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Abstract

Concrete materials subjected to long term exposures to high temperatures suffer severe degradations in its mechanical
properties (cohesion, friction, strength and stiffness) and changes in their failure mechanisms. These degradations
may lead to irreversible damage or sudden collapse of the related structures. From the predictive analysis stand point,
accurate constitutive theories are required to simulate the variations of concrete mechanical failure behavior under
high and durable temperature fields. In the realm of the smeared crack approach, non-local model strategies are re-
quired to objectively reproduce failure behaviors under coupled thermo-mechanical loading conditions, while realistic
descriptions of the involved characteristic lengths are needed to objectively reproduce the variation from ductile to
brittle failure modes depending on the acting confining pressure and temperature. In this work, a thermodynami-
cally consistent gradient poroplastic model for concrete subjected to high temperatures is proposed. A particular and
simple form of gradient-based poroplasticity is considered whereby the state variables are the only ones of non-local
character. The degradations of these variables due to coupled thermo-mechanical effects are described in the frame-
work of the thermodynamic approach. After describing the material formulation, numerical analyses are presented
which demonstrate the predictive capabilities of the proposed constitutive theory for different stress paths and thermal
conditions.

Keywords: Concrete, Gradient Theory, Thermodynamic Consistency, High Temperature, Failure Behavior

1. Introduction

When concrete structures are subjected to high temperatures in long term exposures, two effects turn evident. On
the one hand, and as a result of the dehydration process of the cement paste, there is an irreversible degradation of two
fundamental material properties: the elastic stiffness (thermal damage) and the material strength (thermal decohesion).
On the other hand, a particular failure or fracture mode develops, the so-called concrete spalling, characterized by
fracture planes parallel to the heated surface and perpendicular to the temperature flux. The spalling effect on heated
concrete is due to the pressure buildup in the pores. A clear explanation of the mechanism that causes concrete spalling
was provided by Ulm and Coussy (1999). They pointed out that concrete heating rapidly leads to the formation of a
moisture clog in the vicinity of the heated surface. Consequently, high pressures are induced in these zones due to the
low concrete permeability and, therefore, concrete spalling develops.

Temperature effects on concrete vary with the temperature level. At temperatures below 200◦C, only the expelling
of water vapor through the network of connected concrete pores takes place. Consequently, up to 200◦C no significant
change in concrete mechanical properties is evidenced (Mihashi et al., 1992), while the limited concrete damage is
mainly due to temperature gradients. The dehydration of calcium silicate hydrate (CS H) starts at temperatures above
200◦C. On the other hand, calcium hydroxide (Ca(OH)2) starts to chemically breakdown at 500◦C, while CS H does
this at 700◦C. Above 500◦C, the chemical and mechanical changes become substantial and irreversible. It can be
concluded that, when concrete is subjected to a temperature field above the 200◦C threshold in long term exposure,
the degradation of its cohesive properties due to the cement paste dehydration turns out to be the most relevant
consequence.

This effect strongly influences the mechanical behavior and the overall strength capacity of the related structures.
Regarding the influence of the concrete performance on its sensitivity to high temperatures, many authors agree that
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high strength concretes turn more brittle when they are subjected to high temperatures, see among others Chan et al.
(1996, 1999); Balendran et al. (2003); Gawin et al. (2004); Li et al. (2004); Mehmet and Ozturan (2010) and Zhen-jun
and Yu-pu (2010).

From the theoretical and analytical stand points, many different attempts have been made to describe and predict
the behavior of concrete under long term exposure to high temperatures. Most of them are related to local constitutive
theories, while very few non-local formulations are thermodynamically consistent. Actually, many developments are
related to the so-called hygrothermal models. They are able to predict the pore pressure and temperature gradient
evolutions, but not the temperature effect on concrete mechanical properties and their degradation. Among others,
we refer here to the works by Majumdar et al. (1995); Jooss and Reinhardt (2002); Feraille-Fresnet et al. (2003);
Chung and Consolazio (2005) and Zeim et al. (2008). The proposal by Mindeguia et al. (2010) also takes into account
chemically bound water diffusion while Tenchev et al. (2001, 2005) consider the coupling of a hygro-thermal model
with the mechanical damage model by Ortiz (1985).

Most of the proposed constitutive theories for concrete under high temperature are related to classical non-porous
media. In this framework, Khennane and Baker (1992a,b) formulated the variation of concrete mechanical properties
with temperature, while Zhou et al. (1998) defined a consistent set of governing equations to model the coupled
thermo-hygro-mechanical process in deformable unsaturated porous media. In the same framework, Gawin et al.
(1998) proposed a constitutive model to analyze concrete heat and mass transfers at high temperatures and the resulting
mechanical behavior including damage effects. This formulation was modified by Gawin et al. (2003) to take into
account the coupled thermo-chemical concrete damage and further by Gawin et al. (2006) to account for the thermal
spalling risk.

One of the first contributions related to the analysis of concrete under high temperatures in the porous media
framework was made by Ulm and Coussy (1999). Their approach was based on the concept of chemoplastic soft-
ening due to cement paste dehydration caused by high temperatures. In this formulation, concrete is modeled as a
chemically reactive porous medium with thermo-chemo-mechanical couplings. Actually, the dehydration model may
be considered as the opposite case of the hydration one (Ulm and Coussy, 1995, 1996; Prato et al., 1997; Martinelli
et al., 2013).

A similar proposal to that of Ulm and Coussy (1999) was presented by Sercombe et al. (1998) who developed a
chemoplastic model based on a closest-point projection algorithm.

A thermo-hygro-chemical model based on porous media concepts was proposed by Dal Pont and Ehrlacher (2004)
whereby non-linear phenomena, heat and mass transfers, and the evolution of the porous phase features are taken into
account within a full coupled consideration. In this proposal, however, the solid skeleton is considered as rigid, which
is a relevant limitation to accurately reproduce the non-linear behavior of concrete under high temperatures. Another
shortcoming of this proposal, from the theoretical stand point, is the lack of a thermodynamic basis.

Canadija and Brnic (2004) proposed a J2 thermoplasticity model accounting for finite strains, which is more
appropriated for ductile materials like metals, instead of cohesive-frictional ones, like concrete.

More recently, Obeid et al. (2011) studied the effects of thermo-hygro-mechanical couplings in porous media
through the mechanics of unsaturated porous media. Temperature effects in porous materials were also taken into ac-
count by Wippler et al. (2011), being its main contribution the numerical homogenization of the effective thermoelastic
properties of the two-phase material. In this sense, Zhang et al. (2012) studied the effects of the local thermal imbal-
ance on the pore pressure and on the thermal stresses, for fluid-saturated porous media subjected to transient thermal
loads, modeled within the framework of the thermo-poroelasticity.

Regarding spalling effects, De Morais et al. (2010) performed numerical analysis with a finite element code where
the heat gradients and the water vapor pressure inside concrete elements were determined by means of a thermo-
hydrous model. In this case, the mechanical stresses were evaluated with an isotropic linear elastic law and an
isotropic elastoplastic model. More recently, Pan et al. (2012) studied the effect of aggregate size on concrete spalling
due to fire. They were able to demonstrate that the degree of spalling bears a good correlation to the length of the
fracture process zone, and that this length increases with the aggregate size.

Most of the existing proposals for constitutive theories for concrete under high temperatures are related to local
theories. As it is well known, the post-peak predictions of local or classical continuum models suffer from strong ob-
jectivity loss regarding mesh size and finite element orientations. This is due to the onset of discontinuous bifurcations
which lead to the loss of strong ellipticity of the associated differential equations.

The first and simplest attempt to solve the deficiencies of local material formulations was the inclusion of fracture
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energy concepts in the softening law, see Bazant and Oh (1983); Willam et al. (1984) and Etse and Willam (1994).
Despite its effectiveness at regularizing the load-displacement behavior of smeared crack constitutive theories, fracture
energy-based formulations are unable to solve the ill-possedness of the differential equations and, therefore, they lead
to mesh-dependent solutions of the shear band width and deformed patterns. The micropolar Cosserat theory has
been more effective at regularizing the solutions of smeared crack constitutive laws and at suppressing the loss of
ellipticity of the related differential equations. This theory was pioneered by Muehlhaus and Vardoulakis (1987) and
de Borst (1991) and further applied by Sluys and de Borst (1991); Etse et al. (1991); Dietsche et al. (1993) and Etse
et al. (2003). Among all non-local approaches for smeared crack constitutive formulations, the gradient theory is
the most extensively used, due to its efficiency at regularizing post-peak behaviors under every possible stress state.
The inclusion of higher strain gradients in material models was originally proposed for the study of slip bands in
metals (Aifantis, 1984, 1987; Coleman and Hodgdon, 1985). Then Belytschko and Lasry (1989) enunciated a one-
dimensional constitutive law dependent on gradients whih Aifantis and Zbib (1988) included in the creep condition.

For the analysis of shear bands in granular materials, a gradient-based plasticity model was proposed by Var-
doulakis and Aifantis (1991). A selective fracture energy and gradient-based thermodynamically consistent formu-
lation was proposed by Vrech and Etse (2009) to avoid the intrinsic and spurious failure diffusion predictions of
gradient constitutive theories and its shortcomings to accurately describe the failure modes of quasi-brittle materials,
like concrete.

In recent years, the non-local concepts were successfully extended to describe the non-lineal behavior of porous
materials, see La Ragione et al. (2008); Muraleetharan et al. (2009) and Kamrin (2010). Likewise, the consideration
of microscopic aspects in the formulation of non-local constitutive theories for porous and granular materials are due
to Nicot and Darve (2007); Yin et al. (2009); Zhu et al. (2010) and Xie et al. (2011). Other remarkable works related
to this matter were performed by Bonelli et al. (2012); Jiang and Shao (2012); Shen et al. (2012); Tran et al. (2012);
Shen et al. (2013) and Shojaei et al. (2014). Bonelli et al. (2012) took into account the effect of grain rotations in
the description of macroscopic strains. Jiang and Shao (2012) presented a fast Fourier transformation-based micro-
mechanical analysis to simulate the nonlinear behavior of porous geomaterials. Shen et al. (2012, 2013) proposed
a two-step homogenization procedure for multiscale analysis of clayey rocks; while Tran et al. (2012) developed a
micromechanics-based approach for periodic linear elastic composites exhibiting strain gradient effects at the macro-
scopic level. Finally, Shojaei et al. (2014), based on a previous work by Shojaei et al. (2013), developed a continuum
damage mechanics based constitutive model to describe elastic, plastic and damage behavior of porous rocks.

Discontinuous bifurcation analyses in porous media were performed by Nicot et al. (2009, 2012) and Mroginski
and Etse (2014). Also, an alternative expression for the effective stress tensor was included in Xie and Sha (2012) and
Nicot et al. (2013).

A specific application of thermodynamically-consistent gradient poroplastic theory for thermo-mechanical prob-
lems in metals was performed by Forest and Aifantis (2010). Later, Voyiadjis and Faghihi (2012) investigated the
coupling of thermal and mechanical responses of materials in small scales and fast transient process, in the framework
of higher-order strain gradient plasticity with interfacial energy effect. In a recent proposal by Abu Al-Rub and Darabi
(2012) a general thermodynamic-based framework is proposed for deriving coupled temperature-dependent and time-
dependent constitutive theories based on viscoelasticity, viscoplasticity, and viscodamage. In this sense, Loeffel and
Anand (2011) proposed a thermodynamically-consistent, chemo-thermo-mechanically coupled theory for bond-coat
materials with oxygen diffusion. Regarding the thermodynamic basis, it is remarkable the work presented by Voyiad-
jis et al. (2011) who proposed an interesting thermodynamic consistent model that includes plasticity and damage for
viscoplastic materials, in particular polymers, which was generalized and extended to anisotropic materials in further
works (Voyiadjis et al., 2012b,a).

Regarding quasi-brittle, partially saturated porous materials like concrete and soils, Mroginski et al. (2011), pro-
posed a thermodynamically consistent gradient formulation, based on the original concept by Vrech and Etse (2009).
In this work, a thermodynamically consistent gradient poroplastic theory is proposed for concrete under high temper-
atures effects.

The constitutive theory presented in this work is an extension of the formulation by Mroginski et al. (2011), which
considers a restricted form of gradient plasticity, since the state variables are the only ones of non-local character.
This new formulation accounts for temperature effects and for the related thermo-mechanical coupling of concrete
materials when subjected to high temperatures. The model includes an isotropic and local hardening formulation
that turns non-local in the softening regime, when a combined fracture energy and gradient-based description of the
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strength degradation (as proposed by Vrech and Etse (2009)) is activated. To account for the thermal degradation, and
following Coussy (1995), frozen entropy is incorporated, which describes the thermo-mechanic softening behavior.
The model includes two characteristic lengths. One of them is related to the fracture energy released in the active
cracks during coupled thermo-mechanical processes. The second characteristic length is related to the gradient-based
formulation, and defines the zone width where thermo-mechanical degradation of the material located in between
active cracks takes place. To realistically reproduce the strong dependence of concrete failure modes with the acting
confining pressure, the temperature and the initial porosity, both characteristic lengths are defined in terms of these
variables.

After presenting the constitutive theory and its formulation, the attention focuses on the numerical predictions
of the proposed material model when it is subjected to uniaxial and triaxial compression regimes under different
temperature levels. The results demonstrate the capabilities of the proposed constitutive theory to reproduce failure
mechanisms of concrete under high temperatures and their variations with the acting confinement.

2. Porous media description

In order to describe the deformation and movement of a porous medium as a whole, the tools traditionally used
for continuous media are applied, having also in mind the existence of a deformable skeleton and fluids in the porous
space. In other words, it is taken into account the superimposition of two continua in time and space: skeleton and
fluids. In the skeleton, the fluid mass exchange may take place only in the connected space.

It is worth distinguishing the matrix from the skeleton in its constitution and scale: the matrix is the solid material
part of the skeleton. In other words, the matrix corresponds to a microscopic scale of description, whereas the skeleton
refers to a macroscopic or, even, mesoscopic one. The porosity is referred to the representative elementary volume,
which includes sufficient material to represent the macroscopic phenomenon studied therein.

The matrix may be composed of both a solid part and a disconnected occluded porous space. The total porosity of
a given volume is the ratio of the fluid volume to the total volume. In this work the term porosity refers exclusively to
the fluid located in the connected porosity.

Regarding the poroplastic theory, permanent strains not only take place in the skeleton, but also in the fluid mass
content due to porosity variations either by mechanical o chemical effects. The chemical dehydration reaction is the
passage of the water mass combined with the solid skeleton, to the fluid mass in the connected pore system.

3. Thermodynamic of Porous Media

3.1. First Law of Thermodynamics

The First Law of Thermodynamics is expressed in Eq.(1), which represents the balance equation between internal
energy rate Ė, kinetic energy rate K̇, mechanic work of external forces P and externally supplied heat Q, see Coussy
(1995). Hereinafter, the notation (̇ ) implies the temporal derivative of ( ),

Ė + K̇ = P + Q (1)

with

Ė =
d
dt

∫
Ω

e dΩ (2)

K̇ =
1
2

∫
Ω

[
ρs (1 − φ) u̇s · u̇s + ρ fφ w · w

]
dΩ (3)

P =
∫
∂Ω

(
σ · n · u̇s −

p
ρ f

n · w
)

d∂Ω +
∫
Ω

ρ b · u̇s dΩ (4)

Q =
∫
Ω

ρr dΩ −
∫
∂Ω

h · n d∂Ω (5)
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being e the internal energy density, which results from the sum of es and e f , where the subscripts s and f denote
the skeleton and fluid components respectively. Moreover, w is the relative flow vector respect to the solid matrix,
ρ = ρs(1 − φ) + ρ fφ is the total density of the body, and φ is the porosity. Finally, us is the velocity vector of the
skeleton.

Regarding the other terms, σ is the total Cauchy tensor, b the body forces, r the applied heat sources, p the pore
pressure and h the heat flux vector. The above equations are formulated for an arbitrary material portion of continuum,
occupying the volume Ω with the contour ∂Ω and the normal unitary vector n. It is clearly evidenced in Eq.(4) the
effect of the fluid mass through the pore pressure p and the fluid mass flux vector w.

By introducing Eqs.(2)-(5) in Eq.(1), applying the Gauss’s theorem to transform the surface integral of Eq.(4) into
a volumetric one, taking into account infinitesimal strains and null body (and inertial) forces and assuming that Eq.(1)
holds for any arbitrary part of Ω, the explicit form of the internal energy density for local dissipative porous material
can be expressed as

ρė = σ : ε̇ − ∇ ·
(
h f w

)
+ ρr − ∇ · h (6)

where h f = em
f + p/ρ f is the fluid specific enthalpy, em

f the fluid internal energy per unit of mass and ε is the strain
tensor.

3.2. Second Law of Thermodynamics

The Second Law of Thermodynamics, Eq.(7), states that the energy quality can only deteriorates, i.e. the amount
of energy that can be efficiently converted into mechanical work irreversibly decreases, see Coussy (1995, 2004).

Ṡ − QT ≥ 0 (7)

In this equation Ṡ represents the system entropy rate and QT the entropy flux. The terms in Eq.(7) are defined as

Ṡ =
∫
Ω

[
ρṡ + ∇ ·

(
sm

f w
)]

dΩ (8)

QT = −

∫
∂Ω

h · ns

T
d∂Ω +

∫
Ω

ρr
T

dΩ (9)

being s the internal entropy density, sm
f the fluid internal entropy per unit of mass and T the absolute temperature. By

replacing Eqs.(8)-(9) into Eq.(7) the weak form of the Second Law of Thermodynamic is obtained as∫
Ω

[
ρṡ + ∇ ·

(
sm

f w
)
+ ∇ ·

(
h
T

)
−
ρr
T

]
dΩ ≥ 0 (10)

Under consideration of the mass conservation principle,

ṁ = −∇ · w (11)

being ṁ the total rate of the fluid mass content, the general form of the Clausius-Duhem inequality (CDI) for porous
media may be obtained from Eqs. (6), (10) and (11) as∫

Ω

[
σ : ε̇ + gm

f ṁ + ρT ṡ − ρė + w ·
(
∇sm

f − ∇h f

)
−

h
T
· ∇T

]
dΩ ≥ 0 (12)

Thereby, the enthalpy density per unit mass gm
f of a fluid component filling the porous space is defined by Coussy

(1995, 2004) as

gm
f = em

f +

(
p
ρ f

)
− T sm

f = h f − T sm
f (13)
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4. Thermodynamics of gradient-based poroplastic materials

Based on the original proposal by Simo and Miehe (1992) for local inelastic media, its extension for gradient plas-
ticity by Svedberg and Runesson (1997) and further by Mroginski et al. (2011) for isothermal gradient poroplasticity
continua, arbitrary thermodynamic states of an open gradient poroplastic material under non-isothermal condition
may be defined in terms of; the elastic strain tensor εe = ε− εp, the elastic fluid mass content me = m−mp, the elastic
entropy se = s− sp and the internal variables qα, with α = p, s corresponding to the solid or porous phase respectively.
In these works, the internal variables are the only ones of non-local character.

Following the thermodynamically consistent gradient-regularized material theory for small strain kinematics by
Svedberg and Runesson (1997); Vrech and Etse (2009) and Mroginski et al. (2011), a restricted form of non-local
gradient theory is considered. Therefore, the internal energy density can be expressed as

e = e (εe,me, se, qα,∇qα) (14)

By replacing the time derivative of Eq.(14) in Eq.(12), and integrating the gradient term by parts, the weak form
of the Clausius-Duhem inequality results

∫
Ω

[(
σ − ρ

∂e
∂εe

)
: ε̇ +

(
gm

f − ρ
∂e
∂me

)
ṁ + ρ

(
T −

∂e
∂se

)
ṡ + ρ

∂e
∂εe ε̇

p + ρ
∂e
∂me ṁp + ρ

∂e
∂se ṡp

+
∑
α

Qαq̇α + w ·
(
∇sm

f − ∇h f

)
−

h · ∇T
T

 dΩ +
∫
∂Ω

Q(b)
α q̇α d∂Ω ≥ 0 (15)

being Qα = Ql
α + Qnl

α , with Ql
α and Qnl

α the local and non-local dissipative stresses in the domain Ω, respectively, and
(b)Qα the dissipative stress on the boundary ∂Ω.

Ql
α = −ρ

∂e
∂qα

; Qnl
α = T∇ ·

(
ρ

T
∂e
∂∇qα

)
; (b)Qα = −ns · ρ

∂e
∂∇qα

(16)

As a result, Coleman’s equations are formally obtained as in the case of the local continuum theory

σ = ρ
∂e
∂εe ; T =

∂e
∂se ; gm

f = ρ
∂e
∂me (17)

Finally, from Eq.(15) the dissipations related to the plastic process, heat and fluid mass transports can be computed,
respectively, as

ϕp = σ : ε̇p + gm
f ṁp + ρT ṡp + Qαq̇α ; ϕth = −

h · ∇T
T

; ϕ f = w ·
(
∇sm

f − ∇h f

)
(18)

Due to the existence of gradient terms, a dissipative term on the boundary appears

(b)ϕnl = −

∫
∂Ω

ns · ρ
∂e
∂∇qα

q̇α d∂Ω (19)

Regarding gradient-based non-isothermal porous media, the following decomposition of the Helmholtz’s free
energy and the specific entropy may be assumed (Coussy, 1995)

ψ = e − T s = ψs + m ψ f ; s = ss + m s f (20)

where ψs is the total free energy related to the solid skeleton, ψ f is the fluid-specific Helmholtz’s free energy, ss is the
specific entropy related to the solid skeleton and s f is the specific entropy related to the porous phase.

From the fluid state equations, the mathematical functions of the pore pressure p, s f and ψ̇ f in terms of ψ f can be
obtained (Coussy, 2004) as

p
ρ f
= gm

f − ρ ψ f ; s f = −
∂ψ f

∂T
; ψ̇ f =

∂ψ f

∂T
Ṫ (21)
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Then, replacing Eqs.(20) and (21) in Eq.(12) the following expressions for the Coleman’s relations are obtained

σ = ρ
∂ψs

∂εe ; p = ρρ f
∂ψs

∂me ; ss = −
∂ψs

∂T
(22)

Dissipations related to the plastic process and to the heat and fluid mass transports can be computed as

ϕp = σ : ε̇p +
p
ρ f

ṁp + Qαq̇α ; ϕth = −
h · ∇T

T
; ϕ f = w ·

(
∇sm

f − ∇h f

)
(23)

where the corresponding dissipative stresses result

Ql
α = −ρ

∂ψs

∂qα
; Qnl

α = T∇ ·
(
ρ

T
∂ψs

∂∇qα

)
in the domain Ω (24)

The following additive expression of the Helmholtz’s free energy corresponding to gradient poroplastic materials
is adopted

ψs (εe,me, θ, qα,∇qα) = ψe (εe,me, θ) + ψl (qα, θ) + ψnl (∇qα) (25)

whereby ψe represents the elastic free energy, ψl is the local plastic energy and ψnl is the non-local plastic one. Also
θ = T − T0 is the relative temperature. Neglecting the initial and inertial forces, the elastic term is defined as follows

ρψe =
1
2
εe : C : εe +

1
2

M
(

me

ρ f

)2

−
1
2
χθ2 + ℵmeθ −

me

ρ f
MB : εe − θA : εe (26)

being C the fourth order elastic tensor, M the Biot’s modulus, χ the concrete heat capacity, ℵ the latent heat of variation
in fluid mass content, B = bI the Biot’s tensor with b the Biot’s coefficient and I the second order identity tensor, and
A = αθI the thermal expansion tensor, with αθ the thermal expansion coefficient.

The Helmholtz’s free energy component corresponding to the local portion of the poroplastic behavior turns

ρψl =
Hl
α

2
q2
α − θs(qα)

f r (27)

thereby the first term represents the frozen free energy, since it is the free energy recovered after restoring the initial
temperature, stress and fluid enthalpy, meanwhile s(qα)

f r represents the unrecovered entropy, called the frozen entropy
(Coussy, 1995).

Regarding gradient-based non-isothermal poroplastic materials, the non local free energy may be assumed as

ρψnl =
1
2

l2c ∇qα ·Hnl
α · ∇qα (28)

In the above equations, Hl
α is the local-plastic hardening/softening modulus, Hnl

α the gradient softening second-
order tensor and lc the gradient characteristic length.

In the particular case of gradient isotropy, the gradient softening second-order tensor can be expressed as

Hnl
α = Hnl

α I (29)

being Hnl
α a positive non-zero scalar.

For lc three alternative definitions can be given, see Svedberg (1999). On the one hand, it can be defined as a con-
venient dimensional parameter. On the other hand, as a physical entity that characterizes the material microstructure.
Alternatively, lc can be interpreted as an artificial numerical stabilization mechanism for the non-local theory.

5. Constitutive equations of thermodynamically consistent gradient poroplastic materials under non-isothermal
conditions

In this section the constitutive equations are developed for thermodynamically consistent gradient poroplastic
materials subjected to non-isothermal conditions. Furthermore, expressions for the heat conductivity, the fluid flux
and the non-local poroplastic flow rule are formulated.
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5.1. Constitutive equations
From Eqs.(22), (26) and (27), the constitutive equations in terms of the total stresses, the pore pressure and the

fluid-specific internal entropy may be derived as

σ = C : εe − M
me

ρ f
B − θA (30)

p =
M
ρ f

me − MB : εe + ρ fℵθ (31)

ss = A : εe − ℵme + χθ + s(qα)
f r (32)

From Eq.(24), and after some algebra, the thermodynamically consistent dissipative stresses for local and non-
local porous media result

Ql
α = −Hl

αqα + θ
∂s(qα)

f r

∂qα
; Qnl

α = l2c

(
−
∇T
2T
·Hnl

α · ∇qα +Hnl
α : ∇2qα

)
(33)

Note in Eq.(33-a) that under a temperature variation, the local plastic dissipative stresses and consequently the
yield surface may vary, even if no plastic loading occurs.

5.2. Heat conduction and fluid transport
Based on the weak form of the Second law of Thermodynamics, Eq.(10), the heat equation for an open porous

medium results

T ṡ = −∇ · h + r + ϕM (34)

where the mechanical dissipation ϕM = ϕ
p + ϕ f , with ϕp and ϕ f the plastic and fluid dissipations, respectively. For

heat conduction description, the Fourier law is considered, i.e. h = −kd∇θ, being kd the concrete conductivity. In
case of cementitious materials, the internal heat production due to mechanical dissipations r, is quite small and can
be neglected (Ulm and Coussy, 1999). Also, the heat convectively transported by fluid and the heat source due to the
viscous dissipation are neglected. The reason for this is that their orders of magnitude are very small in comparison
with the heat supplied by diffusion through the porous medium (Obeid et al., 2001). Consequently, Eq.(34) becomes

T ṡ = kd∇ · ∇T (35)

From the fluid dissipation in Eq.(23-c) it is possible to obtain a suitable expression for the conduction law of fluid
masses, leading to the Darcy law

w
ρ f
= −kw∇p (36)

being kw the permeability coefficient.

5.3. Non-local poroplastic flow rule
Rate equations for the internal variables are defined in the same way as for local plasticity. Therefore, for the

general non-associated flow rule and hardening/softening laws, the dissipative potential Φ∗ is introduced and the rates
of the plastic strains tensor, the plastic mass and the internal variables are defined as

ε̇p = λ̇
∂Φ∗

∂σ
; ṁp = λ̇

∂Φ∗

∂p
; q̇α = λ̇

∂Φ∗

∂Qα
(37)

where λ̇ is the rate of the plastic multiplier. To complete the constitutive formulation, the Kuhn-Tucker conditions are
introduced

λ̇ ≥ 0, Φ (σ, p, θ,Qα) ≤ 0, λ̇Φ (σ, p, θ,Qα) = 0 (38)

being Φ the yield function.
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5.4. Non-local poroplastic consistency

Given the consistency condition

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂p
ṗ +

∂Φ

∂Qα
Q̇α +

∂Φ

∂θ
θ̇ = 0 (39)

from Eqs.(30),(32), (37) and (39), the following differential equation for the plastic multiplier is obtained

λ̇
(
h + hnl

)
+ Φ̇nl + Φ̇trial = 0 (40)

where h and hnl are the generalized local and gradient plastic modulus, respectively. Also, Φ̇trial and Φ̇nl the rates of
the local and gradient loading functions, respectively. These values are defined as

h = −
∂Φ

∂σ
: C :

∂Φ∗

∂σ
+

M
ρ f

∂Φ

∂σ
: B

∂Φ∗

∂p
−

M
ρ f

∂Φ

∂p
∂Φ∗

∂p
+ M

∂Φ

∂p
B :

∂Φ∗

∂σ
+ θ

∂2S f

∂2qα

∂Φ

∂Qα

∂Φ∗

∂Qα
− Hl ∂Φ

∂Qα

∂Φ∗

∂Qα
(41)

hnl = 2l2c
∂Φ

∂Qα

∂2Φ∗

∂2Qα
Hnl · ∇qα · ∇Qα −

l2c
2θ

∂Φ

∂Qα

∂2Φ∗

∂2Qα
∇θ ·Hnl · ∇Qα (42)

Φ̇nl = −
l2c
2θ

∂Φ

∂Qα
Hnl · ∇qα · ∇θ̇ +

l2c
2θ

∂Φ

∂Qα
∇θ ·Hnl · ∇qα · θ̇ + 2l2c

∂Φ

∂Qα

∂Φ∗

∂Qα
Hnl · ∇qα · ∇λ̇+

−
l2c
2θ

∂Φ

∂Qα

∂Φ∗

∂Qα
∇θ ·Hnl · ∇λ̇ (43)

Φ̇trial = −
∂Φ

∂σ
C : ε̇ −

M
ρ f

∂Φ

∂σ
: Bṁ +

∂Φ

∂σ
: Aθ̇ +

M
ρ f

∂Φ

∂p
ṁ −

∂Φ

∂p
MB : ε̇ +

∂Φ

∂p
ρ fχθ̇ +

∂s(qα)
f r

∂qα

∂Φ

∂θ

 θ̇ (44)

6. Thermodynamic constitutive model for non-local poroplastic materials like concrete

In this section, the gradient-based model for concrete proposed by Vrech and Etse (2009) is extended to account
for the temperature effects in the framework of the previously discussed thermodynamically consistent gradient-based
theory for poroplastic materials.

6.1. Maximum Strength Criterion

The maximum strength criterion of the proposed temperature-dependent Leon-Drucker-Prager criterion (TD-LDP)
arises from the combination between the compressive meridian of the Leon criterion, see Leon (1935), and the devia-
toric description of the Drucker-Prager criterion. The TD-LDP criterion is defined in the space of effective stresses to
account for the poromechanical material description of the proposed model. The TD-LDP failure surface is defined
as

Φ(∗σ′, ∗τ, θ) = α(θ)
3
2
∗τ2
+ β(θ) m0

(
∗τ
√

6
+ ∗σ′

)
− c0 = 0 (45)

where

σ′ =
I1

3
− p ; τ =

√
2J2 → ∗σ′ =

σ′

f ′c
; ∗τ =

τ

f ′c
(46)

being σ′ and τ the Haigh Westergaard effective volumetric and deviatoric stress coordinates, respectively. I1 is the
first invariant of total stress tensor, J2 is the second invariant of deviatoric stress tensor, and f ′c and f ′t are the uniaxial
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compressive and tensile strengths, respectively. The friction and cohesion of the virgin material, m0 and c0, are
calibrated at room temperature as

m0 =
3
2

(
f ′c

2
− f ′t

2
)

f ′c f ′t
; c0 = 1 (47)

The temperature-dependent functions α(θ) and β(θ) vary according to

α(θ) = (1 − γ1θ)(−1) ; β(θ) = (1 − γ2θ) (1 − γ1θ)(−1) (48)

where γ1 and γ2 are coefficients to be calibrated depending on the particular concrete quality. Moreover, γ1 is always
positive, and γ1θ < 1, so α > 1 and it increases with the temperature.

To have a more clear understanding of the physical meaning of the temperature depending functions, Eq.(45) is
rewritten in the form

Φ(∗σ′, ∗τ, θ) =
3
2
∗τ2
+
β(θ)
α(θ)

m0

(
∗τ
√

6
+ ∗σ′

)
−

c0

α(θ)
= 0 (49)

so, c = c0/α may be considered as the degradated cohesion due to temperature, with α representing the cohesion
degradation parameter caused by temperature.

On the other hand, as β/α = (1 − γ2θ) < 1, then m = (β/α)m0 may be considered as the degraded friction
due to temperature, which decreases with increasing temperature. So, from the physical stand point, both temperature
dependent coefficients α and β in Eq.(45) represent the degradation of the fundamental concrete mechanical properties,
i.e., the cohesion and friction under increasing temperature. These functions, and particularly the coefficients γ1 and
γ2, can be easily calibrated from experimental results on concrete probes under different temperatures and considering
different concrete qualities.

The evolution of the failure surface in the compressive meridian with variable temperature levels is shown in
Fig.(2). With increasing temperatures, the failure surface decreases non isotropically, signalizing both cohesion and
friction degradations.

6.2. Yield condition and plastic potential

Beyond the elastic regime, plastic strains take place and the material exhibit hardening or softening. To capture
the diverse inelastic behaviors, one single equation-based yield surface is proposed.

Φ(∗σ′, ∗τ, θ, hQ, sQ) = α(θ)
3
2
∗τ2 + hQ β(θ) m0

(
∗τ
√

6
+ ∗σ′

)
− hQ sQ = 0 (50)

Furthermore, the following plastic potential surface is adopted to reduce the excessive volumetric dilatation of
concrete in the low confinement regime

Φ∗(∗σ′, ∗τ, θ, hQ, sQ) = α(θ)
3
2
∗τ2 + β(θ) m0

(
∗τ
√

6
+ η ∗σ′

)
− hQ sQ = 0 (51)

being η the volumetric non-associativity degree which varies between 0 ≤ η ≤ 1. The extreme case when η = 0
corresponds to the isochoric plastic flow, while η = 1 results in associated plasticity.

The evolution of the yield and plastic potential surfaces in pre-peak regime is controlled by the hardening dissipa-
tive stress hQ0 ≤

hQ ≤ 1, while the softening dissipative stress remains constant sQ = 1. When hQ = 1 the TD-LDP
criterion is reached. The strength degradation during softening regime, when hQ = 1, is defined by the evolution of
sQ which continuously reduces as the local and non-local decohesion process develops from its maximum value down
to sQ = 0.
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6.3. Thermodynamic consistency in pre-peak regime

Independently of the acting temperature, concrete exhibits hardening in pre-peak regimen. This continuous stiff-
ness degradation is related to homogeneously distributed processes of inelastic deformation which can be realistically
modeled by means of local hardening rules.

The inelastic local free energy density controling the hardening response of concrete during coupled thermo-
mechanical processes is defined as

ρ hψ = −hQ0
hq +

0.9
χh

cos
(
χh

hq
)

(52)

where hq represents the scalar hardening variable. As it is shown in Eq.(53), χh can be interpreted as a hardening
ductility measure depending on both, the normalized confining pressure and the temperature.

χh = −
π

2
‖m‖
xp

with xp(∗σ′, θ) = Ah exp
(
Bh
∗σ′ +Ch θ

)
(53)

being Ah, Bh and Ch internal parameters to be calibrated by experimental tests under low, medium and high confine-
ments at normal and high temperatures, and m the gradient tensor perpendicular to the plastic potential.

The expression of the dissipative stress hQ is obtained from Eq.(52) as

hQ = −ρ
∂ hψ

∂ hq
= hQ0 + 0.9sin

(
χh

hq
)

(54)

The variation of hQ in terms of T is shown in Fig.(3).

hq̇ = λ̇
∂Φ∗

∂ hQ
= −λ̇ (55)

From Eqs. (54) and (55) the hardening evolution law is obtained as

hQ̇ = −ρ
∂2 hψ(
∂ hq

)2
hq̇ − ρ

∂2 hψ

∂ hq ∂θ
θ̇ → ˙hQ = hHl λ̇ + hHθθ̇ (56)

with the hardening plastic modulus computed as

hHl = ρ
∂2 hψl(
∂ hq

)2 = −0.9χh cos
(
χh

hq
)

(57)

and the hardening thermal modulus computed as

hHθ = ρ
∂2 hψl

∂ hq ∂ θ
= 0.9 hq cos

(
χh

hq
) ∂χh

∂θ
being

∂χh

∂θ
= −

π

2
‖m‖
xp

2

∂xp

∂θ
(58)

6.4. Thermodynamic formulation of softening rule

Softening behavior of concretes under high temperatures is related to deformation processes under increasing
inhomogeneities. The instantaneous concrete strength in softening regime is obtained by means of two parallel mech-
anisms: the remaining strength for further fracture development in the active cracks, which is defined by a temperature
dependent fracture energy-based mechanism, and the remaining strength for further mechanical/thermal degradations
in the material located in between cracks. The last one is defined by a gradient-based mechanism. Thus, the total
inelastic free energy density controling the softening behavior of concrete under coupled thermo-mechanical process
beyond the peak strength can be mathematically expressed as

sψ = sψl
+ sψnl (59)

being sψl the local or fracture-based free energy density component and sψnl the non-local or gradient-based one. Both
are temperature dependent. The first one represents the energy released in an elastoplastic continuum, equivalent to
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the discontinuous with the same fractured height, which is obtained through an homogenization process according to
the fracture energy-based plasticity model by Willam et al. (1985) and Willam and Etse (1990)

sψl = −
1

ρ α f
exp

(
α f

sq
)

, α f = 5
hθf
ur
‖〈m〉‖ (60)

being sq the scalar softening variable. The gradient tensor to the plastic potential is computed as

m =
∂Φ∗

∂σ′I
(61)

while ur represents the maximum crack opening displacement in mode I type of failure and σ′I the tensor of principal
effective stresses. The Mc Auley brackets in Eq.(60-b) indicate that only tensile principal plastic strains contribute to
the energy density during the fracture evolution process.

The fracture energy-based characteristic length hθf defines the distance between macrocracks. In this model formu-
lation, hθf is controlled by both the temperature dependent characteristic fracture length hθt (in mode I type of fracture),
and the normalized pressure-dependent function RG(∗σ′).

hθf (∗σ′, θ) =
hθt

RG(∗σ′)
with hθt = ht exp (Atθ) (62)

and

RG (∗σ′) =


1 ∗σ′ ≥ 0,
Cu + Du sin

(
2 ∗σ′ − π

2

)
, 0 ≥ ∗σ′ ≥ −1.5,

100, ∗σ′ ≤ −1.5.
(63)

where At, Cu and Du are constants to be calibrated from experimental results and ht is the characteristic length in mode
I type of fracture at room temperature. As can be observed in Eq.(63), RG continuously increases under increasing
confinement pressure ∗σ′, see Fig.(4). The increase of RG leads to the reduction of the distance between microcracks
as represented by hθf in Eq.(62) and, consequently to a more diffused type of failure.

The local or fracture energy-based dissipative stress sQl takes the form

sQl = −ρ
∂ sψl

∂ sq
= exp (α f

sq) (64)

and its evolution law can be obtained as

sQ̇l = sHlλ̇ + sHθ θ̇ (65)

with the local softening thermo-plastic modulus

sHl = ρ
∂2 ψl

(∂ sq)2 = −α f exp
(
α f

sq
)

(66)

and the local softening thermal modulus

sHθ = ρ
∂2 ψl

∂sq ∂θ
= sq exp

(
α f ‖〈m〉‖

) ∂α
∂θ
θ̇ (67)

with

∂α

∂θ
=

5
ur
‖〈m〉‖

∂hθf
∂θ

(68)

The non-local component of the inelastic free energy density
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sψnl (∇sq) =
1

2ρ
l2c

sHnl
∇2 (sq) (69)

is expressed in terms of the gradient perpendicular to the scalar softening state variable ∇ sq, the gradient modulus sHnl

and the thermo-plastic gradient characteristic length lc, which defines the width of the inelastic process in the material
located between cracks in terms of the temperature and the acting confining pressure. Summarizing, lc considers the
influence of the pore pressure as defined by Mroginski and Etse (2013) but extended to take into account temperature
effects according to

lc(∗σ′, θ) =


0 ∗σ′ ≥ 0,
Ellc,m (1 + Dl)

[
1 + sin

(
Fl (1 +Clθ) − π

2

)]
, 0 ≤ ∗σ′ ≤ −1.5,

lc,m (1 + Dlθ) , −1.5 ≥ ∗σ′
(70)

being lcm the maximum possible internal length and Cl, El, Dl and Fl the internal parameters that appropriately define
the variation of lc with the temperature and effective confinement. Its variation can be seen in Fig.(5).

From Eq. (24-b), the non-local dissipative stress in softening results

sQnl(∇ sq) = ∇ · ρ
∂ ψnl

∂ (∇ sq)
= l2c

sHnl
∇2 sq = −l2c

sHnl
∇2λ (71)

and its evolution law yields

˙sQnl
= −l2c

sHnl
∇2λ̇ (72)

The total dissipative stress in softening regime is obtained from the addition of Eq.(64) and (71).

6.5. Summary of material parameters

In summary, ten parameters are required to define initial stiffness, strength criterion, initial yield as well as the
fracture energy and the gradient-based softening formulation of the proposed model. The initial young modulus E0
and the Poisson’s ratio ν define the elastic material features. The elastic limit coincident with the initial yield surface
is characterized by the initial hardening parameter hQ0. Maximum strength criterion is described by the uniaxial
compressive and tensile strengths f ′c and f ′t respectively, and the temperature level θ.

The maximum crack opening displacement ur can be experimentally obtained from the fracture energy released
in mode I type of failure GI

f , while ht represents the specimen height in the uniaxial tensile test. The parameters
related to the gradient-based softening formulation are the gradient modulus sHnl and the amplitude of the gradient
characteristic length lcm.

In addition, the material model includes three internal functions corresponding to hardening ductility and softening
internal lengths, see Eqs.(53), (63) and (70). The experimental results by Hurlbut (1985) were used to calibrate
the temperature independent parameters of the proposed constitutive model. These experiments were performed on
concrete specimens at normal temperatures subjected to uniaxial tensile and compression tests as well as to triaxial
compressive tests. Basic material properties of concrete used by Hurlbut (1985) are given in Table (1).

Table 1: Concrete Properties

Elasticity Modulus - E0 19300 MPa
Poisson Modulus - υ 0.20
Compressive Strength - f ′c 22.00 MPa
Tensile Strength - f ′t 2.20 MPa
Tensile rupture displacement - ur 0.127 mm
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The experimental results of uniaxial compressive tests on concrete specimens at different temperatures by Lee et al.
(2008) were considered to calibrate the temperature dependent parameters of the model, particularly γ1 and γ2. Table
(2) summarizes the resulting material parameters of the model.

Table 2: Model Parameters

Initial hardening parameter - hQ0 0.10
Maximum gradient characteristic length - lcm 110 mm
Gradient Modulus - sHnl 1.00 MPa
Temperature independent fracture energy-based characteristic length - ht 108.00 mm
Maximum strength coefficients - γ1; γ2 0.00126; 0.00056
Hardening ductility coefficients - Ah; Bh; Ch 0.0007; -0.0089; 0.0063
Coefficients for temp. dependency of fracture energy-based charact. length - At; Cu; Du -2.20; 51; 50
Gradient characteristic length coefficients - Dl; El; Fl 0.20; 0.50; 2.00

6.6. Temperature-dependent Concrete Elasticity Modulus

The concrete elasticity modulus plays a very important role in the overall temperature dependent response be-
havior of concrete predicted by the proposed model. With the aim to define an accurate dependence function of this
modulus on the acting temperature, several experimental results were evaluated in this research. As a consequence, the
dependency of the concrete elasticity modulus E on the temperature level θ is approximated with the lineal function

E = E0 (1 − αEθ) (73)

being E0 the elasticity modulus at 20◦C and αE = 0.0014, a degradation parameter. Experimental data obtained
from Anderberg and Thelandersson (1976); Diederichs et al. (1988); Castillo and Durrani (1990); Baker (1996);
Della Croce et al. (2000); Janotka and Bagel (2002); Zhang and Bicanic (2002); Chang et al. (2006); Lee et al. (2008);
Zhang (2011) of the ratio E/E0 corresponding to the temperature range between 20◦C and 800◦C are summarized in
Fig.(6). As can be observed, the numerical approximation of the E/Eo ratio agrees very well with the experimental
data.

7. Numerical Analyses

In this section, numerical predictions of concrete failure processes obtained with the proposed constitutive theory
are evaluated when the specimen is subjected to combined thermo-mechanical actions. Firstly, the attention focuses
on numerical simulations of experimental tests performed on hardened concrete specimens subjected to uniaxial com-
pression under different and homogeneous temperature profiles. Then, numerical analyses of concrete failure behav-
iors are performed when the specimen is subjected to uniaxial tensile and triaxial compression tests under different
temperature conditions.

In the computational analyses performed in this work, the dual mixed FE formulation for thermodynamically
consistent gradient plasticity proposed by Vrech and Etse (2007, 2009) is considered, which is based on the original
formulation by Svedberg and Runesson (1997) for gradient-regularized plasticity coupled with damage. It should be
noted that the CST FE formulation for gradient plasticity used in this work leaded to very stable numerical perfor-
mance even in case of localized failure modes. Although the consistent material tensor was not developed, the rate
of convergence was higher than linear (tolerance of 1.00xE-4 was always achieved within a limited number of itera-
tions). The considered material properties are those indicated in Tables (1) and (2). In Fig.(7) the overall geometry and
boundary conditions of the cylindrical concrete specimen considered in the current numerical analyses are depicted.
Due to the double symmetry of the problem, only one quarter of the concrete specimens is discretized. Inhomoge-
neous boundary conditions are introduced by imposing zero horizontal displacements to the nodes located on top of
the specimen. Fig.(7) also illustrates the different finite element meshes considered in the numerical analyses.
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Firstly, Firstly, model predictions are compared with experimental results of uniaxial compression tests obtained
by Lee et al. (2008) on cylindrical concrete specimens of 101.6mm x 203.2mm. The material properties summarized
in Table (1) were considered. In order to obtain comparable results, the finest regular discretization of Fig.(7) is used
with the dimensions of specimens by Lee et al. (2008).

In Fig.(8) the numerical predictions in terms of axial stresses vs. axial strains are compared with the experimental
results by Lee et al. (2008). The numerical predictions agree very well with the experimental data for all different
temperature levels (from 20◦C to 600◦C), regarding the loss of both, stiffness in pre-peak regime and peak strength
with increasing temperature. Another effect that can be clearly recognized from the experimental and numerical results
in Fig.(8) is the relevant increment of the ductility (with respect to the reduced peak strength) in both the pre- and
post-peak regimes as the temperature increases. In Fig.(9) model predictions can be observed for uniaxial compression
tests on concrete probes under many different temperatures from 20 to 700◦C, in terms of both axial and lateral strains.
Actually, the experimental and numerical post peak branches of the uniaxial compression tests by Lee et al. (2008)
in Fig. (8) suggest a very interesting effect of the temperature on concrete mechanical behavior. At low and medium
temperature levels (up to approximately 400◦C) the area below the stress-strain curve, representing the energy released
(under mode II type of fracture) seems to be larger than that corresponding to 20◦C (room temperature). However,
and due to the relevant strength degradation, the energy released is smaller than the one at room temperature when
concrete is subjected to high temperature levels.

In this work a more detailed analyses was performed for the variation of GI
f (energy released in mode I or tensile

mode) with respect to the acting temperature. In the proposed model formulation, the energy released in mode II
type of failure is controlled by the energy released in mode I, see Eq.(62). Normalized values of GI

f were evaluated
at different temperatures with respect to the same energy of the uniaxial tensile test performed at room temperature
oGI

f . The results are compared with the set of experimental data obtained from the literature, (Baker, 1996; Zhang
and Bicanic, 2002; Nielsen and Bicanic, 2003; Menou et al., 2006; Zhang, 2011), and they are depicted in Fig.(10).
In the same figure, the variation of the ratio GI

f /
oGI

f as predicted by the proposed model is illustrated for the entire
temperature range from 20 to 700◦C. It can be observed that the experimental trend is very well reproduced by the
proposed model. In other words, the normalized fracture energy released in mode I, increases up to a temperature
level of about 400◦C, and then it strongly and continuously decreases with increasing temperature.

Next the predictions of the proposed model of uniaxial tensile tests under different temperature conditions are
shown in Fig.(11). The case of room temperature is compared with the uniaxial tensile test by Hurlbut (1985). By
comparing the results in Figs.(9) and (11) it can be concluded that the tensile strength of concrete is more sensitive to
temperature than the compressive one.

It is very interesting to evaluate the effect of the lateral confinement in triaxial compression tests performed on
concretes damaged by temperature. In Fig.(12) the results obtained by Hurlbut (1985) for the traixial compression
tests under room temperature at different confinements are compared with the results obtained with the model at 20
◦C. Later, in Fig.(13), the model predictions for the triaxial compression tests design by hurbult, are re-evaluated

for concrete with temperature damage of 500◦C. When comparing these results with the ones in Fig.(9) it can be
concluded that the confinement pressure contributes to reduces not only the lateral dilatancy of concrete, but mainly
the strength degradation caused by temperature.

Next, the temperature effect on the failure pattern predicted by the proposed constitutive model is evaluated. Fig.
(14) compares the equivalent plastic strain distributions at final stage of uniaxial compression tests performed at 20
◦C and 500◦C. The temperature dependent non-local degradation mechanisms included in the model through the

gradient characteristic length is activated when the temperature increases. This leads to a strong stress redistribution
of the critical stresses and, consequently, to an enlargement of the width of the strain localization band. This can
be concluded from the comparison between the plastic strain distribution at residual stress of the 20◦C and 500◦C
uniaxial compression tests in Fig.(14). In the load-displacement diagram, this effect corresponds to a more ductile
failure behavior in the post peak regime of the 500◦C test as compared to that of the 20◦C, see Fig.(9). Following,
the combined effect of the confinement pressure and temperature on the failure pattern of concrete cylinders under
triaxial compression tests is evaluated. In Fig.(15) it can be observed the plastic strain distributions of the triaxial
compression tests (under medium confinement) when subjected to 20◦C and 500◦C. Comparing the results of Fig.(15)
and Fig.(14) it can be concluded that the damage due to thermal effects reduces the sensitivity of the concrete failure
behavior respect to the confinement pressure. At residual strain stage under 500◦C, the difference in the shear band
width (represented by the equivalent plastic strain distribution) between the uniaxial compression test and the triaxial
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compression test under medium confinement is much smaller than that corresponding to the same tests under 20◦C.
Finally, the post-peak regularization capabilities of the proposed model for concrete failure behavior under temper-

ature effect are evaluated. Fig. (16) shows the plastic strain distributions at residual stress of the uniaxial compression
tests under 500◦C corresponding to four different discretizations. The considered FE-meshes do not only vary in the
finite element density (size) but also in their orientations. The equivalent plastic strain distributions of all four FE-
meshes agree very well, demonstrating the regularization capabilities of the model. As can be noticed in Fig.(17-a),
the load displacement curves of all four different FE-meshes show practically the same post-peak path. In Fig. (17-b)
it can also be observed the load-displacement curves obtained with the local model when considering both regular
meshes (coarse and fine). Contrarily to the results with the proposed non-local constitutive theory, the post-peak
behaviors of the local model show relevant loss of objectivity regarding FE-element size.

8. Conclusions

In this work a thermodynamically consistent elastoplastic gradient-based constitutive theory for porous materi-
als like concrete is proposed to predict its failure behavior when subjected to combined thermo-mechanical effects,
including very high temperature fields. The maximum strength criterion is based on a combination between the
Drucker-Prager and Modified Leon criteria as defined by Vrech and Etse (2009), which was extended in this work to
include the strength degradation due to temperature effect. In the post-peak regime the material strength is composed
by two mechanisms in parallel. One based on fracture-energy concepts, while the other on the gradient theory. Both
strength contributions are temperature dependent through their corresponding characteristic length definitions, which
also take into account the confinement pressure effect on the overall mechanical behavior. The pre-peak regime is
defined through a local, isotropic, as well as temperature- and confinement-dependent, hardening rule. The numerical
results included in this work demonstrate the predictive capabilities of the proposed constitutive theory for failure be-
haviors of concrete affected by temperature and subjected to stress histories in both compressive and tensile regimes.
The results demonstrate also the combined effects of confinement pressure and temperature on the failure behavior of
concrete in the triaxial compressive regime, and the regularization capabilities of the temperature dependent failure
patterns and post-peak branches provided by the proposed non-local poroplastic theory.
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Figure 1: Porous medium composed by the superimposition (in space and time) of a skeleton particle and a fluid particle.

Figure 2: TD-LDP Failure surfaces in the compression meridian for variable temperature levels.
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Figure 3: Evolution of hardening dissipative stress hQ with the hardening variable χh for different temperature levels (20◦C, 400◦C and 700◦C)
and different confinement levels at 400◦C

Figure 4: Variation of RG with the confinement pressure.

Figure 5: Variation of the gradient characteristic length lc, in terms of both: temperature level and confinement pressure.
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Figure 6: Approximated concrete elasticity modulus function, depending on the acting temperature and experimental data.

Figure 7: Axisymmetrical concrete cylinder, boundary conditions and FE mesh discretization.
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Figure 8: Numerical predictions of the TD-LDP model and experimental results by Lee et al. (2008) of uniaxial compression tests under increasing
temperatures.

Figure 9: Numerical predictions of the TD-LDP model of uniaxial compression tests on concrete subjected to different temperature levels.
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Figure 10: Variation of the normalized fracture energy released in uniaxial tensile tests performed at different temperature levels.

Figure 11: Numerical model predictions of uniaxial tensile tests on concrete cylindrical specimens under variable temperature levels.
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Figure 12: Numerical model predictions of triaxial tests on normal concrete at 20◦C. Comparison with experimental results by Hurlbut (1985).

Figure 13: Numerical model predictions of triaxial compression tests on concrete cylinders at 500◦C.
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Figure 14: Equivalent plastic strain distribution at residual stress of the uniaxial compression test under: (a) 20◦C and (b) 500◦C.

Figure 15: Equivalent plastic strain distribution at residual stress of the triaxial compression test with medium confinement (σr = 3.44MPa) under:
(a) 20◦C and (b) 500◦C.
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Figure 16: Equivalent plastic strain distribution obtained with the proposed model at residual stress of the uniaxial compression test under 500◦C
for 4 different FE discretizations.

Figure 17: Load-displacement curves obtained with the: (a) non-local and (b) local model formulations.
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Highlights 

 

1. A thermodynamically consistent model for porous materials under high temperatures 

is proposed. 

2. Non-local effects are considered in the post-peak regime. 

3. Post-peak behaviour is divided into a fracture-energy and a gradient-theory based 

terms. 

4. Combined effects of confinement pressure and high temperatures are analysed. 

5. Regularization capabilities of the proposed non-local model are demonstrated. 


