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Abstract In the present paper, exact analytical 

solutions are obtained for nonlinear ordinary differ-

ential equations which appear in complex diffusion-

reaction processes. A technique based on the power 

series method is used. Numerical results were com-

puted for a number of cases which correspond to 

boundary value problems available in the literature. 

Additionally, new numerical results were generated 

for several important cases. 

Keywords Diffusion and reaction; power series 

method.  

I. INTRODUCTION 

In the present work the exact analytical solutions are 

presented for a set of non-linear boundary value prob-

lems which arise in the analysis of steady diffusion-

reaction processes. Several investigators have treated 

the heat and mass transport in catalysis pellets. Particu-

lar emphasis has been directed to the determination of 

the isothermal effectiveness factor. Early studies have 

been compiled by Gonzo and Gottifredi (1982). These 

authors predicted the mentioned factor under non-

isothermal conditions usually met in most chemical re-

actor design calculations, using a perturbation tech-

nique. More recently Villa (2000) presented a practical 

approach for a non classical numerical analysis of the 

solution of boundary value problems for high non-linear 

second order differential equations. These problems 

arise from energy and mass balance equations for non 

isothermal steady diffusion-reaction processes.  

The class of described problems, leading to the solu-

tion of high non-linear second order differential equa-

tions, is the source of considerable theoretical and prac-

tical difficulties. It is the purpose of the present paper to 

demonstrate that an approach based on the power series 

method is a very effective tool for the solutions of the 

mentioned problems. The power series method is an old 

tool to solve ordinary differential equations. A wide 

open literature is available on this topic. In the last cen-

tury several methods of finding exact and approximate 

solutions have been developed with the appearance of 

new problems in several disciplines. The finite-

difference method and the variational methods have 

been extensively applied to solve problems in engineer-

ing. The finite element method gained an immense pop-

ularity among applied mathematicians and engineers.  

Nevertheless, the old technique of power series solu-

tions has been ignored in the solutions of some bounda-

ry and/or eigenvalue problems which involve ordinary 

non-linear differential equations.  Filipich et al. (2004), 

with a properly systematisation, applied it in various 

difficult problems. For instance, they succeeded in the 

application of this technique to strongly non-linear dy-

namical systems. 

In the present paper, the potential usefulness of the 

largely ignored power series methods for solving non-

linear ordinary differential equations which appear in 

the complex diffusion-reaction processes, is demon-

strated. A simple, computationally efficient and very 

accurate analytical approach has been developed for the 

determination of the values of the nondimensional con-

centration u, the gradient u’ and the effectiveness factor 

, for different values of  the characteristic parameters 

which correspond to relevant steady diffusion - reaction 

processes. The obtained algorithm is very general and it 

is attractive regarding its versatility in handling different 

values of the reaction order, the Thiele’s modulus and 

other specific parameters. 

Close agreement with results presented by previous 

investigators is demonstrated for several particular cas-

es. Additionally, new numerical results were generated 

for several important cases, including those with exper-

imental values for the parameters involved in the mod-

els of some industrial chemical reactions.   

II. THEORETICAL CONCEPTS. 

A. Introduction. 

The process of diffusion-reaction in catalytic porous 

media is a matter of great interest in chemical reactor 

design. A great number of relevant cases are included in 

the following general boundary value problem:  

  baxuuxF
dx

xud
,,0)',,(

)(
2

2

  (1) 

 ,)(')( 21 Aaucauc   (2) 

 ,)(')( 43 Bbucbuc   (3) 

where ci where  denotes the set of real number, 

i=1,2,…,4; a,b,A,B and the function F is continuous 

on [a,b](-,)(-,).   

The problem of existence and uniqueness of solution 

for initial value problems has extensively been investi-

gated and a detailed analysis has been published. It is 

well known that in contrast the boundary value prob-

lems have several solutions or even no solution. This 
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question has been analysed only for particular situa-

tions. So, the existence and uniqueness of the solution 

of the boundary value problem given by Eqs. (1)-(3) 

will be analysed, according to general theoretical results 

reported in the literature. For the sake of illustration, let 

us consider some known particular cases for which there 

exist more than one solution. 

Example 1. 

Consider the boundary value problem given by Eqs. (1)-

(3) with F(u)=e
u
 and a=0, b=1, c1=1, c2=0, c3=1, c4=0, 

A=B=0.  In this case there exist two solutions (Bayley 

et al., 1968). 

Example 2. 

Consider the boundary value problem given by Eqs. (1)-

(3) with )1(1

)1(

2)( ud

ucd

ueuF 



  and a=0, b=1, c1=0, c2=1, 

c3=1, c4=0, A=0, B=1.   

For the values  

 ,,
4

4
21  




c

c
cd  (4) 

with 1,2, three solutions exist. Outside the para-

metric region defined by (4) only one solution exists 

(Kubicek and Hlavacek, 1983). 

B. Analysis of a relevant steady diffusion - reaction 

process. 

A very important steady diffusion-reaction process can 

be analysed when the boundary value problem given by 

Eqs. (1)-(3)  is defined by 

     )(1

)(

2 )(1)(1))(( xdu

xcu

pm
exuxuxuF   , (5) 

and   

 a=0, b=1, c1=1, c2=0, c3=0, c4=1, A=B=0, (6) 

The function u in Eq. (5) is given by u=1-v, where v 

denotes a non-dimensional mass concentration of the 

key component referred to its surface value. 

 The physical interpretation of the parameters , m,, 

p, c and d are given in Villa (2000). 

The following theorem, allows to analyse the exist-

ence and uniqueness of the corresponding solution 

(Bayley et al., 1968). 

Theorem 1: 

Let us consider the boundary value problem 

  baxuuxF
dx

xud
,,0)',,(

)(
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  (7) 

 ,)( Aau   (8) 

 ,)(' Bbu   (9) 

where the function F is continuous on [a,b]  (-,)  

(-,) and satisfies the Lipschitz condition given as 

 ,'')',,()',,( 21 vuKvuKvvxFuuxF   (10) 

(u,v), (u’,v’)(-,)(-,), where K1,K2, K1>0, 

K20.  

If b-a<g(K1,K2) with g(K1,K2) given by  
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the boundary value problem given by Eqs. (7)-(9) has 

one and only one solution.  

It is important to remark that from physical consid-

erations the following restrictions hold on the parame-

ters of the function F defined in Eq. (5): 

 
   

 .5.0,2),1,1(

,0,,1,0,4,1.0





cd

pNm
 (12) 

where N denotes the set of natural numbers. 

The physical details are given in Gonzo and 

Gottifredi (1982).  On the other hand the function F is 

nonnegative on the space [a,b](-,)(-,), since it 

describes the kinetic law of the process. Then the appli-

cation of the maximum principle leads to the following 

inequalities 

  .,,1)(0 baxxu  . (13) 

From (12), (13) and Theorem 1, the following inequality 

arises 

 ,
1

2 cmp
Mab






  (14) 

for any ,,m and c defined by (12) and p1 or ,c,m 

and p defined by (12) and =1.  

It must be noted that in this case the Lipschitz con-

stants K1 and K2, have the values K2=0 and 

 
 

 .max 2

1,0
1 cmp

du

dF
K

u



  (15) 

If the length b-a is fixed, the inequality (14) gives an 

additional restriction to the parameters involved in (12), 

which assure the existence and uniqueness of the solu-

tion. The Table 1 depicts values of the parameter M in 

some particular cases. 

III. IMPLEMENTATION OF A TECHNIQUE 

BASED IN THE POWER SERIES METHOD. 

The power series method involves the admission of 

sums of infinite power series as defining functions in 

the intervals were these series converge. The functions 

thus defined are called analytic. The fundamental as 

sumption in solving a differential equation is that the 
 

Table 1. Values of parameter M as a function of f,p,m,a and c.  

F p a m c M 

4 2 1 2 -2 0.16 

1 0 1 1 -0.5 1.2825 

1 1 1 1 -1 0.9069 

0.5 1 1 1 -1 1.8138 

0.5 0 1 1 -0.5 2.565 

0.5 0 1 2 -0.5 1.9869 
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solution of this equation is in the form of a power series. 

This method constitutes a simple, computational effi-

cient and accurate approach to solve the immense num-

ber of cases involved in the general boundary value 

problem given by Eqs. (1)-(3).  

Consequently we consider a solution in the form 

 ,)(
0

)(1





k

k

k xAxu  (16) 

and assume that (16) converges |x|<R, where R de-

notes the convergence radius which determines an in-

terval including [0,1]. The well known procedure of 

multiplication of power series means that if  
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where  
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This series converges at least for |x|<min(R1,R2).  In 

order to obtain u
2
(x) we write 
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where  





k

i
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)(1)(1)(2
. 

Applying mathematical induction, the power m of u(x) 

can be obtained as   

   





0

)()(
k

k

km

m
xAxu , (19) 

with  

 



k

r

rkrmkm AAA
0

)(1)(1)(
, (20) 

In the particular case where u(x)C, with C, it is 

convenient to write 

 





0

)(0

k

k

k xAC , (21) 

with A0(k)=C0k where 0k is the Kronecker delta. Within 

its domain of convergence every power series can be 

differentiated, term by term, any number of times. 

Hence if  u

k

k

k RxxAxu 




,)(
0

)(1
 then the derivative 

u’(x) can be obtained using a term by term differentia-

tion process 





1

1

)(1)('
k

k

k xkAxu , with the same radius of 

convergence as the original series, i.e. convergent x, 

|x|<Ru. Consequently, the derivative of order n is given 

by  

  

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xAnkkk
dx

xud
)(1)1()1(
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In order to collect the coefficients of like powers of 

x, we need to rewrite this series so that the general term 

is x
k
. Consequently, we make the substitution i=k-n. 

Thus we have 

 
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)(1
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dx

xud , (23) 

where  
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
  . (24) 

The series defined by Eq. (23) is convergent x, |x|<Ru. 

In the case of the differential equation 

 ),(,0)',,(
)(

2

2

baxuuxF
dx

xud
 , (25) 

we assume a solution in the form (16). Differentiating 

twice we obtain  

 
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dx
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convergent x, |x|<Ru. We also assume that 

F(x,u(x),u’(x)) is analytic, i.e.  

 





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))('),(,(
k

k

k xDxuxuxF , (27) 

convergent x, |x|<RF.  

Substituting Eqs. (26) and (27) into Eq. (25) and col-

lecting the terms involving like powers of x, we obtain 

the recurrence formula which allows the determination 

of coefficients A1(k+2), k=0, 1, 2, … .  

When the function F(x,u(x),u’(x)) is given by  

     )(1

)(

2 )(1)(1))(( xdu

xcu
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exuxuxuF   , (28) 

we assume  
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where the dk are the Taylor coefficients of the function 

)(1

)(

xdu

xcu

e  . 

The term (1-u(x))
m
 is obtained by well known  bi-

nomial formula   
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From Eqs. (19) and (20) we have 

   





00

)()(1
k

k

k

m

r

r

r

m
xBxubxu , (31) 

where 
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0
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, and the series is convergent 

|x|<Ru.  Similarly, applying Eq. (19) in the binomial 

formula   
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where 



p

r

krrk AcC
0

)(
, and the series is convergent 

|x|<Ru. 

The product (1-u(x))
m
 (1-u(x))

p
  is obtained apply-

ing Eqs. (17) and (18) and is given by 
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where 
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0

, and the series is convergent 

|x|<Ru. Taking into account Eqs. (19) and (29) the ex-

pression of )(1
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where 
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krrk AdE , and the series is convergent 

|x|<Ru.  

Applying Eqs. (33) and (34) the expression of 

F(u(x)) can be written as 
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where 



k

r

rkrk EGF
0

.  The series in Eq. (35) is con-

vergent x, |x|<min(Ru,Re).  

Substituting Eqs. (26) and (35) into Eq. (25) leads to  
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In consequence the recurrence formula is given by  
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From (16) it must be noted that the coefficients to be 

determined  are given by  

  ,,,,,, )(1)3(1)2(1)1(1)0(1 MAAAAA . (38) 

but the recurrence formula (37) yields  

  ,,,, )(1)3(1)2(1 MAAA . (39) 

Consequently, in this case, the power series method 

produces two arbitrary coefficients A1(0) and A1(1).   

Let us consider the boundary value problem (7)-(9) 

with a=0, b=1, A=B=0,  

  1,0,0))((
)(
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 xxuF
dx

xud
, (40) 

 0)0( u , (41) 
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From the boundary condition (41) there follows 

A1(0)=0. On the other hand, the boundary condition (42) 

leads to  

 032
1

2

)3(1)2(1)1(1 
x
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Finally, the coefficient A1(1) can be obtained by the 

well known shooting method (Gottifredi et al., 1981b; 

and Kubicek and Hlavacek, 1983). 

It must be noted that the application of the power se-

ries method to the boundary value (40)-(42) implies the 

convergence of the different power series involved in all 

the interval [0,1].  If this is not the case, for instance, if 

Ru>1, in general it is sufficient if the interval [0,1] is 

partitioned in N subintervals and the method is applied 

over  each subinterval. 

IV. NUMERICAL RESULTS. 

In order to establish the validity, accuracy and applica-

bility of the developed algorithm, numerical results 

were computed for a number of cases, which correspond 

to the boundary value problem given by Eqs. (7)-(9), 

and which were available in the literature. Additionally, 

new numerical results were generated for several im-

portant problems.  

Table 2 shows values of the nondimensional concen-

tration u and gradient u’ for different values of the reac-

tion order m, the Thiele’s modulus  and A=B=0. Table 

3 depicts values of the effectiveness factor , for differ-

ent values of  the reaction order m, the Thiele’s modulus 

  and the thermicity d and the parameter c= where  
denotes the Arrhenius number.  

Tables 2 and 3 show a comparison of values with 

those of Villa (2000). This comparison shows a very 

close agreement in almost all cases. In Villa (2000) a 

practical complement to classical perturbation and nu-

merical techniques for use in the analysis of steady dif-

fusion-reaction process is presented. This approach 

combines basic aspects from elementary functional 

analysis, integral equations and differential calculus.  

Table 4 depicts values of the effectiveness factor , 

for different values of  the reaction order m, the Thiele’s 

modulus f and the parameters c and d. A comparison 

with Gonzo and Gottifredi (1982) and Villa (2000) is 

included. In Gonzo and Gottifredi (1982) a technique to 

estimate the non-isothermal effectiveness factor  is 

presented. This approach is based on the matching anal-

ysis for the asymptotic case for the Thiele’s modulus .  

This development is an extension of a previously devel-

oped technique (Gottifredi et al.,1981a,b). 

Table 5 depicts values of the effectiveness factor , 

for different values of the Thiele’s modulus , and the 

parameters c and d.  These parameters correspond to 

experimental values of some industrial chemical reac-

tions, Muñoz Tavera (2005). Finally, Table 6 depicts 

new values of the nondimensional concentration u and 

gradient u’ for the same set of parameters defined in 

Table 5. 

 

 

5. CONCLUSIONS. 

The potential usefulness of a technique based on the 

power series methods for solving non-linear ordinary 

differential equations, which appear in the complex dif-

fusion-reaction processes, has been demonstrated.  
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Table 2. Non-dimensional concentration u(x) and u’(x) in the pellets, p=0, a=1, c=-0.5, d=-0.1, 

m f q0  x 0. 0.2 0.4 0.6 0.8 1 

2 0.8 0.447940 Present 
u(x)  

u'(x) 

0.000000 

0.447940 

0.077648 

0.332416 

0.134219 

0.235796 

0.172769 

0.151267 

0.195204 

0.073947 

0.202572 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x)                 

0.000000 

0.447999 

0.077660 

0.332476 

0.134244 

0.235861 

0.172807 

0.151340 

0.195250 

0.074029 

0.202643 

0.000096 

1 1 0.705431 Present 
u(x)  

u'(x) 

0.000000 

0.705431 

0.122369 

0.524082 

0.211550 

0.371631 

0.272285 

0.238206 

0.307602 

0.116361 

0.319193 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x) 

0.000000 

0.705470 

0.122377 

0.524122 

0.211567 

0.371673 

0.272310 

0.238254 

0.307637 

0.116415 

0.319240 

0.000063 

2 0.5 0.210480 Present 
u(x)  

u'(x) 

0.000000 

0.210480 

0.037258 

0.162857 

0.065398 

0.119081 

0.085069 

0.077984 

0.096705 

0.0385818 

0.100556 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x) 

0.000000 

0.210500 

0.037262 

0.162877 

0.065406 

0.119102 

0.085081 

0.078006 

0.096722 

0.038604 

0.100578 

0.000024 

1 0.5 0.223594 Present 
u(x)  

u'(x) 

0.000000 

0.223594 

0.039823 

0.175132 

0.070223 

0.129226 

0.091636 

0.085160 

0.104366 

0.042286 

0.108590 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x) 

0.000000 

0.223595 

0.039823 

0.175133 

0.070223 

0.129226 

0.091636 

0.085160 

0.104367 

0.042286 

0.108591 

0.000000 

2 0.1 0.009917 Present 
u(x)  

u'(x) 

0.000000 

0.009917 

0.001783 

0.007922 

0.003169 

0.005934 

0.004158 

0.003953 

0.004751 

0.001975 

0.004948 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x) 

0.000000 

0.009918 

0.001783 

0.007922 

0.003169 

0.005935 

0.004158 

0.003953 

0.004751 

0.001975 

0.004948 

0.000000 

1 0.1 0.009950 Present 
u(x)  

u'(x) 

0.000000 

0.009950 

0.001790 

0.007953 

0.003181 

0.005960 

0.004174 

0.003971 

0.004770 

0.001985 

0.004968 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x) 

0.000000 

0.009951 

0.001790 

0.007953 

0.003181 

0.005961 

0.004175 

0.003972 

0.004770 

0.001985 

0.004969 

0.000000 

1 1.5 1.235850 Present 
u(x)  

u'(x) 

0.000000 

1.235876 

0.207055 

0.856057 

0.349049 

0.576583 

0.441631 

0.356719 

0.493977 

0.170701 

0.510929 

0.000000 

   
Villa 

(2000) 

u(x)  

u'(x) 

0.000000 

1.235850 

0.207051 

0.856035 

0.349040 

0.576557 

0.441617 

0.356687 

0.493956 

0.170660 

0.510901 

0.000000 
 

Table 3. Effectiveness factor h (p=0). 

f M c d Present Villa (2000) 

0.1 1 1 0.1 0.999991 1.0000 

0.5 1 1 0.1 0.994778 1.0200 

1 1 1 0.1 0.921268 0.9200 

1.5 1 1 0.1 0.747009 0.7480 

0.1 0 1 0.1 1.003352 1.2000 

0.5 0 1 0.1 1.097385 1.1080 

1 0 1 0.1 1.157374 1.8185 

1.5 0 1 0.1 0.374288 - 

4 0 1 0.1 0.071459 - 

0.1 1 0.999 0.9 0.999978 1.0000 

0.5 1 0.999 0.9 0.988997 1.0000 

1 1 0.999 0.9 0.988997 1.0000 

0.1 1 3 0.9 1.006703 1.0200 

0.5 1 3 0.9 1.183659 1.2000 

Numerical results were computed for a number of 

cases which correspond to boundary value problems 

available in the literature. Additionally, new numerical 

results were generated for several important practical 

cases.  

Table 4. Effectiveness factor h (p=0).  

f m c d Present 

Gonzo and 

Gottifredi 

(1982) 

Villa 

(2000) 

0.1 2 1 0.1 0.996672 0.9967 1.0000 

0.5 2 1 0.1 0.920727 0.9242 0.9200 

1 2 1 0.1 0.739958 0.7609 0.7400 

1.5 2 1 0.1 0.574516 0.6013 0.5720 

0.5 1 0.5 0.1 0.957243 --- 0.9680 

1 1 0.5 0.1 0.830181 --- 0.8300 

 

Table 5. Effectiveness factor h (p=0) (1): Synthesis of vi-

nylchloride. (2): Oxidation of CH3OH to CH2O  (3): NH3 syn-

thesis. (4): Oxidation of ethylene. 

f c d h Process 

0.27 1.65 0.25 1.015554 (1)  

1.1 0.175 0.0109 0.750873 (2)  

1.2 0.0018 0.000061 0.694940 (3)  

0.08 1.76 0.13 1.001622 (4)  

Table 6. Non-dimensional concentration u(x) and gradient  u’(x) in the pellets,  p=0, m=1, a=1. 

f c d x 0. 0.2 0.4 0.6 0.8 1 

0.27 1.65 0.25 
u(x)  

u'(x) 

0.000000 

0.074033 

0.013344 

0.059389 

0.023748 

0.044634 

0.031192 

0.029800 

0.035664 

0.014913 

0.037156 

0.000000 

1.1 0.175 0.0109 
u(x)  

u'(x) 

0.000000 

0.908556 

0.158660 

0.683498 

0.275333 

0.487451 

0.355084 

0.313044 

0.401506 

0.152960 

0.416743 

0.000000 

1.2 0.0018 0.000061 
u(x)  

u'(x) 

0.000000 

1.000714 

0.173128 

0.738859 

0.298385 

0.519714 

0.383014 

0.330626 

0.431909 

0.160665 

0.447898 

0.000000 

0.08 1.76 0.13 
u(x)  

u'(x) 

0.000000 

0.006410 

0.001154 

0.005129 

0.002051 

0.003848 

0.002693 

0.002565 

0.003078 

0.001283 

0.003206 

0.000000 
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