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Abstract

We compute characters of the BMS group in three dimensions. The approach is the same as that per-
formed by Witten in the case of coadjoint orbits of the Virasoro group in the eighties, within the large 
central charge approximation. The procedure involves finding a Poisson bracket between classical variables 
and the corresponding commutator of observables in a Hilbert space, explaining why we call this a quan-
tization. We provide first a pedagogical warm up by applying the method to both SL(2, R) and Poincaré3
groups. As for BMS3, our results coincide with the characters of induced representations recently studied 
in the literature. Moreover, we relate the ‘coadjoint representations’ to the induced representations.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the context of Conformal Field Theory in two dimensions and gravity theories in 2 + 1 di-
mensions, the appearance of infinite-dimensional symmetries is inevitable and well understood. 
The task of investigating the infinite-dimensional groups of such symmetries and their represen-
tations is as difficult as important. The main reason for the increasing difficulty is that procedures 
such as geometric quantization or the construction of induced representations stem from the use 
of certain invariant (or quasi-invariant) measures on some manifolds (coadjoint orbits), but these 
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manifolds are infinite-dimensional and such measures are not known (they may not exist in fact). 
Other issues also make things harder, as the fact that the standard methods for integrating a Lie 
algebra representation do not apply [1].

For the particular case of General Relativity in three dimensions one encounters the Virasoro 
group if a negative cosmological constant is considered, and the so-called BMS3 group if no 
cosmological constant is present. These infinite-dimensional Lie groups appear as symmetries 
of the space of asymptotic solutions and it can be seen that such phase spaces are foliated by 
the coadjoint orbits of these groups [2,3]. The complete classification of Virasoro orbits was 
performed in [4] and a more thorough study of the energy function as well as orbit representatives 
was done in [5]. The same aspects where investigated in [3,6,7] for BMS3.

A complete quantization of these spaces of solutions, roughly speaking, would start from 
considering the Poisson manifold that encompasses the union of coadjoint orbits as well as the 
classical observables on it, and then finding their corresponding quantum operators on a suitable 
Hilbert space where the classical symmetries are realized as unitary transformations. This is 
an open problem. What we can do instead is to concentrate on a sector of the classical theory, 
one coadjoint orbit. For example, in AdS3 gravity, each BTZ black hole [8] lies in a unique 
Virasoro coadjoint orbit [2,3] of the type Diff(S1)/S1, and one can consider the observables on 
this symplectic manifold and attempt to give a unitary representation of them on some Hilbert 
space, thus quantizing this “BTZ sector” of AdS3 gravity. It also has a mathematical interest on 
its own, and the complete classification of unitary positive-energy representations of Virasoro 
group has been recently given by Neeb and Salmasian in [9]. Their work can be regarded, among 
other things, as a (kind of) geometric quantization of the orbit Diff(S1)/S1, since their Hilbert 
space is given by certain holomorphic sections on a line bundle over the orbit. As far as we know, 
there is no analogue unitary representations for BMS3 group.1

Despite the difficulties mentioned at the beginning, it is possible to predict meaningful re-
sults without a full understanding of the quantum picture. Probably the most relevant one is the 
spectrum of the Hamiltonian, which can be obtained by computing the character of the time evo-
lution operator, i.e. the partition function. For example, in [4] this character of the Virasoro group 
is computed by means of a heuristic use of the Lefschetz formula [10]. Remarkably, the same 
answer is given by a unitary Verma module representation of the Virasoro algebra2 and also by a 
perturbative analysis which turns out to give a system of free bosons [4].

As far as we know, there is no general argument explaining why the perturbative quantiza-
tion (summarized below) gives the same characters as the ones obtained from non-perturbative 
methods. If it turns out to be the case that it suffices to study the symmetry group in a pertur-
bative fashion in order to compute the characters, then it could also be the case that some other 
relevant aspects of the theories are fully accessible already at the perturbative level. We are not 
going to explore this possibility here, but use it as a speculative additional reason to justify the 
perturbative approach we employ to study the quantization of certain orbits of BMS3.

The perturbative method for Virasoro orbits of [4] (see also [11] for Diff(S1)/PSL(n)(2, R)

orbits), can be used in order to obtain a perturbative quantization of a particular orbit of a dif-
ferent group. We are going to exploit this in order to do such a thing for orbits of BMS3. This 

1 The BMS3 induced representations studied in [6] rely on the unproven hypothesis that there exists a quasi-invariant 
measure on Virasoro orbits.

2 Although rarely mentioned, it is also a fact that using the Goodman–Wallach unitary representation of Virasoro group 
[1] over the completion of a unitary Verma module (under its usual inner product) the character is still the same as that 
coming just from the algebra representation, since the Verma module is trivially dense on its completion.
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procedure, in a few words, starts by putting some coordinates around a point in the orbit and 
writing the observables in a series expansion of these coordinates. Then, the algebra of observ-
ables is satisfied at leading order, and generically can be written as many (may be infinite) copies 
of Heisenberg algebra. Thus, a unitary representation can be obtained and in particular the char-
acters can be computed. As a cautionary note, it should be said that characters associated to 
infinite-dimensional unitary representations (as the ones appearing in non-compact groups such 
as Poincaré group) are not well-defined as traces, and we will work following the lines of the 
results obtained in the late 60’s for Poincaré group [12].3 In that reference they regard the char-
acters as distributions on the group algebra and analyse suitable spaces of test functions. We shall 
not go into this here, but it should be kept in mind in what sense we consider the characters of 
non-compact groups.

The characters of BMS3 have been studied recently, first in [14] and then in [15]. In the former 
the author considers the induced representations of BMS3, labelled by mass m and spin j , which 
assume the existence of a quasi-invariant measure on the Virasoro orbit Diff(S1)/S1, and then 
by means of Frobenius formula the author finds that

χj,m(f,α) = eijθ+iβm
∏
n≥1

1

|1 − qn|2 , q := eiθ , (1)

where f ∈ Diff(S1) is conjugate to a rigid rotation by an angle θ and α ∈ Vect(S1) has zero-mode 
equal to β . In complete analogy the character for representations obtained from the vacuum orbit 
Diff(S1)/PSL(2, R) is [14],

χj,m(f,α) = eijθ+iβm
∏
n≥2

1

|1 − qn|2 , q := eiθ . (2)

The same character is obtained in the latter paper, where the authors use a functional approach 
to compute the Euclidean partition function around Minkowski spacetime for the case where f
is a rotation and α a time translation.

In this note, as already anticipated, we will perform a perturbative quantization of massive 
and ‘vacuum’ coadjoint orbits of BMS3 group.4 At the end, we will see that the relevant Hilbert 
space will be that of infinite two-dimensional non-relativistic free particles, i.e. an infinite ten-
sor product of L2(R2) spaces. This Hilbert space will be identified with the one coming from 
induced representations and thus we will establish a concrete relation between the orbits (per-
turbative) quantization and induced representations for BMS3, in analogy with the case for 
finite-dimensional (nilpotent) groups. In particular, the characters we obtain coincide with (1)
and (2).

The presentation is organized as follows. In Section 2 we explain the procedure to find, in 
a perturbative manner, representations of the non-compact groups SL(2, R) and 2 + 1 Poincaré 
group departing from their coadjoint orbits. The advantage of using this perturbative procedure 
applied to these well-studied groups is that will ease the way towards the case of BMS3 group. 
In Section 3 we turn into the BMS3 group: we comment on the relevant features, mostly about 
its coadjoint orbits, and perform the perturbative quantization of massive and vacuum orbits. In 
Section 4 we discuss the results and comment on possible future lines of research.

3 See also [13] for a similar treatment of the characters.
4 The term ‘vacuum’ comes from the fact that this particular orbit contains Minkowski spacetime in the context of flat 

three-dimensional gravity. Mathematically it possesses an enhancement of the little group, from S1 to PSL(2, R).
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2. Warming up with SL(2, RRR) and Poincaré

In this section we will explain the procedure we will use later for BMS3, in order to construct 
perturbative representations of the group and compute its characters. Instead of giving a general 
explanation, we will present here the approach for two pedagogical examples: SL(2, R) and 
Poincaré in 2 + 1 dimensions. The latter being the semi-direct product of the former with its 
algebra. In the next section, we will use the results obtained for the Poincaré group, so it will 
prove of much importance to our goals. We will not review basic facts about coadjoint orbits of 
Lie groups; the reader may want to consult [2,4] for short and simple summaries on the subject.

2.1. The perturbative quantization of SL(2, R) orbits

Let us consider first the group SL(2, R), with its algebra sl(2) generated by vectors tμ, μ =
0, 1, 2 such that

[tμ, tν] = ελ
μνtλ, ε012 = 1.

The dual elements tμ∗ can be defined by 〈tμ∗, tν〉 = δ
μ
ν and a generic coadjoint vector is of the 

form qμtμ∗. The coadjoint orbits are hypersurfaces qμqνη
μν = −m2, with η = diag(−1, 1, 1). 

We will focus in the one-sheeted hyperboloid m > 0, with the point q = mt0∗ = (m, 0, 0) being 
invariant under coadjoint transformations generated by t0, i.e. rotations around the axes.

Any coadjoint orbit is a symplectic manifold. We want now to describe the symplectic struc-
ture in terms of suitable coordinates on the orbit. For this, take any adjoint vectors u and v in 
sl(2) and write them as u = xμtμ and v = yμtμ. Thus, {xμ}μ=1,2 are coordinates in a small 
neighborhood of the tangent space at a point in the orbit.5 Then, a symplectic structure can be 
defined at q ,

ω(m,0,0)(u, v) := −〈(m,0,0), [u,v]〉 = m(x1y2 − x2y1).

This symplectic structure can be inverted in order to obtain the Poisson brackets in the coordi-
nates {

x1, x2
}

= −m−1. (3)

Note that this means that the coordinates are of order 1/
√

m, and invites to think we are doing an 
expansion for m >> 1. The Poisson structure close to the point q is still given by (3) since any 
change q + δq would contribute to higher orders in the expansion of the symplectic form. Then, 
we have a description of the symplectic structure around the point q in the orbit.

We would like now to be able to describe observables in the orbit, in particular in the region 
close to the point q . Even more, as usual, these observables should generate infinitesimal trans-
formations associated to the algebra elements. For example, the observable J0 = �t0 associated 
to a rotation in the hyperboloid generated by t0 is given by

J0(Ad∗
g(m,0,0)) := 〈Ad∗

g(m,0,0), t0〉 = 〈(m,0,0),Adg−1 t0〉 (4)

5 Through the adjoint action, we identify adjoint vectors of the Lie algebra with vectors tangent to the orbit at some 
point.
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Similarly, Ja(·) = 〈·, ta〉 for a = 1, 2. We can write g = exp(xμtμ) and expand to second order 
the exponential,6 in order to get

J0 := m + m

2

(
x2

1 + x2
2

)
. (5)

Then, given the fact that we can think of x1 as the conjugate momenta of x2, J0 is the Hamiltonian 
of a harmonic oscillator. The two other observables read J1 = −mx2 and J2 = mx1, and together 
with J0 they realize the sl(2) algebra through the Poisson bracket at leading order in 1/m.

Now that we have not only the symplectic structure in a neighborhood of q but also the algebra 
of observables, we look for a quantization of this classical system. Taking the Poisson bracket 

(3), and defining a :=
√

m
2 (x2 + ix1) we get upon quantization

[a, a†] = 1, J0 = m + a†a.

Then, as anticipated, we have a quantum harmonic oscillator, which we can represent over the 
usual Fock space and the trace of exp(iθJ0) can be computed giving,

Tr(qJ0) = qm

1 − q
, q = eiθ . (6)

This is the character of the time evolution operator.

2.2. The perturbative quantization of Poincaré orbits

At this time we want to repeat what we just did for SL(2, R) but for the Poincaré group 
in three dimensions. This is the semi-direct product SL(2, R) �Ad sl(2, R)ab and its algebra is 
sl(2, R) �ad sl(2, R)ab , where the Lie product is

[(X,α), (Y,β)] = ([X,Y ], [X,β] − [Y,α])
Take again any two adjoint vectors u and v and write them as u = (xμtμ, αμtμ) and v =

(yμtμ, βμtμ). Now the pair (xμ, αμ) gives the coordinates in a small neighborhood of a point in 
the orbit. On the other hand, the pairing of adjoint and coadjoint vectors is simply

〈(j,p), (X,α)〉Poincaré = 〈j,X〉sl(2) + 〈p,α〉sl(2).

The coadjoint orbits of a semi-direct product of Lie groups are revisited in [7]. We consider the 
orbit given by taking Ad∗ of the coadjoint vector b0 = (j t0∗, mt0∗) with j and m real parameters 
(usually representing the spin and mass of the representation). Then, the symplectic structure is

ωb0(u, v) := −〈b0, [u,v]〉 = j (x1y2 − x2y1) − m(−x1β2 + x2β1 + y1α2 − y2α1)

This symplectic structure, thought as a 4 ×4 matrix, can be inverted in order to obtain the Poisson 
brackets in the coordinates. The non-zero brackets are{

x1, α2
}

= −m−1,
{
x2, α1

}
= m−1,

{
α1, α2

}
= j/m2. (7)

Note that now x1 and x2 are not conjugate variables, and this can be understood from realizing 
that the orbits are cotangent manifolds (see [7] and references therein), where the base manifold 

6 In this section we will disregard the fact that the exponential of the Lie algebra is not surjective. In the next section, 
when approaching the case of BMS3, we will describe with suitable coordinates a patch close to the group identity and 
avoid the use of the exponential map.
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is the hyperboloid with local coordinates (x1, x2). On the other hand, the coordinates are all of 
order 1/

√
m ∼ 1/

√
j , so then again we take m (and j ) large.

In order to calculate some of the observables on the orbit, we need to remember what the 
group coadjoint action looks like,

Ad∗
f,α(j t0∗,mt0∗) =

(
Ad∗

f (j t0∗) + ad∗
αAd∗

f (mt0∗),Ad∗
f (mt0∗)

)
,

(f,α) ∈ SL(2,R)�Ad sl(2,R)ab,

so the second argument is transformed as usual, while the first one gets modified by the presence 
of the vector α. The observable associated to a translation generated by (0, t0) is given by

P0(Ad∗
gb0) := 〈Ad∗

gb0, (0, t0)〉 = m + m

2

(
x2

1 + x2
2

)
. (8)

Where again we wrote g = exp(xμtμ), and expanded to second order the exponential. In the 
same manner, the observable associated to (t0, 0) is given by

J0 = j + j

2

(
x2

1 + x2
2

)
+ m(α1x1 + α2x2) (9)

As already mentioned, the orbit is diffeomorphic to a cotangent bundle with local coordinates 
(x1, x2). We now look for the conjugate coordinates. Define,

p1 := −j

2
x2 − mα2, p2 := j

2
x1 + mα1.

Then, we have a 2D particle, as should be the case for the orbits of three-dimensional Poincaré 
group:

{xi,pk} = δik i, k = 1,2.

The complete set of observables �X associated to an algebra element X reads:

J0 = j + p2x1 − p1x2 (10)

J1 = p1 − j

2
x2 (11)

J2 = p2 + j

2
x1 (12)

P0 = m + m

2

(
x2

1 + x2
2

)
(13)

P1 = −mx2 (14)

P2 = mx1. (15)

They satisfy {�X,�Y } = �[X,Y ] to first order in m and j , so at this level of approximation the 
observables realize the algebra of Poincaré. Notice that P0 is the typical free-particle Hamiltonian 
if the x-coordinates are thought as velocities while the p-coordinates as position coordinates. 
This also means that J0 is the intrinsic spin plus an orbital angular momentum.

We now turn to the task of quantizing this phase space and its observables, i.e. finding unitary 
representations for the transformations generated by such observables. The theory of unitary 
representations of the Poincaré group is well known [16]. In particular the characters have been 
studied in detail in [12,13]. We will show how to compute the characters of translations and 
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rotations since this will smooth the arena for the BMS case. Choosing the typical Hilbert space 
L2(R2) and the representation given by

xkψ = i∂rkψ(	r) and pkψ = rkψ, ψ ∈ L2(R2),

for k = 1, 2, we have for example

J0 = j + ir2∂1 − ir1∂2, P0 = m − m

2
∇2. (16)

In order to perform the computation of the character, we choose a basis of two-dimensional plane 
waves 

{
ψ	k

}
	k∈R2 . As is customary, we take the distribution-valued inner product 

(
ψ	k,ψ 	k′

) =
δ(	k − 	k′). They are eigenfunctions of P0 with eigenstate given by m + m

2 k2, while a rotation 
generated by J0 acts on them as

eiθJ0ψ	k = ψ
Uθ

	k, Uθ =
(

cos θ sin θ

− sin θ cos θ

)
∈ SO(2). (17)

In other words, a rotation generated by J0 maps a plane wave to another plane wave with the 
wave vector rotated. Now we can compute the character associated to a (j, m)-representation:

χ(j,m)

(
eiθJ0+iβP0

)
=

∫
R2

d2k
(
ψ	k,

(
eiθJ0+iβP0

)
ψ	k

)

= eiθj+iβm

∫
R2

d2k
(
ψ	k,ψUθ

	k
)

eiβ m
2 k2

(18)

= eiθj+iβm

∫
R2

d2k δ
(	k − Uθ

	k
)

eiβ m
2 k2

. (19)

The exponential of k2 does not matter since the delta distribution forces the only contribution to 
be the rotation-invariant vector 	k = 0. Moreover, the delta distribution contributes with a Jacobian 
|1 − eiθ |−2,

χ(j,m)

(
eiθJ0+iβP0

)
= eiθj+iβm 1

|1 − q|2 , q = eiθ . (20)

Notice that P0, in our m >> 1 approximation, has the non-relativistic aspect of the energy. Going 
one order beyond in 1/

√
m should make relativistic corrections appear, but the ‘localization 

phenomena’ in the character imposing 	k = 0 suggests that such relativistic corrections are not 
relevant. This deserves further investigation [17]. Actually this fact resembles what happens for 
the characters of Virasoro coadjoint representations, where the parameter of the perturbation is 
the central charge c >> 1 and, as it is shown in [4], it is likely the case that the functional form 
of the character of qL0 is insensitive to the values of c.

3. Perturbative quantization of BMS orbits

In this section we want to apply the same procedure as before, i.e. for the Poincaré group, to 
the case of the BMS3 group. This group is defined as the semidirect product of Virasoro group 
and its algebra (thought as an abelian group given the vector space structure). Note that there are 
two central extensions, one for each factor of the semidirect product. The bms3 Lie algebra is the 
semidirect sum of two Virasoro algebras (see [6] and references therein). The coadjoint orbits of 
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BMS3 were discussed in [7]. We are interested first in the quantization of the massive particle 
orbits, i.e. the orbits where a coadjoint vector b = (j, 0; p, ic2) is found. The orbits of this sort 
are labelled by the real parameters j, p and c2, which we take to be positive.

3.1. The symplectic structure of BMS orbits

Let us first compute the symplectic structure. The adjoint vectors are generically of the form

u := (X1,−ia1;α1,−ib1) ∈ bms3, v := (X2,−ia2;α2,−ib2) ∈ bms3

As in the previous section, we define the symplectic form to be ωb(u, v) := −〈b, [u, v]〉. Then in 
this case,

ωb(u, v) = − ij

π

∑
n�=0

nf 1
n f 2−n − i

π

∑
n�=0

n

(
p + c2n

2

48π

)
(f 1

n α2−n + α1
nf

2−n) +O(3) (21)

where

Xi = 1

2π

∑
n�=0

f i
ne−inθ , αi = 1

2π

∑
n�=0

αi
ne

−inθ ,

and we are considering only the leading terms in the fn and αn coordinates, since u and v should 
be thought of as infinitesimal generators. Since we are interested in the tangent space to the orbit, 
we need the adjoint vectors in the quotient bms3/u(1) ⊕R, so we removed the zero modes from 
u and v. It will prove useful to cast the pair of f - and α-coordinates in a single set of coordinates,

T2n−sg(n) := αn, T2n := fn, T = (. . . , α−1, f−1, f1, α1, . . .) (22)

where sg means the sign function. We have now a vector T with all the coordinates. The sym-
plectic form thus becomes,

ω(u, v) = − i

π

∑
n�=0

n
[
jT 1

2nT
2−2n + an

(
T 1

2nT
2−2n+sg(n) + T 2−2nT

1
2n−sg(n)

)]
, (23)

with,

an := p + c2n
2

48π
, p �= −c2n

2

48π
.

The symplectic form (23) has been computed at the point b = (j, 0; p, ic2) ∈ bms3, but it actually 
retains its form in a neighborhood of b, since any b′ in this neighborhood will contribute to 
sub-leading order in the coordinates. We can see from (23) that the subindices of T 1 and T 2

always sum 0, −1, 1, so arranged in a matrix they will form 2 × 2 blocks. To see this let us 
define

Mn := − i

π
nj

(
an

j
0

1 an

)
(24)
j
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Then, the symplectic form can be cast as an infinite matrix,

ω(T 1
k , T 2

l ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

0 0 0 MT−2
0 0 MT−1 0
0 M1 0 0

M2 0 0 0
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

and the inverse of the symplectic form is,

ω−1
kl := ω−1(T 1

k , T 2
l ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

0 0 0 (M2)
−1

0 0 (M1)
−1 0

0 (MT−1)
−1 0 0

(MT−2)
−1 0 0 0

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

From (26) we can compute the Poisson brackets of fn and αn,

{fn,fm} = 0 (27)

{fn,αm} = −i
π

nan

δn+m (28)

{αn,αm} = i
πj

na2
n

δn+m (29)

An important observation is that these brackets imply that the coordinates are of order 1/
√

c2, 
while p and j are on equal footing as c2 so they are thought as being of order c2. This means 
that we can consistently think we are doing a c2 >> 1 approximation when we work in a neigh-
borhood of some point in the orbit. On the other hand, we can see the α coordinates as bosons 
coupled to the f coordinates. In order to decouple the system we could make a change of vari-
ables

sn = fn + an

j
αn, tn = an

j
αn, (30)

and now the Poisson brackets are,

{sn, tm} = 0 (31)

{sn, sm} = −i
π

nj
δn+m (32)

{tn, tm} = i
π

nj
δn+m (33)

Note the resemblance of the s-bosons with the ones of Virasoro orbits studied in [4]. Neverthe-
less, we shall not use these coordinates in what follows.
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3.2. The observables on BMS orbits

We are interested in computing the explicit form of the classical observables defined over the 
coadjoint orbits, �u(·) = 〈·, u〉, which are labelled by an adjoint vector u. An element on the 
orbit of the coadjoint vector b = (j, 0; p, ic2), with p and j constant, is given by the coadjoint 
action Ad∗ of BMS3

7

Ad∗
(f,α)−1(j,0;p, ic2) = (j̃ ,0; p̃, ic2), f ∈ Diff(S1), α ∈ Vect(S1), (34)

where, having in mind that c1 = 0,

j̃ = (f ′)2
[
j + αp′ + 2α′p − c2

24π
α′′′] ◦ f (35)

p̃ = (f ′)2p ◦ f − c2

24π

(
f ′′′

f ′ − f ′′ 2

f ′ 2

)
(36)

Let us start with the observable associated with time translations, i.e. the energy P0 = �(0,0;1,0) =∫
p̃dφ, of a generic coadjoint element (j̃ , 0; p̃, ic2). Writing f = θ + 1

2π

∑
n�=0 fne

−inθ and 

α = 1
2π

∑
n�=0 αne

−inθ , we get,

P0 = 2πp + 1

π

∑
n≥1

ann
2fnf−n +O(3) (37)

Similarly, for the operator associated to rotations J0 = �(1,0;0,0) = ∫
j̃ dθ we find,

J0 = 2πj + j
1

π

∑
n≥1

n2
(

fnf−n + an

j
fnα−n + an

j
αnf−n

)
+O(3) (38)

The remaining observables can be put in terms of the coordinates also,8

Jn = −2i jn(fn + an

j
αn) (39)

Pn = −2inanfn (40)

where n �= 0 and it is clear that they are of order 
√

c2. The set of observables in terms of the 
coordinates satisfies the bms3 algebra to leading order.

3.3. The perturbative quantization of BMS and its characters

In this section we will mimic the approach we followed for computing the characters of 
Poincaré, basically using Darboux-like coordinates on the orbit. Recall that a general element 
in the orbit with little group S1 ×R can be written as Ad∗

(f,α)[(j, 0; p, c2)], where

f (θ) = 1

2π

∑
n�=0

fne
−inθ , α = 1

2π

∑
n�=0

αne
−inθ ,

7 We use the notation (f, α) to express an element of BMS3 group, although the correct way should be (f, a; α, b)

where a and b are real numbers and belong to the centrally extended versions of Diff(S1) and Vect(S1) respectively.
8 We are using the convention of [6], where Jm is the observable associated to the vector (eimφ, 0; 0, 0) and analogously 

Pm is the observable associated to the vector (0, 0; eimφ, 0).
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so our coordinates in the orbit close to the point (j, 0; p, c2) ∈ bms∗
3 are {fn,αm}n,m∈Z−{0}. They 

satisfy f ∗
n = f−n and α∗

n = α−n and also the Poisson brackets (27). Motivated by the procedure 
for the Poincaré group as well as the fact that coadjoint orbits of semidirect products F � A

are diffeomorphic to the cotangent bundle of orbits of A∗ under the action of F , we make the 
following change of coordinates

xn := 1

2
(fn + f−n), yn := i

2
(fn − f−n), (41)

pn := in

π

(
j

2
(fn − f−n) + an(αn − α−n)

)
, (42)

qn := n

π

(
−j

2
(fn + f−n) − an(αn + α−n)

)
, (43)

where n > 0. These coordinates, which are real, have canonical Poisson brackets

{xn,pm} = δn−m, {yn, qm} = δn−m (44)

and thus, upon quantization,[
xn,pm

] = iδn−m,
[
yn, qm

] = iδn−m (45)

For given n and comparing to the Poincaré case, xn plays the part of x1 and yn plays the part of 
x2, and similarly their conjugate momenta.

The observables P0 and J0 read,

P0 = 2πp + 1

π

∑
n≥1

ann
2
(
x2
n + y2

n

)
,

J0 = 2πj −
∑
n≥1

n (xnqn − ynpn) . (46)

There is no ambiguity when considering these observables as operators on a Hilbert space since 
xn and qm commute for every integer n, m ≥ 1 and the same happens with yn and pm. The 
remaining observables are written as,

Jn = −ijn(xn − iyn) − π(pn − iqn), n > 0 (47)

Pn = −2inan(xn − iyn), n > 0, (48)

and J−n = J ∗
n , P−n = P ∗

n .
We can represent the operator algebra (45) on the tensor product of representations of the 

2 + 1 Poincaré group, as in the previous section. Put differently, the Hilbert space for BMS3
associated with the coadjoint orbit of (j, 0; p, c2) ∈ bms∗

3 will be the product of infinite Hilbert 
spaces of the two-dimensional particle:

H =
∞⊗

n=1

L2(R2)(n), (49)

where L2(R2)(n) means the Hilbert space associated to the particle of the n-th coordinates. The 
exponential of the operators in (46) is then a tensor product of operators (16), each of them acting 
on the different L2(R2)(n) Hilbert spaces.

The representation is then equivalent to the one of infinite non-interacting particles in 2 + 1
dimensions and we are considering the non-relativistic limit where the energy is quadratic. With 
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this we mean that if again we choose a basis of plane waves ψ{	k
} := ⊗

n≥1 ψ	kn
, the energy 

is quadratic in each 	kn. In addition, as mentioned earlier, the approximation can be seen as a 
c2 → ∞ limit (or p >> 1). Thus, c2 plays the part of speed of light.

It is worth mentioning the relation to the induced representations used in [14]. If we relate an 

array of vectors 
{	kn

}
n≥1

(a choice of plane waves) with a point in the orbit Ad∗
Diff(S1)

(pt0∗) =
Diff(S1)/S1, which is a plane wave in [14], then the relation to induced representations of [14]
starts to become clear. Moreover, the rotations and pure translations of the induced representa-
tions act in the same way as in our coadjoint orbit representations, by rotating the plane wave or 
adding a complex phase, respectively.9

We have now arrived to a position where we can calculate the characters of these represen-
tations: first note that the coordinate-independent terms in the operators in (46) will give again 
a phase, and thus what is left is an infinite product of characters of Poincaré (not including the 
phase just mentioned). However, for each Poincaré character (20) one needs to take into account 
that its corresponding rotation now comes weighted by the integer n in (46),

χ(j,p,c2)

(
eiθJ0+iβP0

)
= ei2πθj+i2πβp

∏
n≥1

1

|1 − qn|2 , q = eiθ . (50)

This matches the character computed in [14], having in mind a slight difference of normalization 
in the operators: in that reference for example P0 comes with a (2π)−1 normalization so its 
classical value is just p.

It remains to consider the case where p = − c2
48π

, where the orbit is now the cotangent space 
of the Virasoro Diff(S1)/PSL(2, R) orbit. There is no substantial difference, actually: one only 
has to take into account that the α±1 and f±1 modes are now spurious, in the sense that they 
belong to the isotropy group. Thus, sums and products start from n = 2 and everything goes 
straightforward. The character is then

χ(j,p,c2)

(
eiθJ0+iβP0

)
= ei2πθj−iβ

c2
24

∏
n≥2

1

|1 − qn|2 , q = eiθ , (51)

in accordance with [14,15].

4. Conclusions

The main result of this work is the computation of particular characters of the BMS 3 group, 
following the same lines as those of Witten for the Virasoro group [4]. The characters are associ-
ated to ‘coadjoint orbit representations’. We showed how to compute characters for the massive 
coadjoint orbits of BMS3 group as well as the vacuum orbit. As a byproduct, the (approximate) 
representations found here were related to the induced representations of [6,14], as discussed 
after equation (49). This is an explicit example of a relation between induced representations and 
(perturbative) ‘coadjoint orbits representations’ for an infinite-dimensional Lie group. The char-
acters, as expected, coincide with the ones computed in [14], were the induced representation 
was used.

9 It remains to see if any exponential of the algebra (perturbative) representation matches the induced representations, 
although this is likely the case.
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The reason behind the coincidence between the characters coming from a perturbative ap-
proach with the ones of the induced representations is elusive to us. The fact that the ‘coadjoint 
representation’ coincides with the induced representation is valid at the level of the approxi-
mation c2 >> 1, as far as we could show here. However, it is likely to be the case that the 
coincidence of the characters is not only exact, but also that there is a solid reason coming from 
general results on representations of infinite-dimensional Lie groups.

One step in the direction of the last claim is to study the possibility of a generalization 
of geometric quantization applied to infinite-dimensional groups, as well as its relation with 
index-theorems. If one could show, without resorting to perturbative methods, that the functional 
dependence of the character with the central charge (and the other labels p, j ) is insensitive to 
the central charge value, then it would be clear why the perturbative approach gives the correct 
result for all values of the central charge.

As an example of this line of thought, consider computing again the characters of BMS3 but 
without finding explicitly a representation of the group, only resting on the Lefschetz formula 
[10]. The explicit original formula relates a geometrical index with a topological index, both 
associated to a particular map (which in our case is the unitary representation of a group element). 
The topological index is the Lefschetz number, which reduces to the character when the higher 
cohomolgy groups vanish (the remaining one would be the space of global sections on some 
bundle). In order to apply Lefschetz formula some mathematical structures need to be taken 
into account, but for Virasoro and BMS3 groups these structures are have not been completely 
studied yet, as far as we know (we will discuss this somewhere else [17]). Nevertheless, this 
formula was used in [4] for the Virasoro group in an intuitive way, and here we follow those 
lines with suitable slight modifications in order to recover the characters of BMS3 group. First 
we write the operators J0 and P0 as vectors on the orbit,

P0 =
∑
n≥1

2ann
2

π

(
xn

∂

∂pn

+ yn

∂

∂qn

)
,

J0 =
∑
n≥1

n

(
xn

∂

∂yn

− yn

∂

∂xn

+ pn

∂

∂qn

− qn

∂

∂pn

)
(52)

Second, we compute finite transformations generated by them, exp(iθJ0 + iβP0): for a given 
polarization, say {xn, yn},(

x′
n

y′
n

)
=

(
cos θ sin θ

− sin θ cos θ

)(
xn

yn

)
(53)

Had we chosen the polarization {pn, qn} nothing would have changed. The Jacobian of the trans-
formation, J , is the 2 × 2 rotation matrix above. The last step in the heuristic Lefschetz formula 
says we should compute det(1 −J ),

det(1 −J ) =
∞∏

n=1

|1 − eiθn|2 (54)

and that the character is just the operators evaluated at the classical values times the inverse of 
det(1 −J ),

Tr(eiβP0+iθJ0) = eiβpqj

∞∏
n=1

1

(1 − qn)2
, q = eiθ . (55)
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