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ABSTRACT

Statistical analysis of Faraday Rotation Measure (RM) maps of the intracluster
medium (ICM) of galaxy clusters provides a unique tool to evaluate some spatial
features of the magnetic fields there. Its combination with numerical simulations of
magnetohydrodynamic (MHD) turbulence allows the diagnosis of the ICM turbulence.
Being the ICM plasma weakly collisional, the thermal velocity distribution of the
particles naturally develops anisotropies as a consequence of the large scale motions
and the conservation of the magnetic moment of the charged particles. A previous
study (Paper I) analyzed the impact of large scale thermal anisotropy on the statistics
of RM maps synthesized from simulations of turbulence; these simulations employed a
collisionless MHD model which considered a tensor pressure with uniform anisotropy.
In the present work, we extend that analysis to a collisionless MHD model in which the
thermal anisotropy develops according to the conservation of the magnetic moment of
the thermal particles. We also consider the effect of anisotropy relaxation caused by
the micro-scale mirror and firehose instabilities. We show that if the relaxation rate is
fast enough to keep the anisotropy limited by the threshold values of the instabilities,
the dispersion and power spectrum of the RM maps are indistinguishable from those
obtained from collisional MHD. Otherwise, there is a reduction in the dispersion and
steepening of the power spectrum of the RM maps (compared to the collisional case).
Considering the first scenario, the use of collisional MHD simulations for modeling the
RM statistics in the ICM becomes better justified.

Key words: magnetic fields – turbulence – methods: numerical – galaxies: clusters:
intracluster medium

1 INTRODUCTION

Cosmological mergers of galaxy clusters, AGN jets, galac-
tic winds, and galaxy interactions drive turbulence in
the plasma filling the intracluster medium (ICM), and
this turbulence would be able to amplify weak seeds
of magnetic fields up to intensities of ∼ µG, according
to cosmological magneto-hydrodynamical (MHD) simula-
tions (e.g. Kotarba et al. 2011; Beresnyak & Miniati 2016;
Egan et al. 2016). This amplification mechanism could ex-
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plain the magnetic fields detected in the diffuse ICM
through synchroton emission of relativistic electrons in ra-
dio halos, and also through the Faraday rotation of polar-
ized emission from radio sources embedded or behind the
galaxy clusters (see Brunetti & Jones 2014 and references
therein). In fact, two-point statistics of the Faraday rota-
tion maps of the ICM reveal a magnetic field power spec-
trum consistent with a Kolmogorov-like power law ∝ k−5/3

(Enßlin, Vogt, & Pfrommer 2005).

However, the use of the standard MHD approxima-
tion to describe the dynamics of the ICM and the devel-
opment of the small-scale turbulent dynamo is, in prin-
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ciple, not well justified since it implies a high collisional-
ity of the plasma particles to ensure the local thermody-
namical equilibrium. Considering that the mean-free-path
for the ion-ion Coulomb collisions is typically λii ∼ 30
kpc in the ICM (considering a density n = 10−3 cm−3

and temperature T = 108 K; see also the ion mean-free-
path distribution inferred from cosmological simulations in
Egan et al. 2016), collisionless effects should be taken into
account at least for scales . λii (see Schekochihin & Cowley
2006). The most obvious effect is the natural development
of pressure (or temperature) anisotropy with respect to
the local magnetic field. As a consequence there is the
triggering of electromagnetic plasma instabilities (such as
the firehose, the ion-cyclotron and the mirror instabili-
ties; see, e.g., Gary 1993). These instabilities are known to
constrain the anisotropy itself (see Santos-Lima et al. 2014
and references therein; Kunz, Schekochihin, & Stone 2014;
Riquelme, Quataert, & Verscharen 2015; Sironi & Narayan
2015; Sironi 2015; Rincon, Schekochihin, & Cowley 2015;
Melville, Schekochihin, & Kunz 2016; Santos-Lima et al.
2016).

Santos-Lima et al. (2014, SL+14 hereafter) took into
account some collisionless effects in numerical simulations
of turbulence and small-scale dynamo in MHD numeri-
cal simulations considering the conditions typical of the
ICM. They found that under forced turbulence, the per-
pendicular temperature to the local magnetic field dom-
inates the parallel temperature in most of the system
(the parallel temperature dominates only in narrow re-
gions of high compression or magnetic field reversals),
leading to strong modifications in the turbulence statis-
tics (see also Kowal, Falceta-Gonçalves, & Lazarian 2011;
Falceta-Gonçalves & Kowal 2015 for studies on collisionless
turbulence with constant pressure anisotropy) and the com-
plete failure of the dynamo. On the other hand, including
the relaxation of the temperature anisotropy resulting from
the microscale (scales below those resolved in the simula-
tion, down to the ions kinetic scales) plasma instabilities,
the system gradually converges to a similar behaviour to that
obtained by collisional MHD, depending on the anisotropy
relaxing rate 1. In SL+14 it is argued that this relaxing rate
is much faster than the MHD time-scales, and the model
that better represents the ICM constrains the maximum
anisotropy levels to values very close to the plasma stable
regime.

The imprints of the large scale (of the order of turbu-
lence injection scale) temperature anisotropy on the Faraday
rotation maps were first studied in Nakwacki et al. (2016,
Paper I hereafter). In that work, we employed a collisionless
MHD formalism with a double-isothermal closure (as imple-
mented in Kowal, Falceta-Gonçalves, & Lazarian 2011) to
analyse the statistical properties of the RM maps for several
models of turbulence considering different values of the fixed
temperature anisotropy and different regimes of sub/super-
Alfvénic and trans/supersonic turbulence. The effects of the
temperature anisotropy on the magnetic field structure and

1 It should be made clear that the anisotropy relaxation employed
in SL+14 does not drive the pressure components to the isotropic
state, but to the instabilities thresholds. Therefore, the similarity
to the collisional MHD results is not trivial.

the RMmaps were found to be significant evidencing smaller
correlation lengths when compared to collisional MHD mod-
els. In that study it was neglected the feedback of the mi-
croscale instabilities on the plasma which may cause the
reduction of the thermal anisotropy as described in SL+14
(see also Schekochihin & Cowley 2006).

In this work, we will extend the analysis of Paper I by
including this effect. We will explore the collisionless effects
on the Faraday rotation maps focusing on the turbulence
models of the intracluster medium presented in SL+14, in
which the anisotropy in temperature evolves according to the
CGL closure (Chew, Goldberger, & Low 1956) modified to
include an anisotropy relaxing term. The important advan-
tage of this new approach is not to use the double-isothermal
closure, in which the temperature anisotropy is a fixed con-
stant. We will compare the RM maps and related statistical
properties of two collisionless MHD models, one similar to
the models of Paper I (i.e. without any anisotropy relax-
ation), and another including bounds in the anisotropy. We
will also compare these with the Faraday rotation maps ob-
tained from a standard collisional MHD model.

In Section 2 we describe the numerical simulations of
the collisionless MHD models used for building the synthetic
Faraday rotation maps, which are analysed in Section 3. In
Section 4 we summarize our results and draw our conclu-
sions.

2 NUMERICAL SIMULATIONS

Table 1 shows the most relevant parameters of the simulated
models used to build the synthetic RM maps. The brack-
ets 〈·〉 denote an average over the domain and time (us-
ing the available snapshots of the simulations, considering
time intervals larger than τturb, where τturb = Lturb/Uturb

is the turbulence turn-over time, with Lturb and Uturb the
scale and velocity of injection, respectively), when the tur-
bulence has reached a statistically stationary state. The val-
ues listed in parenthesis are the statistical standard devia-
tions which give an approximate idea about the spatial and
temporal fluctuations of these quantities. 2 The first three
models (CGL1, BA1, and MHD1) have the same initial uni-
form magnetic field with intensity B0 and thermal speed
cs0 (both shown in dimensionless code units; see below).
The rms turbulent velocity is also similar in these models
(column 〈u2〉). The initial thermal speed is kept approx-
imately constant by the use of a fast thermal relaxation
(which represents the action of both radiative cooling and
heat conduction; see more details below). The regimes of
turbulence achieved for these three models are similar being
slightly subsonic (urms . cS0) and mildly super-Alfvenic
(〈MA〉 & 1). From all the models studied in SL+14, only
these three ones have simulation parameters which are sim-
ilar to those of the super-Alfvenic simulations analysed in
Paper I and thus can be more easily compared with this
previous work. However, the ICM is observed to have very
tangled magnetic fields (e.g. Feretti et al. 1995), which is

2 The spatial/temporal statistical distributions of the fields listed
in Table 1 are not Gaussian around the mean values. This becomes
obvious from the fact that all the quantities are positive and some
of the standard deviation values are larger than the mean values.

MNRAS 000, 1–7 (2016)



Statistics from simulated Faraday rotation maps of the intracluster medium 3

Table 1. Parameters and statistics of the simulations used to build the synthetic RM maps.

run B2
0

c2S0
〈u2〉 〈B2〉 〈β〉 〈MA〉 res. snapshots

CGL1 0.09 1 0.59(0.54) 0.25(0.35) 17(4.8 × 102) 1.8(1.3) 5123 4
BA1 0.09 1 0.48(0.40) 0.51(0.33) 16(4.8 × 102) 1.2(1.5) 5123 4
MHD1 0.09 1 0.55(0.48) 0.58(0.47) 17(9.4 × 102) 1.3(1.5) 5123 4

CGL2 10−6 1 0.70(0.73) 1.2× 10−5(7.1 × 10−5) 2.0× 106(4.7× 107) 5.9× 102(5.7× 102) 2563 11
CGL3 10−6 0.09 0.79(0.64) 2.0× 10−4(7.5 × 10−4) 1.2× 105(1.1× 107) 2.8× 102(4.2× 102) 2563 11
BA2 10−6 1 0.78(0.63) 0.12(0.15) 1.7× 102(6.2× 103) 4.6(6.7) 2563 11
MHD2 10−6 1 0.79(0.63) 0.18(0.22) 1.1× 102(2.5× 103) 3.8(5.3) 2563 11

indicative of a turbulence regime strongly super-Alfvenic.
The remaining models presented in Table 1 (CGL2, CGL3,

BA2, and MHD2) are simulations in which the initial uni-
form magnetic field is very weak, making the intensity of
the ordered component of the magnetic field to be relatively
small after the amplification of the tangled component via
small-scale turbulent dynamo (see B2

0 and 〈B2〉 for these
models in Table 1). These four models have the same ini-
tial seed magnetic field and thermal speed, except for model
CGL3, where a smaller thermal speed is used in order to test
the dependence of the results with the plasma β = pth/pmag

parameter (where pth = (2p⊥ + p‖)/3 is the total thermal
pressure and pmag = B2/8π is the magnetic pressure).

The models MHD (MHD1 and MHD2) have a sin-
gle scalar thermal pressure and correspond to the stan-
dard collisional MHD model where the distribution of the
thermal velocities is assumed to be isotropic. The mod-
els named CGL (CGL1, CGL2, and CGL3) have a ther-
mal pressure tensor with two independent components re-
lated to two temperatures: one associated to the thermal
velocity component parallel to the local magnetic field lines
T‖ and another to the thermal velocity component related
to the gyromotions of the particles around the field T⊥;
these two temperatures evolve according to the CGL clo-
sure (Chew, Goldberger, & Low 1956) which is based on the
conservation of the magnetic moment of the charged parti-
cles d (T⊥/B) /dt = 0 and the assumption of conservation of
the entropy (no heat exchange between the fluid elements)
d
(

T 2

⊥T‖/n
2
)

/dt = 0 (where n is the density of particles) 3.
Finally, the models named BA (Bounded Anisotropy: BA1

and BA2) differ from models CGL by the addition of a
boundary in the temperature anisotropy. This boundary lim-
its the temperature anisotropy by the threshold values of
the firehose (for A < 1) and mirror (for A > 1) instabilities,
where A is the temperatures ratio A = T⊥/T‖, mimicking
the effect of an “instantaneous” relaxing of the anisotropy to
the marginal values by the action of the microscale instabili-
ties (see Sharma et al. 2006; SL+14 and references therein).
An extended discussion on the applicability and limitations
of this model to represent the ICM turbulence is presented
in Santos-Lima et al. (2016).

3 In fact the CGL closure was not rigorously adopted in SL+14.
Instead, a conservative scheme for evolving the internal energy
was used, while the evolution of the temperatures ratio followed
the CGL prescription (see Eq. 1). This approach gives results
nearly identical to those obtained using the CGL equations of
state, but is numerically more robust. Besides, it allows the
straight inclusion of the anisotropy relaxation term.

The equations describing the evolution of the models
presented in Table 1 are (see also SL+14):
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(1)

where ρ, u, B, p⊥,‖ are the macroscopic variables den-
sity, velocity, magnetic field, and thermal pressures per-
pendicular/parallel to the local magnetic field, respectively;
e = p⊥ + p‖/2 + ρu2/2 + B2/8π (for the two-temperature
models CGL and BA) is total energy density. For the MHD

model, e = 3p/2+ ρu2/2+B2/8π. ΠP and ΠB are the ther-
mal pressure and magnetic stress tensors, respectively, de-
fined by ΠP = p⊥I+ (p‖ − p⊥)bb for the two-temperature
models and simply ΠP = pI for the MHD model, ΠB =
(B2/8π)I − BB/4π, where I is the unitary dyadic tensor
and b = B/B. An ideal equation of state relates each tem-
perature with its respective pressure component, and an adi-
abatic exponent γ = 5/3 is used for the MHD models. In the
source terms, f represents an external bulk force responsi-
ble for driving the turbulence, ẇ gives the rate of change of
the internal energy w = (p⊥ + p‖/2) of the gas due to heat

conduction and radiative cooling, and ȦS gives the rate of
change of A due to the microscale instabilities 4

The turbulence is injected by adding a random (but
solenoidal) velocity field (delta correlated in time) to the gas
at the end of each time-step. This velocity field is concen-
trated inside a spherical shell in the Fourier space of radius
k = 2.5 (i.e, with characteristic wavelength Lturb = L/2.5,
being L is the side of the cubic domain). We employed an
artificial but simple thermal relaxation prescription, which
brings the specific internal energy w∗ to its initial value w∗

0

4 Though the physical process relaxing the macroscopic temper-
ature anisotropy is attributed to the ions anomalous scattering
in this approach, it can also represent (with some limitations)
the situation when the relaxation is not mediated by the
instantaneous break of magnetic momentum, as it is the case
of the mirror instability development under continuous driving
of temperature anisotropy (Kunz, Schekochihin, & Stone
2014; Riquelme, Quataert, & Verscharen
2015; Rincon, Schekochihin, & Cowley 2015;
Melville, Schekochihin, & Kunz 2016). See discussion in
Santos-Lima et al. (2016).

MNRAS 000, 1–7 (2016)
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at a rate νth = 5 (in code units, which gives a characteris-
tic time approximately 20 times faster than the turbulence
turn-over time τturb) for the models presented in Table 1:

ẇ = −νth(w
∗ − w∗

0)ρ. (2)

The instantaneous anisotropy relaxation (represented by the
source term Ȧ) is implemented as follows: after the nu-
merical integration of the equations at each time-step, the
anisotropy is replaced, at each grid cell, by the marginally
stable value, whenever this evolves to an unstable value be-
yond the threshold for the firehose or mirror instability (see
more details regarding the source terms and the numerical
methods employed in the simulations in SL+14). As the re-
sults presented in this work are dimensionless and the above
equations do not carry any physical constant, it is not nec-
essary to attribute physical dimensions to the models.

We did not use explicit viscous or resistive terms in
the numerical simulations (except for a small resistivity that
provides a dissipation very close to the numerical one in the
CGL1 model for numerical stability purposes) aiming at re-
ducing the dissipation to the minimum value provided by the
numerical scheme, in order to maximize the inertial range of
the turbulence. For the methods used in these simulations,
the dissipation range starts at scales of approximately 16
cells (inferred from the magnetic and velocity power spec-
tra of the MHD simulations). Therefore, we cannot assess
the dependence of the results with the Reynolds R and/or
the magnetic Prandtl number Pm (R ≡ LturbUturb/ν and
Pm ≡ η/ν, where ν and η are the viscous and magnetic
diffusivities, respectively). We estimate the Pm number as
approximately equal to unit in all our simulations.

3 SYNTHETIC FARADAY ROTATION MAPS

The statistics of the turbulence (that is, one and two point
statistics) of the models described in the previous Section
was studied in detail in SL+14 where models Amhd, A2,
A1, Cmhd, C2, C3, and C1 correspond to MHD1, CGL1,

BA1, MHD2, CGL2, CGL3, and BA2, respectively.
Figure 1 presents the maps of the dimensionless Faraday

rotation measurement (RM):

RM =

∫ L

0

neBLOSdl, (3)

normalized by ne0B0L (where B0 is the intensity of the mean
magnetic field, ne0 is the average density of electrons and L
is the length of the Faraday screen) for the models CGL1,

BA1, and MHD1, calculated for an arbitrary line-of-sight
(LOS) whose direction has angle θ = 45◦ with the mean
magnetic field. The last snapshot of the simulations (at ≈
10τturb) were used for the calculations.

A visual inspection shows that the RM map of model
CGL1 presents fluctuations of smaller amplitude compared
to the MHD1 model. Model BA1 on the other hand, has the
RM map appearance similar to model MHD1.

Figure 2 shows the normalized values of the average
(top) and dispersion (bottom) of RM as a function of the an-
gle θ, for the mildly super-Alfvenic models. The maps were
built using 20 values of θ equally spaced between θ = 0 and
90◦, and the statistical moments were averaged over maps
built from the different snapshots available for each model.

The two-temperature models develop excess of perpendic-
ular pressure in most of the domain (A > 1), and larger
anti-correlation between the magnetic and density fluctu-
ations (when compared to the one-temperature collisional
MHD model; see Figure 10 in SL+14). This enhanced anti-
correlation is expected to lead to a net reduction of the rota-
tion measure in the case of the CGL1 model when compared
to the MHD1 model. However, this reduction is found to be
small (only a few percent) for small angles θ in the top plot
of Figure 2. For increasing angles θ, the mean RM for the
CGL1 model converges to values close to the MHD model.
The model BA1 has the RMmean value similar to theMHD1

model for all angles.

Due to the dominance of the perpendicular temperature
component in the CGL1 model, the thermal stresses offer
resistance to motions perpendicular to the local field lines
then reducing the fluctuations of the magnetic fields. In con-
sequence, the fluctuations of the RM produced by the mag-
netic field turbulence are also affected. The bottom panel of
Figure 2 compares the normalized dispersion of RM for the
three models. This relative dispersion of the CGL1 is about
2 times smaller (for small θ) compared to the MHD1 model,
and this difference is smaller for larger values of θ. The in-
clusion of the fast anisotropy relaxation by the microscale
instabilities (model BA1) makes this relative dispersion in
RM very similar to the MHD model.

Figure 3 compares the power spectrum of the RM maps
for the mildly super-Alfvenic models. For each model, the
power spectrum is shown for different values of θ (from θ = 0
to 90◦). For wavenumbers approximately in the estimated
inertial range (5 < k < 30) the slopes of the power spec-
trum for the different lines of sight are nearly the same.
While the BA1 model has almost indistinguishable power
spectrum from the MHD1 model, the model CGL1 has less
power in all scales and is slightly flatter. We also note that
the RM spectrum of the CGL1 model has a power law close
to k−8/3 (which is expected when only the magnetic field
fluctuates, that is, the density fluctuations are negligible)
and an unidimensional power spectrum |Bk|

2 ∝ k−5/3, while
modelMHD1 has a slightly flatter slope at small k values and
then becomes slightly steeper at larger k. The corresponding
magnetic power spectrum is slightly flatter than the Kol-
mogorov power law k−5/3 in our simulation as shown in Fig.
6 of SL+14; the same can be observed in a similar simula-
tion presented in Paper I (Fig. 6 left panel, model Bext=1,
cs=1). Compared to model MHD1, the slow decay of the
dissipation range of model CGL1 points to an accumulation
of power at the small scales (which are not properly solved
by our grid resolution) caused by the kinetic instabilities
(Paper I).

We repeated the analysis above for the strongly super-
Alfvenic models CGL2, CGL3, BA2, and MHD2. Naturally,
for these models the turbulent component of the magnetic
field dominates the uniform one. This implies that the statis-
tics of the RM maps built from these models is generally
independent of the adopted LOS (except for the value corre-
sponding to the mean field). In fact the statistics of the CGL
models RM maps keeps a marginal dependence on the LOS,
as the turbulent magnetic field is not as amplified here as
in the MHD case. Table 2 shows the statistical moments for
RM averaged over maps with different LOS (using 20 values
of θ uniformly spaced in the interval between 0 and 90◦). The

MNRAS 000, 1–7 (2016)
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Figure 1. Normalized RM maps calculated from the simulated cubes: CGL1 model with no anisotropy relaxing by the microscale
instabilities (left), BA1 with fast anisotropy relaxing by the instabilities (middle), and collisional MHD1 model (right). The angle θ
between the line-of-sight and the direction of the uniform magnetic field is 45◦ for all the maps.

Table 2. Statistical moments of the synthetic RM maps built from the strongly super-Alfvenic models.

run 〈δRM2〉/
(

ne0B2
rmsL

)2
〈δRM3〉/〈δRM2〉3/2 〈δRM4〉/〈δRM2〉2

CGL2 1.6× 10−2 0.93 7.1
CGL3 2.5× 10−2 0.42 8.2
BA2 4.0× 10−2 3.6× 10−2 4.0
MHD2 3.6× 10−2 −8.5× 10−3 4.0

dispersion values 〈δRM2〉 are compared to (ne0BrmsL)
2, in

order to check how precisely we can track the intensity of
the turbulent component of the magnetic field. Compared
to the MHD model, the CGL models give a smaller value
(by a factor of two), but this also depends on the compress-
ibility of the turbulence, being slightly higher for the more
compressible model CGL3. The model with bounds on the
anisotropy BA2 shows a dispersion similar to the MHD case.
The skewness and kurtosis of the distribution of the RM are
also shown in Table 2 (in columns 〈δRM3〉/〈δRM2〉3/2 and
〈δRM4〉/〈δRM2〉2, respectively). While model BA2 presents
results very similar to MHD2, with nearly zero skewness and
the same values for the kurtosis, the CGL models show a
positive skewness (which means a longer tail of large values)
and a kurtosis approximately twice that of the MHD model,
so that the distribution being is more peaked.

Figure 4 shows the power spectrum of RM for the highly
super-Alfvenic models (averaged over the different LOS).
The curves for the CGL models are displaced in the ver-
tical axis and the values are multiplied by a factor of 100
in order to make the difference of the slopes between the
models better observed. Similar to the mildly super-Alfvenic
case, the CGL models present a flatter spectrum at large k
values of the inertial range compared to the standard MHD
model. The slope for model CGL2 is even flatter than k−8/3

(due to the increase of the small scale magnetic fluctuations
caused by the instabilities which are stronger in this high
beta plasma regime compared to the previous mildly super-
Alfvenic case), while the MHD2 model exhibits a power sim-
ilar to the mildly super-Alfvenic case.

4 SUMMARY AND CONCLUSIONS

In this work we explored the role of plasma collisionless ef-
fects on simulated Faraday rotation maps resembling the
conditions of the intracluster medium of galaxies (ICM).
We presented a statistical analysis of the Faraday rotation
maps obtained from simulations of forced turbulence in a
three-dimensional domain with periodic boundaries consid-
ering three different models of the ICM plasma. The first
one-temperature collisional MHD model considers isotropy
in the velocity thermal distribution of the particles, an as-
sumption that is not suitable a priori for the weakly colli-
sional ICM, where the mean free path for ion-ion Coulomb
collisions is distributed typically in the range 2−100 kpc (see
Egan et al. 2016). The second model (CGL) allows for the
development of anisotropy in the velocity thermal distribu-
tion (two-temperature approach), according to the conser-
vation of the first adiabatic invariant (the magnetic momen-
tum) of charged particles and the absence of heat conduc-
tion. The third model (BA) differs from the second by the
inclusion of a phenomenological constraint on the tempera-
ture anisotropy due to the fast development of the firehose
and mirror instabilities at the microscales (much smaller
than the typical turbulence scales, reaching the ions kinetic
scales). These instabilities are triggered by the temperature
anisotropy itself.

Compared to the Faraday rotation maps resulting from
the one-temperature collisional model (MHD), those from
the collisionless CGL model present a relative dispersion
smaller, with a steeper and less intense power spectrum
in all scales. On the other hand, the statistical properties
of the RM maps resulting from the collisionless BA model,
which bounds the anisotropy to the firehose and mirror sta-
ble thresholds, are very similar to those of the MHD model.

MNRAS 000, 1–7 (2016)
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Figure 2. Normalized values of average (top) and dispersion
(bottom) of the RM as a function of the angle θ between the
line-of-sight and the uniform magnetic field.

As stressed in Section 1, in Paper I we performed a simi-
lar RM analysis of collisionless two-temperature (with fixed
values) models for the intracluster medium, but without con-
sidering the effects of the thermal relaxation by the kinetic
instabilities. In this case the results were similar to those
of the CGL model above, i.e., with significant differences in
the RM maps and their statistical properties with regard to
the collisional MHD model. Specifically, important imprints
of the pressure anisotropy were found to prevail in the mag-
netic field structure resulting in Faraday rotation maps with
smaller correlation lengths.

It has been demonstrated in SL+14 that the inclusion of
the anisotropy relaxation by the kinetic mirror and firehose
instabilities in collisionless two-temperature systems makes
the statistical properties of the turbulence (in high β plas-
mas) as well as the amplification of the magnetic fields via
the small-scale turbulent dynamo very similar to those of
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Figure 3. Power spectrum of the RM maps. The multiple lines
presented for each model correspond to the power spectrum cal-
culated for different angles θ between the line-of-sight and the
uniform magnetic field, from θ = 0 to θ = 90◦. A thin grey
straight line with slope −8/3 is drawn for comparison.
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Figure 4. Same as in Figure 3, but for models CGL2, CGL3,
BA2, and MHD2.

collisional MHD systems. The later approach is in fact used
in most numerical simulations of the intracluster medium.

Therefore, the present result, in principle, reinforces the
justification for the use of the collisional MHD approxima-
tion at least in studies of the large scale properties of the
ICM. Nevertheless, this study has limitations and several
questions still remain opened, as we briefly address below.

Recently Santos-Lima et al. (2016) have reviewed the
limitations of the anisotropy relaxation approach employed,
e.g., in SL+14. For instance, this neglects the effects of
the microscale magnetic fields generated by microinstabil-
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ities on the stretching rate of the large scale component
(near the injection scale of the turbulence) (see also
Schekochihin & Cowley 2006; Mogavero & Schekochihin
2014; Melville, Schekochihin, & Kunz 2016).

Furthermore, the present study has focussed only on the
subsonic regime of the turbulence driven by purely solenoidal
forcing, which explains the dominance of incompressible mo-
tions. On the other hand, the turbulence generated by the
merging processes in the ICM is expected to be partially
compressional (at the injection scales) and at least mildly
supersonic (Brunetti & Jones 2014; Brüggen & Vazza 2015;
Bykov et al. 2015) and, in fact, a compressible cascade in
the ICM can reach small scales (0.1 − 1 kpc) before be-
ing dissipated. This implies that the magnetic fields can
be entangled and/or advected also by compressive motions.
In addition, weak shocks and collisionless effects will also
affect the microphysics of processes like heating transport
and thermal conduction (e.g., Santos-Lima et al. 2016), and
may be important to the re-acceleration of particles in the
ICM (see for example Brunetti & Lazarian 2007, 2011). The
complex interplay between compressible modes (and shocks)
and collisionless effects (as the collisionless damping) which
have been neglected in the present collisionless MHD ap-
proach turn it inadequate to treat the compressible turbu-
lent regime of the ICM (see further discussion on this subject
in Santos-Lima et al. 2016).
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Falceta-Gonçalves, D., & Kowal, G. 2015, ApJ, 808, 65
Feretti L., Dallacasa D., Giovannini G., Tagliani A., 1995, A&A,

302, 680
Gary S. P., 1993, tspm.book, 193

Kotarba H., Lesch H., Dolag K., Naab T., Johansson P. H., Don-

nert J., Stasyszyn F. A., 2011, MNRAS, 415, 3189
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