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A method for modeling outflow boundary conditions in the lattice Boltzmann method (LBM) based on the maximization of the
local entropy is presented. The maximization procedure is constrained by macroscopic values and downstream components. The
method is applied to fully developed boundary conditions of the Navier-Stokes equations in rectangular channels. Comparisons
are made with other alternative methods. In addition, the new downstream-conditioned entropy is studied and it was found that
there is a correlation with the velocity gradient during the flow development.

1. Introduction

The lattice Boltzmannmethod (LBM) is a numerical tool that
has demonstrated great potential in numerous applications,
mainly in fluid dynamics simulations. The most interesting
advantages are the capability of direct parallelization and
the flexibility to include any type of forces and internal
interactions. LBM is particularly advantageous in simulation
of flow in porous media, multiphase and multicomponent
flows, and hemodynamics, among other domains [1, 2].

Since LBM is based on a kinetic representation of the
fluid, the task of implementing boundary conditions con-
sistent with the macroscopic constraints is not trivial and
requires special attention. On the one hand, the kinetic
picture provides certain degree of flexibility that can be
used to design boundary conditions, but unfortunately the
precision and the stability of the scheme are influenced by
the criteria used to fill the available degrees of freedom.
This leads to a large amount of work done focused on the
management of boundary conditions. Since the early 1990s,
many papers have proposed and investigated the behavior of
various boundary conditions [3–5].

Themost common boundaries that fluid simulations have
to deal with are solid walls [6, 7], constant velocity, and

flow input or exits. In general, it is sufficient to specify
either velocity or density (not both of them). A ubiquitous
approach for solid boundaries management is bounce-back
scheme. For density and velocity boundaries, there are several
specific methods developed for straight walls [8]. For curved
boundaries, unfortunately, most of the existing methods
are based on interpolation schemes that violate some local
conservation properties, which is one of the most attractive
features of LBM [9–12].

On the other hand, several researchers have pointed out
that the kinetic nature of LBM calls for the direct application
of entropic principles in order to improve the stability of the
scheme [13–16]. These studies were mainly focused on the
search formore stable algorithmswhile keeping the attractive
numerical properties of the method, namely, explicit scheme
and locality. A remarkable advance in this direction is the
development of the so-called entropic LBM (ELBM), based
on the𝐻 theorem.

In the present work, a method for modeling outflow
boundaries in LBM is presented. The method is based on the
maximization of the local entropy to determine the upstream
components, provided that the downstream components are
known. An explicit algebraic formula is derived, which is very
easy to implement without perturbing the performance of the
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calculation. The method is applied to the simulation of fully
developed boundary conditions and compared with other
alternatives previously presented in the literature. Moreover,
the new downstream-conditioned entropy is shown to have
an interesting correlation with the velocity gradient.

2. The Lattice Boltzmann Method

The LBM can be viewed as a class of kinematic transport
model with an internal discrete vector variable, whose local
averages approach transport equations in the infinitesimal
limit [17]. The present study is restricted to the LBM repre-
sentation of the Navier-Stokes equations in 2D. The method
operates on a regular lattice and represents a viscous fluid
by means of particle populations which moves between
the lattice cells. The most common lattice geometry for
simulating Navier-Stokes equations in 2D is the so-called
D2Q9 model [18], which corresponds to a square grid with
9 internal velocity vectors (Figure 1).

According to the kinetic picture, the state of a cell located
at position x at time 𝑡 is given by a population function,
𝑓
𝑖
(x, 𝑡), which is distributed on the 9 directions e

𝑖
pointing

to the neighboring cells. The evolution of 𝑓
𝑖
(x, 𝑡) is given by a

collision step (see (1)) and a streaming step (see (2)):

𝑓


𝑖
(x, 𝑡) = 𝑓

𝑖 (x, 𝑡) +
1
𝜏
[𝑓
𝑒

𝑖
(x, 𝑡) − 𝑓

𝑖 (x, 𝑡)]

+ Δ𝑡𝑔
𝑖 (x, 𝑡) ,

(1)

𝑓
𝑖
(x + e
𝑖
Δ𝑡, 𝑡 +Δ𝑡) = 𝑓



𝑖
(x, 𝑡) , (2)

where Δ𝑡 is the time step, 𝜏 is a relaxation parameter that
controls the viscosity, 𝑔

𝑖
(x, 𝑡) is an external source rate, and

𝑓
𝑒

𝑖
(x, 𝑡) is called the equilibrium population or distribution.

The equilibrium distribution is constructed in terms of the
local momenta of 𝑓

𝑖
(x, 𝑡):

𝜌 (x, 𝑡) =
8
∑

𝑖=0
𝑓
𝑖 (x, 𝑡) , (3)

u (x, 𝑡) = 1
𝜌 (x, 𝑡)

8
∑

𝑖=0
e
𝑖
𝑓
𝑖 (x, 𝑡) , (4)

which represent the fluid density and the velocity, respec-
tively. Sometimes a force correction term is included in (4) for
accuracy; however, Mohamad and Kuzmin [19] have shown
that the correction term is not necessary and better results are
obtained without it.

The functional form of 𝑓
𝑒

𝑖
(x, 𝑡) determines the partial

differential equations that will be approached by the fields
𝜌(x, 𝑡) and u(x, 𝑡) in the differential limit. In the present work,
the BGK scheme will be used, which produces the Navier-
Stokes equations [17, 20, 21]. In 2D, the BGK equilibrium
function is

𝑓
𝑒

𝑖

= 𝑤
𝑖
𝜌 [1+ 1

𝑐2
𝑠

(e
𝑖
⋅ u) + 1

2𝑐4
𝑠

(e
𝑖
⋅ u)2 − 1

2𝑐2
𝑠

(u ⋅ u)] ,

(5)
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Figure 1: Set of grid velocities of the D2Q9 model.

where𝑤
𝑖
is 4/9 for 𝑖 = 0, 1/9 for the Cartesian directions (1, 3,

5, and 7), and 1/36 for the diagonal directions (2, 4, 6, and 8).
From now on, all spatial coordinates are expressed in units of
cell’s length Δ𝑥, all times in units of Δ𝑡, and all velocities in
units of Δ𝑥/Δ𝑡.

The parameter 𝑐2
𝑠
in (5) is the factor relating the pressure

with the density; namely, 𝑝 = 𝑐
2
𝑠
𝜌, which according to the

common use is taken as 𝑐
2
𝑠

= 1/3 in units of (Δ𝑥/Δ𝑡)
2.

The kinematic viscosity in units of Δ𝑥2
/Δ𝑡 is related to the

relaxation parameter by [17]

𝜐 =
1
6
(2𝜏 − 1) . (6)

The external source 𝑔
𝛼
(𝑥, 𝑡) is used here to introduce

external forcesF(x, 𝑡) acting on each cell.The forcemodel [19]
used in this study is

𝑔
𝑖
= 3𝑤
𝑖
F ⋅ e
𝑖
. (7)

It is known [14, 22] that the equilibrium populations given by
(5) maximize the entropy

𝐻 =

8
∑

𝑖=0
𝑓
𝑖
log

𝑓
𝑖

𝑤
𝑖

, (8)

subjected to the constraints given by (3) and (4) up to order
𝑢
2.

3. New Method to Model Outlet Boundaries

In the case of an outlet boundary cell at the exit of a channel
like the one shown in Figure 2, there are three unknown
populations. In order to perform the streaming step (see (2)),
the values of the “upstream” populations, 𝑓4, 𝑓5, and 𝑓6 (i.e.,
the stream of particles coming from “outside”), are unknown,
due to the fact that they do not belong to the fluid domain.
The information available to impose values on 𝑓4, 𝑓5, and 𝑓6
is given by the flow boundary conditions at the channel exit.

3.1. Other Methods. The classic methods to model outlet
boundaries in LBM can be classified into two groups. On
the one hand, there are methods that work at macroscopic
level, using a velocity boundary condition and computing the
velocity from local neighborhoodmicroscopic values. On the
other hand, there are methods that work at microscopic level
interpolating population values from neighborhood without
taking into account macroscopic variables.
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Figure 2: Diagram showing the unknown populations (dashed
arrows) in a border cell.

Let us assume that the flow at the exit is fully developed;
that is,

𝜕𝑢
𝑥

𝜕𝑥
= 0, (9)

𝜕𝑢
𝑦

𝜕𝑥
= 0. (10)

The first condition is enforced using some numerical estima-
tion of the partial derivative in terms of the upstream values.
The simplest way would be a 1-cell interpolation:

𝑢
𝑥
(𝑁
𝑥
, 𝑦) = 𝑢

𝑥
(𝑁
𝑥
− 1, 𝑦) . (11)

The problem then is a special case of determining the
populations pointing in one direction (in this case upstream),
𝑓4, 𝑓5, and 𝑓6, given all the other populations of the cell and
the two components of the macroscopic velocity u. The latter
can be written in our case (Figure 2) as

𝑓4 +𝑓5 +𝑓6 = 𝑓2 +𝑓1 +𝑓8 −𝑢
𝑥
𝜌 = 𝑓
𝑥
,

𝑓4 −𝑓6 = 𝑢
𝑦
𝜌+𝑓8 −𝑓2 = 𝑓

𝑦
,

(12)

where the unknowns𝑓4,𝑓5, and𝑓6 are isolated in the left hand
side.

It should be noted that the density 𝜌 in the cell is
completely determined by 𝑢

𝑥
and the known populations.

The summation over the unknowns in (3) and (4) at𝑥-dimen-
sion can be eliminated; namely,

𝜌 =
1

1 + 𝑢
𝑥

(𝑓
𝑜
+𝑓3 +𝑓7 + 2𝑓1 + 2𝑓2 + 2𝑓8) . (13)

Since there are three unknowns, an additional relation
should be provided in order to fully determine the cell state.
This is the main difficulty while implementing boundary
conditions in LBM [23]. This choice is not trivial since it
can affect the precision and the convergence over the whole
domain, as pointed out in [8].

One of the most used assumptions to fill this gap is the
proposal by Zou and He [24], which consists in assuming

bounce-back conditions in the nonequilibrium population
traveling perpendicular to the exit, 𝑓5; that is,

𝑓5 −𝑓
𝑒

5 = 𝑓1 −𝑓
𝑒

1 . (14)

However, in steady state, mass conservation requires

𝜕𝜌𝑢
𝑥

𝜕𝑥
= 0, (15)

which cannot be satisfied together with (9) since 𝜌 is propor-
tional to the pressure in BGK and the pressure gradient along
the channel precludes 𝜕𝜌/𝜕𝑥 = 0. In order to account for this
mismatch, Tong et al. [25] proposed the following correction
to (11):

𝑢
𝑥
(𝑁
𝑥
, 𝑦) = 𝜎𝑢

𝑥
(𝑁
𝑥
− 1, 𝑦) , (16)

where

𝜎 =

∑
𝑦
𝜌 (1, 𝑦) 𝑢

𝑥
(1, 𝑦)

∑
𝑦
𝜌 (𝑁
𝑥
− 1, 𝑦) 𝑢

𝑥
(𝑁
𝑥
− 1, 𝑦)

(17)

is a renormalization factor of the velocity that imposes the
inlet mass flow 𝑥 = 1 at the exit 𝑥 = 𝑁

𝑥
.This renormalization

factor leads to mass conservation and improves convergence
to stationary state. Further, the method proposed to use
the boundary values of u and 𝜌 to calculate and force the
equilibrium populations on all the particles of the cell, even
the known populations. Also 𝑢

𝑦
is assumed to be zero. This

leads to introducing errors in simulation according to our
results.

The population level methods can be in general described
as

𝑓
𝑖
(𝑁
𝑥
, 𝑦) = (1−𝛼) 𝑓𝑖 (𝑁𝑥 − 2, 𝑦) + 𝛼𝑓

𝑖
(𝑁
𝑥
− 1, 𝑦) , (18)

where 𝑖 = 4, 5, 6. There are known methods that set 𝛼 = 1
[26] and 𝛼 = −1 [27], respectively. The problem when 𝛼 = 1
is that pressure drops cannot be accurately represented at the
end of channel. Using 𝛼 = 2 is amuch better selection but can
lead to negative values in 𝑓

𝑖
when the outflow is not smooth.

3.2. Fully Developed Maximum Entropy Method. The natural
criterion that it is proposed here is to impose maximum
entropy as the additional condition to determine unknown
populations. Thus, we propose to use 𝑓4, 𝑓5, and 𝑓6 values
that satisfy (12) andmaximize (8). Accordingly, the problem is
equivalent to determining 𝑓4, 𝑓5, 𝑓6 such that the Lagrangian

𝐿 = ∑

𝑖=4,5,6
𝑓
𝑖
ln

𝑓
𝑖

𝑤
𝑖

+𝜆
𝑥
(𝑓4 +𝑓5 +𝑓6 −𝑓

𝑥
)

+ 𝜆
𝑦
(𝑓4 −𝑓6 −𝑓

𝑦
)

(19)

is an extreme. The magnitudes 𝜆
𝑥
and 𝜆

𝑦
are the Lagrange

multipliers corresponding to the preservation of 𝑢
𝑥
and 𝑢

𝑦
,

respectively.
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Differentiating with respect to each unknown gives

𝜕𝐿

𝜕𝑓4
= ln

𝑓4
𝑤4

+ 1+𝜆
𝑥
+𝜆
𝑦
= 0,

𝜕𝐿

𝜕𝑓5
= ln

𝑓5
𝑤5

+ 1+𝜆
𝑥
= 0,

𝜕𝐿

𝜕𝑓6
= ln

𝑓6
𝑤6

+ 1+𝜆
𝑥
−𝜆
𝑦
= 0,

(20)

which leads to

𝑤
2
5𝑓4𝑓6 = 𝑤4𝑤6𝑓

2
5 . (21)

Combining (12) and (21),

3
4
𝑓
2
5 − 2𝑓

𝑥
𝑓5 +𝑓

2
𝑥
−𝑓

2
𝑦
= 0, (22)

where the standard values 𝑤4 = 𝑤6 = 1/36 and 𝑤5 = 1/9
were assumed. The solution of (22) gives

𝑓5 =
2
3
(2𝑓
𝑥
±√𝑓2
𝑥
+ 3𝑓2
𝑦
) , (23)

and the corresponding values of 𝑓4 and 𝑓6 are

𝑓4 =
1
2
(𝑓
𝑥
+𝑓
𝑦
−𝑓5) ,

𝑓6 =
1
2
(𝑓
𝑥
−𝑓
𝑦
−𝑓5) .

(24)

The sign in (23) should be chosen to ensure that all the
populations are positive.

Equations (12) were solved to get an explicit relation of 𝑓4
and 𝑓6 with the value of 𝑓5;

𝑓4 +
1
2
𝑓5 = 𝛼, (25)

𝑓6 +
1
2
𝑓5 = 𝛽, (26)

where 𝛼 = (𝑓
𝑥
+𝑓
𝑦
)/2 and𝛽 = (𝑓

𝑥
−𝑓
𝑦
)/2. It can be remarked

that 𝛼 > 0 and 𝛽 > 0 are necessary and sufficient conditions
for the existence of solution. The expression of 𝑓5 is

𝑓5 =
4
3
[(𝛽 +𝛼) ±√(𝛽 + 𝛼)

2
− 3𝛼𝛽] . (27)

Using (27) in (25),

𝑓4 =
1
3
[𝛼− 2𝛽∓ 2√(𝛽 + 𝛼)

2
− 3𝛼𝛽]

=
1
3
[𝛼− 2𝛽∓√(𝛼 − 2𝛽)2 + 3𝛼2] .

(28)

Analogously, using (27) in (26),

𝑓6 =
1
3
[𝛽− 2𝑎 ∓√(𝛽 − 2𝑎)2 + 3𝛽2] . (29)

So the minus (−) sign in (27) must be used to ensure positive
defined values for both 𝑓4 and 𝑓6. Finally,

𝑓5 =
4
3
[(𝛽 + 𝑎) −√(𝛽 + 𝑎)

2
− 3𝑎𝛽] ,

𝑓4 =
1
3
[𝑎 − 2𝛽+√(𝑎 − 2𝛽)2 + 3𝑎2] ,

𝑓6 =
1
3
[𝛽− 2𝑎 +√(𝛽 − 2𝑎)2 + 3𝛽2]

(30)

are explicit definition for positive defined values that maxi-
mize entropy subject to macroscopic constraints.

4. Results

The performance of the method presented here was tested
in a case of viscous flow development at steady state in
rectangular channels with uniform velocity at the inlet. The
inlet velocity was set in 𝑢in = 0.01 (in units of grid velocity)
in the 𝑥-direction and the relaxation parameter 𝜏 = 0.6.
Null velocity was imposed at the lateral walls using standard
midway bounce-back boundary conditions [3].

In order to compare with other methods for boundary
conditions, each test case was solved with different alter-
natives. The first is the present maximum entropy method.
The second (Zou and He) and third (Tong et al.) methods
were described in previous section. In the latter and in the
maximum entropy method, the compressibility factor given
by (17) was used to assess the velocity at the exit. The fourth
and fifth methods use (18), setting 𝛼 = 1 [26] and 𝛼 = −1
[27], respectively. For shortness, the methods are numbered
M1 (presentmethod),M2 (Zou andHe),M3 (Tong et al.), M4
(1-point interpolation), and M5 (Yu’s 2-cell interpolation).

4.1. Poiseuille Flow. Thefirst test studied is the Poiseuille flow
where no volumetric forces are applied in the fluid. In such
a case, the analytical solution of the fully developed velocity
profile is a parabola with maximum velocity at the channel
center 𝑢max = 3/2𝑢in. Each method was applied to determine
fully developed boundary conditions at the exit. Once the
steady state was achieved with a relative tolerance of 10−7,
the exit profile was compared with the analytical solution.
The maximum error at the outlet with respect to the inlet
velocity was used as a metric. The channel width was varied
maintaining the aspect ratio. Figure 3 shows the convergence
of the differentmethods towards the analytical solution as the
grid resolution is increased. The maximum entropy method
(M1), Zou and He’s method (M2), and Yu’s 2-cell interpola-
tion (M5) show the best convergence rate (order ∼ 2). On the
opposite side, the 1-cell interpolation method (M4) degrades
the convergence to order∼ 1 andTong et al.’s proposal of using
the equilibrium populations (M3) does not converge.

Since the exit boundary conditions that are imposed
at the exit are consistent with fully developed flow, the
channel should be longer than the development length of the
Poiseuille flow. In order to assess the influence of the exit
boundary conditions in the flow development, the flow in
a 500-cell long channel was calculated and the solution up
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Figure 3: Poiseuille flow. Convergence of the different methods towards the analytical solution as the grid resolution is increased.The relative
error of the exit-velocity profile against the analytic solution is plotted against the number of cells covering the channel width.

to the first 200 cells, where fully developed conditions are
already reached, was taken as reference.Then a 200-cells long
channel was calculated with each method and the solution
was compared cell to cell with the reference. Figure 4 shows
the map of Euclidean distances between the local velocity
vectors normalized with the inlet velocity, obtained with each
method. It can be seen that the lowest errors are achieved
with the maximum entropy method (M1), followed by the 2-
cell interpolation method (M5).The other methods are more
than two orders of magnitude worse than M1, especially at
the channel exit. On the other hand, the maximum error
in the map for each method is a function of the channel
length; that is, the longer the channel, the lower the error.
Figure 5 shows the dependence of the maximum error on
the channel length. As can be seen, the maximum entropy
boundary achieves the lowest errors, ∼1 order and ∼2 orders
of magnitude lower than M2 and M3, respectively. The error
of the 1-cell interpolation method (M4) is the highest. The
2-cell interpolation is unstable for 𝑁

𝑥
< 30, and for longer

channels it approaches the accuracy of M1.

4.2. Channel with a Transversal Volumetric Force. The second
case studied is the flow in a rectangular channel with a
uniform volumetric force 𝐹

𝑦
= −𝜌𝑔 applied in each cell. Ana-

logously, as in the Poiseuille flow, the influence of the exit
boundary conditions in the flow development was assessed
by comparing the solutions in a 200-cell channel with the
first 200 cells of a 500-cell channel. Figure 6 shows the
map of Euclidean distances between the local velocity vec-
tors normalized with the inlet velocity, obtained with each
method (analogous to Figure 4). The results are similar to
those obtained in the Poiseuille case, with the lowest errors
being achieved with the maximum entropy method (M1).
Figure 7 shows the dependence of the maximum error on
the length of the channel, and the results are similar to the
Poiseuille case (Figure 5).

An analytical reference can be obtained in such a case
assuming fully developed steady-state conditions, which
leads to

−
𝜕𝑝

𝜕𝑥
+𝜇

𝑑
2
𝑢

𝑑𝑦2 = 0,

−
𝜕𝑝

𝜕𝑦
+ 𝜌𝑔 = 0.

(31)

Using the equation of state 𝑝 = 𝑐
2
𝑠
𝜌, (31) give

𝜕𝜌

𝜕𝑥
=

𝜇

𝑐2
𝑠

𝑑
2
𝑢

𝑑𝑦2 , (32)

𝜕𝜌

𝜕𝑦
= −

𝑔

𝑐2
𝑠

𝜌. (33)

Integrating (33),

𝜌 (𝑥, 𝑦) = 𝜌
𝑜 (𝑥) exp(−

𝑔𝑦

𝑐2
𝑠

) . (34)

Differentiating (34) with respect to 𝑥,

𝜕𝜌

𝜕𝑥
=

𝑑𝜌
𝑜

𝑑𝑥
exp(−

𝑔𝑦

𝑐2
𝑠

) . (35)

Combining (32) and (35) yields

𝜇

𝑐2
𝑠

𝑑
2
𝑢

𝑑𝑦2 =
𝑑𝜌
𝑜

𝑑𝑥
exp(−

𝑔𝑦

𝑐2
𝑠

) . (36)

For small 𝑔𝐻/𝑐
2
𝑠
results

𝑢 = −
1
2𝜇

𝑑𝑝
𝑜

𝑑𝑥
(𝑦

2
𝑜
−𝑦

2
)(1−

𝑔𝑦

3𝑐2
𝑠

) , (37)



6 Mathematical Problems in Engineering

M1 y

10

20

30

40

M2 y

10

20

30

40

M3 y

10

20

30

40

M4 y

10

20

30

40

M5 y

10

20

30

40

20 40 60 80 100 120 140 160 180 200

x

20 40 60 80 100 120 140 160 180 200

x

20 40 60 80 100 120 140 160 180 200

x

20 40 60 80 100 120 140 160 180 200

x

20 40 60 80 100 120 140 160 180 200

x

1.000E − 07

1.585E − 06

2.512E − 05

3.981E − 04

0.006310

0.1000

Ve
lo

ci
ty

 er
ro

r

Figure 4: Poiseuille flow. Contour map of the local deviation of the velocity when compared with the numerical solution in a long channel
(𝑁
𝑥
= 500).
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where the channel center line was set at 𝑦 = 0 and the lateral
walls were set at 𝑦 = ±𝑦

𝑜
.

The Poiseuille flow is recovered for 𝑔 = 0, as expected.
It will be easier to compare the deviation of the profile with
respect to Poiseuille case; that is,

Δ𝑢 = 𝑢
𝑔
−𝑢
𝑔=0 = 𝑢in

𝑔𝑦
3
𝑜

2𝑐2
𝑠

(1−
𝑦
2

𝑦2
𝑜

)
𝑦

𝑦
𝑜

, (38)

where the pressure gradient was related with the inlet velocity
by means of the Poiseuille profile.

Again, the maximum entropy and the other methods
were applied to impose fully developed boundary conditions
at the exit. Figure 8 shows the map of Δ𝑢/(𝑢in(𝑔𝑦

3
𝑜
/2𝑐2
𝑠
))

representing the deviation from the velocity development
map in a channel without force. Equation (38) is the analytical
reference for the profile of Δ𝑢 in the fully developed region.
It can be seen that the application of methods M1 (maximum

entropy) and M5 (2-cell interpolation) agrees very well with
the reference solution in the developed region. In turn, the
other methods lead to erroneous solutions.

4.3. Entropies and Velocity Gradients. An interesting result
can be obtained by mapping the distance between the actual
entropy and the maximum achievable entropy that would be
obtained if the method presented here were applied in each
cell regardless of it being or not at the exit. That is, once the
steady state is reached, the entropy in each cell given by (8) is
calculated after a streaming step is completed. Afterwards, the
conditioned-maximum entropy upstream populations, 𝑓∗4 ,
𝑓
∗

5 , and𝑓
∗

6 , are calculated in each cell using (23) and (24), and
then the maximum achievable entropy is evaluated in each
cell with (8) but using 𝑓

∗

4 , 𝑓
∗

5 , and 𝑓
∗

6 instead of the actual
upstream populations. This magnitude can be viewed as an
indicator of the departure from the equilibrium structure of
the fully developed flow.
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Figure 9: Poiseuille flow. Distance between the actual specific entropy and the maximum achievable specific entropy.

Figures 9 and 10 show the maps of entropy distance to
equilibrium for Poiseuille case and the channel with volu-
metric force. Entropies are divided by the density to discount
the pressure gradient; that is, it is the entropy difference per
particle. It can be seen that in both cases with the maximum
entropy method at the exit boundary the entropy distance
decays rapidly to zero after the flowdevelopment is completed
all the way to the exit. MethodsM2,M4, andM5 also get sim-
ilar trends. However, M3 produces significant disturbances
at the exit. Figure 11 shows the maps of the modulus of the
velocity gradient in both cases. It is easy to note a correlation
between the entropy distance and the velocity gradient, which
suggests that the latter is the source of the former.

4.4. Backward-Facing Step Flow. Finally, a case of a rectangu-
lar channel with two different cross sections was simulated, a
classical geometry often called backward-facing step flow [7].
The inlet cross section is reduced by step sized 2/3 and 3/4
of the channel width and length, respectively. The channel is

represented by a grid of 51 × 340 cells. Figure 12 shows the
maps of velocitymodule obtainedwith eachmethod.Method
M3 is unstable and does not reach the steady-state solution.
Methods M4 and M5 introduce numerical noise at the exit,
which prevents them fromgetting fully developed conditions.
The method proposed here, M1, and method M2 perform
very well, leading to similar results, with the correct fully
developed profile at the outlet.

5. Conclusions

The maximum entropy principle was applied in LBM to
complete variables undetermined by streaming in boundary
cells with outlet condition. The method was implemented
in 2D, but its generalization to 3D is straightforward. The
resulting algorithm boils down to explicit algebraic formu-
las that are easy to implement without compromising the
performance of general scheme. The proposed method was
tested on simulations of flow development in rectangular
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Figure 10: Channel with transversal volumetric force. Distance between the actual specific entropy and the maximum achievable specific
entropy.
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Figure 11: Map of the module of the velocity gradient. Poiseuille flow (above), channel with transversal volumetric force (down).
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Figure 12: Map of the velocity module in a rectangular channel with a sudden expansion.

channels with and without volumetric forces. The method
was compared with other alternative boundary techniques
previously presented in the literature, showing good precision
and stability in all cases.

Furthermore, the deviation of the actual entropy in each
interior cell from the maximum entropy was mapped and
shows an interesting correlation with the velocity gradient.
Since in many cases numerical instabilities in LBM start in
regions where the latter is high, the application of the present
method can be further studied for stabilization purposes.
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