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An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom con-
taining compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian
for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms
linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field
are considered within first and second order (relativistic) perturbation theory to obtain the rotational
g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elim-
ination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br,
I), XF (X=Cl, Br, I), and YH+ (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density
functional theory levels of approximation. Relativistic effects are shown to be small for this molecu-
lar property. The relation between the rotational g-tensor and susceptibility tensor which is valid in
the non-relativistic theory does not hold within the relativistic framework, and differences between
both molecular parameters are analyzed for the model systems under study. It is found that the non-
relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH+ systems. Only for
the sixth-row Rn atom a significant deviation of this relation is found. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4901422]

I. INTRODUCTION

The great development of ab initio relativistic quantum
chemistry in the last decade allows present days routine calcu-
lations of many molecular properties in a relativistic context.
In particular, spectroscopic parameters depending on the elec-
tronic distribution in the close vicinity of the molecule atomic
nuclei are very sensitive to relativistic effects in heavy atom
containing compounds. This is the case, for instance, of the
NMR shielding-tensor (NMST) σ and J couplings.1, 2 Theo-
retical details associated to finite nucleus effects, subtle quan-
tum electrodynamics (QED) effects, Breit interaction effects,
etc., have been analyzed in the recent literature.3

Despite these great advances, for the case of spectral pa-
rameters associated to molecular rotation effects, some cru-
cial points have been unveiled only in the past few years.4–7

The difficulty of coupling the effect of molecular rotation
with a relativistic description of the electronic distribution
was solved in a sound and clear framework in Ref. 4. The
key aspect of this procedure was to consider non-relativistic
dynamics for the description of molecular nuclei in rotational
states coupled to relativistic electrons in a molecular Hamil-
tonian written entirely in the laboratory system.

This approach is largely justified taking into account the
slow motion of nuclei in rotational states. In this context, a

a)Electronic mail: agustin.aucar@conicet.gov.ar
b)Electronic mail: ssgomez@exa.unne.edu.ar
c)Deceased.

theoretical expression for the spin rotation (SR) tensor was
derived. Numerical results5, 8–11 strongly support the correct-
ness of this approach. In particular, it was possible to critically
discuss the loss of the connection between the SR and the
NMR shielding-tensor σ valid in non-relativistic quantum dy-
namics. This property was anticipated long ago,12 but a strict
formal and numerical analysis of the differences between both
spectral parameters was carried out for the first time in Ref.
5. Further developments in the relativistic theory of the SR
tensor were also published by others.6, 7, 13

The excellent results obtained for the case of the SR ten-
sor are a strong indication that the theoretical procedure de-
veloped in Ref. 4 is a sound approach, yielding results within
1%-2% of experimental values. Subtle effects, like electron-
(moving)nucleus Breit interaction effects have shown to give
only tiny contributions to the total SR tensor in the model sys-
tems considered until now.8

The formalism developed in Ref. 4 has shown to yield the
key to correctly couple the electrons and nuclear dynamics in
the case of relativistic electrons. In the present work, we apply
it to the analysis of the molecular rotational g-tensor, which
describes the response of the rotating molecule to an external
uniform magnetic field. Even though formal expressions of
the relativistic rotational g-tensor were obtained in the past,14

it is interesting to re-discuss it in the present context.
Similar to the case of the NMR shielding σ and SR ten-

sors, in the non-relativistic theory there exists a formal re-
lation connecting the rotational g-tensor and paramagnetic
component of the molecular susceptibility tensor χ .15 It has

0021-9606/2014/141(19)/194103/12/$30.00 © 2014 AIP Publishing LLC141, 194103-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

200.45.54.133 On: Mon, 17 Nov 2014 14:36:10

http://dx.doi.org/10.1063/1.4901422
http://dx.doi.org/10.1063/1.4901422
mailto: agustin.aucar@conicet.gov.ar
mailto: ssgomez@exa.unne.edu.ar
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4901422&domain=pdf&date_stamp=2014-11-17


194103-2 Aucar et al. J. Chem. Phys. 141, 194103 (2014)

been long recognised that this connection will fail to hold
in the relativistic theory.12 The susceptibility tensor within
relativistic theory was analyzed in the past.12, 14, 16 However,
4-component calculations of the susceptibility tensor were
carried out as part of the present work for comparison pur-
poses. In order to deepen the analysis of the relation between
both parameters, we have carried out a perturbative expansion
of relativistic effects based on the LRESC17 (Linear Response
within the Elimination of the Small Component) approach.
Remarkable differences with the cases of the NMR shielding
and the SR tensor are highlighted.

Benchmark numerical results of the molecular g-tensor
carried out with the DIRAC program18 are presented in a set
of model systems containing increasingly heavy atoms: HX
(X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH+ (Y=Ne, Ar,
Kr, Xe, Rn). Linear response calculations were carried out
at the RPA level,12, 19 and also with the LDA20 and PBE021

approaches of density functional theory (DFT)22, 23 in order to
estimate the importance of correlation effects. Both the g- and
susceptibility tensors test the response of the electron density
in terms of operators which are non-singular at the nuclear
positions. Therefore, relativistic effects related to inner-shell
electrons are expected to be less important in these cases than
those of the σ and SR tensors.

II. METHODS AND COMPUTATIONS

A. Relativistic 4-component expressions of the
rotational g-tensor and magnetic susceptibility
χ tensor

The rotational g-tensor is the molecular parameter de-
scribing the induced magnetic moment of a molecule due to
rotation:

m = μN

¯
gL, (1)

where m is the molecule magnetic moment, μN the nuclear
magneton, and L the rotational angular momentum of the
molecule. In the present work, we consider only systems with
no electronic contribution to the total molecular angular mo-
mentum, i.e., the rotational L angular momentum is given
only by the rotational states of the nuclei of the system. Gaus-
sian atomic units (a.u.) are adopted in the present work. In this
system of units, easier track of relativistic effects can be kept,
as the fine structure constant is directly given as 1/c. The nu-
clear magneton is μN = 1/2Mpc, where Mp is the proton mass
in a.u.

Formally, the molecular g-tensor can be obtained consid-
ering the Hamiltonian of a molecule in the presence of a uni-
form external magnetic field as

gij = −2Mpc
∂2E(B, L)

∂Lj∂Bi

|B=L=0, (2)

where E(B, L) is the expectation value of the Hamiltonian.
This means that terms linear and bilinear in the rotational an-
gular momentum L and the external magnetic field intensity
B must be retained in the molecular Hamiltonian in order to
be able to evaluate all contributions to E(B, L) by first and
second order perturbation theory.

The molecular magnetizability tensor χ relates the re-
sponse of the molecule to the presence of a uniform magnetic
field with the corresponding field intensity B. It can be for-
mally obtained from a second order expansion of the molecu-
lar energy as

χij = −∂2E(B)

∂Bi∂Bj

|B=0. (3)

Typical nuclear velocities in molecular rotational states are
negligibly small compared to the speed of light. Therefore,
nuclei can be described properly by a non-relativistic Hamil-
tonian, with the addition (when relevant) of relativistic correc-
tions like magnetic and spin-orbit nuclear effects. But in the
presence of heavy atoms, the electrons dynamics must be de-
scribed within a relativistic theory. Under these assumptions a
formal theoretical treatment of the molecular Hamiltonian for
nuclei and electrons was obtained on Ref. 4, yielding the cou-
pling between both in rotational states. Details of the formal
derivation were extensively discussed in that work. Therefore,
only a brief sketch of the formalism is presented here.

1. Correction terms to the molecular Hamiltonian
which take account of molecular rotation

The effect of rotation in molecular states is included in
the molecular Hamiltonian considering leading order correc-
tions to the Born-Oppenheimer (BO) approximation.24 At
zeroth order, the molecular wavefunction is expressed as a
product of the solution of the electronic problem, with fixed
nuclear positions, and the nuclear wavefunction is obtained
considering an effective potential produced by the other nu-
clei and the electrons in their ground state

�mol(x,X) = ψe(x,X)φ(X), (4)

where x and X stand for the whole set of electron and nuclear
variables of the system, respectively.

Neglecting vibrational effects, the Hamiltonian for the
nuclei is the one corresponding to a purely rotating system
around the molecular center of mass (CM) described by the
rigid rotor Hamiltonian,4, 25

HR = 1

2
L̂ I−1 L̂, (5)

where L̂ is the rotational angular momentum, and I is the
molecular inertia tensor, both taken with respect to the CM
of the system. This angular momentum has an associated an-
gular velocity ω = I−1 L̂.

The effect of nuclear rotation on the electronic sys-
tem can be included by considering the terms of the kinetic
energy operator which affect the electronic part of the wave-
function, which are neglected in the zeroth-order BO approx-
imation, that is, those terms in which the nuclear angular mo-
mentum operator is applied to the electronic wavefunction.
Since the electronic wavefunction is referred to a reference
system fixed to the molecular frame, the action of the L̂ op-
erator on the nuclear variables is equivalent to the action of
(minus) the total 4-component relativistic angular momentum
operator for electrons Ĵ e,4, 25 taken with respect to the molec-
ular CM. There are two such terms, one of them is quadratic
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in Ĵe, while the second term couples the electronic angular
momentum Ĵ e and the nuclear angular momentum L̂

h
(1)
BO = −(I−1 L̂) Ĵ e. (6)

h
(1)
BO describes the “drift” of the electronic distribution due to

molecular rotation as an operator linear in the nuclear angular
momentum L̂. In Eq. (6), operator Ĵ e was moved to the right
in order to highlight that it applies directly on the electronic
wavefunction.

A second effect of molecular rotation on the electronic
distribution comes out as a consequence of the electromag-
netic interaction between electrons and moving nuclei. In ad-
dition to the electrostatic term, each moving nuclear charge
ZN gives rise to magnetic and retardation effects. An appropri-
ate derivation of this Hamiltonian is accomplished within the
QED theory.26–28 The correspondent expression is given by
the Breit-like operator, replacing the velocity operator corre-
sponding to one electron with its nuclear counterpart. Within
this approximation, retardation effects are neglected. The for-
mal expression (which is also linear in the nuclear velocity
βN

4) is given by

h
(1)
Breit =

∑
N

ZN

reN

(αβN ) − ZN

2reN

α
(
I − r̂eN

t r̂eN

)
βN , (7)

where α are the four-dimensional Dirac matrices, βN repre-
sents the nucleus velocity relative to c, and r̂eN is the unit vec-
tor of the electron position with respect to nucleus N. The op-
erator of Eq. (7) acting on the molecular wavefunction gives
rise to operator terms which are linear in the rotational angu-
lar momentum L. This happens when operator βN in Eq. (7)
acts on the nuclear variables of the nuclear state. Explicitly,
this relation is given by

βN = 1

c
(ω) × rN,CM = 1

c
(I−1 · L) × rN,CM, (8)

where rN,CM = rN − rCM is the nuclear position with
respect to the molecular center of mass.

2. Interactions with an external magnetic field

In the presence of a uniform magnetic field, the relativis-
tic interaction of electrons is given by

h
(1)
B = α · A(reG), (9)

where the magnetic potential is given by

A(reG) = 1

2
B × (re − RG). (10)

RG stands for the vector position of the (arbitrary) gauge ori-
gin of the magnetic potential. For the purposes of the present
work, it is convenient to take the CM of the molecule as
gauge origin. Therefore, in what follows no explicit reference
to the gauge origin will be necessary and the subindex “G”
is dropped from all equations. The corresponding interaction
with moving non-relativistic nuclei (the diamagnetic term in
Eq. (11) is neglected since it is independent of the nuclear
velocities) is given by

h
(2)
ω,B = −

∑
N

ZNβN · A(rN ). (11)

3. The relativistic rotational g- and magnetic
susceptibility χ tensors

Taking into account the definition of the rotational g-
tensor, Eq. (2), its formal expression is obtained by consider-
ing the perturbative Hamiltonians discussed above, and com-
bining them in first and second order perturbation theory en-
ergy corrections yielding results bilinear in the magnetic field
intensity B and the rotational angular momentum L.

The nuclear contribution is given by the non-relativistic
result

gnuc =
∑
N

ZNMp((rN,G · rN,CM )I−1 − (rN,G · I−1)rN,CM ).

(12)

The electronic part can be obtained within the linear re-
sponse approach12, 19 considering operators h

(1)
B , Eq. (9) on

one hand and operators h
(1)
BO , Eq. (6) and h

(1)
Breit , Eq. (7) on

the other hand,

gel−R = Mpc〈〈re × α ; I−1 J e

−
∑
M

(rM,CM × DMα)I−1〉〉ω=0, (13)

where the symmetric tensor operator DM :

DM = ZM

2 c reM

(
I + r̂ t

eN r̂eN

)
(14)

has been introduced to move operator α to the right in
Eq. (13). The tensor components of gel in Eq. (13) are ob-
tained by tensor product of the vector components of the r.h.s.
and l.h.s. vector operators in the linear response expression.
The Breit contribution is expected to be negligibly small and
will not be considered further in the present work.8

The magnetic susceptibility tensor, which was defined in
Eq. (3) also has both nuclear and electronic contributions,
which were extensively worked out in the bibliography at the
relativistic level.12, 14, 16 We only report the formal expressions
for comparison with those of the rotational g-tensor. Neglect-
ing contributions quadratic in the nuclear velocities, the nu-
clear part is only diamagnetic

χdia
nuc = −1

8

∑
N

Z2
N

mNc2

(
Îr2

N − r t
N rN

)
. (15)

The electronic contribution is obtained through second order
perturbation theory

χ el = −1

4
〈〈α × re ; α × re〉〉ω=0. (16)

The calculation of the propagator in Eqs. (13) and (16) in-
volves excitations to virtual electronic states (e-e excitations)
and virtual positronic states (e-p excitations). The contribu-
tion from each kind of excitations can be separated with a
decomposition of the propagator as indicated in Refs. 19 and
29. In the non-relativistic limit, the (e-e) part corresponds to
the paramagnetic component of the magnetic property un-
der study while the (e-p) part gives rise to the diamagnetic
component.29

The theoretical expression of the relativistic g-tensor
derived in the present work has differences with those of
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previous works in the bibliography.14 As it was anticipated
in previous work,12 the usual relation valid within the non-
relativistic theory between the rotational g-tensor and the
paramagnetic component of the susceptibility tensor is lost
(compare Eqs. (13) and (16)). However, within the present
approach, it can be shown that the “diamagnetic” compo-
nent of the rotational g-tensor vanishes naturally in the non-
relativistic limit. The non-relativistic formal equivalence is
therefore recovered as a formal property of the theory. As
it happens with the SR tensor (e-p) contributions will also
give a zero result at the leading order relativistic correction
(vide infra). In order to deepen the understanding of the rela-
tion between both molecular parameters, leading order rela-
tivistic effects given by the LRESC approach are discussed in
Sec. II B.

B. Leading relativistic corrections to molecular g- and
susceptibility χ tensors within the LRESC approach

The LRESC approach17 allows any second order rela-
tivistic property to be expanded in terms of the fine structure
constant (1/c in a.u.). The zeroth order term yields the non-
relativistic expression of the property, and the leading order
relativistic corrections are obtained in the context of the elim-
ination of the small component (ESC) approach.30

In the present section, the LRESC expressions of the g
and χ tensors are obtained. The kind of analysis allowed by
the LRESC approach are mainly related to unveil the physical
mechanisms of relativistic effects. In the present work, such
analysis is also useful to establish the relation between the g-
and magnetic susceptibility tensor. The situation has similari-
ties but also interesting differences with the relation between
the NMR shielding and nuclear spin-rotation tensors analyzed
in previous work.4 The details of the LRESC approach were
extensively discussed in Refs. 17, 31, and 32. Therefore, only
the main steps yielding the LRESC g-tensor and magnetic
susceptibility tensors are worked out in the present section.

The relativistic second order perturbation theory correc-
tion to the energy E(V,W ) for two 4-component operators
V and W is split into two terms, one involving the positive
energy spectrum of electronic states ((e-e) excitations) and
a second term involving the negative energy spectrum, i.e.,
virtual electron-positron pairs in the QED picture (e-p excita-
tions).

In order to carry out the LRESC expansion of the (e-
e) contributions, on one hand one must apply the ESC ap-
proximation to matrix elements of the 4-component operator
V (and W as well) involved between positive energy four-
component spinors |φ(4)

j 〉, so that at the end they are ex-
pressed as matrix elements of new operators acting in the
space spanned by Pauli spinors |φP

j 〉, i.e.,17

〈
φ

(4)
i

∣∣V ∣∣φ(4)
j

〉 ≈ 〈
φP

i

∣∣O(V )
∣∣φP

j

〉
. (17)

Retaining up to the leading order relativistic effects (1/c2),
operator O(V ) can be split as

O(V ) = Onr (V ) + O(2)(V ), (18)

where Onr (V ) is the non-relativistic (i.e., Schrödinger) ex-
pression of the operator and O(2)(V ) the leading order rela-
tivistic correction.

The second source of relativistic corrections come out
from the unperturbed Pauli Hamiltonian30 (we consider only
one-body relativistic effects in the present work)

HP = HSch + D, (19)

where HSch is the non-relativistic Schrödinger molecular
Hamiltonian, and

D = − p4

8c2
+ 1

8c2
∇2VC + 1

2c2
S · (∇VC × p) (20)

are the Pauli mass-velocity HMv (first term), Darwin HDw

(second term), and spin-orbit HSO (third term) perturbative
relativistic corrections. VC stands for the Coulomb potential
of the atomic nuclei.

The LRESC contribution to the energy coming from (e-e)
excitations is therefore given by

E(e−e)(V,W ) = E(2)(Onr (V ),Onr (W ))

+E(2)(Onr (V ),O(2)(W ))

+E(2)(O(2)(V ),Onr (W ))

+E(3)(Onr (V ),Onr (W ),D), (21)

where E(2), E(3) stand for second and third order corrections
to the energy within (non-relativistic) Rayleigh-Schrödinger
perturbation theory (RSPT).

Contributions coming from e-p excitations are now
considered. Taking into account that within the QED pic-
ture, negative-energy solutions of the Dirac equation are re-
interpreted as positive energy states for positrons, the non-
relativistic and lower order contributions to E(e−p)(V,W ) can
be obtained starting with the following expansion of the en-
ergy differences between the relativistic ground state and a
state carrying an extra electron-positron pair:

En − E0 = 2c2 + 	n,o = 2c2

(
1 + 	n,0

2c2

)
, (22)

where 	n,0 is of order c0 or lower, and therefore the term
	

n,0

2c2

can be used as expansion parameter.
A key result derived in Ref. 17 is to show that up to

the leading order in this expansion parameter the overall
(e-p) contribution to the energy can be obtained from the
4-component expression

E(e−p)(V,W ) = 1

2c2
(〈�0|V PpX(W )|�0〉

+ 〈�0|WPpX(V )|�0〉), (23)

where |ψ0〉 stands for the relativistic ground state of the Dirac
Hartree-Fock approximation and, for brevity, it was defined

X(V ) = 2V + 1

2c2
[H,V ] , (24)

where H is the relativistic unperturbed Hamiltonian, and Pp in
Eq. (23) is the projector onto “positronic” states. Neglecting
two-body terms in the final result, consistently to the lowest
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order in 1/c2 it holds

X(V ) ≈ 2V + 1

2
[β, V ] , (25)

where β is the scalar 4-dimensional Dirac matrix. Taking into
account that Pp is the complement of the projector onto the
subspace of positive energy 4-spinors, the full E(e−p) expres-
sion of Eq. (23) can be expanded in terms of the ESC ap-
proximation. As a consequence, the non-relativistic limit and
leading order relativistic corrections originated in (e-p) terms
can be obtained.17 Explicit expressions are worked out for the
case of the rotational g-tensor.

1. The LRESC expression of the rotational g-tensor

The rotational g-tensor involves operators V = α · A
and W = −ω · J (4)

e . The corresponding expansion defined in
Eq. (18) for the magnetic interaction has been worked out ex-
tensively by different authors, and therefore only the final ex-
pression is presented here17, 33, 34

O(α · A) = 1

2c
(Le + 2S) · B + (V OZ−K

+ V SZ−K + V B−SO ) · B, (26)

where now Le, S are the non-relativistic electronic orbital and
spin angular momentum operators. The lowest order terms in
Eq. (26) are the Orbital- and Spin-Zeeman operators (OZ and
SZ, respectively). The leading order relativistic effects are de-
scribed by operators

V OZ−K = − 1

8c3
{p2; Le}, (27)

V SZ−K = − 1

4c3
(3Sp2 − (S · p) p), (28)

and the so-called “magnetic external field induced spin-orbit”
(B-SO) operator,

V B−SO = 1

2c3
[(r · ∇VC)S − (r · S)∇VC]. (29)

In Eq. (27), the curly brackets stand for the anticommutator
of operators p2 and Le.

On the other hand, the LRESC expansion of matrix el-
ements of the 4-component J (4)

e operator was worked out in
detail in Ref. 4 and it holds

O
(

J (4)
e

) = J (2)
e = Le + S. (30)

As it is seen in Eq. (30) no additional terms, up to order 1/c2,
contribute to the 4-component total angular momentum oper-
ator J (4)

e expansion.
The operators needed to obtain the E(e−p) contribution in

the LRESC expansion are now considered

X(α · A) = 2α · A + 1

2
[β,α · A] = (2 + β) α · A; (31)

X( J (4)
e ) = 2 J (4)

e + 1

2

[
β, J (4)

e

] = 2 J (4)
e . (32)

Taking into account Eqs. (26) and (30), the non-relativistic
limit of the (e-e) contribution to the rotational g-tensor yields

naturally the expression of the non-relativistic theory

gel−NR = MpE(2)(Le; Le)I−1. (33)

The leading order LRESC relativistic corrections to the
g-tensor

g(2) � gel−R − gel−NR, (34)

in the case of closed shell molecules (i.e., with a non-
relativistic ground state with S = 0), g(2) is given by

g(2) = (−2Mpc)

[
E(2)(V OZ−K,−I−1 Le) + 1

2c
E(3)(D; Le

+ 2S; −I−1 J e)

]
+ g(e−p) (35)

(the nuclear contribution is neglected since it is the same in
both cases, as in the present approach nuclei are treated within
a non-relativistic approach). Operator J e was replaced by op-
erator Le in the first term of the right hand side of Eq. (35)
because the spin part yields zero in the case of closed shell
molecules. In principle, this gives rise to four mechanisms in
the (e-e) excitation part

gOZ−K = −Mp

4c2
E(2)

({
Le, p

2
}
, Le

)
I−1, (36)

and

gMv = MpE(3)
(
HMv, Le, Le

)
I−1, (37)

gDw = MpE(3) (HDw, Le, Le

)
I−1, (38)

gSO = 3MpE(3)
(
HSO, Le, S

)
I−1. (39)

These four mechanisms are analogous to those found for the
SR tensor,4 but the magnetic field of an atomic nucleus is re-
placed by a uniform magnetic field. However, unlike the case
of the SR tensor, here the last term, g(SO) vanishes identically.

The (e-p) term, g(e−p) is now considered. To this end, the
approximate expression of the (e-p) contribution to the energy
in Eq. (23) is expanded considering the ESC scheme

E(e−p) = 1

2c2

(〈�0|(α · A)PpX
( − ω · J (4)

e

)|�0〉

+ 〈�0|
( − ω · J (4)

e

)
PpX(α · A)|�0〉

)
. (40)

Taking into account that the non-relativistic rotational g-
tensor carries no factors of 1/c, it is immediately concluded
that there is no non-relativistic contribution, and that the low-
est order term is itself a relativistic effect. In order to calcu-
late such leading order correction, the expectation value in
Eq. (40) must be evaluated up to order c−3. By explicit cal-
culation, it can be shown that such contribution is also identi-
cally zero.

Therefore, it is verified that both, the non-relativistic and
the leading order LRESC relativistic correction to E(e−p) yield
a zero for the rotational g-tensor, i.e.,

g(e−p) = 0. (41)

This behaviour is totally similar to that found for the spin-
rotation tensor.4
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2. LRESC expansion of the magnetic susceptibility
tensor

The magnetic susceptibility tensor involves twice the
magnetic field interaction operator (α · A). The component
coming from excitations to excited electronic states χ (e−e) is
first considered. From the first term in Eq. (26), it is readily
seen that in the non-relativistic limit the paramagnetic com-
ponent of the (non-relativistic) magnetic susceptibility tensor
is obtained

χ (e−e)NR = − 1

4c2
E(2)(Le, Le) = χp−NR. (42)

The leading order relativistic corrections χ (e−e)(2) within the
LRESC scheme are

χ (e−e)(2) = −
[

1

c
E(2)(V OZ−K, Le)

+ 1

4c2
E(3)(D; Le + 2S; Le + 2S)

]
, (43)

with χ (e−e)(2) � χ (e−e) − χ (e−e)NR . For the case of closed
shell molecules, the last term in Eq. (43) gives rise to the same
type of mechanism found for g(2). But the first, OZ-K correc-
tion carries a different factor, originating a deviation of the
LRESC theory of the susceptibility tensor. In fact, this is the
only source of differences between the “paramagnetic” com-
ponent of the susceptibility tensor and the rotational g-tensor
within the LRESC approach.

For the (e-p) contribution, we consider again Eq. (23),

E(e−p) = 1

2c2
(〈�0|(α · A)Pp(2 + β)(α · A)|�0〉). (44)

From this expression, the diamagnetic component of the sus-
ceptibility is obtained in the non-relativistic limit and leading
order relativistic effects may be obtained as well. Since no ex-
plicit use of these expressions are needed for the purposes of
the present work, they are not worked out further here.

C. Computational details

Following Eqs. (12) and (13), relativistic four-component
calculations of the molecular g-tensor were carried out in
model systems HX (X=F, Cl, Br, I), XF (X=Cl,Br,I), and
YH+ (Y=Ne, Ar, Kr, Xe, Rn). Due to molecular symmetry,
the rotational g-tensor is defined by only one component per-
pendicular to the molecular axis of symmetry. This compo-
nent will be referred to as the rotational g-factor. In addition,
an analysis of relativistic corrections was done using LRESC
expressions according to Eqs. (35) and (43).

Relativistic calculations were performed with the
DIRAC13 code,18 both within the RPA12, 19 and DFT22, 23 re-
sponse schemes. DFT results were obtained within the LDA20

and PBE021 functionals, in order to estimate correlation ef-
fects in these properties. LRESC calculations were performed
with the DALTON2013 program;35, 36 in this case, linear and
quadratic response calculations were carried out at the RPA
level.

In both relativistic and non-relativistic calculations, the
electrostatic electron-nucleus interaction was modeled using

a finite nucleus with Gaussian charge distribution. The gauge
origin of the magnetic potential is set at the molecular CM,
as this condition is necessary for the formal equivalence be-
tween χp and g to hold in the non-relativistic theory. Even
though in relativistic calculations gauge origin invariance can
be achieved by the use of appropriate generalization of Lon-
don orbitals,16 the separate values of the (e-e) and (e-p) contri-
butions to χ do depend on the choice of gauge origin. In fact,
London-type orbitals were defined within the non-relativistic
theory of the spin-rotation and rotational g-tensor37 in order to
ensure fast convergence of results. In the present work, over-
all gauge origin invariance was controlled through the use of
large and converged basis sets, and taking into account pre-
vious work in the bibliography in the study of the magnetic
susceptibility tensor (Refs. 14 and 16 and references therein).
The Breit contribution (Eq. (7)) is neglected in the present
work, mostly based on the fact that it is expected to be a neg-
ligibly small effect.8

The same basis set was used for non-relativistic and for
the large component of relativistic 4-spinors of relativistic cal-
culations. In the latter case, the small component basis was
generated using restricted kinetic balance (RKB). For H, F,
Ne, Cl, and Ar atoms, the aug-cc-pCV5Z basis set38–42 was
used, while for Br, Kr, I, Xe, and Rn the dyall.acv4z43 basis
set was employed. In all cases, basis sets were fully uncon-
tracted.

Experimental geometrical parameters of HX (X=F, Cl,
Br, I),44 XF (X=Cl,44 Br,44 I45), and YH+ (Y=Ne,46 Ar,47

Kr,47 Xe,48 Rn14) compounds were used. The equilibrium
bond distances in Angstroms are: 0.9170 (HF), 0.9912
(NeH+), 1.2746 (HCl), 1.28037 (ArH+), 1.6283 (ClF),
1.4145 (HBr), 1.421190 (KrH+), 1.7590 (BrF), 1.6090 (HI),
1.60281 (XeH+), 1.9098 (IF), and 1.7020 (RnH+).

III. RESULTS AND DISCUSSION

A. Relativistic 4-component results of the rotational
g-factor

In Table I, non-relativistic RPA, as well as relativistic
RPA and DFT results of the rotational g-factor in model
systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH+

(Y=Ne, Ar, Kr, Xe, Rn) are presented. When available, ex-
perimental values are quoted for comparison. The g-factor
is composed by a nuclear and an electronic contribution. It
should be kept in mind that the nuclear values for all HX and
YH+ systems range between 0.973 and 0.997. The value 1.00
would correspond to the H nucleus rotating around a fixed ori-
gin. As a consequence, the smaller g values in HX and YH+

along the series of increasing atomic number Z of the X or Y
atoms reflect an increasingly negative electronic contribution.

As it might be anticipated, relativistic effects are much
smaller (in a relative scale) in the case of the g-factor than
they were in the case of the SR tensor. Correlation effects are
of similar order of magnitude in most cases. Correlation and
relativistic effects follow opposite trends in the case of the
heavier HX systems (X=Br, I), nearly cancelling each other.
For the series YH+, they both yield negative corrections. As
a consequence, correlated relativistic effects bring the total
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TABLE I. Relativistic values of rotational g-factor for HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH+ (Y=Ne, Ar, Kr, Xe, Rn) molecules, calculated at the
RPA Dirac Fock, and DFT (LDA and PBE0) levels of approximation. Experimental values are quoted when available.

Mol. Method gNR gR 	gR 	gcorr, NR 	gcorr, R gexp

H19F RPA 0.7623 0.7617 − 0.0007 . . . . . . 0.741599(5)49

LDA 0.7515 0.7508 − 0.0007 − 0.0109 − 0.0109
PBE0 0.7434 0.7427 − 0.0007 − 0.0189 − 0.0190

H35Cl RPA 0.4552 0.4535 − 0.0017 . . . . . . 0.459450

LDA 0.4875 0.4858 − 0.0017 0.0323 0.0323
PBE0 0.4670 0.4653 − 0.0017 0.0117 0.0118

H81Br RPA 0.3740 0.3682 − 0.0058 0.37122(8)51

LDA 0.4055 0.3968 − 0.0087 0.0315 0.0286
PBE0 0.3814 0.3730 − 0.0084 0.0074 0.0048

H127I RPA 0.1838 0.1648 − 0.0190 . . .
LDA 0.2438 0.2140 − 0.0298 0.0600 0.0492
PBE0 0.2090 0.1805 − 0.0285 0.0252 0.0157

20NeH+ RPA 0.8790 0.8787 − 0.0003 . . .
LDA 0.8528 0.8524 − 0.0004 − 0.0262 − 0.0263
PBE0 0.8547 0.8543 − 0.0004 − 0.0243 − 0.0244

40ArH+ RPA 0.6841 0.6832 − 0.0009 0.6638(34)52

LDA 0.6757 0.6747 − 0.0010 − 0.0084 − 0.0085
PBE0 0.6687 0.6678 − 0.0010 − 0.0154 − 0.0154

84KrH+ RPA 0.6009 0.5989 − 0.0021 0.554553

LDA 0.5939 0.5889 − 0.0050 − 0.0071 − 0.0100
PBE0 0.5828 0.5782 − 0.0046 − 0.0182 − 0.0207

132XeH+ RPA 0.4297 0.4202 − 0.0094 . . .
LDA 0.4436 0.4236 − 0.0200 0.0139 0.0033
PBE0 0.4235 0.4048 − 0.0187 − 0.0062 − 0.0154

222RnH+ RPA 0.3361 0.1979 − 0.1381 . . .
LDA 0.3590 0.2060 − 0.1530 0.0229 0.0081
PBE0 0.3341 0.1748 − 0.1594 − 0.0019 − 0.0232

35ClF RPA − 0.1072 − 0.1077 − 0.0004 . . .
LDA − 0.1222 − 0.1227 − 0.0005 − 0.0150 − 0.0151
PBE0 − 0.1135 − 0.1140 − 0.0005 − 0.0063 − 0.0063

81BrF RPA − 0.1036 − 0.1076 − 0.0040 . . .
LDA − 0.1135 − 0.1164 − 0.0030 − 0.0099 − 0.0089
PBE0 − 0.1066 − 0.1097 − 0.0031 − 0.0030 − 0.0022

127IF RPA − 0.1250 − 0.1468 − 0.0218 . . .
LDA − 0.1329 − 0.1457 − 0.0128 − 0.0079 0.0011
PBE0 − 0.1260 − 0.1411 − 0.0150 − 0.0010 0.0058

values closer to experiment in the cases Y=Ar, Kr. It is in-
teresting to point out that experimental values are determined
with high precision in such cases. It is necessary to go down to
the sixth row of the periodic table to obtain really significant
relativistic effects: in the case Y=Rn, the relativistic effect is
by far more important than correlation effects as described by
both DFT functionals.

In Ref. 48, a crude estimation of the experimental value
of the g-factor in XeH+ is quoted, of ≈0.30(5). The present
calculations do not support this finding. The general trend of
relativistic effects in YH+ shows smaller values than those of
HX, and correlation effects are not significant neither. There-
fore, we predict the correct value of the g-factor in XeH+ to
be close to that of our present calculations.

Numerical results by other authors were obtained consid-
ering a different formal approach.14 In these previous works,
the g-factor formal expression is considered to be identically

proportional to the (e-e) part of the magnetic susceptibility.
Therefore, comparison of the present approach with previous
ones is better carried out in Subsection III C of this work.

Summing up, unlike the case of the SR tensor, the g-
factor is only affected by subtle relativistic effects. This might
be anticipated on qualitative grounds: the operators involved
in the SR tensor probe the electronic distribution in the close
vicinity of the atomic nuclei, where relativistic effects are very
relevant for large Z, whereas those involved in the g-factor af-
fect mostly valence electrons, for which relativistic effects are
subtle. Regarding correlation effects, results of the LDA and
PBE0 approaches give a general estimate of their relative im-
portance in the present set of model compounds. However,
more precise calculations should be carried out to obtain def-
inite quantitative correlated values. Taking into account that
correlation effects are not very important, we make only refer-
ence to the RPA values for analysis purposes in what follows.
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TABLE II. Relativistic RPA values of rotational g-factor for HX (X=F, Cl, Br, I), YH+ (Y=Ne, Ar, Kr, Xe, Rn), and XF (X=Cl, Br, I) molecules: nuclear
contribution gnuc, and electronic contribution gel split into its component originating in electron-electron excitations g(e−e) and the one involving electron-
positron excitations g(e−p). In each case, the value given by the L

e
and S terms of the total angular momentum operator Je are quoted separately.

gel

g(e−e) g(e−p)

gnuc L S L S gtotal

H19F 0.97315 − 0.21149 − 0.000006 0.000092 − 0.000092 0.76165
H35Cl 0.98518 − 0.53161 − 0.000061 0.000084 − 0.000084 0.45350
H81Br 0.99252 − 0.62305 − 0.00129 0.00013 − 0.00013 0.36818
H127I 0.99490 − 0.82169 − 0.00840 0.00014 − 0.00014 0.16481
20NeH+ 0.97567 − 0.09698 − 0.000004 0.000079 − 0.000079 0.87869
40ArH+ 0.98603 − 0.30280 − 0.00005 0.000083 − 0.000083 0.68318
84KrH+ 0.99272 − 0.39289 − 0.00095 0.00013 − 0.00013 0.59888
132XeH+ 0.99501 − 0.56848 − 0.00630 0.00014 − 0.00014 0.42023
222RnH+ 0.99670 − 0.74625 − 0.05255 0.000189 − 0.000188 0.19790
35Cl19F 0.48158 − 0.5892 − 0.00006 0.0000072 − 0.0000059 − 0.10768
81Br19F 0.46928 − 0.5753 − 0.001569 0.000010 − 0.000007 − 0.10758
127I19F 0.46981 − 0.60512 − 0.01154 0.000014 − 0.000007 − 0.14683

In Table II, the nuclear part, and the 4-component rela-
tivistic RPA values of the electronic part of the g-factor, sep-
arated into (e-e) and (e-p) contributions are presented for the
three series of compounds HX, XF, and YH+. The decompo-
sition into (e-e) and (e-p) contributions was done as imple-
mented in DIRAC18 code: g(e−e) is obtained as a response cal-
culation involving only virtual excitations to positive energy
spinors, and g(e−p) is obtained as the difference between the
full response result and g(e−e).19 Each contribution is further
decomposed in Table II considering separately the orbital Le
and spin S angular momenta in the Je operator.

Results in Table II show interesting features. On one
hand, it is verified that the (e-p) contribution is negligibly
small in all cases, as it was anticipated by the LRESC analy-
sis and the full result is practically given just by g(e−e). In fact,
the Le and S (mutually cancelling) contributions to g(e−p) are
much smaller than those of g(e−e) when considered separately
as well.

Looking to the orbital and spin terms of g(e-e) an interest-
ing trend is found: the relative importance of the S term in the
full relativistic correction is negligibly small for the lighter
atoms, but it increases sharply with Z, up to nearly 50% of
the complete correction in the cases X=I, Y=Xe, Rn. This
rather unexpected trend cannot be explained from the LRESC
expansion, as no spin containing contributions appear within
the LRESC theory of the g-factor of closed shell molecules.
This subject deserves further discussion.

B. Relativistic effects on the g-factor as a power
series in 1/c: Leading and higher order effects

The LRESC approach is based on the idea of retaining
the leading order relativistic effects on molecular properties
within the ESC scheme. Within such approximation it was
anticipated that the g(e-p) contribution is zero up to the lead-
ing order in 1/c, and no spin-dependent contributions to g(e-e)
are found. LRESC relativistic effects are all given by “scalar”

operators: mass velocity, Darwin and the so-called “OZ-K”
term of Eq. (36).

In order to investigate the LRESC results of g(e−e), in Ta-
ble III numerical results of gOZ−K and the sum of gMv and gDw

are presented for all HX, XF, and YH+ compounds, together
with the full 4-component relativistic effect. It is observed that
the LRESC values fail to describe adequately the relativistic
effects for the cases of X, Y atoms beyond the third row. The
discrepancy could be due to missing spin-dependent terms in
the LRESC expansion, or to the existence of higher order con-
tributions.

Since the LRESC scheme is conceived as a power series
in the fine structure constant 1/c (in a.u.) we could artificially
vary the value of the speed of light in the four component
calculation of the g-factor in order to obtain a power expan-
sion in 1/c. This feature is included in the DIRAC program.
In this way, it is possible to analyse the dependence of the 4-
component g-factor setting the inverse of the speed of light as

TABLE III. Comparison of relativistic 4-component RPA corrections
gel−gel−NR, and LRESC corrections gOZ−K Eq. (36) and gMv/Dw

Eqs. (37) and (38) to the rotational g-factor in HX (X=F, Cl, Br, I), YH+
(Y = Ne, Ar, Kr, Xe, Rn), and XF (X=Cl, Br, I) molecules.

gel -gel−NR gOZ−K gMv/Dw

Molecule (× 10−3) (× 10−3) (× 10−3)

H19F − 0.680 0.009 − 0.630
H35Cl − 1.727 − 0.012 − 0.888
H81Br − 5.805 0.0144 − 1.888
H127I − 18.966 0.0160 8.728
20NeH+ − 0.261 0.007 − 0.308
40ArH+ − 0.949 0.009 − 0.149
84KrH+ − 2.061 0.012 − 1.018
132XeH+ − 9.447 0.014 13.48
222RnH+ − 138.15 0.017 57.35
35Cl19F − 0.449 0.092033 − 1.015
81Br19F − 3.980 0.11942 − 1.234
127I19F − 21.792 0.12368 0.696
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TABLE IV. Coefficients of the fitting curve of the g-factor as a function
of parameter α2 (Eq. (45)) up to order α4, non-relativistic electronic value
gel−NR , and LRESC correction as given in Eq. (35) in model systems HBr
(Fig. 1) and HI (Fig. 2).

g(0) g(2) g(4) gel−NR gOZ−K + gMv/Dw

H81Br − 0.6182 − 0.00178 − 0.00382 − 0.6185 − 0.00187
H127I − 0.8110 0.00894 − 0.02527 − 0.8111 0.00874

α/c (c = 137.0359998 a.u.). Therefore, the value α = 0 corre-
sponds to the non-relativistic limit and α = 1 corresponds to
the true relativistic value,

gel(α) = g(0) + g(2)α2 + g(4)α4 + · · · (45)

so that g(2) (g(4)) will be the relativistic correction up to order
2 (4) in the expansion of the g-factor. In a least-squares fit of
the resulting curve, g(0) should agree with the non-relativistic
value.

In Table IV, we show the expansion coefficients of the
fitting of gel(α) as a quadratic polynomial in α2 for the cases
HBr and HI. The values gel−NR, and LRESC results are also
included for comparison. The resulting curves are shown in
Fig. 1 for the case of HBr and in Fig. 2 for the case of HI. The
obtained results are really interesting. The zeroth order con-
stant g(0) matches very well the non-relativistic values (within
less than 0.1%); the leading order correction g(2) is consis-
tent with the LRESC result within 5%. But the coefficient g(4)

confirms the existence of significant contributions scaling as
(1/c)4. In fact, such g(4) contribution is the dominant one in
both HBr and HI. This result is wholly consistent with the
appearance of the spin-dependent contribution discussed in
Sec. III A, which was negligibly small for the lighter F, Cl
atoms, but significant for atoms beyond the fourth row of the
periodic table. From Figs. 1 and 2 it is also seen that higher
order terms (α6) are not fully negligible in the full relativistic
result, as the value given by the fitting curve of order α4 at
α = 1 is smaller than the relativistic one by about 10%.

C. Relation of g-factor and magnetic susceptibility
χ in the relativistic formalism

Within the 4-component formalism presented in this
work the theoretical expressions of the rotational g-
tensor, Eq. (13), and the magnetic susceptibility tensor,
Eq. (16), are defined in terms of different operators. There-
fore, there is no direct formal relation linking both parameters,
as it is the case in the non-relativistic theory. By application of
the LRESC expansion it was verified that the relativistic ex-
pressions lead naturally to the non-relativistic theory of both
parameters in the limit c → ∞: in such limit, the g-tensor
and the paramagnetic component of the magnetic susceptibil-
ity tensor, χp − NR, are defined in terms of the same opera-
tors (provided the molecular CM is taken as gauge origin of
the magnetic potential) (see Eqs. (33) and (42)). Therefore, it
holds

Igel−NR = −4Mpc2χp−NR. (46)

 0.618

 0.619

 0.62

 0.621

 0.622

 0.623

 0.624

 0.625

0  0.5 1

 |g
el

| 

α2

HBr

 Calculation 
 polynomial fit

FIG. 1. Electronic contribution to the relativistic rotational g-factor for HBr
(in absolute value) as a function of the parameter α2, where α/c is the fine
structure constant in a.u. The polynomial fit of Eq. (46) is shown as a dotted
line.

Furthermore, the LRESC expansion allows to explore the dif-
ferences between both parameters by comparing the leading
order relativistic corrections to the g-tensor and to the (e-e)
contribution of the magnetic susceptibility, χ (e−e). On one
hand, “scalar” relativistic effects (Mv) and (Dw) do satisfy
Eq. (46), while the SO effect is zero at this level of approxi-
mation for both tensors. On the other hand, the OZ-K correc-
tion appears only once in the LRESC expansion of the rota-
tional g-tensor, but it appears twice in that of the susceptibility
tensor,

2I gOZ−K = −4Mpc2χOZ−K. (47)

Therefore, in the leading order LRESC approximation, the
only source for a deviation of the non-relativistic relation
Eq. (46) comes out from the OZ-K term. But as shown in
Table III, on one hand, the OZ-K correction is negligibly
small in all cases, and on the other hand the LRESC re-
sult fails to reproduce correctly the full relativistic values of
the g-factors of molecules containing atoms below the fourth
row of the periodic table. Therefore, in order to deepen the
analysis of the deviation of the relation Eq. (46) for heavy
atom containing compounds from a quantitative point of view,
relativistic calculations of the magnetic susceptibility tensor
were carried out as part of the present work for the series of
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FIG. 2. Electronic contribution to the relativistic rotational g-factor for HI
(in absolute value) as a function of the parameter α2, where α/c is the fine
structure constant in a.u. The polynomial fit of Eq. (46) is shown as a dotted
line.

compounds HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH+

(Y=Ne, Ar, Kr, Xe, Rn). Calculations were carried out at the
RPA level. The corresponding results, divided into (e-e) and
(e-p) components, are presented in Table V.

The component of the magnetic susceptibility yielding
the paramagnetic component of the non-relativistic theory in

TABLE V. Relativistic RPA values of the magnetic susceptibility for HX
(X=F, Cl, Br, I), YH+ (Y=Ne, Ar, Kr, Xe, Rn), and XF (X=Cl, Br, I)
molecules. The e-e and e-p contributions (corresponding to paramagnetic and
diamagnetic contributions in the non-relativistic limit) are also shown.

χ (e−e) (10−4 a.u.) χ (e−p)(10−4 a.u.)

H19F 0.080310 − 1.2230
H35Cl 0.39933 − 3.0461
H81Br 0.58800 − 4.2844
H127I 1.0243 − 6.4627
20NeH+ 0.043104 − 0.83997
40ArH+ 0.23021 − 2.3060
84KrH+ 0.37451 − 3.4653
132XeH+ 0.70418 − 5.4463
222RnH+ 1.1670 − 6.8379
35Cl19F 9.0674 − 10.592
81Br19F 12.976 − 14.830
127I19F 17.843 − 19.559
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FIG. 3. Quotient given in Eq. (46) relating the rotational g-factor and the
magnetic susceptibility for the series of molecules HX (X=F, Cl, Br, I ), XF
(X=Cl, Br, I), and YH+ (Y=Ne, Ar, Kr, Xe, Rn).

the non-relativistic limit is χ (e−e). Therefore, the deviation
of the relation (46) when relativistic effects are relevant can
be analysed by comparing the relativistic results of gel and
χ (e−e). In fact, in previous work,14 the relativistic g-factor was
defined as being proportional to χ (e−e) and it is interesting
to evaluate the differences with the theoretical expression of
the present work. Results are presented in Fig. 3, where the
quotient −Igel/4Mpc2χ (e−e) is evaluated as a function of the
atomic number Z of the X, Y atoms in the analyzed com-
pounds. The value of 1 corresponds to full equivalence of the
two values. It is seen that the quotient becomes smaller to 1
as a function of Z, indicating a larger χ (e−e) as compared to
the case of the non-relativistic theory. However, the deviation
is negligibly small up to the fourth row (differences are of
the order of 0.5%) and in the fifth row it is ∼2%. Therefore,
the standard non-relativistic relation can be considered to hold
within a 2% precision for moderately heavy atom containing
compounds. Only for the very heavy Rn atom the difference
is shown to be significant (≈6%).

IV. CONCLUDING REMARKS

In the present work, an original formulation of the
molecular rotational g-tensor in a relativistic context is pre-
sented. It is based on the analysis of a molecular Hamil-
tonian defined in the laboratory system which considers
non-relativistic dynamics for nuclei and relativistic quantum
theory for electrons.4 Within the present approach, in the non-
relativistic limit, the non-relativistic theory of the rotational
g-tensor is obtained in a natural way. The relation with the
susceptibility tensor valid in the non-relativistic context is lost
at the relativistic level, as it was anticipated in the bibliogra-
phy long ago.12 Quantitative RPA and DFT results in model
systems HX, XF, and YH+ allowed the analysis of interest-
ing features. First, contributions from electron-positron exci-
tations show to be negligibly small along the whole series.
The full relativistic g-factor is largely dominated by the g(e−e)

contribution, i.e., the part given by excitations to “electronic”
excited states of the system. Unlike the case of the SR ten-
sor, relativistic effects on the rotational g-factor are shown to
be small. Only for the sixth-row Rn atom a large relativis-
tic correction is found. Relativistic effects on g(e−e) are not
well reproduced by the LRESC approximation for compounds
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containing atoms beyond the fourth row of the periodic table a
significant portion of the relativistic effect originates in spin-
dependent higher-order terms.

Comparison of the rotational g-tensor and the susceptibil-
ity tensor expressions shows that the relation linking both pa-
rameters valid in the non-relativistic theory, Eq. (46), breaks
down in the relativistic regime. However, differences remain
very small (up to 2% for X=I, Y=Xe), and only for the heav-
ier Rn atom it becomes significant. Once more it is verified
that even though at the LRESC approximation the OZ-K term
enters differently in the relativistic correction to both param-
eters, this contribution does not explain the general trend, as
the corresponding values are shown to be negligibly small in
all cases. Higher order contributions must be responsible for
the deviation of the relation (46) in heavy atom containing
compounds.

These conclusions have similarities but also interesting
differences with the case of the relation between the SR ten-
sor M(N) and NMR shielding-tensor σ (N).4, 5 In that case,
the LRESC expansion showed that while the OZ-K term is
present in the LRESC expansion of the σ tensor, it does not
appear in the case of the SR tensor. But the main differences
between both was shown in the different factors giving rise to
SO effects, which are non-zero: the rotational operator carries
the spin operator S, but the magnetic interaction operator car-
ries a factor ge S, where ge is the electron gyromagnetic fac-
tor. Due to this difference, the deviation of the non-relativistic
relation between both parameters is significant in all cases
where the SO effect is relevant, as there is a difference of
a factor of ≈2 in the spin-contribution to this effect. These
differences may be important even in the case of moderately
heavy atoms. In contrast, in the present case the SO term is
zero at the LRESC level for both parameters, as it was dis-
cussed above. However, higher order spin-dependent effects
will also carry different constant factors for the g-tensor as
compared to the case of χ (e−e): this is the source of the differ-
ent behaviour of both parameters for heavy atom containing
compounds.
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