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Abstract. Let E/Q be an elliptic curve of conductor N , and let K be an imagi-
nary quadratic field such that the root number of E/K is −1. Let O be an order
in K and assume that there exists an odd prime p, such that p2 || N , and p is
inert in O. Then although there are no Heegner points in X0(N) attached to O,
in this article we construct such points from Cartan non-split curves. In order
to do that we give a method to compute Fourier expansions for forms in Cartan
non-split curves, and prove that the constructed points form a Heegner system as
in the classical case.

Introduction

Let E be an elliptic curve over Q of conductor N and let K be an imaginary
quadratic field such that E/K has root number −1. One of the main problems in
number theory is to construct rational points on E. The only instance in which a
general construction is known is via the so called “Heegner points”. Let O be an
order in K of discriminant prime to N satisfying the Heegner hypothesis for X0(N):
“assume that all primes dividing N are split in O” (see [Dar04] Hypothesis 3.9).
Then one can construct points in the modular curve X0(N) and map them through
the modular parametrization to the curve E. Gross-Zagier Theorem says that the
constructed points are non-torsion if and only if L′(E, 1) 6= 0. More generally, when
N is square-free, we can construct Heegner points in certain Shimura curves, provided
that the Heegner hypothesis for Shimura curves is satisfied: the number of prime
numbers dividing N which are inert in O is even. This hypothesis is the right one for
the root number to be −1, but when N is not square-free, this is not true anymore.
For example, suppose that we start with an elliptic curve E over Q of conductor p2 (p
an odd prime). Let K be an imaginary quadratic field with discriminant D such that
D and p are prime to each other and p is inert in K. In this case the root number is
still −1 (for example see [Zha01, Definition 1.1.3]), but the Heegner hypothesis is not
satisfied. However, one would like to construct Heegner points (and Heegner systems)
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in this case as well and prove that they satisfy a Gross-Zagier-Zhang formula! Of
course there will be no points in the classical modular curve X0(p2), so one can search
in other modular curves for the same phenomena. In the present situation, there are
some canonical choices, the so called non-split Cartan curves, which are quotients of
the Poincare half-plane by a Cartan non-split group. The two main problems one
needs to address regarding modular forms for these groups are the following:

• There are many Cartan non-split curves (one for each non-square modulo
p). Which one should we choose? Is the elliptic curve E a quotient of their
Jacobians?
• How do we compute the Fourier expansion of the Hecke eigenforms for such

groups? What is the coefficient field of such forms?

In this article we will answer these questions, and show how to use them to construct
(both theoretically and computationally) Heegner points from points in Cartan non-
split curves. We will show that they form the so called Heegner systems and satisfy
the same properties as the Heegner points coming from classical modular curves.

The present article is organized as follows: in the first section we recall the basic
definitions of Cartan non-split curves, and give a moduli space interpretation for
them. Our moduli problem is quite different from the classical ones and the one
described in [RW14], but it makes the geometric and analytic properties of Hecke
operators and Heegner systems more clear. For example, with this moduli interpre-
tation it is easy to define Hecke operators (outside p), and show that this definition
agrees with the double coset definition (as in [Che98]). It is also easily generalizable
to more general conductors.

After giving the basics of modular forms for Cartan non-split groups, we move
to the question of computing their q-expansions. We prove that such expansions,
under a suitable normalization that we propose, have coefficients in Q(ξp) (the p-th
cyclotomic field). We want to point out that we do not know a way for theoretically
computing the q-expansion. Using our normalization, we compute it numerically (by
solving a linear system) and once we know the coefficient field, we can compute it
exactly. Furthermore, we only need to compute numerically one coefficient of the
form (see the computational digression in Section 3). A Theorem of Chen and Edix-
hoven ([Che98, Edi96]) proves in this case that our curve is isogenous to a quotient of
the Jacobian of the Cartan non-split curve, so one can use the Eichler-Shimura con-
struction and the Abel-Jacobi map to compute the modular parametrization. One
big obstacle here is that the cusps for the Cartan non-split curves are not defined
over Q (implying that the modular parametrization is not rational), so we average
such maps over all the cusps, to get a rational map (which we also call modular
parametrization). The effect of averaging over all cusps is the same as that of con-
sidering all the Cartan curves (for the different choices of a non-square modulo p), so
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an answer to our first question is that for constructing Heegner points one needs all
the curves at the same time. It is a natural and interesting question to understand
which is the Manin constant in our situation. At the time, we do not have an answer
to this question (but we give some examples at the end).

Once one understands the level p2 case, it is natural to consider mixed cases,
i.e. elliptic curves whose conductor is not square-free and an order in an imaginary
quadratic field where some primes of the conductor are split and the other ones are
inert. There are no extra difficulties, nevertheless, we believe that considering first
the conductor p2 case gives a better understanding of the new ideas involved.

The third and fourth sections are about constructing Heegner points in the gen-
eral case. We first give some easy remarks on the Abel-Jacobi map and then show
how our moduli interpretation allows us to construct Heegner points and Heegner
systems satisfying the usual compatibility relations. Using this we can prove a big
part of the Birch and Swinnerton-Dyer conjecture for E/K by applying the usual
Darmon-Kolyvagin and Gross-Zagier-Zhang formula machinery (Theorem 4.7 and
Theorem 4.8 ).

The last section of the article contains many examples where we show how the
method works for different elliptic curves and what are the Manin constants in each
case.

Acknowledgments: We would like to thank Professor Henri Darmon for many
suggestions and for the discussions the first author had with him while visiting McGill
University. We also would like to thank Professor Imin Chen for explaining us the
technicalities of the definition of Hecke operators on Cartan non-split groups and
Professor Tim Dokchitser for the results in Appendix A. We also thank the referee
and Juan Restrepo for useful comments and corrections.

1. Cartan non-split curves of prime level

1.1. Definition. Throughout this work, p will denote an odd prime and ε will denote
a non-square modulo p. Let Cε

ns(p) the subgroup of GL2(Fp) given by the matrices
of the form

Cε
ns(p) =

{(
a b

bε a

)
such that(a, b) 6= (0, 0)

}
.

Given a matrix A ∈ M2×2(Z), we denote by Ā its reduction mod p. Let M ε
ns(p) be

the suborder of M2×2(Z) given by

Mε
ns(p) =

{
A ∈ M2×2(Z) : Ā ∈ Cε

ns(p) ∪ ( 0 0
0 0 )
}
.

Denote by Γεns the elements in M ε
ns(p) with determinant 1. When it is clear from

the context we will omit ε and/or p in the notation.
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We can also consider the normalizer of the Cartan subgroup

C+
ns(p) =

{(
a b

bε a

) ⋃(
a b

−bε −a

)
such that (a, b) 6= (0, 0)

}
,

and we can define M+
ns(p) and Γ+

ns(p) as before.
Consider the extended Poincare half planeH∗ and its quotientXns(p) = Γns(p)\H∗,

which gives the Cartan non-split modular curve. It corresponds to the compactifica-
tion of the curve Yns(p) = Γns(p)\H. Analogously we can define X+

ns(p) = Γ+
ns(p)\H∗.

Since Det : Cns(p) → Fp is surjective, the modular curves Xns(p) and X+
ns(p) are

defined over Q.

1.2. Moduli interpretation. For our purposes we will only work with complex
points of the Cartan curve, so we will state our moduli interpretation for them.
Nevertheless the same computations can be made over any scheme, and prove the
existence of an integral model for Cartan non-split curves as well as their normalizers.

Consider pairs [E, φ], where E/C is an elliptic curve and φ ∈ EndFp(E[p]) satisfies
that φ2 is multiplication by ε. We say that two such pairs [E, φ], [E ′, φ′] are iso-
morphic if there exists an isomorphism of elliptic curves Ψ : E → E ′ such that the
following diagram is commutative:

E[p]
φ //

Ψ
��

E[p]

Ψ
��

E ′[p]
φ′

// E ′[p]

Proposition 1.1. The moduli problem of pairs [E, φ] as above is represented by
the Cartan non-split curve Y ε

ns(p). More concretely, the isomorphism class Γεns(p)τ

corresponds to the pair [Eτ , φτ ] where Eτ = C/ 〈τ, 1〉 and if Bτ =
{

1
p
, τ
p

}
is a basis

of Eτ [p], then φτ is the endomorphism of Eτ [p] whose matrix in the basis Bτ equals
( 0 1
ε 0 ).

Proof. We need to check the following facts:

• The previous correspondence between points in Y ε
ns(p) and pairs [E, φ] is well

defined.
• This map is bijective.

Let τ and τ ′ be elements in the upper half plane, which correspond to pairs
[Eτ , φτ ], [Eτ ′ , φτ ′ ]. If we prove that such pairs are isomorphic (with the previous
identification) if and only if τ and τ ′ are equivalent under Γεns(p), we get that the
map is well defined and injective.
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It is a classical result that any morphism Ψ between two elliptic curves is given
by multiplication by a complex number α. In particular, if Ψ is an isomorphism,
α〈τ, 1〉 = 〈τ ′, 1〉, so that there exists ( a bc d ) ∈ SL2(Z) with ατ = aτ ′+b and α = cτ ′+d.
From our moduli interpretation, we also need the map Ψ to satisfy φτ ′Ψ = Ψφτ . In
the chosen basis, this implies checking that

• Ψ(φτ (
1
p
)) = φτ ′(Ψ(1

p
)).

• Ψ(φτ (
τ
p
)) = φτ ′(Ψ( τ

p
)).

An easy computation shows that

• Ψ(φτ (
1
p
)) = Ψ( τε

p
) = ατε

p
= aετ ′+bε

p
.

• Ψ(1
p
) = α

p
= cτ ′+d

p
, so φτ ′(Ψ(1

p
)) = c+dετ ′

p
.

We need the equality to hold modulo 〈1, τ ′〉, which implies that a ≡ d mod p and
c ≡ εb mod p. In particular, the pairs [Eτ , φτ ] and [Eτ ′ , φτ ′ ] are isomorphic by a map
satisfying the first condition if and only if τ and τ ′ are equivalent under Γεns(p).
The commutative condition for the second basis elements is similar and gives the
same constraint.

Surjectivity follows from the following facts:

• Let M ∈ GL2(Fp) be such that M2 = ( ε 0
0 ε ). Then there exists A ∈ SL2(Z)

such that ĀMĀ−1 = ( 0 1
ε 0 ). This will be proved in Lemma 1.2.

• Let φ ∈ EndFp(E[p]), and B,B′ bases of E[p]. If [φ]B denotes the matrix
of φ in the basis B, and C the change of basis matrix from B to B′, then
[φ]B = C−1[φ]B′C (this is just linear algebra).
• Let [E, φ] be a pair as before, let Ψ : E → E ′ be an isomorphism, B be a

basis of E[p], B′ = Ψ(B) be the image of such basis and φ′ the element in
EndFp(E

′[p]) making the diagram commute. Then [φ]B = [φ′]B′ .

Let [E, φ] be any such pair. Up to isomorphism, we can assume that E = C/〈τ, 1〉,
where τ ∈ H. Let B =

{
1
p
, τ
p

}
be a basis of E[p]. By the first fact, there exists a

matrix A ∈ SL2(Z) such that Ā[φ]BĀ
−1 = ( 0 1

ε 0 ). Then the other two facts prove that
[E, φ] ' [C/〈A · τ, 1〉, φ′], where [φ′]{ 1

p
,A·τ
p } = ( 0 1

ε 0 ). This proves surjectivity. �

Lemma 1.2. Let M ∈ GL2(Fp) satisfying M2 = ( ε 0
0 ε ). Then, there exists A ∈

SL2(Z) such that ĀMĀ−1 = ( 0 1
ε 0 ).

Proof. Clearly there exists B ∈ GL2(Fp) such that B−1MB = ( 0 1
ε 0 ). Consider the

centralizer of ( 0 1
ε 0 ), which is given by Cε

ns(p) and take any matrix C of determinant
det(B)−1 there. We have thatBC ∈ SL2(Fp) and (BC)−1M(BC) = ( 0 1

ε 0 ). The result
follows from the fact that the reduction map SL2(Z) 7→ SL2(Fp) is surjective. �

Remark 1.3. If we want to consider not the Cartan non-split but its normalizer, we
consider pairs [E, φ] as before, but where two such pairs are isomorphic if Ψφ = ±φ′Ψ.
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It is clear that the same proof works and that we have an involution in Xns(p) given
by sending [E, φ] to [E,−φ] whose fixed points are precisely X+

ns(p). We call this
involution ωp.

1.3. Modular Forms. As in the classical case, given a subgroup Γ of SL2(Z), one
can define what modular forms are for such group. Let f : H → C be an holomorphic
function. If ( a bc d ) ∈ Γ, and k ∈ Z, we define the slash operator

f |k[( a bc d )](z) = (cz + d)−kf

(
az + b

cz + d

)
.

Then Mk(Γ) is the space of holomorphic functions which are invariant under the
previous action for all elements in Γ and which are holomorphic at all the cusps. Sk(Γ)
is the subspace of cusp forms, which are those forms in Mk(Γ) whose q-expansion at
all the cusps have zero constant coefficient.

We want to relate S2(Γns(p)) to modular forms for classical subgroups. The con-
tainment Γ(p) ⊂ Γns(p) gives the reverse inclusion at the level of modular forms

S2(Γns(p)) ⊂ S2(Γ(p)). Let αp =
(
p 0
0 1

)
. If f ∈ S2(Γ(p)), f̃ = f |2[αp] is a modular

form for (αp)
−1Γ(p)αp. But if M = ( a bc d ), α−1

p Mαp =
(
a p−1b
pc d

)
. So if M ∈ Γ(p) we

obtain that (αp)
−1M(αp) ∈ Γ0(p2) ∩ Γ1(p) and conversely. That is, slashing by the

matrix αp we obtain the isomorphism

(1) S2(Γ(p)) ∼= S2(Γ0(p2) ∩ Γ1(p)) ∼=
⊕
{χ,χκp}

S2(Γ0(p2), χ2),

where κp denotes the quadratic character of conductor p, and the sum is taken over
pairs {χ, χκp}, with χ any character of conductor dividing p (but we do not want
to count χ, χκp twice). The last isomorphism comes from the fact that the group
Γ0(p2)/(Γ0(p2) ∩ Γ1(p)) is abelian, so we can decompose the space of modular forms
as a sum of the irreducible representations of such quotient, which correspond to the
even (hence square) characters of conductor dividing p.

1.4. Hecke operators. There are two ways to define Hecke operators for classical
subgroups. One of them is to define correspondences between the modular curves
and, via the moduli interpretation, translate this action to an action on modular
forms while the other one is in terms of double coset operators. We want to give this
two interpretations in our setting, since each of them has its own advantages.

1.4.1. Geometric definition. Let n be a positive integer prime to p, and [E, φ] a pair
as before, corresponding to the moduli interpretation of the curve Y ε

ns(p). Define the
Hecke operator

T ε
n([E, φ]) =

∑
ψ:E→E′

[E ′,
1

n
ψ ◦ φ ◦ ψ̂],
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where the sum is over degree n isogenies ψ : E → E ′, and ψ̂ denotes the dual isogeny.
Note that since gcd(n, p) = 1, 1

n
∈ EndFp(E

′[p]). Also, since ψ ◦ ψ̂ and ψ̂ ◦ ψ are

multiplication by n, ( 1
n
ψ ◦ φ ◦ ψ̂) ◦ ( 1

n
ψ ◦ φ ◦ ψ̂) equals multiplication by ε, so the

points in the sum belong to Y ε
ns(p).

1.4.2. Algebraic definition. We make a little survey of Hecke operators for the Cartan
non-split curve, for which we follow closely Shimura’s book ([Shi94]). Let

∆p := {A ∈ M2×2(Z) : det(A) > 0 and gcd(p, det(A)) = 1} .

Let ∆ε
ns(p) be the intersection ∆p ∩M ε

ns(p), i.e. the set of of matrices in M ε
ns(p)

with positive determinant relatively prime to p. Let Γ(p) be the level p congruence
subgroup, and let

∆(p) :=
{
A ∈ ∆p : Ā ≡ ( 1 0

0 ∗ ) (mod p)
}
.

Let R(Γεns(p),∆
ε
ns(p)) and R(Γ(p),∆(p)) be the Hecke rings as defined in [Shi94]

(page 54). We have the following Lemma.

Lemma 1.4. The Hecke rings R(Γεns(p),∆
ε
ns(p)), R(SL2(Z),∆p) and R(Γ(p),∆(p))

are isomorphic.

Proof. Proposition 3.31 of [Shi94] proves that the last two ones are isomorphic.
Clearly we have a map from R(Γεns(p),∆

ε
ns(p)) to R(SL2(Z),∆p) given by

Γεns(p)αΓεns(p)→ SL2(Z)α SL2(Z).

Surjectivity is proven in exactly the same way as the classical case. To prove injec-
tivity, note that by Lemma 3.29, part (1) of [Shi94], if α ∈ ∆ε

ns(p), then

(2) Γεns(p)αΓεns(p) =
{
ξ ∈ SL2(Z)α SL2(Z) : ξ̄ ∈ Γεns(p)α

}
.

Then if α, β ∈ ∆ε
ns(p) are such that SL2(Z)α SL2(Z) = SL2(Z)β SL2(Z), they have

the same determinant, and by (2), Γεns(p)αΓεns(p) = Γεns(p)βΓεns(p). �

If ` is a prime number different from p, then the Hecke operator T ε
` is given by

the action of the double coset Γεns(p)αΓεns(p), where α ∈ ∆ε
ns(p) is any matrix with

determinant `. In particular, if ` ≡ 1 (mod p), we can take α = ( 1 0
0 ` ) and get the

classical Hecke operator. By T` we will denote the classical Hecke operator acting on
S2(Γ(p)) and by T̃` the one acting on S2(Γ0(p2), χ). Using the isomorphism (1), we
get the following commutative diagram
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S2(Γ(p))
|(αp)
//

T`

��

⊕
{χ,χκp} S2(Γ0(p2), χ2)

T̃`
��

S2(Γ(p))
|(αp)
//
⊕
{χ,χκp} S2(Γ0(p2), χ2)

(3)

Proposition 1.5. Let ` be a prime congruent to 1 modulo p. Let γ∞ =
(
`c1 c2
p2` `

)
and γi = ( 1 i

0 ` ) , for i = 0, . . . , ` − 1 be representatives for SL2(Z) ( 1 0
0 ` ) SL2(Z) mod-

ulo SL2(Z). (c1 and c2 are integers such that the matrix γ∞ has determinant `).
Then {αpγ∞α−1

p , αpγiα
−1
p }`−1

i=0 is a set of representatives for Γεns(p) ( 1 0
0 ` ) Γεns(p) mod-

ulo Γεns(p).

Proof. This is just an easy exercise. Note that αpγ∞α
−1
p ≡ ( 1 0

0 ` ) (mod p). �

Corollary 1.6. If ` ≡ 1 (mod p), then the Hecke operator T ε
` acting on S2(Γεns(p))

is the same as the Hecke operator T` acting on S2(Γ(p)).

Corollary 1.7. If ` ≡ ±1 (mod p), then the Hecke operator T ε
` acting on S2(Γ+,ε

ns (p))
is the same as the Hecke operator T` acting on S2(Γ(p)).

Proof. This is because α = ( 1 0
0 ` ) ∈ ∆+,ε

ns (p). �

Let ` be a prime number different from p, and let B ∈ ∆ε
ns(p) be any matrix with

determinant `. Let Aε` ∈ SL2(Z) be such that Aε` ≡ B
(

1 0
0 1/`

)
(mod p). The action

of Aε` in S2(Γ(p)) defines an operator that we will denote υε` . Note that such action
does not depend on the choice of Aε`, but only on B, since any two such matrices are
equivalent modulo p.

Lemma 1.8. The operator υε` is an isomorphism from S2(Γεns(p)) to S2(Γε`
2

ns (p))
which does not depend on the choice of B.

Proof. The first statement comes from the fact that B̄ ∈ Cε
ns(p), and the easy com-

putation
(

1 0
0 1/`

)−1
Cε
ns(p)

(
1 0
0 1/`

)
= Cε`2

ns (p). The second fact is immediate as well: if

A1 and A2 are two matrices in SL2(Z) corresponding to B1 and B2, then A1A
−1
2 has

determinant 1 and modulo p is in Γεns(p), hence it acts trivially. �

Proposition 1.9. Let ` be a prime number different from p. Then T ε
` = T` ◦ υε` .

Proof. Let Aε` be as before. To compute the Hecke operator T ε
`, we need to find

representatives for Γεns(p)\ (Γεns(p)A
ε
` ( 1 0

0 ` ) Γεns(p)). Let {γ∞, γi}`−1
i=0 be the set of rep-

resentatives for SL2(Z)\ (SL2(Z) ( 1 0
0 ` ) SL2(Z)). Then {Aε`αpγ∞α−1

p , Aε`αpγiα
−1
p }`−1

i=0 is
clearly a set of representatives for our quotient and for these representatives the
statement is clear. �
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In particular, if f ∈ S2(Γεns(p)) ⊂ S2(Γ(p)), then T`(f) ∈ S2

(
Γ
ε/`2

ns (p)
)

. Moreover,

we have the following:

Proposition 1.10. Let ` be a prime number different from p. The operators T` :

S2(Γεns(p))→ S2(Γ
ε/`2

ns (p)) and υ` : S2(Γεns(p))→ S2(Γε`
2

ns (p)) are morphisms of Hecke
modules.

Proof. Choose α ∈ ∆ε
ns(p) of determinant q (6= p) such that the entry (2, 1) is divisible

by `. It is easy to see that T` restricted to S2(Γεns(p)) is equal to Γεns(p) ( 1 0
0 ` ) Γ

ε/`2

ns (p).

Using Proposition 3.7 part (1) of [Shi94] we find that T` T
ε
q = Γεns(p)α ( 1 0

0 ` ) Γ
ε/`2

ns (p).

On the other hand, since α ( 1 0
0 ` ) = ( 1 0

0 ` )α′ with α′ ∈ ∆
ε/`2

ns (p) of determinant q,

it follows by part (2) of the same proposition that T` T
ε
q = T ε/`2

q T` which clearly
implies the first part.

The proof of the second part is exactly the same, by noting that υε` is the double

coset operator Γε(p)Aε`Γ
ε`2(p). �

Now we can prove the relation between the geometric and the algebraic definition
of the Hecke operators.

Theorem 1.11. The definition of Hecke operators acting as correspondences on the
curve Y ε

ns(p) and that of double quotients agree.

Proof. We just need to prove that the representatives used for one definition can be
taken as representatives for the other one. For simplicity, we restrict to prime Hecke
operators T ε

` (` 6= p). Recall that both definitions for the whole modular group
SL2(Z) do agree, so we can take as representatives for the degree ` isogenies the set
{1
`
αpγ∞α

−1
p , 1

`
αpγiα

−1
p }`−1

i=0 . Then,

T ε
`([C/〈τ, 1〉, φτ ]) =

`−1∑
i=0

[C/〈 τ+pi` ,1〉, φi] + [C/〈`c1τ + pc2, p`τ + `〉, φ∞],

where [φi]{ 1
p
, τ+pi
`p } =

(
0 1/`
ε` 0

)
. To compute the upper half plane point, we need to

compute the change of basis matrix taking φi to the form ( 0 1
ε 0 ). For i = 0, . . . , `− 1,

the matrix
(

1 0
0 1/`

)
is such a matrix. Let B ∈ ∆ε

ns(p) be a matrix of determinant

`, and let Aε` ∈ SL2(Z) be such that Aε` ≡ B
(

1 0
0 1/`

)
(mod p) as before. Then

[C/〈 τ+pi` ,1〉, φi] ' [C/〈τ ′i , 1〉, φτ ′i ], where τ ′i = Aε`
(

1 pi
0 `

)
τ and [φτ ′i ]Bτ ′i

= ( 0 1
ε 0 ) as we

wanted.
For φ∞, [φ∞]{ `p , `c1τp } =

(
0 1/`
ε` 0

)
also, and the matrix

(
1 0
0 1/`

)
takes this matrix to the

standard form. Let B ∈ ∆ε
ns(p) as before, and Aε` ∈ SL2(Z) such that Aε` ≡ B

(
1 0
0 1/`

)
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(mod p). Then Aε`αpγ∞α
−1
p takes the pair to an upper half plane point with the

required property. �

Recall the following result by Chen and Edixhoven, which is crucial for this work.
If C is a curve, we denote by Jac(C ) its Jacobian.

Theorem 1.12 (Chen-Edixhoven). The new part of Jac(X+
0 (p2)) is isogenous to

Jac(X+
ns(p)). Moreover, Jac(Xns(p)) and the new part of Jac(X0(p2)) are isogenous.

Furthermore, the isogenies are Hecke equivariant.

Proof. See Theorem 1 of [Che98] , Theorem 1.1 of [Edi96] and Theorem 2 of [dSE00].
Although the Hecke equivariant condition is not explicitly stated, by Theorem 2 of
[dSE00] the decompositions are functorial in (M,α), hence they are preserved by
all endomorphisms of M that commute with the G-action. In the case of Jacobians
of modular curves this means that the isogenies commute with all Hecke operators
of level prime to p. We want to thank Professor Bas Edixhoven for explaining this
subtle detail to us. �

Remark 1.13 (Multiplicity one for newforms). Recall that if g ∈ S2(Γ0(N), χ) is a
newform, then any other form in the same space with the same Hecke eigenvalues is
a multiple of it (see Theorem 5.8.2 of [DS05]).

In particular, if we start with a normalized newform g ∈ S2(Γ0(p2)) such that
T`g = λ`g for all primes ` 6= p, the last Theorem implies the existence of a normalized
form f ∈ S2(Γεns(p)) such that T ε

` f = λ`f for all ` 6= p. Moreover, since we have
multiplicity one for classical newforms in S2(Γ0(p2)) we must have multiplicity one
for a system of eigenvalues (outside p) for the Hecke algebra R(Γεns(p),∆

ε
ns(p)).

We need to compute the Fourier expansion of f from that of g. Using such expan-
sion, we can compute the modular parametrization needed for constructing Heeg-
ner points. If χ is a character of conductor p, and g ∈ S2(Γ0(p2)), we denote by
g ⊗ χ ∈ S2(Γ0(p2), χ2) the twist of the g by χ.

Theorem 1.14. Let g ∈ Snew2 (Γ0(p2)) be a normalized newform with eigenvalues
λ` (∀ ` 6= p), and let f ∈ S2(Γεns(p)) be the unique normalized eigenform such that
T ` f = λ`f (∀` 6= p). Let πp be the local automorphic representation of g at p. Then

• If πp is supercuspidal g ⊗ χ is a newform in S2(Γ0(p2), χ2) for all characters
χ of conductor p and

f̃ = f |2[αp] =
∑

aχ(g ⊗ χ),

where the sum is over all characters of conductor dividing p and aχ ∈ C.
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• If πp is Steinberg there exists a newform h ∈ S2(Γ0(p)) such that h⊗κp = g,
where κp is the quadratic character of conductor p, and

f̃ = f |2[αp] =
∑

aχ(g ⊗ χ) + ah,

where the sum is over all characters of conductor dividing p and aχ, a ∈ C .
• If πp is a ramified Principal Series there exists a non-quadratic character θp

of conductor p and newforms h ∈ S2(Γ0(p), θp
2
), h̄ ∈ S2(Γ0(p), θ2

p) such that

h⊗ θp = g = h̄⊗ θ̄p. Then

f̃ = f |2[αp] =
∑

aχ(g ⊗ χ) + a1h+ a2h̄,

where the sum is over all characters of conductor dividing p and aχ, a1, a2 ∈ C.

Before proving the Theorem, recall the following result, which is a consequence of
Serre’s open image Theorem (or the Sato-Tate Conjecture).

Proposition 1.15. Let g ∈ S2(Γ0(p2)) be an eigenform with rational eigenvalues,
without complex multiplication. Then the set of primes ` satisfying λ` = 0 has zero
density. In particular, given any nonzero class a mod p we can find a prime number
` such that ` ≡ a mod p and λ` 6= 0.

Proof of Theorem 1.14. Assume first that f does not have CM. Let χ be a character
of conductor dividing p, and let

Fχ(f) =
∑
`

χ(`−1)
T`(f)

λ`
,

where the sum is over any set of representatives {`} of elements in F×p satisfying
λ` 6= 0.

Claim: The sum does not depend on the choice of representatives.

Let `, q be two relatively prime numbers such that ` ≡ q mod p and both λ` and

λq are non-zero (they exist by Proposition 1.15). Then T`(f)
λ`

and Tq(f)

λq
are eigenforms

for S2(Γ
ε/q2

ns ), and have the same Hecke eigenvalues, so from multiplicity one, one is a
multiple of the other. Applying Tr where r is a prime such that λr 6= 0, (r : `q) = 1,
r` ≡ 1 mod p and using that Tr` = T r` we get the claim.

It is clear that the form f is a linear combination of the forms Fχ(f) (by the orthog-
onality relations of the characters), so we just need to relate the forms Fχ(f)|2[αp]
with the forms g ⊗ χ.

Let q 6= p be any prime such that λq 6= 0. Without loss of generality, we can assume
that ` is prime to q and that λ` 6= 0. If this is not the case, we can choose `′ ≡ `
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(mod p) such that λ`′ 6= 0 and work with this prime instead. Using Diagram (3) we
get

T̃q(Fχ(f)|2[αp]) =
∑
`

χ(`−1)T̃q

(
T̃`(f̃)

λ`

)
=
∑
`

χ(`−1)
T̃qT̃`(f̃)

λ`
=

∑
`

χ(`−1)
T̃q`(f̃)

λ`
= χ(q)λq

∑
`

χ((q`)−1)
T̃q`f̃

λq`
= χ(q)λqFχ(f)|2[αp].

Therefore, Fχ(f)|2[αp] is an eigenform with the same eigenvalues as g⊗χ. Suppose
now that λq = 0; we want to prove that Tq(Fχ(f)) = 0 as well. It suffices to show that
in such case Tq(f) = 0. Suppose this is not the case, i.e. that λq = 0 but Tq(f) 6= 0.
Let r be a prime such that r ≡ q mod p and λr 6= 0. Then, by multiplicity one,
there exists a constant c such that cTqf = Trf . Applying a proper Hecke operator
as before, we get a contradiction.

Then Fχ(f)|2[αp] is a form in S2(Γ0(p2) ∩ Γ1(p)) with the same eigenvalues as
g ⊗ χ. If g ⊗ χ turns out to be a newform, then one is a multiple of the other and
we are done. If g ⊗ χ is not new (for some χ), then πp corresponds to a ramified
principal series (there are exactly two conjugated characters for which g ⊗ χ is old)
or πp is Steinberg (in which case g ⊗ κp is old). In both cases, there exists a form h
as in the statement, such that Fχ(f)|2[αp] is a linear combination of h(z) and h(pz).
But 〈h(z), h(pz)〉 = 〈h(z), h⊗ 1p〉, where 1p is the non-primitive trivial character of
conductor p. (note that by hypothesis h⊗ 1p is a twist of g). In all cases, depending
on the local type of the representation πp, the statement follows.

If f has CM, then f = f ⊗κp. In particular, if n is not a square modulo p, an = 0.
On the contrary, if n is a non-zero quadratic residue modulo p, we can find, as before,
a prime ` such that n ≡ ` mod p and λ` 6= 0. The same argument as in the previous
case works, but considering the sum only over representatives of {squares in F×p }.

As before, it is easy to see that this definition does not depend on the representa-
tives chosen and if we apply to this sum any Tn with n a non-square modulo p then
TnFχ(f) = λnf = 0, while if n is a square the same proof works. �

Remark 1.16. If f ∈ S2(Γ+,ε
ns (p)) is an eigenform then T`f = λ`f for ` ≡ −1 mod p.

In particular, if χ is an odd character, Fχ(f) =
∑

` χ(`−1)T`(f)
λ`

= 0, so all the non-
zero coefficients in the linear combination of Theorem 1.14 are those corresponding
to even characters.

Similarly, if f ∈ S2(Γ−,εns (p)) (i.e. any matrix in the normalizer but not on the Car-
tan itself acts as −1), then it is easy to see that υ` acts as −1 for ` ≡ −1 (mod p).

Then λ`f = T ` f = T`υ`f = −T`f , which implies that Fχ(f) =
∑

` χ(`−1)T`(f)
λ`

= 0
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whenever χ is even, so the non-zero coefficients in the linear combination of Theo-
rem 1.14 are those corresponding to odd characters.

1.5. Fourier expansions. To compute the modular parametrization we need to
compute the Fourier expansion, and find the appropriate normalization of it (which
does not coincide with the one for classical modular forms). For that purpose, we
first need to understand the action of the Galois group Gal(C/Q) on modular forms.

For a ∈ Q2 and z ∈ H define

fa(z) =
g2(z, 1)g3(z, 1)

∆(z, 1)
℘(a ( z1 ) ; z, 1),

where ℘(−;ω1, ω2) is the classical Weierstrass function associated to the lattice L =
〈ω1, ω2〉; g2(L) = 60G4(L), and g3(L) = 140G6(L) correspond to the lattice functions
G2n(L) =

∑
w∈L

1
w2n (see Section 6.1 of [Shi94] for example). These functions satisfy

fa(γ(z)) = faγ(z) for every γ ∈ SL2(Z). Let Rp be the field of modular functions of
level p, which by Proposition 6.1 of [Shi94] is

Rp = C(j, fa | a ∈ (p−1Z2)/Z2, a /∈ Z2).

Let σ ∈ Gal(C/Q(ξp)). Since the functions j, fa have Fourier expansions belonging
to Q(ξp) we have that if f = cj +

∑
a cafa,

σ(f) = σ(c)j +
∑
a

σ(ca)fa.

Choose representatives βj for ±Γ(p)\Γεns(p) such that b ≡ 0 (mod `) (the number `
is auxiliary and we will choose it in different ways depending on our purposes). Then
we can easily see that the field of modular functions for the non-split Cartan is the
subfield of Rp given by

Rε
ns(p) = C(j,

∑
i

faβi).

Clearly it does not depend on the representatives chosen. In order to understand
the action of Gal(C/Q) on modular forms for the Cartan subgroup, it is enough to
understand the effect of Gal(Q(ξp)/Q) on them. Let ξp a fixed p-th root of unity, and

consider the automorphism σ` given by σ`(ξp) = ξp
`−1

. Extend this automorphism
to C and call it σ. By theorem 6.6 of [Shi94] and Theorem 3 (Chapter 6, section 3)
of [Lan87] this automorphism acting on the meromorphic modular functions fa, is
given by faα`−1 .

Proposition 1.17. Let f be a meromorphic form of weight 0 for Γεns(p). Let σ ∈
Gal(C/Q) such that σ = σ` when restricted to Q(ξp). Then σ(f) is a meromorphic

form of weight 0 for Γε`
2

ns (p).
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Proof. Since f is a meromorphic form of weight 0, we have

f = λj +
∑
a

λa(
∑
i

faβi).

Then

σ(f) = σ(λ)j +
∑
a

σ(λa)(
∑
i

faβiα`−1 ).

The action on each fa can be written as faβiα`−1 = faα`−1 (α`βiα`−1 ). Since (α`βiα`−1)

are representatives for ±Γ(p)\Γε`2ns (p) we see that σ(f) is an automorphic form for
the required group. �

Remark 1.18. Although the last result is only stated for weight 0 forms, it also applies
to modular forms of other weights by dividing the form by an appropriate Eisenstein
series with rational Fourier coefficients.

If f ∈ S2(Γεns) is an eigenform for the Hecke operators then we know that σ(f) ∈
S2(Γε`

2

ns ). We want to prove that σ(f) is an eigenform for its respective Hecke oper-
ators with Galois conjugate eigenvalues.

Proposition 1.19. Let f be a meromorphic modular function for Γεns(p). Then

σq(υ
ε
` (f)) = υεq

2

` (σq(f)).

Proof. Choose Aε` in such a way that its (1, 2) entry is divisible by q. It is easy to
see that

(
1 0
0 q

)
Aε`
(

1 0
0 1/q

)
, which belongs to SL2(Z) by our choice of Aε`, gives the

same action on the fa as Aεq
2

` (since both matrices are easily seen to be equivalent
modulo p). This proves the result on weight zero forms. For general weights, the
same argument as in Remark 1.18 applies. �

Corollary 1.20. With the previous notation, T ε`2

q (σ`(f)) = σ`(T
ε
q(f)).

Proof. This follows from the previous Proposition and the fact that σ` commutes
with Tq (this is easily obtained by looking at the action on q-expansions). �

Recall from Theorem 1.12 that the eigenforms in S2(Γε`
2

ns (p)) are in correspondence
with eigenforms in S2(Γ0(p2))new. The Galois group Gal(Q/Q) acts on S2(Γ0(p2))
and commutes with Hecke operators. If σ is an element of such group and h is a
modular form, we denote this action by hσ.

If f is an eigenform in S2(Γε`
2

ns (p)) which corresponds to a form g ∈ S2(Γ0(p2))new,
we denote by fσ any non-zero eigenform that corresponds to the form gσ.

Corollary 1.21. With the previous notations, let f ∈ S2(Γεns(p)) be an eigenform.
Then there exists c such that T`f = cσ`−1(fσ`).
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Proof. By Proposition 1.10, T`(f) is an eigenform in S2

(
Γ
ε/`2

ns (p)
)

with the same

eigenvalues as f . By Corollary 1.20, σ`−1(fσ`) is an eigenform whose eigenvalues are
σ`−1 applied to that of fσ` , which equals that of f as well. The result now follows
from multiplicity one. �

With this setup we can give a first statement on the coefficient field of eigenforms
for the Cartan subgroup.

Theorem 1.22. Let f ∈ S2(Γεns(p)) be an eigenform which has the same eigenvalues

as a rational newform g ∈ S2(Γ0(p2)). Normalize f̃ such that the first Fourier

coefficient is rational. Then f̃ (and f) have a q-expansion belonging to Q(ξp).

Proof. Let ` ≡ 1 (mod p) be a prime number such that λ` 6= 0, and σ ∈ Gal(C/Q(ξp))
arbitrary. By Corollary 1.21 and the fact that gσ` = g (so fσ` = f), there is a c such
that

T`f = cσ`−1(f).

We know that T`f = λ`f (by Corollary 1.6). Looking at the first Fourier coef-
ficient (which is rational), we get that c = λ` and hence f = σ`−1(f). Since
σ`−1 ∈ Gal(C/Q(ξp)) is arbitrary it follows that the q-expansion of f lies in the
desired extension. �

Remark 1.23. If we start with a newform g with coefficient field F , then the same
result proves that the coefficient field of f is contained in F (ξp).

Remark 1.24. By the orthogonality relations of the characters it follows that under
the previous normalization, the coefficient aχ0 attached to g in the linear combination

of f̃ in Theorem 1.14 belongs to Q(ξp), and the other coefficients belong to Q(ξp, ξp−1).

1.6. Rational modular forms. The curve Xε
ns(p) is defined over Q and has (p−1)

cusps which are all defined over Q(ξp) and are Galois conjugate of each other (see
[Ser97] Appendix 5). If σ` ∈ Gal(Q(ξp)/Q), then there exists A ∈ SL2(Z) such that
σ`(∞) = A · ∞. The matrix A can be taken to be equal to Aε` as defined before
Lemma 1.8. Recall that if f is a weight k modular form, its Fourier expansion at the
cusp Aε`∞ is given by the Fourier expansion of the form f |k[(Aε`)−1] at the infinity
cusp.

Let F εns(p) be the field of rational meromorphic functions for the Cartan non-
split group Γεns(p), i.e. F εns(p) := Q(j,

∑
i faβi). Combining Proposition 1.17 with

Lemma 1.8, it is easy to see that F εns(p) consists of all meromorphic functions in-
variant for the Cartan non-split, whose q-expansion at infinity belongs to Q(ξp) and
such that the Fourier expansion at σ`(∞) equals σ`−1(f). As in Remark 1.18, the
same argument applies to other weights.
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Definition 1.25 (Rational Modular Forms). A form f ∈ S2(Γεns(p)) is called rational
if its q-expansion at every cusp belongs to Q(ξp) and the expansion at the cusp σ`(∞)
equals that of σ`−1(f) at the infinity cusp for all ` ∈ F∗p.

Recall that if X is a curve defined over a field K, a differential form defined over K
is a differential form which is locally of the form fdg, where f and g are meromorphic
forms defined over K.

Proposition 1.26. If f ∈ S2(Γεns(p)) is rational, it defines a rational meromorphic

differential form f(q)dq
q

on Xε
ns(p), where q = e

2πiz
p .

Proof. Note that

f(q)
dq

q
=

2πi

p
f(z)dz =

f(z)
pj′(z)

2πi

dj.

Since j belongs to F εns(p) and pj′

2πi
is a rational weight 2 meromorphic for SL2(Z),

their quotient lies in F εns(p) as claimed. �

Theorem 1.22 says that if f is an eigenform with rational eigenvalues, normalizing
the form f in a way that its first coefficient is rational gives a form whose q-expansion
belongs to Q(ξp). If we multiply the form by any constant in such field, the same
holds. So the problem is the following: what is the right way to normalize f?

Theorem 1.27. Let f ∈ S2(Γεns(p)) be an eigenform with rational eigenvalues. Then
there exists a constant c ∈ Q(ξp) such that cf is rational, and this constant is unique
up to multiplication by a non-zero rational number.

Proof. It is clear that c, if exists, is unique up to a rational constant. By Proposi-
tion 1.9, it is enough to prove that for all prime numbers `

T`(cf) = λ`σ`−1(cf).

To prove existence, we consider two separate cases depending on whether the coeffi-
cient aχ0 corresponding to g in the linear combination of f is zero or is non-zero.
• If aχ0 6= 0, it belongs to Q(ξp) by Remark 1.24, so we take c = 1

aχ0
. We know that

both T`f and σ`−1(f) are forms in the same Cartan with the same eigenvalues for
the Hecke operators outside p, so one is a multiple of the other, i.e. there exists a
constant k such that

T`f = kσ`−1(f).

Extend the automorphism σ`−1 to the extension Q(ξp, ξp−1), trivially in ξp−1. By
Theorem 1.14

f̃ =
∑

aχ(g ⊗ χ) + a1h+ a2h̄.
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Let µ` denote the eigenvalue of T` acting on h. Applying T̃` and σ`−1 to this equality
we get ∑

χ

aχλ`χ(`) (g ⊗ χ) + µ`a1h+ µ̄`a2h̄ = T̃`f̃ = kσ`−1(f̃)

kσ`−1(f̃) = k

(∑
χ

σ`−1(aχ) (g ⊗ χ) + σ`−1(a1)h+ σ`−1(a2)h̄

)
.

Since the functions g⊗χ, h, h̄ are linearly independent, the result follows by looking
at the coefficient aχ0 (which is rational and non-zero).
• If aχ0 = 0, the argument is a little more subtle. We start normalizing f such that
its first non-zero coefficient is rational, so Theorem 1.22 implies that the q-expansion
belongs to Q(ξp). We have that for each `, there exists c` ∈ Q(ξp), which only
depends on the class of ` modulo p, such that T`f = λ`c`σ`−1(f) . We need to find a
non-zero c ∈ Q(ξp) such that T`(cf) = λ`σ`−1(cf) , ie, c` = σ`−1(c)/c.

Let ` be a generator of F∗p such that λ` 6= 0 (if g has CM take the square of a
generator). Let `i, 1 ≤ i ≤ p− 1, be distinct primes in the same class of ` modulo p
such that λ`i 6= 0. Then

∏p−1
i=1 `i ≡ 1 (mod p) and

(Πλ`i)f = T Π `i(f) = TΠ `i(f) = T`1 ◦ · · · ◦ T`p−1(f) = (Πλ`i) Nm(c`)f.

Then Nm
Q(ξp)
Q (c`) = 1 and by Hilbert theorem 90 there exists c ∈ Q(ξp) that satisfies

c` = σ`−1(c)/c. Since ` is a generator of F∗p it is easy to see that c satisfies cq =
σq−1(c)/c for every q prime to p. �

Proposition 1.28. With our normalization, the coefficients aχ satisfy for all primes
` 6= p that σ`−1(aχ) = aχχ(`) where σ`−1 ∈ Gal(Q(ξp, ξp−1)/Q(ξp−1)).

Proof. Follows at once from Theorem 1.27. �

Remark 1.29. Let f ∈ S2(Γ+
ns(p)). If ` ≡ −1 mod p, σ` corresponds to complex

conjugation in Q(ξp). Since the characters involved in the sum are even characters,
χ(`) = 1, and by the last Proposition σ` acts trivially. This implies that the co-
efficients of the modular forms in fact lie in Q(ξp + ξp

−1) = Q(ξ+
p ). Similarly, if

f ∈ S2(Γ−ns(p)) the coefficients will be purely imaginary.

Note that even for a rational modular form, it is not clear how to choose the
rational multiple of it which should correspond to “a1 = 1” in the classical case. The
best one can do is to choose the coefficients to be algebraic integers and have no
common rational integer factor.

Definition 1.30. Let f ∈ S2(Γεns(p)) be a rational eigenform with rational eigenval-
ues. We normalize f such that the following properties hold:

• The Fourier expansion of f has algebraic integer coefficients.
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• If n ∈ Z and n ≥ 2, f
n

does not have integral coefficients.

Clearly there exists a unique (up to multiplication by ±1) normalization satisfying
the above conditions. The choice of the sign is not clear.

Remark 1.31. If f ∈ S2(Γεns(p)) is a rational normalized eigenform with rational

eigenvalues then σqf ∈ S2(Γεq
2

ns (p)) is a rational normalized eigenform with rational
eigenvalues. Moreover since f is rational, we must have σqf = f |k[(Aεq)]. (See
Definition 1.25).

Recall that if we start with an eigenform f ∈ S2(Γεns(p)) (associated to a newform
g of level p2) we can do the Eichler-Shimura construction (Theorem 7.9 of [Shi94])
and associate to f the abelian variety A ε

f := Jac(Xε
ns(p))/(If Jac(Xε

ns(p))) where If
is the kernel of the morphism from R(Γεns(p),∆

ε
ns(p))→ Z which is given by sending

T ε
` to the eigenvalue λ` of f . This can be summarized with the following diagram

Xε
ns(p)

� � i //

&&

Jac(Xε
ns(p))

��
A ε
f

where i is the map sending P to (P ) − (∞) and the vertical map (which is clearly
rational) is given by the classical Abel-Jacobi map obtained by integrating the differ-
ential form f(q)dq

q
and its Galois conjugates over cycles. Since we are considering the

case where all the eigenvalues λ` are rational the abelian variety A ε
f is of dimension

1, and by Theorem 1.12 must be isogenous to the elliptic curve over Q corresponding
to the classical rational newform g. Such elliptic curve will be refered as the optimal
quotient of Jac(Xε

ns(p)) (note that it might not be isomorphic to the strong Weil
curve attached to g).

Since the cusps of the Cartan curve are defined over Q(ξp) (and are Galois conju-
gates over that field) the map i will not be defined over Q. Nevertheless, we can solve
this problem by averaging over all the conjugates of this map; that is, we consider
the following diagram

Xε
ns(p)

� � ι //

Φεp &&

Jac(Xε
ns(p))

��
Af

where ι is the map sending P to
∑

σ`∈Gal(Q(ξp)/Q)(P )− (σ`(∞)). Note that this is the
right and natural definition to make a map defined over Q out of i. Therefore, the
dot map (the so called modular parametrization) is defined over Q.
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Remark 1.32. If f ∈ S2(Γ+
ns(p)), since the normalizer has (p− 1)/2 cusps, all defined

and conjugated over the maximal real subfield of Q(ξp), we will take the average in
the definition of ι over all such cusps.

Lemma 1.33. Let q be a number not divisible by p. Then A ε
f = A εq2

f .

Proof. It is enough to see that the lattice of periods of f is the same as the lattice of
periods of σq(f) which is a rational eigenform for S2(Γεq

2

ns (p)) (Remark 1.31). Let D
be the trivial cycle {τ,M ετ} with M ε ∈ Γεns(p). Integrating f over that cycle we get∫ Mετ

τ

f(q)
dq

q
.

By changing variables z 7→ [Aεq]
−1z we obtain∫ [Aεq ]

−1Mετ

[Aεq ]
−1τ

f |k[(Aεq)]
dq

q
=

∫ [Aεq ]
−1Mε[Aεq ][A

ε
q ]
−1τ

[Aεq ]
−1τ

σq(f)
dq

q
.

This expression is the integral of σq(f) over the cycle
{
τ ′, [Aεq]

−1M ε[Aεq]τ
′}, where

τ ′ = [Aεq]
−1τ . Notice that since [Aεq]

−1M ε[Aεq] ∈ Γεq
2

ns (p) we have a trivial cycle in

Jac(Xεq2

ns (p)).
�

Let E denote the elliptic curve Af (which does not depend on ε). If ωE is a
holomorphic differential on C/ΛE, then by multiplicity one, its pullback under Φε

p

is a constant multiple of f(q)dq
q

, where q = e
2πiz
p . Such constant will be called the

Manin constant cε. Since E,Φε
p and f(q)dq

q
are rational, the Manin constant must be

a rational number. Finally is not difficult to see that the Manin constant does not
depend on ε so we can speak of the Manin constant c.

Proposition 1.34. Let Λf be the lattice attached to f and c the Manin constant.
Let Φω : C/Λf → E be the Weierstrass uniformization. Then Φε

p(τ) = Φω(zτ ), where

zτ = c

2πi

p

 ∑
σ`∈Gal(Q(ξp)/Q)

∫ A`−1τ

∞
σ`(f

ε)(z)dz


Proof. This follows from Proposition 2.11 of [Dar04] and the identity∫ τ

σ`(∞)

f(q)
dq

q
=

∫ A−1
` τ

∞
f |2[A`](q)

dq

q
=

∫ A−1
` τ

∞
σ`(f(q))

dq

q
.

�
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2. General levels

In this section we generalize the previous results to more general conductors.
Thanks to the Chinese Reminder Theorem, the theory works exactly the same as in
the p2 case. Let E/Q be an elliptic curve of conductorN2m with gcd(N : m) = 1, and
N = p1 . . . pr (pi distinct odd primes). By Shimura-Taniyama, it corresponds to an
eigenform g ∈ Snew2 (Γ0(N2m)) with rational eigenvalues. Let εi be a non-square mod-
ulo pi, for i = 1, . . . , r and let ~ε = (ε1, . . . , εr). Let Γ~εns(N,m) = ∩ri=1Γεins(pi)∩ Γ0(m)
and consider the curve X~ε

ns(N,m) = Γ~εns(N,m)\H∗.
The moduli interpretation is a mix of the classical one and the one of the previous

section. We consider tuples [E,ψ, φ1, . . . , φr], where E/C is an elliptic curve, ψ :
E → E ′ is a cyclic degree m isogeny (or equivalently a cyclic subgroup of order
m), and φi ∈ EndFpi (E[pi]) is such that φ2

i corresponds to multiplication by εi for

i = 1, . . . , r. A computation similar to that of Proposition 1.1 shows that X~ε
ns(N,m)

represents the moduli problem stated.

We have the following generalization of Theorem 1.12.

Theorem 2.1. Jac(X~ε
ns(N,m)) is isogenous over Q to Jac(X0(N2m))N

2-new by a
Hecke equivariant map.

Proof. Let X(Nm) be the modular curve which is the compactified moduli space
of triples (E/S/Q, φ), where S is a Q scheme, E/S is an elliptic curve and φ :
(Z/Nm)2

S 7→ E[Nm] is an isomorphism of group schemes over S. The group
GL2(Z/Nm) acts on the right on X(Nm). If Γ is any subgroup of GL2(Z/Nm),
one can consider the quotient X(Nm)/Γ via an appropriate moduli interpretation.
We are interested in the following two subgroups (as subgroups of GL2(Z/Nm)):
Γ~εns(N,m) and Γ̃ := ∩ri=1T (pi) ∩ Γ0(m), where T (p) is the standard maximal torus
modulo p (consisting of diagonal matrices). The quotients correspond respectively
to X~ε

ns(N,m) and X0(N2m) (as in [Edi96], (1.0.4)).
Using an inductive argument, it is enough to prove that the Jacobian of the quo-

tient by Γ1 = ∩ri=1T (pi) ∩ Γ0(m) is isomorphic to the p1-new part of the quotient
by Γ2 = ∩ri=2T (pi) ∩ Γ0(p2

1m). But in this case, one can prove Proposition 1.2 of
[Edi96] in exactly the same way, where now the subgroups of such paper correspond
to the local components at p1 of our subgroups (since both groups are the same at
all the other primes). Then the same formalism as Theorem 1.3 (of [Edi96]) proves
our claim. �

The previous theorem, together with the comments in the proof of Theorem 1.12,
imply that there exists f ∈ S2(Γ~εns(N,m)) with the same eigenvalues for the Hecke
operators T ~ε

` as g outside the primes pi. The theory works the same as in the level
p2 case, with some minor changes.
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The geometric definition of Hecke operators is the same as before. We consider
all degree n isogenies (for n prime to Nm) and consider the same action on each φi
and, as in the classical case, the image of the cyclic subgroup by our isogeny.

The algebraic definition is also the same, and the operator υ~ε` , as well as coset rep-
resentatives, are defined via a matrix A~ε` ∈ SL2(Z) which satisfies the corresponding
congruence modulo all the prime numbers pi and such that they belong to Γ0(m).

Note that in particular σ`−1 and T` will send modular forms for Γ~εns(N,m) to

modular forms for Γ
~ε/`2

ns (N,m), and all the results from the previous Section generalize
trivially. In particular we have the analogue of Theorem 1.14.

Theorem 2.2. Let f ∈ S2(Γ~εns(N,m)) be an eigenform. Then there exists eigenforms
hi ∈ S2(Γ0(Nim), χi), with Ni | N2, and χi a character of conductor N2/Ni such that

f̃ =
∑

aχ(g ⊗ χ) +
∑
i

a1
ihi + a2

i h̄i,

where the first sum is over all characters of conductor dividing N .

Proof. The proof is similar to that of Theorem 1.14. The CM case works exactly
the same. If f does not have CM, we look at the local representations of our form
g. Let p be a prime dividing N . If g is supercuspidal at p, then all of its twists by
characters of conductor p have the same level as g (but with a character). If g is a
ramified principal series or Steinberg at p, then there exists a twist by a character

χp of it belonging to S2

(
Γ0

(
N2

p
m,χ2

p

))
(note that this is true locally, but since the

class number of Q is one, and there are no units, all local characters can be extended
to global characters). Then we take χi =

∏
p χp and hi the new form attached to

g ⊗ χi. Note that for each prime at which the representation is a ramified Principal
Series we have two choices of the character (χp ad χ̄p) giving us also χ̄i =

∏
p χ̄p

and h̄i the newform associated to g ⊗ χ̄i. Now the same proof as in Theorem 1.14
applies. �

Using this Theorem we can also compute the Fourier expansion as in the p2 case.
Now the coefficient field will be Q(ξp1 , . . . , ξpr), whose Galois group is isomorphic to∏

i F×pi and the modular parametrization Φ~ε
N map can be written in the form Φω(zτ )

where

(4) zτ =
2πi

N

∑
σ∈Gal(Q(ξN )/Q)

∫ A−1
σ τ

∞
σ(f~ε)(z)dz.

Using the Fourier expansion for f~ε, we can calculate the integral numerically to arbi-
trary precision. Recall that the convergence of such integral is exponential depending
on the imaginary part of the point in the upper half plane.
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Summing up, we have obtained a modular parametrization

(5) Φ~ε
N : X~ε

ns(N,m)→ E(C)

defined over Q.
We make the following observation about the Manin constant, which is supported

by the evidence shown in the examples.

Conjecture 2.3. The Manin constant belongs to Z[1/N ].

This conjecture should follow from similar arguments as exposed in [Maz78].

3. Computational digression

In order to compute explicitly the Fourier expansion of f̃ , we need to write it as in
Theorem 2.2. For that purpose, first we need to compute the local type of each prime
dividing the conductor of E. This can be done either by looking at the reduced curve
and the field where it gets semistable reduction or considering twists, as in [Pac13].

If there are some ramified principal series primes, one can compute the form h
from the elliptic curve (see Appendix A).

Proposition 3.1. Let g1, g2 ∈ S2(Γ0(N2m)) be normalized newforms whose eigen-
values coincide in the set {n ∈ N : n ≡ 1 (mod N)}. Then there exists N ′ | N such
that g1 = g2 ⊗ κN ′

Proof. Suppose first that N = p and m = 1. Let µn and λn the eigenvalues of g1

and g2 respectively. Furthermore assume that g2 does not have CM (if it has CM
the proof is similar).

Claim: µn = 0 if and only if λn = 0. In particular this tells us that g1 is not CM
(since g2 is not CM).
Proof of Claim: If µn = 0 then by Proposition 1.15 we can find a prime ` - n, with
`n ≡ 1 mod p and λ` 6= 0. Then λ`λn = λ`n = µ`n = µnµ` = 0. Since λ` is not equal
to zero it follows that λn = 0 as claimed.

For a a positive integer such that λa 6= 0, define the constant c(a) such that
λa = c(a)µa 6= 0. The function c(a) satisfies:

(1) It depends only on a modulo p.
(2) It is multiplicative, i.e. c(a1a2) = c(a1)c(a2).

To prove (1), let a′ ≡ a (mod p), so that λa′ = c(a′)µa′ . Fix such a′ and choose `
such that µ` 6= 0, (` : aa′) = 1 and `a ≡ 1 mod p. Then, as before, λ`λa = µ`µa, so
λ` = c(a)−1µ` 6= 0. Similarly, λ`λa′ = µ`µa′ , so λa′ = c(a)µa′ as claimed.

To prove (2), we can assume that gcd(a1, a2) = 1, and in this case, choosing n1, n2

inverses for a1 and a2 modulo p respectively with λni 6= 0, a similar computation
gives the result.
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In particular, if ` is a prime number which generates F∗p and such that λ` 6= 0,

c(`i) = c(`)i implying that c(`) is a (p−1)-th root of unity. It is easy to see that this
relation implies that g2 is a twist of g1 by a character of conductor dividing p. Since
both are forms in S2(Γ0(p2)) the only possibilities are g1 = g2 or g1 = g2 ⊗ κp as
claimed. The general case is an easy application of the Chinese Remainder Theorem.

�

Suppose we have all the forms of the linear combination of Theorem 2.2 (which
span a space S), and we need to find the coefficients in such combination in order for
the form to be invariant under Γ~εns(N,m). These forms are clearly invariant under
Γ(N)∩Γ0(m), so we have to ask for invariance under Γ~εns(N,m)/(Γ(N)∩Γ0(m)). For
each prime p dividing N we have that Γεns(p)/Γ(p) ∼= Z/(p+1). Then, by the Chinese
Remainder Theorem we have that Γ~εns(N,m)/(Γ(N) ∩ Γ0(m)) ∼=

∏
p|N Z/(p + 1).

Choose generators for that group and several points in the upper half plane. We
know that f̃ is invariant for those matrices (conjugated by αN

−1), so we evaluate
h and its twists at the chosen points and impose these extra invariance conditions
(which corresponds to a linear system). What is the dimension of this invariant
subspace?

Proposition 3.2. Suppose that g has no CM, and let a, b, c be the number of primes
p dividing N such that the corresponding local representation πp is: supercuspidal,
ramified principal series or Steinberg respectively. The subspace of S generated by
forms invariant for the Cartan group is of dimension 2a+b.

Proof. Since all the forms in the linear combination of Theorem 2.2 are eigenforms
with the same Hecke eigenvalues in the set {n ∈ N : n ≡ 1 (mod N)}, Proposi-
tion 3.1 tells us that the eigenforms which are solutions of our linear system are in
correspondence with g and its quadratic twists which do not lower the level. Let
p be a prime dividing N . If πp is supercuspidal or ramified principal series then
both g and g ⊗ κp are newforms with the same level, so we have a dimension 2
subspace. If πp is Steinberg then g⊗κp is not new, so we can distinguish between g
and g⊗κp. Applying these observations to each prime dividing N the result follows
by the Chinese Reminder Theorem. �

Suppose the form g has some supercuspidal or ramified principal series primes.
Then we want to compute the 1- dimensional subspace corresponding to f . Here is
a way to do it:

• Suppose that πp is supercuspidal. Let εp denote the local sign at p.

Claim: if εp = 1 then in the linear combination of Theorem 2.2 for g only twists of
g with characters having even p-part are involved, while for g ⊗ κp only twists of g
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by characters with odd p-part are involved. If εp = −1, the situation is the opposite
one.
Proof of claim: Recall from Remark 1.16 that if εp = 1 (resp. εp = −1) then only
twists of g with even p-part (resp. odd p-part) are in the sum. By Corollary 3.3 of

[Pac13], the local sign at p changes while twisting g by κp like −
(
−1
p

)
= −κp(−1).

Then the variation of the sign at p of the characters involved in the combination for
g and g ⊗ κp (as twists of g and g ⊗ κp) is opposite to the sign of κp, so if we write
them as twists only of g, the signs at p are different.

• Suppose πp is Principal Series. Let q be a non-square modulo p. Then the operator
Tqυq/λq is an involution on the invariant subspace. Furthermore, it acts as +1 in the
subspace spanned by (the form attached to) g and as −1 in the subspace spanned
by g ⊗ κp. So, applying this operator we can get a 1-dimensional subspace as well.

To compute the 1-dimensional subspace, we take a non-trivial approximate solution
for it and normalize as previously explained. Since we know that the first coefficient
of the Fourier expansion lies in Q(ξN), we recover the exact such value from the
approximate one. Recall that such coefficient is given by

∑
χ aχ (since g is normalized

to start with q1). Then if pi - n, the n-th coefficient of f̃ is given by

(6) an(g)
∑
χ

aχχ(n) = an(g)σn−1

(∑
χ

aχ

)
,

where the last equality comes from Proposition 1.28. This gives the exact Fourier
expansion, since we can also compute the coefficient at the various pαi . Note that the
last sum of (6) only depends on n modulo

∏
pi = N , so we only compute it once for

the φ(N) relatively prime to N remainders.

4. Heegner points on general Cartan non-split curves

Let E be an elliptic curve of conductor N2m as before, with N 6= 1, and let
O = 〈1, ω〉 be an order in an imaginary quadratic field K which satisfies:

• The discriminant d of O is prime to Nm.
• Every prime that divides m is split in O.
• Every prime that divides N is inert in O.

In particular, O satisfies the classical Heegner hypothesis at the primes dividing
m but not at the primes dividing N . We call such condition the Cartan Heegner
hypothesis at (N,m).

Remark 4.1. If we want to construct Heegner points for O in the curve X0(N2m), we
need points fixed by a matrix M in M0(N2m) with the same trace and determinant
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as ω, but under our hypothesis, there are no such matrices (by looking modulo p for
any prime p dividing N).

A Heegner point for X~ε
ns(N,m) is a point τ in the upper half plane which is fixed

by a matrix M ∈M~ε
ns(N)∩M0(m) giving an embedding of O into M~ε

ns(N)∩M0(m)
(sending ω to M), i.e. M satisfies

• Tr(ω) = Tr(M).
• Nm(ω) = det(M).

Then τ is a fixed point by the usual action of this matrix group in the upper half
plane. Each Heegner point τ gives rise to a pair of conjugate points (under the
generator of the Galois extension H/Q(j(Eτ ))) in X~ε

ns(N,m)(H) , where H is the
Hilbert class field corresponding to O and Eτ is the elliptic curve C/ 〈1, τ〉. For the
details of this construction see [Ser97] (appendix A.5). Then if we apply the modular
parametrization (4), we get a point in E(H).

4.1. Heegner systems. For constructing systems of Heegner points, it is also useful
to have a definition of Heegner points in terms of the moduli interpretation.

Definition 4.2. A Heegner point for X~ε
ns(N,m) is a tuple [O, [a],m, φα] where O

is as before, [a] is an element in Pic(O) which determines an elliptic curve Ea with
CM by O, m is an ideal in O of norm m and such that O/m is cyclic and φα ∈∏

p|N EndFp(Ea[p]) is such that

• φ2
α is given by multiplication by ~ε.

• There exists α ∈ O such that φα is given by multiplication by α on each
coordinate.

Remark 4.3. The element α is well defined modulo N , which is a product of inert
primes of O, so we can just take α ∈ O/N .

Proposition 4.4. Let [O, [a],m, φα] be a Heegner point.

(1) If τ denotes complex conjugation, then (O, [a],m, φα)τ = (O, [a−1],m, φ−α)
(2) Let [b] be a fractional ideal, and σb ∈ Gal(H/K) the Artin symbol associated

to [b]. Then
(O, [a],m, φα)σb = (O, [ab−1],m, φα)

(3) If p | N , then ωp(O, [a],m, φα) = (O, [a],m, φ−α).

Proof. The items (1) and (2) follow from [Ser67] (since m and α are defined over K),
while (3) follows from Remark 1.3. �

Using the geometric interpretation of Hecke operators as described in section 1.4.1
it is clear that we have the following formula for Hecke operators (for ` prime to
Nm) acting on Heegner points, analogous to the one given in [Gro84] (section 6):
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(7) T ~ε
`([O, a,m, φα]) =

∑
a/b∼=Z/`

(End(b), b,m · End(b) ∩ End(b), φα).

Heegner points are points in X~ε
ns(N,m) which are constructed from orders in

imaginary quadratic fields satisfying the Cartan Heegner hypothesis at (N,m). Such
orders are indexed by positive integers n prime to Nm (the conductor of the order).
Let On be the order of conductor n in K, and let Kn be its Hilbert class field. Recall
that if n1 | n2, On2 ⊂ On1 and Kn1 ⊂ Kn2 , in particular if Qn1 is a Heegner point
attached to On1 and Qn2 is a Heegner points attached to On2 , there should be some
relation between these two points.

To define a Heegner system we follow [Dar04] (Definition 3.12).

Definition 4.5. A Heegner system attached to (E,K) is a collection of points
Pn ∈ E(Kn) (with n prime to Nm) which are the images of Heegner points Qn ∈
X~ε
ns(N,m)(Kn) under the modular parametrization satisfying the following proper-

ties:

(1) Write n = `k, with ` a prime number inert in K, and consider a Heegner
point Qn associated to On. Then there exists a Heegner point Qk associated
to Ok such that

TrKn/Kk Qn = T `Qk.

Moreover, if Pn and Pk denote the images of Qn and Qk under the modular
parametrization, we have

TrKn/KkPn = a`Pk,

where a` = 1 + `− card(Ẽ(F`)).
(2) Let τ denote complex conjugation. Then there exists σ ∈ Gal(Kn/K) such

that

Pn
τ ≡ − sign(E,Q)Pn

σ mod E(Kn)tors,

where sign(E,Q) is the root number of E.

Proposition 4.6. For each positive square-free integer n prime to the discriminant
of OK, let {Pn} be the collection of Heegner points attached to On as in Definition 4.2.
Then this collection of points form a Heegner system.

Proof. From Proposition 4.4, equation (7) and the discussion in between, the result
follows quite formally. See for example [Gro91] Proposition 3.7 and Proposition 5.3
or [Dar04] section 3.4 and [GZ86] section II.1. �

Once a Heegner System is constructed, Kolyvagin’s machinery works and we get
the following result.
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Theorem 4.7. Let {Pn} be a Heegner system attached to (E,K) where the elliptic
curve does not have CM. Define PK = TrK1/KP1 ∈ E(K). If PK is non-torsion then
the following are true

• The Mordell-Weil group E(K) is of rank one.
• The Shafarevich-Tate group of E/K is finite.

Proof. See Theorem 10.1 of [Dar04]. �

Furthermore, we have the following relation with L-series derivatives.

Theorem 4.8 (Gross-Zagier-Zhang). The point P1 is non-torsion if and only if
L′(E/K, 1) 6= 0.

Proof. This is part of Zhang’s result in [Zha04], although it is not stated in this
way. The natural choice for the Shimura curve in our hypothesis is to consider a
Shimura curve ramified at the primes dividing N where the local root number is −1.
Nevertheless, if we take the matrix algebra as the quaternion algebra, his choice of
order of level N in (6.3) (page 15) coincides with the Cartan non-split one. Then
Theorem 6.1 applies, giving a relation between the L-series derivative and the Neron-
Tate height pairing (inside the Jacobian) of the projection of the Heegner point to
the f -isotypical component. We should point out that the point we construct is
φ(N) times the point constructed by Zhang, since he takes the average of the cusps
to define the map ι (in formula (6.8)).

As is already explained in Zhang’s article we cannot deduce the whole Birch and
Swinnerton-Dyer conjecture from this formula, since the constant appearing in The-
orem 6.1 does not look like periods of E under the modular parametrization (which
should include the Manin constant). �

5. Examples

We want to show how our computations work in some concrete examples. First
choose representatives ai of the Class group of O, and choose ωi ∈ H such that
ai = 〈1, ωi〉 (as an element of the Class group). Then, as in the classical case, let Mωi

be the order of matrices in M2(Z) that fixes ωi, which is clearly isomorphic to O.
Each order contains a matrix Ni whose trace equals Tr(ω) and whose determinant
equals Nm(ω). We search for matrices Ai ∈ SL2(Z) such that AiNiAi

−1 belongs to
M~ε

ns(N) ∩M0(m). Then the point τi = Aiωi is a Heegner point for X~ε
ns(N,m).

As discussed before, the matrices Ai are computed using the Chinese Reminder
Theorem, via a local condition at the primes dividing N2m:

• At a prime p dividing m, we chose A
(p)
i modulo pvp(m) of determinant one,

taking Ni to an upper triangular matrix. This can be done, since the roots of
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the characteristic polynomial of Ni are in Fp (since every prime that divides
m splits in O), so we just take a basis of the Jordan form.
• At a prime p dividing N , since p is inert, the characteristic polynomial of Ni

is irreducible in Fp[x]. If Ni =
(
α β
γ δ

)
, then we want the matrix Ai to satisfy

Ai
(
α β
γ δ

)
=

(
α+δ
2

√
d
ε

ε
√

d
ε
α+δ
2

)
Ai (modulo p).

We just chose Ai as a matrix in 4 indeterminates and search for a non-zero
solution of the system (the matrix determinant is zero, so there is always such
a solution). If the determinant is not 1, we just multiply the matrix via an
appropriate matrix, as in the proof of Lemma 1.2.

This gives us a matrix in SL2(Z/N2mZ), and we lift it to a matrix in SL2(Z).

In Table 1 we give some examples of our method following the previous notation.
All the examples were done using [PAR14]. The table notation is as follows: the first
column is the elliptic curve label (in Cremona’s notation), the next three columns
show which primes (dividing N) of the curve are supercuspidal, Steinberg and ram-
ified principal series respectively. The next row gives the chosen ω (that determines
the order in the imaginary quadratic field), and which primes give rise to Cartan
non-split groups (the remaining are classical ones). It is easy to see that in each
example the Cartan Heegner condition is satisfied. Then we list the matrices Ai for
some ~ε. The next column contains the first Fourier coefficient (where we use the

notation ζi := ξiN + ξ̄N
i
, and a vector [a1, . . . , aN ] means a1ζ1 + · · ·+ aNζN). Finally

in the last column we have c, the Manin constant for the optimal quotient.

EC Sc St Ps ω Cns Ai b1 c

121b {11} ∅ ∅ 1+
√
−3

2 {11}
(

6 −31
1 −5

)
[−3,−1,−5,−4, 2]

1
11

225a {3, 5} ∅ ∅ 1+
√
−91

2 {3} ( 1 −23
1 0 ) 1 1

3+
√
−91

10 {3}
(

2 −5
5 −1

)
1

225a {3, 5} ∅ ∅ 1+
√
−7

2 {3, 5}
(

8 −58
1 −7

)
1−
√
5

2 1

289a ∅ {17} ∅ 1+
√
−3

2 {17} ( 9 −73
1 8 ) [−6,−7,−4,−1,−5,−2,−4,−5]

1
17

1617a ∅ ∅ {7}
√
−2 {7}

(
14 −6
33 −14

)
[−2,−1,−4]

1
7

49a {7} ∅ ∅ 1+
√
−11
2 {7}

(
4 −15
1 −3

) √
−7 1

7

Table 1. Examples of the q-expansion and related computational data
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In Table 2 we show the points constructed on the curves of Table 1 and the multiple
of the generator obtained (up to torsion). Note that in the last case, the curve has
rank 0 over Q, and this is why the point is not rational.

EC K P mP

121b Q(
√
−3) (2411156245

(37062)2
,−52866724475375

(37602)3
) 15

225a Q(
√
−91) (1, 1) 1

225a Q(
√
−7) (−1, 0) 2

289a Q(
√
−3) (−15858973521095

10833832
,−22895413346586388187

10833833
) 3

1617a Q(
√
−2) (3702

172
, 184078

173
) 3

49a Q(
√
−11) ( 1261982

11(127)2
,− 680991

11(127)2
− 327847275

112(127)3

√
−11) -

Table 2. Heegner points constructed

Remark 5.1. In all the examples of Table 1 but the last one, the optimal quotient
coincides with the strong Weil curve. In the last example, the optimal quotient
corresponds to the curve 49a2 in Cremona’s notation.

Appendix A. The principal series case computation

The purpose of this short Appendix is to show how the work [DD11] allows to,
given an elliptic curve E with a ramified principal series at p, compute the character
to twist by, and the local p-th Fourier coefficient of the forms hi in Theorem 2.2.
We thank Tim Dokchitser for explaining us some details of the algorithm. See the
Example 5 of such article.

(1) Compute vp = the valuation at p of the discriminant of E. Then the order of
the character is 12

gcd(12:vp)
. This number will be denoted by e.

(2) Let L = Q(x)/(xe − p). Then E attains good reduction at the prime ideal
(x). Compute the characteristic polynomial χL(t) = t2− apt+ p of Frobenius
at such prime ideal by counting the number of points over the finite field (this
is implemented in SAGE or Magma). The two roots are the p-th coefficients
we are looking for (since there are 2 forms, conjugate to each other), but we
need to match each root with its corresponding character.

(3) Let g be a generator of F×p , and let L′ = Q(x)/(xe−g ·p). As before, compute
the characteristic polynomial χL′(t) for the prime ideal (x) (the curve is again
unramified). Then the product of a root of χL(t) multiplied by the correct
character (evaluated at g) must be a root of χL′(t).
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