e. 1 ≤ q(x) < p∗(x)− δ for some δ > 0, the
immersion is compact (see [7, Theorem 2.3]), so the existence of extremals follows easily
by direct minimization. But when the subcriticality is violated, i.e. 1 ≤ q(x) ≤ p∗(x) with
A = {x ∈Ω : q(x) = p∗(x), p(x)< N} 6= /0 the compactness of the immersion fails and so
the existence (or not) of minimizers is not clear. For instance, in the constant exponent case,
it is well known that extremals do not exist for any bounded open set Ω.

There are some cases where the subcriticality is violated but still the immersion is com-
pact. In fact, in [18], it is proved that if the criticality set is “small” and we have a control
on how the exponent q reaches p∗ at the criticality set, then the immersion W 1,p(x)

0 (Ω) ↪→
Lq(x)(Ω) is compact, and so the existence of extremals follows as in the subcritical case.

However, in the general case A 6= /0, up to our knowledge, there are no results regarding
the existence or not of extremals for the Sobolev immersion Theorem.

The main importance for the existence of extremals for S(p(·),q(·),Ω), and of the Sobolev
immersion Theorem relays on its connection with the solvability of some nonlinear elliptic
PDEs with nonstandard growth, where the so-called p(x)-Laplacian is the main example.
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The p(x)-Laplacian is defined as ∆p(x)u = div(|∇u|p(x)−2∇u). Observe that for p(x)≡ 2
this operator is the classical Laplace operator ∆u and for p(x) ≡ p (constant) is the well
known p-Laplace operator that has been widely studied since the 60’s.

1.1. Some history and motivation. The variable exponent spaces where first considered
in W. Orlicz’ seminal paper [22] in 1931, but then where left behind as the author pursued
the study of the spaces that now bear his name.

The first systematic study of these spaces appeared in H. Nakano’s works at the beginning
of the 1950s [20, 21] where he developed a general theory in which the spaces Lp(x)(Ω)
were a particular example of the more general spaces he was considering. Even though
some progress was made after Nakano’s work (see in particular the works of the Polish
school H. Hudzik, A. Kamińska and J. Musielak in e.g. [12, 13, 19]), it was only in the last
20 years that major progress has been accomplished mainly due to the following facts:

• The discovery of a very weak condition ensuring the boundedness of the Hardy-
Littlewood maximal operator in these spaces, i.e. the log-Hölder condition that im-
plies, to begin with, that test functions are dense in Lp(x)(Ω).
• The discovery of the connection of these spaces with the modeling of the so-called

electrorheological fluids [23].
• The application that variable exponents have shown in image processing [4].

Of central importance in the above mentioned applications are the variable exponent
Sobolev spaces W 1,p(x)(Ω) defined as

W 1,p(x)(Ω) :=
{

u ∈W 1,1
loc (Ω) : u,∂iu ∈ Lp(x)(Ω), i = 1, . . . ,n

}
,

and the subspace of functions with zero boundary values

W 1,p(x)
0 (Ω) = {u ∈W 1,p(x)(Ω) : u has compact support},

where the closure is taken in the W 1,p(x)(Ω)-norm ‖ · ‖1,p(x) that is defined as

‖u‖1,p(x) = ‖u‖p(x)+‖|∇u|‖p(x).

We assume from now on that p is log-Hölder in the sense that

sup
x,y∈Ω

|(p(x)− p(y)) log(|x− y|)|<+∞. (1.2)

Under this assumption it can be proved that the space C∞
c (Ω) is dense in Lp(x)(Ω) and

in W 1,p(x)
0 (Ω), and also that the Poincaré inequality holds i.e. there exists a constant C =

C(Ω, p)> 0 such that
‖u‖p(x) ≤C‖|∇u|‖p(x)

for any u ∈ W 1,p(x)
0 (Ω). It follows in particular that ‖∇u‖p(x) is an equivalent norm in

W 1,p(x)
0 (Ω).
There are, thus, plenty of literature that deal with the existence problem for nonlinear

partial differential equations with the p(x)-Laplacian as a main operator (just to cite a few,
see [3, 6, 16, 17]).

When the source term has critical growth in the sense of the Sobolev embedding, there
are only a handful of results on the existence problem. We refer to the works [8, 11, 18] and
also the work [24] where multiplicity results are obtained.

The full proofs of the results presented here can be found in the articles [9, 10].
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2. STATEMENT OF THE RESULTS

In order to state our main results, let us introduce some notation.
• The Rayleigh quotient will be denoted by

Qp,q,Ω(v) :=
‖∇v‖p(x),Ω

‖v‖q(x),Ω
. (2.1)

• The Sobolev immersion constant by

S(p(·),q(·),Ω) = inf
v∈W 1,p(x)

0 (Ω)

Qp,q,Ω(v). (2.2)

• The localized Sobolev constant by

Sx = sup
ε>0

S(p(·),q(·),Bε(x)∩Ω) = lim
ε↓0

S(p(·),q(·),Bε(x)∩Ω), x ∈Ω. (2.3)

• The critical constant by
S = inf

x∈A
Sx. (2.4)

• The usual Sobolev constant for constant exponents

K(N, p)−1 = inf
v∈C∞

c (RN)

‖∇v‖p,RN

‖v‖p∗,RN
. (2.5)

With these notations, our main results can be stated as

Theorem 2.1. Assume that p(·), q(·) : Ω→ [1,+∞) are continuous functions with modulus
of continuity ρ(t) such that

ρ(t) log(1/t)→ 0 as t ↓ 0.

Assume, moreover, that the criticality set A is nonempty. Then, for every domain Ω it holds

S(p(·),q(·),Ω)≤ S≤ inf
x∈A

K(N, p(x))−1.

Theorem 2.2. Under the same assumptions of the previous Theorem, if supΩ p(·)≤ infΩ q(·)
and if the strict inequality holds

S(p(·),q(·),Ω)< S, (2.6)

then there exists an extremal for the immersion W 1,p(x)
0 (Ω) ↪→ Lq(x)(Ω).

Once this general result is obtained, a natural question is to find conditions on p(x), q(x)
and Ω such that (2.6) is satisfied.

First, by employing some rough estimates we obtain global conditions that ensure (2.6).
More precisely, we get the following result.

Theorem 2.3. Assume that BR ⊂ Ω\A where BR is a ball of radius R. Moreover, assume
that supBR

q < infBR p∗. Then, if R is large enough, (2.6) is satisfied and therefore there
exists an extremal for S(p(·),q(·),Ω).

More interesting is to find local conditions (in the spirit of the works [1, 2]) that ensure
(2.6). In this direction we have

Theorem 2.4. Let p(x) and q(x) be C2 exponents such that supΩ p < infΩ q. Assume that
there exists x0 ∈ A such that S = Sx0 and that x0 is a local minimum of p(x) and a local
maximum of q(x), such that either ∆p(0)> 0 or ∆q(0)< 0. Moreover, assume that p(x0)<√

N if N ≥ 5, p(x0) < 2 if N = 4 and p(x0) < 3/2 if N = 3. Then (2.6) is satisfied and
therefore there exists an extremal for S(p(·),q(·),Ω).
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3. SKETCH OF THE PROOFS

In this section we briefly indicate the general ideas that lead to the proof of the results.

3.1. Proof of Theorem 2.1. The proof of Theorem 2.1 follows from a simple scaling
argument. In fact, if we take any φ ∈ C∞

c (Ω) and consider the rescaled functions φλ =

λ
−n

p∗(x0) φ( x−x0
λ

), it can be checked that our hypothesis on the exponents p(x) and q(x) imply
that

Qp,q,Ω(φλ )→
‖∇φ‖p(x0),RN

‖φ‖p∗(x0),RN
as λ → 0+ .

So

S(p(·),q(·),Ω)≤
‖∇φε‖p(x),Ω

‖φε‖q(x),Ω
→
‖∇φ‖p(x0),RN

‖φ‖p∗(x0),RN
∀φ ∈C∞

c (RN).

Minimizing on φ we get

S(p(·),q(·),Ω)≤ K(N, p(x0))
−1.

Now, taking Ω = Bε(x0) and minimizing on x0 and using the monotonicity with repect to
the domain, the result of the Theorem follows easily.

3.2. Proof of Theorem 2.2. The proof of Theorem 2.2 heavily relies on the Concentration
Compactness Principle (CCP) for variable exponents that was proved independently in [8]
and [11] and was originally proved for constant exponents in the seminal work of P. L. Lions
[14].

The CCP states that given any weak convergent sequence {uk}k∈N ⊂W 1,p(x)
0 (Ω) with

weak limit u, there exist nonnegative measures µ,ν supported in Ω̄, a countable set I, posi-
tive numbers {µi}i∈I , {νi}i∈I and points {xi}i∈I ⊂ Ω̄ such that

|uk|q(x) dx ⇀ dν = |u|q(x) dx+∑
i∈I

νidδxi (3.1)

|∇uk|p(x) dx ⇀ dµ ≥ |∇u|p(x) dx+∑
i∈I

µidδxi (3.2)

Sxiν

1
q(xi)

i ≤ µ

1
p(xi)

i , (3.3)

where Sxi is the localized Sobolev constant defined in (2.3).
The other key ingredient in the proof is the adaptation of a convexity argument due to

P. L. Lions, F. Pacella and M. Tricarico [15].
In fact, what can be proved is that any minimizing sequence either has a strongly conver-

gent subsequence of concentrates around a single point.
To see this, just observe that, by (3.1) if {uk}k∈N ⊂W 1,p(x)

0 (Ω) is such that ‖uk‖q(x) = 1,
then ∫

Ω

|u|q(x) dx+∑
i∈I

νi = 1. (3.4)

Now, if in addition {uk}k∈N is a minimizing sequence for S(p(·),q(·),Ω), then, by (3.2)

1 =
∫

Ω

∣∣∣∣ ∇uk

‖∇uk‖p(x)

∣∣∣∣p(x) dx≥
∫

Ω

∣∣∣∣ ∇u
S(p(·),q(·),Ω)

∣∣∣∣p(x) dx+∑
i∈I

S(p(·),q(·),Ω)−p(xi)µi+o(1).

Now, by Theorem 2.1 and (3.3), we have

S(p(·),q(·),Ω)−p(xi)µi ≥ ν

p(xi)
q(xi)

i .
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On the other hand, assuming that ‖S(p(·),q(·),Ω)−1∇u‖p(x) ≤ 1 (the other case is analo-
gous),∫

Ω

∣∣∣∣ ∇u
S(p(·),q(·),Ω)

∣∣∣∣p(x) dx≥ ‖S(p(·),q(·),Ω)−1
∇u‖p+

p(x) ≥ ‖u‖
p+

q(x) ≥
(∫

Ω

|u|q(x) dx
) p+

q−

,

where the Sobolev immersion Theorem has been used.
Combining these last three inequalities, we arrive at(∫

Ω

|u|q(x) dx
) p+

q−

+∑
i∈I

ν

p(xi)
q(xi)

i ≤ 1. (3.5)

Now, since p+< q− it is easy to see that (3.4) and (3.5) imply that, either I = /0 and therefore,
uk→ u strongly in W 1,p(x)

0 (Ω), or u = 0 and I = {i0}, proving the claim.
Finally, it is easy to see that if (2.6) holds, concentration cannot occur. This implies the

desired result.

3.3. Proof of Theorem 2.3. Theorem 2.3 follows easy by testing S(p(·),q(·),Ω) with any
function uR(x) = u(x/R) with u ∈C∞

c (B1) (assuming that BR ⊂ Ω \A ) and observing that
Qp(x),q(x),Ω(uR)→ 0 as R→ ∞.

3.4. Proof of Theorem 2.4. This theorem is more subtle. The idea is first to show that un-
der the considered hypotheses one has that S̄ = K(N, p(x0))

−1 and then evaluate Qp(x),q(x),Ω

in a properly rescaled extremal for K(N, p(x0))
−1. Then, a fine asymptotic analysis shows

that if the test function uε is concentrated enough one has

Qp(x),q(x),Ω(uε)< K(N, p(x0))
−1 = S̄

and so (2.6) holds.
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