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[1] Simultaneous multiple point measurements of the magnetic field from seven spacecraft
are employed to estimate the Eulerian correlation function and decorrelation time scales in
the near Earth solar wind for two different solar wind speed ranges. We find that the Eulerian
decorrelation time scale differs significantly in the slow solar wind (<450 km/s), where
quasi-two-dimensional turbulence dominates, and in the fast solar (>600 km/s) wind, where
slab-type turbulence dominates. In slow solar wind, the decorrelation time is 215 ± 43 min,
and in fast solar wind, the decorrelation time scale is 114 ± 23 min, which indicates that
decorrelation times vary with the nature of the turbulence. The values reported here are
comparable to estimates of decorrelation times based on a number of different models, but
do not clearly support or refute any specific solar wind turbulence model. These results may
be useful in magnetohydrodynamic modeling of the solar wind and can contribute to our
understanding of solar and galactic cosmic ray diffusion in the heliosphere.
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1. Introduction

[2] Most single-spacecraft studies of the solar wind have
assumed that the flow and magnetic field fluctuations in the
solar wind are frozen in and do not evolve much over time
scales [Taylor, 1938] on the order of the travel time from
the L1 point to the Earth’s magnetosphere, i.e., times of order
1 h. Comparisons of spacecraft data obtained at the L1 and
data recorded just outside the Earth’s bow shock show this
assumption is relatively reliable [Paularena et al., 1999;
Ridley, 2000]. However, the time scale over which the
frozen-in flow assumption remains valid has not been fully
established. Furthermore, the rate of decorrelation in the
plasma frame, which is the principal contributor to the
violation of the frozen-in assumption, is a fundamental prop-
erty of the dynamics of the turbulence. Understanding this
decorrelation would provide important insights into plasma
turbulence theory.
[3] A useful development in the study of time

decorrelations was the introduction of a method [Dasso
et al., 2008; Matthaeus et al., 2010] to formulate a leading

order estimate of the rate of decorrelation in the Eulerian
frame, by comparison of single-spacecraft and multiple-
spacecraft analyses. Dasso et al. [2008] examined a single
day of magnetic field data from ACE and Wind in which
the solar wind had an average speed of about 450 km s-1.
From the Dasso et al. [2008] analysis, one derives a
decorrelation value of about 3 h. The method was subse-
quently applied to a decade of magnetic field data obtained
by the ACE and Wind spacecraft at times when the separa-
tion vector was within 30 degrees of the average solar wind
flow vector [Matthaeus et al., 2010]. This more complete
study concluded that the magnetic field fluctuations
decorrelate over time scales of 2.9 h. These studies demon-
strate that over longer time intervals, the frozen-in approxi-
mation is not expected to apply, and the turbulence must be
viewed not as static but as a highly dynamic medium.
[4] Matthaeus et al. [2010] estimated the Eulerian

decorrelation function by comparing two-spacecraft spatial
correlations with single-spacecraft time-lagged correlations.
The two-spacecraft spatial correlations (called “two-point
correlations” below) were obtained using simultaneous data,
averaging over a period of 24 h. These two-point spatial
correlations are assumed to come from turbulent magnetic
field fluctuations. For the single-spacecraft temporal correla-
tions (“single-point correlations”), the temporal separations
were determined from the mean spacecraft separation di-
vided by the mean solar wind speed over a 24 h interval.
The method for obtaining the Eulerian decorrelation relies
on the assumption that the single-point correlations differ
from the two-point correlations because they incorporate
additional decorrelation effects associated with the passage
of time between the lagged single-point measurements—that
is, the temporal decorrelation is related to departures from the
Taylor frozen-in approximation.
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[5] This earlier study grouped all the available data to-
gether and did not sort the sample population by solar wind
speed. However, it is generally accepted that the magnetic
field fluctuations associated with turbulence display different
characteristics in the slow and fast solar wind [Goldstein
et al., 1994; 1995; Weygand et al., 2011]. The present paper
examines whether Eulerian decorrelation occurs at different
rates in these two types of solar wind.
[6] Prominent among the known differences in fast and

slow wind properties is a variation in “turbulence geometry”
that has been characterized as a varying admixture of slab
and quasi-two-dimensional (2D) turbulence [Dasso et al.,
2005]. The slab-2D parameterization is based on the relative
power in quasi-slab, spectral fluctuations, and low-frequency
quasi-two-dimensional fluctuations. Ruiz et al. [2011] have
shown that the varying mixture of the slab and 2D turbulence
is related to the progressive dynamic spectral transfer of
energy from “slab” modes to “2D” modes as the solar wind
parcels age from younger to older. The use of slab-2D param-
eterization is convenient in cosmic ray scattering and obser-
vational studies [Bieber et al., 1994; Bieber et al., 1996]
and characterizes the anisotropy that emerges naturally in
the theory of low Mach number nearly incompressible mag-
netohydrodynamics (MHD) [Zank and Matthaeus, 1992].
From a theoretical perspective, variation in slab-2D ratio
reflects changes in the balance of physical effects that drive
the dynamics and induce time decorrelation.
[7] Beyond the assumption of any particular model, it is

well known that the turbulence geometry, that is, the distribu-
tion of energy over angles of wave vectors measured relative
to the mean magnetic field, is a major factor in determining
the correlation time scales of MHD turbulence [Montgomery,
1982; Zhou et al., 2004; Servidio et al., 2011]. Mainly
motivated by charged particle scattering theory, the two-
component slab-2D representation has been employed as a ba-
sis for modeling the inertial range MHD time decorrelations
[Bieber et al., 1994; Shalchi et al., 2006]. If one further
extends the modeling by adopting a specific form for the
energy spectrum, then one can construct models for the entire
Eulerian single-point, two-time correlation function [Shalchi,
2008]. Regardless of whether these explicit models are accu-
rate (see below), the assembly of such models demonstrates
how different spectral characteristics may influence the
Eulerian correlation. In particular, the orientation of the wave
vector induces variations in the Alfvén time scale, while the
magnitude of the wave vector influences both the nonlinear
time scale and the Alfvén time scale. Adding contributions
from all parts of the spectrum results in the total observed time
decorrelation. The slow wind is found to contain more quasi-
two-dimensional turbulence while the fast wind contains rela-
tively more slablike turbulence. Furthermore, fast solar wind
and slow solar wind have different correlation scale lengths
[Weygand et al., 2011]. As we will see in more detail below,
these factors lead us to expect that time decorrelation will
differ in the two classes of solar wind [Shalchi et al., 2006;
Shalchi, 2008].
[8] In this study, we separate the solar wind into two differ-

ent types: slow (< 450 km/s) and fast (> 600 km/s) solar
wind in order to establish the Eulerian correlation function
for each speed range. We adopt the method used by
Matthaeus et al. [2010] to estimate the Eulerian correlation
function. This enables us to examine the validity of the

frozen-in assumption for both the slow and fast solar
wind. The main conclusion will be that the estimates of
the average decorrelation time differ in fast wind and slow
wind samples. In section 2, we discuss the spacecraft data
used in this study, and in section 3, we describe the
procedure used to analyze data and to obtain the empirical
Eulerian correlation functions. In section 4, we interpret
the results and discuss theoretical issues that arise in view
of the observed differences in Eulerian correlations in fast
and slow solar wind.

2. Instrumentation

[9] This study makes use of the magnetic field measure-
ments taken within the solar wind by instruments on many
different spacecraft, including ACE, Geotail, IMP 8,
Interball, THEMIS/ARTEMIS, and Wind. This collection
provides simultaneous two-point plasma and field measure-
ments at a large range of spatial separations, enabling mea-
surement of spatial correlations as a function of separation
directly instead of inferring them by interpreting temporal
fluctuations as frozen into a flowing plasma [Taylor, 1938;
Jokipii, 1973]. Magnetic field and plasma data from the
THEMIS/ARTEMIS mission are restricted to the P1 and P2
spacecraft in this study. From approximately mid June to
mid October from 2007 to 2009, the apogees align on the
dayside of the magnetosphere and provide data from space-
craft separations on the order of 10 RE. In mid 2009, the or-
bits of the THEMIS/ARTEMIS P1 and P2 spacecraft were
altered in order to insert them into orbit around the Moon
for future lunar studies, and the two spacecraft were renamed
P1 and P2, respectively. This change in the orbits provides
additional spacecraft separations ranging from 10 to 30 RE.
[10] Each THEMIS/ARTEMIS spacecraft carries a boom-

mounted triaxial fluxgate magnetometer (FGM) [Auster
et al., 2008] and an electrostatic analyzer (ESA)
[McFadden et al., 2008]. Magnetic field vectors routinely
are available at 64 Hz resolution (nominal mode). Both pre-
flight and in-flight calibrations of the two magnetometers
have been performed. The relative uncertainty in the data
after calibration is at most 0.1 nT, an estimate determined
by examining the drift in the offset after calibration (H.
Schwarzl, private communication, 2010). The digital resolution
of the magnetometer is on the order of 0.01 nT [Auster et al.,
2008]. Data from the ESA plasma instrument provide funda-
mental plasma parameters such as density, velocity vectors,
the pressure tensor, and heat flux. The uncertainties in most of
these quantities are not significant for this study, and only the
general identification of the solar wind is important.
[11] In addition to THEMIS/ARTEMIS data, we also use

solar wind data from the ACE, Geotail, IMP 8, Interball,
and Wind spacecraft. On all five of these spacecraft, we use
data from triaxial fluxgate magnetometers [Smith et al.,
1998; Kokubun et al., 1994; Nozdrachev et al., 1995;
Lepping et al., 1995] to obtain the local interplanetary mag-
netic field direction and magnitude at temporal resolution
ranging from 3 s to 16 s, with an uncertainty of about 0.3
nT associated with the IMP 8 data and uncertainties on the
order of 0.1 nT for the other four. Magnetic field data from
ACE were provided at 16 s resolution, Geotail andWind data
were at 3 s resolution, IMP 8 data were at 15 s resolution, and
Interball data were at 6 s resolution.
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3. Procedure and Observations

[12] The first step is to select intervals that can be
confidently identified as being within the solar wind. The
THEMIS/ARTEMIS solar wind data intervals are selected
visually from plotted data by excluding data at or within
the bow shock. The solar wind is identified from both the
magnetic field and the plasma measurements. The magnetic
field magnitude is expected to be on the order of several
nanoteslas and relatively smooth with respect to the
high-frequency, large-amplitude (~10 nT) fluctuations associ-
ated with the bow shock. The solar wind plasma is required to
be greater than or equal to 250 km s�1, the ion energy flux had
to show a beam of ion energy fluxes at about 1 keV, and the
plasma density is expected to be greater than 1 particle per
cm-3. The choice of 250 km s-1 as a cutoff velocity, although
arbitrary, excludes magnetosheath data. We also limit our
observations to local times within a few hours of noon to avoid
including intervals from regions of high-speed flows within
the magnetosheath that may be present on the flanks of the
magnetosphere. We do not use solar wind data with sharp
rotations in the Bx and ByGSE components in order to exclude
sector boundary crossings. We remove solar wind shocks and
other discrete solar wind structures associated with sharp gra-
dients in the flow speed, density, and total magnetic field that
occur over a time range of a few minutes. The THEMIS/
ARTEMIS P1 and P2 spacecraft remain relatively close
together (<25 RE) and are used to characterize fluctuations
over short distances. We exclude intervals within the solar
wind of less than 1 h for analysis of these short spatial separa-
tions. The THEMIS/ARTEMIS orbits remain in relatively
close proximity to the bow shock, even when in the solar wind.

Inevitably, foreshock waves are present in some of the selected
intervals. To minimize the contribution of such waves to the
analysis, the solar wind magnetic field measurements are aver-
aged to 30 s resolution, which is approximately the longest
period for ion foreshock waves.
[13] We define slow solar wind as ≤450 km s-1 and fast

solar wind as ≥600 km s-1 for this study. In order to obtain
two-point correlation coefficients at larger separations, we
require longer continuous intervals for analysis. Therefore,
for the larger separations, we use only intervals with more
than 12 h of continuous data at 1 min resolution for slow solar
wind intervals and more than 8 h of continuous data at 1 min
resolution for fast solar wind intervals. These interval lengths
are chosen to maximize the number of useful intervals while
maintaining enough data points in each interval to provide
stable two-point correlation values.
[14] Data from the ACE, Geotail, IMP 8, Interball, and

Wind spacecraft yield two-point correlations at larger separa-
tions, and the pair of THEMIS/ARTEMIS spacecraft provide
smaller separations. We linearly interpolate the data from
each spacecraft to 1 min resolution, obtaining, in effect,
simultaneous field vectors at the spacecraft position because
the sampling rate varied from spacecraft to spacecraft. For
the ACE, Geotail, Wind, IMP 8, and Interball spacecraft,
solar wind intervals could be identified by an automated pro-
cedure because of their nearly continuous immersion within
the solar wind. For the THEMIS/ARTEMIS spacecraft closer
to the magnetosphere, we selected the intervals by eye to
assure that no magnetosheath values crept into our study.
The long life time of many of the spacecraft missions and
the continuity of the field and plasma data over long intervals
provided thousands of intervals for this study.
[15] Since we are interested in the Eulerian frame (the zero

mean momentum frame, i.e., the frame moving with the
solar wind), we subset our solar wind data to intervals for
which the mean solar wind velocity lies within 30° of the
mean spacecraft separation vector of a pair of spacecraft.
In this subset of intervals, we assume that the same parcel
of solar wind sweeps past both nearly aligned spacecraft,
enabling us to determine how much a parcel of solar wind
has evolved in the time to flow from one spacecraft to the
other. From the available data, we found 2570 intervals
meeting our restrictions, including 1076 slow solar wind in-
tervals and 662 fast solar wind intervals. The remaining 832
intervals were linked to intermediate solar wind speeds be-
tween 450 km s-1 and 600 km s-1.
[16] From each interval, we obtain one estimate of the two-

spacecraft correlation and two estimates of single-point cor-
relation values (one for each spacecraft). The single-point
correlation values are determined by time-lagging the data
from a single spacecraft. The single-point correlation of inter-
est to our study is found by setting the time lag to the
interspacecraft transit time ti (i.e., the time to pass from the
upstream spacecraft to the downstream spacecraft at the
computed mean solar wind speed).
[17] Figure 1 shows the single-point correlation function

for Geotail (solid curve) at (21, 1.3, –4.5) Re GSE and ACE
(dashed curve) at (220, 26, 15) Re GSE for one of the selected
solar wind intervals on 28 January 2008 starting at 2000 UT
and lasting 12 h. The angle between the flow vector and the
spacecraft separation vector is ~10.5°. The asterisk (*) plot-
ted at the interspacecraft transit time ti = 51.9 min indicates

Figure 1. Single-point and two-point correlations for
interplanetary magnetic field data from 28 January 2008
starting at 2000 UT and lasting 12 h. The solid curve is the
single-point correlation curve for the Geotail magnetic field
for time lags from 1 to 100 min. The dotted line is the
single-point correlation curve for the ACE magnetic field.
The asterisk (*) represents the two-point correlation value be-
tween the two spacecraft and is plotted at time ti, the transit
time between the spacecraft at the mean solar wind speed.
Note that the frozen-in flow estimate of the single-point cor-
relation falls lower than the two-point correlation.
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the two-point correlation value (0.15) for the ACE and Wind
magnetic field vectors. The single-point correlations for
Geotail and ACE at time ti are 0.14 and 0.13, respectively.
The assumption is that the time evolution during the transit
time between the spacecraft positions is the dominant factor
in producing the difference between the single-point correla-
tion and two-point correlation values [Matthaeus et al., 2010].
[18] From a large set of single- and two-point correlation

values evaluated without restriction of the solar wind veloc-
ity, we find a significant spread in a plot of single-point
correlations versus two-point correlations, as shown in the
left panel of Figure 2. In the left panel, the mean solar wind
velocity lies within 30° of the mean spacecraft separation
vector of a pair of spacecraft. The circles are values for the
individual intervals, the black squares indicate the means
computed in bins of width 0.1, and bars indicate the standard
deviation within each bin. Points within one standard
deviation of the mean are colored green, and the solid line
is a least squares fit to the means of the bins. The slope of
the line (0.88) shows that, on average, the two-point correla-
tions are larger than the corresponding auto correlations.
Misalignment between the spacecraft separation vector and
the flow vector contributes significantly both to the magni-
tude of the slope and the deviation of the measured points
from the linear fit. If we plot data only from intervals when
the separation vectors lie within 10° of the flow vector (see
the right panel of Figure 2), the slope becomes 0.94 and the
standard deviations decrease in most bins. On the other hand,
if we include all angles, the slope of the least squares fit drops
to 0.78.
[19] Using the single- and two-point correlation values

from the left panel of Figure 2, we can obtain the Eulerian
correlation values and, from those values, the Eulerian corre-
lation function. The top panel of Figure 3 gives the Eulerian
correlation values, defined as Rssc/Rmsc, which is the ratio

of the single-spacecraft correlation to the two-point correla-
tion of the spacecraft pair, plotted in gray as a function of
time lag. The Eulerian correlation values were determined
from only the correlation values within one standard devia-
tion of the mean of the bins in the left panel of Figure 2.
We remind the reader that the time lag used is the separation
distance between the two spacecraft divided by the mean
solar wind speed for each interval. The plus symbols in the
top panel are the mean Eulerian correlation value for bins that
are 3 min wide, and the error of the mean is plotted for each
bin. When the mean Eulerian correlations were initially cal-
culated, some very large values of Rssc/Rmsc were found,
corresponding to intervals when the two-point correlation
(Rmsc) values are close to zero. Eulerian correlation values
greater than 5 and less than –5 have been removed to prevent
biases in the mean bin values. The range of ±5 was arbitrarily
selected. The black curve in the top panel of Figure 3 is an
exponential fit to the means, and the decorrelation time
associated with the exponential fit is 226 ± 18 min. An expo-
nential fit was used here because this form has been the
convention [Zhou et al., 2004; Shalchi 2008; Matthaeus
et al., 2010; Weygand et al., 2011] for decorrelation
depending on a single time scale, even though the temporal
separations do not extend to the decorrelation time. The
decorrelation time does not change significantly if we fit the
individual ratios rather than the means of the bins. The bot-
tom panel of Figure 3 shows the number of intervals in each
bin. We have cut the figure off at lag times of 60 min because
there are few additional data at longer lag times.
[20] By analyzing the solar wind without regard to its

speed, we are able to compare our results with those of
Matthaeus et al. [2010]. Figures 2 and 3 are similar to their
Figures 3 and 4, even though we have used different and

Figure 2. Scatter plot of the single-spacecraft correlation
(Rssc) versus two-spacecraft correlation (Rmsc) from ACE,
Wind, Geotail, IMP-8, and THEMIS/ARTEMIS P1 and P2
pairs for all solar wind speeds. The single-point correlation
is evaluated at a time lag computed as the transit time be-
tween spacecraft at the mean solar wind speed. The dotted
line has a slope of 1. The solid line is a least squares fit to
the means (squares) of 0.1 wide bins, and the bars are the
standard deviation within each bin. The green points are
those within one standard deviation of the mean. The slope
of the fit is given in the upper left corner. The angle between
the spacecraft separation vector and solar wind flow vector
was allowed to be as large as 30° for the data points in the left
panel and 10° for the data points in the right panel.

Figure 3. All data: (top) Estimate of the Eulerian correla-
tion function (Rssc/Rmsc) versus the time lag for all values
of solar wind speed. The gray symbols are the individual
Eulerian correlation values. The black curve is an exponen-
tial fit to the binned means of the data (black squares). Bins
are 3 min wide, and the black vertical bars are the error of
the mean for each bin. The exponential decorrelation time
for this fit is 226 ± 18 min. The bottom panel indicates the
number of intervals per bin.
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more time intervals and have included additional spacecraft
pairs. Our Figure 2, just like the results of Figure 3 in the
Matthaeus et al., 2010 study, shows that the average time-
lagged single-spacecraft correlation is less than the corre-
sponding two-spacecraft correlation at a fixed spatial lag.
The top panel of our Figure 3 displays the ratio of the
single-spacecraft correlation to two-point correlation. The
ratio of these correlations was fitted with an exponential
decay in time lag. The characteristic (e-folding) time scale
of 226 ± 18 min provides a leading order estimate of the
Eulerian decorrelation time and is not dissimilar from the

value of 174 min given by Matthaeus et al. [2010] obtained
from their Figure 4.
[21] In the next two subsections, we carry out a similar

analysis in which we further subdivide the data into slow so-
lar wind (≤450 km s-1) and fast solar wind (≥600 km s�1).
This will establish whether the characteristic time scale in
the Eulerian correlation function varies for different ranges
of solar wind velocity.

3.1. Observations

[22] In the next two sections, we bin our solar wind inter-
vals into the slow (≤450 km s-1) and fast (≥600 km s-1) solar
wind and repeat the analysis done for the undifferentiated
solar wind as discussed above.
3.1.1. Observations: Slow Solar Wind (≤450 km s-1)
[23] Figure 4 is analogous to Figure 2 but includes only

slow solar wind values. The mean values shown (black
squares) are for bins 0.2 wide. The larger range was adopted
because there are fewer data available for this scatterplot. The
slope of the least squares linear fit, given in the upper left
corner (0.92), is larger than that in the left panel of
Figure 2, and we used the same range of angles between
the spacecraft separation vector and solar wind flow vector
(i.e., 30°) as used for the left panel of Figure 2.
[24] The top panel of Figure 5 shows the Eulerian correla-

tion function obtained from the slow solar wind single-point
correlation and two-point correlation values. The means
shown (black squares) are for 6 min wide bins, and the
vertical bars are the errors of the means. For the slow solar
wind, the decorrelation time is 215 ± 43 min. This
decorrelation time is the same, within the computed uncer-
tainty, as the decorrelation time found using all solar wind
speeds. The lower panel of Figure 5 indicates the number
of intervals that went into the determination of the Eulerian
correlation function.

Figure 4. As in Figure 2 but for slow solar wind: (<450 km
s-1). Here the bins are 0.2 wide. The angle between the space-
craft separation vector and solar wind flow vector was
allowed to be as large as 30° for the data points in this figure.

Figure 5. As in Figure 3 but for slow solar wind. Here time
lag bins are 6 min wide. The decorrelation time determined
from the exponential fit is 215 ± 43.

Figure 6. As in Figures 2 and 4 but for fast solar wind
(>600 km/s). The time lag bins are 0.2 wide.
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3.1.2. Observations: Fast Solar Wind (≥600 km s-1)
[25] Figure 6 shows the estimation of the Eulerian correla-

tion including only fast solar wind values. The means shown
(black symbols) are for bins 0.2 wide. Again, the slope of the
least squares linear fit is given in the upper left corner (0.80),
and the slope is much smaller than those in Figures 2 and 4.
[26] The top panel of Figure 7 shows the Eulerian correla-

tion function obtained from the fast solar wind single- and
two-point correlation values. The means shown (black
squares) are for 6 min wide bins, and the vertical bars are
the errors of the means. For the fast solar wind, the
decorrelation time is 114 ± 23 min, which is significantly
shorter than the times found for the slow solar wind and for
all solar wind speeds. Again, the lower panel of Figure 7
indicates the number of intervals that went into the determi-
nation of the Eulerian correlation function.

4. Discussion and Comparison With Theory

[27] It is well established that the fast solar wind and the
slow solar wind differ in a number of ways. The fast wind,
originating in coronal holes and found mainly at higher lati-
tudes at solar minimum conditions, is hotter and less dense
on average than the slow wind [McComas et al., 2000]. It
has also been shown, both with single-spacecraft observa-
tions [Dasso et al., 2005] and two-spacecraft observations
[Weygand et al., 2011], that the fast wind and slow wind
differ in the dominant type of turbulent magnetic field
fluctuations. Specifically, the fast wind contains a larger
proportion of wave vectors oriented close to the direction of
the mean magnetic field. Such fluctuations are often modeled
as “slab” fluctuations. The fluctuations of the slow solar wind
differ in having a larger proportion of the wave vectors
perpendicular to the mean magnetic field direction and are
represented by the quasi-two-dimensional turbulence model
[Goldstein et al., 1994, 1995]. This reported difference in
the dominant type of turbulence in fast and slow solar

wind may help explain the above-described difference in
Eulerian decorrelation times.
[28] The approximation that solar wind fluctuations are a

superposition of these two pure symmetries is a matter of
convenience in calculations but leads to reasonable agree-
ment with cosmic ray scattering observations [Bieber et al.,
1994] and direct observational tests of rotational symmetries
[Bieber et al., 1996]. A more precise perspective is that such
idealized models distinguish between fluctuations that are of
the “quasi-slab” type with predominantly parallel wave
vectors and a greater degree of Alfvén wave effects and
“quasi-two-dimensional” fluctuations that lack significant
wave signatures and remain at lower Alfvén wave frequen-
cies. In fact, the domain of quasi-two-dimensional turbulence
may be defined as the wave vector region in which the
estimated nonlinear times are shorter than the estimated
Alfvén time scales. Thus, in quasi-two-dimensional turbu-
lence, dominant dynamical effects are nonlinear, and the role
of the Alfvénic couplings is to limit the region of wave vector
space where this nonlinear dominance may occur. This con-
trast between expected amounts of wavelike and nonlinear
activity in different regions of the wave vector space provides
the elementary basis for understanding how turbulence
geometry influences Eulerian decorrelation.
[29] The connection between Eulerian decorrelation and

underlying time scales of the turbulence is readily seen in
the relation [Zhou et al., 2004; Matthaeus et al., 2010]

E tð Þ ¼ ∫d3k S kð ÞG k; tð Þ (1)

where E(t) is the omnidirectional energy spectrum, S(k) is the
three-dimensional energy spectrum tensor, and Γ(k,t) is
the scale-dependent correlation function that describes how
the correlations at wave vector k degenerate as time separa-
tion, t, increases.
[30] The scope of the physics embodied in equation (1)

may be unraveled for homogeneous, time stationary turbu-
lence and is discussed at length in the literature [McComb,
1990; Edwards, 1964; Chen and Kraichnan, 1989; Zhou
et al., 2004]. To determine E(t), one needs to know the model
energy spectrum S(k) at all scales (and directions). This
includes the often-idealized inertial range, but it also includes
the large energy-containing scales that are not expected to be
self-similar. In fact, the spectrum at large scales k< 1/Lc,
where Lc is the correlation scale, contains a significant frac-
tion of the total turbulent energy and may not take on any par-
ticular or simple form. One therefore expects that the large
scales make significant contribution to E(t). Moreover, the
expected structure of the scale-dependent time correlations
Γ(k,t) further amplifies the sensitivity of the functional form
of E(t) to the behavior of the long wavelength fluctuations.
This conclusion is evident in the discussions of Edwards
[1964], McComb [1990], Zhou et al. [2004], and Servidio
et al. [2011].
[31] The time decorrelation at wave vector k may be writ-

ten in a sufficiently general form as Γ(k,t) =Γ*(t/T(k)) for
suitably chosen T(k), which may be interpreted as the
relaxation time at scale 1/k. [Zhou et al., 2004]. Generally,
we expect that Γ→ 0 for large t for any k. Therefore, Γ* is
a decreasing function at large argument. It is further reason-
able to suppose that T(k) = T*(k⊥,k||), where perpendicular
and parallel refer to the magnetic field direction, when the

Figure 7. As in Figures 3 and 5 but for fast solar wind.
Time lag bins are 6 min wide. The decorrelation time deter-
mined from the exponential fit in the bottom panel is
114 ± 23 min.

WEYGAND ET AL.: MAGNETIC EULERIAN CORRELATION FUNCTIONS

6



mean magnetic field is the dominant preferred direction.
For wavelike activity, T* ~ cos(k|| Va t), where Va is the
Alfvén speed associated with the mean magnetic field. This
cosine oscillation would be expected to be modulated by an
envelope function that decreases with increasing k⊥. In par-
ticular, inertial range slab or quasi-slab fluctuations are likely
to be described by this type of decaying oscillation. Quasi-
two-dimensional turbulence, on the other hand, lacks
significant wave decorrelation and instead involves strong
perpendicular nonlinear decorrelation. If this loss of correla-
tion occurs mainly through couplings that are local in scale,
then a reasonable estimate based on isotropic Kolmogorov
inertial range scaling is T* ~ (L/Z)/(kL)2/3, or specifically for
strongly anisotropic quasi-two-dimensional turbulence,
T* ~ (L/Z)/(k⊥ L)2/3. Here Z is a measure of the total turbu-
lence amplitude in speed units. Still another important phys-
ical process is embodied in the random sweeping model, in
which time decorrelation occurs by advection of inertial
range fluctuations in the large-scale flow, which contains
most of the energy. For sweeping, T* ~ 1/(kZ), or for the an-
isotropic case, T* ~ 1/(k⊥ Z) (see the discussions byChen and
Kraichnan, [1989] and Servidio et al. [2011] for more detail).
It is important to note that the time scales associated with
these estimates of inertial range time decorrelation are gener-
ally faster than the large-scale eddy turnover time.
[32] Estimates of contributions to time decorrelation of the

above types have been employed in varying degrees of com-
plexity in models of “dynamical turbulence” effect on parti-
cle scattering [Schlickeiser and Achatz, 1993; Bieber et al.,
1994]. For dynamical effects on parallel scattering, the
Eulerian spectrum (Fourier transform of E(t)) becomes
important because the power at the particle gyrofrequency
can drive resonant interactions with particles. The proton
gyrofrequency is usually around 1 Hz at 1 AU in the solar
wind. Such relatively high-frequency power is well separated
from the reciprocal eddy turnover time and therefore depends
mainly on inertial range time decorrelation. More complete
treatment of temporal effects is needed for models that
include perpendicular charged particle scattering, which is
sensitive to energy at long wavelengths. This need, at least
in part, motivated the assembly of a composite theory
[Shalchi et al., 2006] that includes time decorrelation at
energy-containing scales and at inertial range scales. More
recently, Shalchi [2008] constructed several explicit models
for E(t) by assuming a particular form for S(k) and adopting
alternative choices for Γ(k,t).
[33] In principle, Shalchi [2008] provides a selection of

model-dependent Eulerian correlations, against which the
present observational results can be compared. To under-
stand how these models might be compared to observations,

it is essential to note that the large-scale fluctuations will
almost always dominate the large time asymptotic behavior
of the Eulerian correlation.
[34] Table 1 lists the six models compiled by Shalchi

[2008], along with the dominant times scales, which are
given both algebraically and numerically for nominal fast
and slow solar wind conditions. These time scales are
estimated based on observed correlation scales, interplanetary
magnetic field and magnetic field fluctuations, and solar wind
Alfvén speed. The estimate of the correlation-scale lengths we
use are 1.3 · 106 and 1.7 · 106 km for the fast (slab turbu-
lence) and slow (quasi-two-dimensional turbulence) solar
wind, respectively. The values adopted are the average of
the values shown in Table 1 of Weygand et al. [2011] over
all solid angles relative to the mean magnetic field for each
range of solar wind speed. The fast solar wind correlation
scales range from 1.0 · 106 to 1.9 · 106 km, and the slow
solar wind values spanned 1.1 · 106 to 2.8 · 106 km. The
values of the nominal magnetic field, amplitude of the
magnetic field fluctuations, and Alfvén speed used to
calculate the decorrelation time scales in our Table 1 are
5 nT, 1 nT, and 85 km/s and 58 km/s for the Alfvén
speeds in the fast and slow solar wind, respectively.
These values were obtained using solar wind data from
2003 (arbitrarily selected).
[35] The explicit models of Shalchi [2008] may be com-

pared with the present observational results. We estimated
the normalized decorrelation times from Figures 1 and 3 of
Shalchi [2008] and used empirical values of underlying
parameters (Alfvén speed, etc.) to calculate the values pro-
vided in Table 1. For the damping model and the random
sweeping model, an estimate of the turbulence parameter
(α) is required. The parameter α, which may vary between
0 and 1, indicates the strength of the dynamical turbulence
effects where a value of 0 corresponds to magnetostatic
turbulence and α= 1 corresponds to strongly dynamical
turbulence. For simplicity, we have set α to 1, but we note
that the decorrelation time can take values up to infinity
depending on the selected α parameter (see Table 1).
Table 1 demonstrates that none of the Shalchi [2008] models
reproduce the values obtained from our empirical study.
However, the models do produce decorrelation times within
a factor of 3 of the empirical values. However, we note that
the decorrelation times are sensitive to parameter values, as
we discuss further below.
[36] In comparing the models to observations, it is impor-

tant to recognize that the “correlation time scale” in
the work of Shalchi [2008] refers to the long-time asymp-
totic decay time scale of the Eulerian correlation function
and that this may or may not correspond to Eulerian

Table 1. Comparison of the Different Correlation Times Scales Found in the Work of Shalchi [2008] With Our Decorrelation Time Scales

Model τc Slab (min) ~ Fast Solar Wind τc Two-Dimensional (min) ~ Slow Solar Wind

Empirical result 114 ± 23 215 ± 43
Magnetostatic model ∞ ∞
Undamped shear Alfvén waves Lslab/Va 178 ∞
Damping model of dyn. turbulence Lslab/(α Va) 178 42
Random sweeping model Lslab/(α Va) 211 42
NADT model (plasma wave effects) Lslab/Va 170 No effect
NADT model (dyn. turbulence effects) (1/√2)(B0/ΔB2d)(L2d/Va) 64 71
Tc = T0/2 model as in text 175 250
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decorrelation. For example, the decorrelation time may be
established at a shorter time for frequently encountered
turbulence properties. On the other hand, if Eulerian
decorrelation is dominated by the time variation of the larg-
est energy-containing eddies, then these might control both
Eulerian decorrelation and time-asymptotic decorrelation.
As a practical matter, the decorrelation time is often
estimated using the “1/e” value of the correlation function.
If the long-time behavior of E(t) is determined by the
decorrelation of the large eddies, then the inertial range time
decorrelation would influence mainly the intermediate time
scale decorrelation. Generally, the models appropriate to the
inertial range, such as the nonlinear model or the random
sweeping model, are characterized by decorrelation at time
scales faster than the energy-containing range as described
above. Numerical experiments suggest that random sweep-
ing is likely the dominant decorrelation effect in the inertial
range (see Servidio et al., [2011] for more details). In
the present paper, we obtained an approximate time
decorrelation using an exponential fit. Therefore, the sim-
plest estimate for decay of the large energy-containing
scales is appropriate, namely, the large-scale eddy turnover
time τeddy = L/Z. Here L is an appropriate correlation
scale, and Z is the turbulence amplitude in speed units.
Consequently, the differences in the “1/e” values of the
Eulerian correlation models tabulated by Shalchi [2008]
are likely not due to details of inertial range decorrelation
but rather how decorrelation occurs in the large-scale
energy-containing range. For example, the substantial
difference between decorrelation in the nonlinear aniso-
tropic dynamical turbulence (NADT) model and either the
sweeping or nonlinear decay model of Shalchi [2008] can
be traced mainly to the choice of parallel correlation scale
L||. In particular, L|| is assumed by Shalchi [2008] to be 10
L⊥. Such a choice is poorly motivated in observations,
where a more accurate relationship would be L|| = 2 L⊥.
[37] If we use the maximum correlation scales from

Table 1 of Weygand et al. [2011], then the NADT
model for slablike turbulence has a decorrelation time
of ~95 min, which is within the uncertainty of our
empirical value. Also, if we again use the maximum
quasi-two-dimensional correlation scale and α= 0.3, then
the damping model and random sweeping model produce
quasi-two-dimensional decorrelation times (~230 min)
within the uncertainty of our empirical model, but the
slab decorrelation times are much larger (>850 min)
than our empirical values. However, there is no real
justification for adjusting the input values other than to
produce decorrelation times similar to our empirical
model, and we cannot clearly say that one model is supe-
rior to another. The sensitivity of the models to correla-
tion scales, other parameters (e.g., α), and other factors
such as the assumed form of the energy spectrum
suggests that a more simplified treatment is warranted.
[38] The relative effects of small-scale decorrelation and

large-scale decorrelation on the Eulerian correlation
function E(t) may be estimated in a very elementary
model. Suppose that ΔB0

2 is the energy in the energy-
containing range at scales approximately ≥L and that the
correlation time for the large structures is T0. We treat
the inertial range in a simple way that has energy ΔB1

2

and a correlation time scale T1. Assuming exponential time

decorrelation in both ranges, E(t) =ΔB02 exp(�t/T0) +ΔB12 exp
(�t/T1), from which the correlation time (integral time scale) is

Tc ¼ ΔB2
0

ΔB2

� �
T0 þ ΔB2

1

ΔB2

� �
T1 (2)

[39] Thus, the overall correlation time is the energy-
weighted average of the large-scale decorrelation time and
the mean inertial range decorrelation time. For many simple
models of turbulence spectra, the energy in the large scales is
of the same order as the energy in the power law inertial range.
Therefore, one might assume that the energy is apportioned
equally, and ΔB0

2/ΔB2 =½. This is a convenient and reason-
able but arbitrary choice. In addition, the time scales may be
ordered so that T1<< T0. This follows from the arguments
above. From these simplifying assumptions, one obtains that
Tc=T0/2, and the global decorrelation time is just half the
large-scale correlation time. From this formulation, we can
use an estimate that Lc = 10

6 km and Z=33 km/s (see Breech
et al., [2008]) to find T0 = 500 min. If half the energy is in
the large scales, we conclude that Tc ~ 250 min (see last line
of Table 1). This is remarkably close to the overall fit time
scales in Figures 3 and 5, which are Tc = 226 ± 18 min and
215 min ± 43 min, respectively.
[40] The results of this study were obtained from turbulent

fluctuations observed in the magnetic field, and our discus-
sion that addresses some of the theories associated with the
Eulerian correlation function and decorrelation time has been
more general. It is worth mentioning that the work of Stawarz
et al. [2009] has shown that magnetic and velocity fluctua-
tions show different scaling in the solar wind, and hence,
including plasma data in the theoretical interpretations might
be more complex than the concepts discussed here.

5. Conclusions

[41] Analysis of the solar wind intervals independent of the
solar wind speed gave a decorrelation time of 226 ± 18 min,
which is about 30% larger than the value of 174 min found
by Matthaeus et al. [2010]. It is unclear if the difference is
statistically significant since no uncertainty was given in the
earlier study. We attribute the possible difference between
the two results to the difference in the lengths of the solar
wind intervals and the inclusion of additional solar wind
spacecraft that provided intervals with small separations
(measured by the THEMIS/ARTEMIS P1 and P2 space-
craft). Analysis of slow and fast solar wind intervals gave
decorrelation times of 215 ± 43 min and 114 ± 23 min, re-
spectively. The difference between the two values is statisti-
cally significant, and a discussion of a potential theoretical
and observational basis for this difference seems appropriate.
The previous section provided a brief digression into a dis-
cussion of the physics that controls Eulerian decorrelation.
[42] Theoretical and empirical estimates of decorrelation

times are less familiar than estimates of the index of the
energy spectrum but have equally important implications
for understanding solar wind turbulence and making space
weather predictions. Both time decorrelation and the
turbulence amplitude strongly impose limits to prediction,
while time decorrelation is responsible for departures from
the frozen-in flow condition. Time decorrelation also influ-
ences particle scattering in several important ways. Under
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some conditions, power in the time variations (measured by
the Eulerian frequency spectrum) can control scattering
through 90° pitch angles. This can have a strong or even
controlling influence on parallel transport [Bieber et al.,
1994] in much the same manner that the geometry of the
turbulent fluctuations (e.g., two-dimensional vs. slab fluctua-
tions [Schlickeiser, 2002]) influences the transport of
energy. Time decorrelation is also critical because it enters
explicitly into theories of perpendicular diffusion and
magnetic field line random walk [Matthaeus et al., 2003;
Shalchi et al., 2007].
[43] In the present study, we have found a significant link-

age between the effects of time decorrelation and geometry in
that the dominantly slablike fast wind also decorrelates faster
in time than the quasi-two-dimensional slow solar wind. This
could have interesting implications for particle transport, es-
pecially in the context of solar cycle dependence of the solar
modulation of galactic cosmic rays [George et al., 2009]. A
full discussion of these possible effects is beyond the scope
of the present paper.
[44] Finally, the observed wind speed dependence of time

decorrelation has immediate consequences. In investigations
of the response of Earth’s magnetosphere to the magnetic field
of the solar wind, it is common to assume that the solar wind
interplanetary magnetic field is frozen in and evolves little
over relatively short distances such as from the L1 point to
the Earth’s magnetosphere when the propagation time is on
the order of 30 to 60 min. This assumption is fundamental to
space weather predictions and warnings. The decorrelation
times here demonstrate that, on average, the assumption that
the interplanetary magnetic field fluctuations are frozen in
from the L1 point the Earth is valid, but over large distances
compared with the Earth to L1 separation, the frozen-in
assumption will break down first for the fast solar wind.
Thus, the speed of the solar wind becomes an important
factor in making predictions based on upstream measurements
and should be more reliable when the solar wind speed is high.
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