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IS THE DECOHERENCE OF A SYSTEM THE RESULT OF ITS

INTERACTION WITH THE ENVIRONMENT?

MARIO CASTAGNINO, SEBASTIAN FORTIN, AND OLIMPIA LOMBARDI

Abstract. According to a usual reading, decoherence is a process resulting from the inter-

action between a small system and its large environment where information and energy are

dissipated. The particular models treated in the literature on the subject reinforce this idea

since, in general, the behavior of a particle immersed in a large “bath” composed by many

particles is studied. The aim of this letter is to warn against this usual simplified reading. By

means of the analysis of a well-known model, we will show that decoherence may occur in a

system interacting with an environment consisting of only one particle.

Introduction. The word “decoherence” refers to the quantum process that turns a coherent

pure state into a decohered mixed state, which is diagonal in a well defined basis. The phenom-

enon of decoherence is essential in the account of the emergence of classicality from quantum

behavior, since it explains how interference vanishes in an extremely short decoherence time.

The orthodox explanation of the phenomenon is given by the so-called “environment-induced

decoherence” (EID) approach ([1], [2], [3], [4]), according to which decoherence is a process

resulting from the interaction of a quantum system and its environment. As Zurek states, the

environment destroys the coherence between the states of a quantum system by its incessant

“monitoring” of the observables associated with the preferred states: it is the environment what

“distills” the classical essence from quantum systems (see [3], [4]). In addition, since decoherence

only occurs in open quantum systems, it must always be accompanied by other manifestations

of openness, such as dissipation of energy and information into the environment.

This way of presenting decoherence has led to a standard reading of the physical meaning

of the phenomenon. According to this reading, decoherence is a process resulting from the

interaction between a small system and its large environment, where information and energy

are dissipated. The particular models treated in the literature on the subject have reinforced

this idea since, in general, the behavior of a particle immersed in a large “bath” composed by

many particles is studied. The aim of this letter is to warn against this usual simplified reading.

By means of the analysis of a well-known model, we will show that decoherence occurs in cases

that cannot be described as a small system interacting with a large environment.
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The spin-bath model. The spin-bath model is a very simple model that has been exactly

solved in previous papers (see [1]). We will study it from the general theoretical framework

for decoherence presented in a previous work [5]. Let us consider a closed system U = S + E

where (i) the system S is a spin-1/2 particle P represented in the Hilbert space HS, and (ii) the

environment E is composed of N spin-1/2 particles Pi, each one of which is represented in its

own Hilbert spaceHi. The complete Hilbert space of the composite system U is, H = HS

N
⊗

i=1

Hi.

In the particle P , the two eigenstates of the spin operator SS,−→v in direction −→v are |⇑〉 and |⇓〉,

such that SS,−→v |⇑〉 = 1
2
|⇑〉 and SS,−→v |⇓〉 = −1

2
|⇓〉. In each particle Pi, the two eigenstates of the

corresponding spin operator Si,−→v in direction −→v are |↑i〉 and |↓i〉, such that Si,−→v |↑i〉 =
1
2
|↑i〉

and Si,−→v |↓i〉 =
1
2
|↓i〉. Therefore, a pure initial state of U reads

(1) |ψ0〉 = (a |⇑〉+ b |⇓〉)
N
⊗

i=1

(αi| ↑i〉+ βi| ↓i〉)

where the coefficients a, b, αi, βi are such that satisfy |a|2+|b|2 = 1 and |αi|
2+|βi|

2 = 1. Usually

these numbers (and also the gi below) are taken as aleatory numbers. The self-Hamiltonians

HS and HE of S and E, respectively, are taken to be zero, then the total Hamiltonian H =

HS +HE +HSE of the composite system U results (see [1], [6])

(2) H = HSE = SS,−→v ⊗

N
∑

i=1

2giSi,−→v

N
⊗

j 6=i

Ij

where Ij is the identity operator on the subspace Hj, SS,−→v = 1
2
(|⇑〉 〈⇑| − |⇓〉 〈⇓|) and Si,−→v =

1
2
(|↑i〉 〈↑i| − |↓i〉 〈↓i|). Under the action of H = HSE, the state |ψ0〉 evolves as |ψ(t)〉 =

a |⇑〉 |E⇑(t)〉+ b |⇓〉 |E⇓(t)〉 where |E⇑(t)〉 = |E⇓(−t)〉 and

(3) |E⇑(t)〉 =

N
⊗

i=1

(

αi e
igit/2 |↑i〉+ βi e

−igit/2 |↓i〉
)

If O is the space of observables of the whole system U , let us consider a space of relevant

observables OR ⊂ O such that OR ∈ OR reads

(4) OR =















s⇑⇑ |⇑〉 〈⇑|

+s⇑⇓ |⇑〉 〈⇓|

+s⇓⇑ |⇓〉 〈⇑|

+s⇓⇓ |⇓〉 〈⇓|















N
⊗

i=1















ǫ
(i)
↑↑ |↑i〉 〈↑i|

+ǫ
(i)
↓↓ |↓i〉 〈↓i|

+ǫ
(i)
↓↑ |↓i〉 〈↑i|

+ǫ
(i)
↑↓ |↑i〉 〈↓i|















Since the operators OR are Hermitian, the diagonal components s⇑⇑, s⇓⇓, ǫ
(i)
↑↑ ,ǫ

(i)
↓↓ are real num-

bers and the off-diagonal components are complex numbers satisfying s⇑⇓ = s∗⇓⇑, ǫ
(i)
↑↓ = ǫ

(i)∗
↓↑ .
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Then, the expectation value of the observable O in the state |ψ(t)〉 can be computed as

〈OR〉ψ(t) = (|a|2s⇑⇑ + |b|2s⇓⇓) Γ0(t)

+2Re [ab∗ s⇓⇑ Γ1(t)](5)

where (see eqs. (23) and (24) in [6])

Γ0(t) =

N
∏

i=1





|αi|
2ǫ

(i)
↑↑ + αi

∗βiǫ
(i)
↑↓e

−igit

+|βi|
2ǫ

(i)
↓↓ + (αi

∗βiǫ
(i)
↑↓ )

∗eigit



(6)

Γ1(t) =
N
∏

i=1





|αi|
2ǫ

(i)
↑↑e

igit + |βi|
2ǫ

(i)
↓↓e

−igit

+αi
∗βiǫ

(i)
↑↓ + (αi

∗βiǫ
(i)
↑↓ )

∗



(7)

As a generalization of the usual presentations, we will study different ways of splitting the

whole closed system U into a relevant part and its environment, by considering different choices

for the space OR.

Case 1: A large environment that produces decoherence. In the typical situation stud-

ied by the EID approach, the system of interest S is simply the particle P . Therefore, the

relevant observables OR ∈ OR are those corresponding to P , and are obtained from eq. (4) by

making ǫ
(i)
↑↑ = ǫ

(i)
↓↓ = 1, ǫ

(i)
↑↓ = 0:

(8) OR =

(

∑

s,s′=⇑,⇓

sss′|s〉〈s
′|

)

N
⊗

i=1

Ii = OS

N
⊗

i=1

Ii

The expectation value of these observables is given by

(9) 〈OR〉ψ(t) = |a|2 s⇑⇑ + |b|2 s⇓⇓ + 2Re[ab∗ s⇓⇑ r1(t)]

where

(10) r1(t) =

N
∏

i=1

[

|αi|
2eigit + |βi|

2e−igit
]

By comparing eq. (9) with eq. (5), we see that in this case Γ0(t) = 1 and Γ1(t) = r1(t).

Moreover,

(11) |r1(t)|
2 =

N
∏

i=1

(|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git)
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Since |αi|
2 + |βi|

2 = 1, then

max
t

(|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git)

=
(

(

|αi|
2 + |βi|

2
)2
)

= 1(12)

and

min
t

(

|αi|
4 + |βi|

4 + 2 |αi|
2 |βi|

2 cos (2git)
)

=
(

(

|αi|
2 − |βi|

2
)2
)

=
(

2 |αi|
2 − 1

)2
(13)

If the coefficients gi, αi and βi are aleatory numbers, then (|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git)

is an aleatory number which, if t 6= 0, fluctuates between 1 and
(

2 |αi|
2 − 1

)2
. Let us note

that, since the |αi|
2 and the |βi|

2 are aleatory numbers in the closed interval [0, 1], when the

environment has many particles (that is, when N → ∞), the statistical value of the cases

|αi|
2 = 1, |βi|

2 = 1, |αi|
2 = 0 and |βi|

2 = 0 is zero. In this case, eq. (11) for |r1(t)|
2 is an

infinite product of numbers belonging to the open interval (0, 1). As a consequence (see [3],

[4]),

(14) lim
N→∞

r1(t) = 0

In order to know the time-behavior of the expectation value of eq. (9), we have to compute

the time-behavior of r1(t). If we know that r1(0) = 1 for N → ∞, and that limN→∞ r1(t) = 0

for any t 6= 0, it can be expected that, for N finite, r1(t) will evolve in time from r1(0) = 1 to

a very small value. Moreover, r1(t) is a periodic function because it is a product of periodic

functions with periods depending on the coefficients gi. Nevertheless, since the gi are aleatory,

the periods of the individual functions are different and, as a consequence, the recurrence time

of r1(t) will be very large, and strongly increasing with the number N of particles.

The time-behavior of r1(t) was computed by means of a numerical simulation, where the

aleatory numbers |αi|
2, |βi|

2 and gi were obtained from a generator of aleatory numbers: these

generator fixed the value of |αi|
2, and the |βi|

2 were computed as |βi|
2 = 1 − |αi|

2. The func-

tion r1(t) for N = 200 is plotted in Figure ??, which shows that the particle P decoheres in

interaction with an environment of N particles Pi. This result (see also numerical simulations

in [6]) agrees with the standard reading of the phenomenon of decoherence: a single parti-

cle in interaction with a large environment of many particles decoheres due precisely to that

interaction.
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Figure 1. Plot of |r1(t)|
2 given by eq. (11), for N = 200.

Case 2: A large environment with no decoherence. Although in the usual presentations

of the model the system of interest is P , as in the previous section, we can conceive different

ways of splitting the whole system U into a system of interest and an environment. For instance,

it may be the case that the measuring arrangement “observes” a particular particle Pj of what

was previously considered the environment. In this case, the system of interest S is the particle

Pj , and the environment is composed by all the remaining particles, E = P+
∑

i 6=j Pi. Then, the

relevant observables ORj
∈ ORj

⊂ O are only those corresponding to Pj : ORj
= IS⊗OSj

⊗

i 6=j Ii

where

OSj
= ǫ

(j)
↑↑ | ↑j〉〈↑j |+ ǫ

(j)
↓↓ | ↓j〉〈↓j |

+ǫ
(j)
↓↑ | ↓j〉〈↑j |+ ǫ

(j)
↑↓ | ↑j〉〈↓j |(15)

where the coefficients ǫ
(j)
↑↑ , ǫ

(j)
↓↓ , ǫ

(j)
↓↑ are now generic. The expectation value of the observables

ORj
is given by

〈ORj
〉ψ(t) = |αj |

2
ǫ
(j)
↑↑ +

∣

∣βj
∣

∣

2
ǫ
(j)
↓↓

+Re
(

αjβ
∗
jǫ

(j)
↑↓ e

igjt
)

(16)
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Figure 2. Plot of r2(t) given by eq. (17), for N ≥ 1.

In order to know the time-evolution of the expectation value of the ORj
, we have to compute

the time-behavior of the third term of eq. (16):

(17) r2(t) = Re
(

αjβ
∗
jǫ

(j)
↑↓ e

igjt
)

Let us note that this equation is independent of N ≥ 1. In this case, numerical simulations are

not required to see that r2(t) is an oscillating function which, as a consequence, has no limit

for t → ∞. Nevertheless, in order to illustrate the non decoherence of the system S we show

the time-evolution of r2(t) with N ≥ 1 in Figure ??. In this case, a single particle S = Pj

with a large environment E = P +
∑

i 6=j Pi of N particles does not decohere. Nevertheless, this

result can be accommodated under the standard reading of the phenomenon of decoherence by

saying that Pj strongly interacts only with particle P , but does not interact with the rest of

the particles Pi 6=j ; therefore, the interaction of S = Pj with its environment E = P +
∑

i 6=j Pi

is not strong enough to produce decoherence.

Case 3: A small environment that produces decoherence. In this section we consider

a measuring arrangement that “observes” a set of particles of the environment, e.g., the p first

particles Pj. In this case, the system of interest is composed by p particles, S =
p
∑

i=1

Pi, and
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the environment is composed by all the remaining particles, E = P +
N
∑

i=p+1

Pi. So, in eq. (4),

s⇑⇑ = s⇓⇓ = 1, s⇑⇓ = s⇓⇑ = 0, the coefficients ǫ
(j)
↑↑ , ǫ

(j)
↓↓ , ǫ

(j)
↓↑ are generic for j ∈ {1...p}, and

ǫ
(i)
↑↑ = ǫ

(i)
↓↓ = 1, ǫ

(i)
↓↑ = ǫ

(i)
↑↓ = 0 for i ∈ {p+ 1...N}. Then, the relevant observables OR ∈ OR ⊂ O

read

(18) OR = IS ⊗

(

p
⊗

j=1

OSj

)

⊗

(

N
⊗

i=p+1

Ii

)

where OSj
is given by eq. (15). Therefore, the expectation value of the relevant observables

OR is

(19) 〈OR〉ψ(t) =

p
∏

i=1





|αi|
2ǫ

(i)
↑↑ + αi

∗βiǫ
(i)
↑↓e

−igit

+|βi|
2ǫ

(i)
↓↓ + (αi

∗βiǫ
(i)
↑↓ )

∗eigit





Although eq. (19) is very similar to eq. (7), we will compute the time-behavior of that

expectation value by means of numerical simulations. In order to simplify the computation, we

will consider the particular case where the relevant observables are

(20) OR = IS ⊗

(

p
⊗

j=1

S(j)
x

)

⊗

(

N
⊗

i=p+1

Ii

)

where S
(j)
x is the projection of the spin onto the x-axis of the particle Pj. Then, ǫ

(j)
↑↑ = ǫ

(j)
↓↓ = 0,

and the expectation value reads

(21) 〈OR〉ψ(t) = r3(t) =

p
∏

i=1

[

2 ∗ Re
(

αi
∗βiǫ

(i)
↑↓e

−igit
)]

As in eq. (17), in this equation we can select any N ≥ P . As in Case 1 (see eq. (10)), in

this case the time-dependence of r3(t) is given by a periodic function, whose recurrence time

strongly increases with the number of the involved particles.

The time-behavior of r3(t), with p = 4, is plotted in Figure ??, where we can see a fast

decaying followed by fluctuations around zero. As expected, such fluctuations strongly damp

off with the increase of the number p of particles, as shown in Figure ?? (p = 8) and Figure

5 (p = 10); with p = 200 the plot turns out to be indistinguishable of that obtained for the

decoherence of Case 1 with N = 200.

The surprising consequence of these results is that the time-behavior is independent of the

number N of the particles Pi, but only depends on the number p of the particles that constitute

the system of interest (see eq. (19)). Therefore, we can consider a limit case of N = p = 10,

where the system S is composed by the p = N = 10 particles and the environment E is a
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Figure 3. Plot of r3(t) given by eq. (21), for p = 4.

single particle, E = P : in this case, as shown in Figure ??, we have to say that a system of

10 particles decoheres as the result of its interaction with a single-particle environment. The

situation becomes even more striking as the number p increases: with N = p = 200, the

system of 200 particles strongly decoheres in interaction with a single-particle environment.

These results can hardly be accommodated under the standard reading of the phenomenon of

decoherence, according to which decoherence is produced by the interaction between a small

system and a large environment. In other words, this result is in complete contradiction with

the usual intuition behind EID.

Conclusions. As some authors point out, the theory of decoherence has became the “new

orthodoxy” in the quantum physicists community (see [7]). At present, decoherence is studied

and tested in many areas such as atomic physics, quantum optics and condensed matter, and

it has acquired a great relevance in quantum computation. This impressive success has led

to forget the questions about the physical meaning of decoherence. In general, decoherence is

expected to occur only when a small system interacts with a large environment: the dissipation

of information and energy from the system to the large environment is what should cause the

destruction of the coherence between the states of the system.
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Figure 4. Plot of r3(t) given by eq. (21), for p = 8.

By studying a well-known model from different perspectives, in this letter we have shown that

the usual way of understanding the physical meaning of decoherence is, at least, misguided: a

large system in interaction with a small environment may decohere under particular conditions.

The general moral of this work is that our understanding of the conceptual foundations of the

phenomenon of decoherence is still far from being satisfactory, and the matter deserves to be

considered in detail by the physical community.
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