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Abstract: Baculoviruses are known to regulate many insect populations in nature. Their 

host-specificity is very high, usually restricted to a single or a few closely related insect 

species. They are amongst the safest pesticides, with no or negligible effects on non-target 

organisms, including beneficial insects, vertebrates and plants. Baculovirus-based pesticides 

are compatible with integrated pest management strategies and the expansion of their 

application will significantly reduce the risks associated with the use of synthetic chemical 

insecticides. Several successful baculovirus-based pest control programs have taken place in 

Latin American countries. Sustainable agriculture (a trend promoted by state authorities in 

most Latin American countries) will benefit from the wider use of registered viral pesticides 

and new viral products that are in the process of registration and others in the applied 

research pipeline. The success of baculovirus-based control programs depends upon 

collaborative efforts among government and research institutions, growers associations, and 

private companies, which realize the importance of using strategies that protect human health 

and the environment at large. Initiatives to develop new regulations that promote the use of 

this type of ecological alternatives tailored to different local conditions and farming systems 

are underway. 
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1. Introduction 

1.1. Biological Control as an Essential Component of Integrated Pest Management Strategy 

In the past few decades, appreciation of the negative impacts of insecticide usage on the environment 

and health led to efforts directed towards a reduction in chemical control of pests and weeds. Many 

countries have become stricter in the regulation of pesticide manufacture, registration, and use. These 

policies have resulted in higher costs, and shortage of these tools in some cases. On many occasions, the 

behavior of the pests themselves demanded a change in control strategies as resistance to insecticides 

has become a frequent phenomenon [1–3]. 

These practices require a combined strategy known as integrated pest management (IPM), aiming at 

a significant reduction or elimination of chemical pesticides. A major contribution to this type of 

strategies is the use of biological control methods, including natural enemies and pathogens specific for 

the insect pests. 

In principle, biological control can be long-term due to persistence of the pathogens in the 

environment [4]. The natural enemies and entomopathogens applied intentionally may establish 

themselves in the pest population and contribute to long-term crop protection. Pathogens including  

fungi, nematodes, bacteria, and viruses can effectively control pests when applied artificially as 

insecticides [5,6]. 

1.2. Baculoviruses: Molecular Biology, Ecology and Application as Biopesticides 

Among the insect viruses found in nature, those belonging to the baculovirus family (Baculoviridae) 

were considered for the development of most commercial viral biopesticides [7–10]. 

Members of this family are regarded as safe for vertebrates and, to date, no cases of pathogenicity of 

a baculovirus to a vertebrate have been reported [11–16]. Moreover, their host-specificity is usually very 

narrow and often limited to single insect species. 

Baculoviruses are insect-specific, enveloped viruses with circular, supercoiled double-stranded 

DNA genomes in the range of ca. 80–180 kbp [17]. More than 600 baculoviruses have been isolated 

from Lepidoptera (butterflies and moths), Hymenoptera (sawflies), and Diptera (mosquitoes) [18]. The 

name “baculovirus” is derived from the rod-shaped, nucleocapsids (Latin “baculum”: stick) which are 

230–385 nm in length and 40–60 nm in diameter [17]. The virions are enveloped and two phenotypes 

have been recognized: occlusion derived virus (ODV) and budded virus (BV). These two types of 

virions contain the same genome but differ in the morphogenesis and composition of their envelopes 

and their functions in the virus life cycle. Their stabilities in the environment, as well as their infectivities 

to the target insect, are extremely different. 

The ODV are enclosed in a paracrystalline protein (polyhedrin or granulin) matrix forming an 

occlusion body (OB).  This  structure is quite resistant to diverse environmental conditions and therefore 

facilitates persistence and horizontal transmission of the disease in nature. ODV consist of one or more 
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nucleocapsids enclosed in a single lipoprotein membrane envelope. Different baculoviruses are 

characterized by OBs containing either a single virion with a single nucleocapsid, multiple virions with 

a single nucleocapsid each or multiple virions containing bundles of several nucleocapsids. The surface 

of the OBs is covered by an envelope or calyx composed of protein with a large proportion of 

carbohydrate [17]. 

The morphology of OB was used to define two major groups of Baculoviridae: Nucleopolyhedrovirus 

(NPVs) and Granulovirus (GVs). OBs of NPVs, also known as polyhedral inclusion bodies (PIBs) or 

simply polyhedra, are about 0.6–2 μm in size, large enough to be seen under a light microscope [19], 

and their major occlusion protein is called polyhedrin. OBs of GV, known as capsules or granules, are 

oval with diameters in the range of 0.2–0.4 μm, and the major protein is granulin. 

More recently, the sequencing of many complete baculoviral genomes and a more detailed 

phylogenetic analysis of viruses and their natural hosts was used to define four genera: Alphabaculovirus 

(lepidopteran NPV), Betabaculovirus (lepidopteran GV), Gammabaculovirus (hymenopteran NPV), and 

Deltabaculovirus (dipteran NPV) [18,20,21]. 

The proportion of species described for each genus can be appreciated in Figure 1. By and large, 

Alphabaculovirus is the taxon with many more species [18] than the other three genera and the type 

species for Alphabaculovirus is AcMNPV (Autographa californica multiple nucleopolyhedrovirus). 

 

Figure 1. Baculoviridae. The numbers of putative species in each of the four genera are 

based on the species accepted by the International Committee on Taxonomy of Viruses, 

ICTV (numbers in parentheses) plus other baculoviruses that are not recongnized as species 

yet, but the information published to date suggest their inclusion in the near future as separate 

species according to the species demarcation criteria adopted by ICTV [18,20,21]. 

Redundant genomes were excluded and the more recently sequenced Erinnyis ello 

granulovirus [22], Agrotis segetum NPV-B [23], Spodoptera frugiperda GV [24], and 

Pseudoplusia includens SNPV [25], among others, were added. As an alternative to 

complete genome information, species can be defined following the demarcation criteria set 

forth in [20]. The graph shows the Alphabaculovirus genus divided in groups I and II, based 

on the active fusogenic protein present in the BV. 
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The natural cycle of infection of insect larvae by AcMNPV is schematized in Figure 2. Caterpillars 

ingest polyhedral that contaminate their food. The alkaline environment of the midgut triggers the 

dissolution of polyhedra (OB) and the release of ODV into the midgut lumen [26]. 

 

Figure 2. Baculovirus infectious cycle. (A) Cross sectional schematic of an insect larva.  

A baculovirus occlusion body (OB) ingested with contaminated food starts a new infectious 

cycle (1). When OBs pass through the foregut and reach the alkaline midgut the 

proteinaceous matrix is dissolved (2), releasing ODV (3). The peritrophic membrane is 

degraded by virus and host encoded enzymes present in the OB (4), allowing the ODV to 

enter the cell; (B) Representation of the virus replication cycle. ODV enters the cell by fusion 

with epithelial cell microvilli (1), releasing nucleocapsids (NC) into the cytoplasm (2). NC 

may enter the nucleus (3), disassemble and release the genome (4). Then early genes are 

transcribed (6) and translated (7). Some of the proteins translocate into the nucleus (8), take 

part in genome transcription/replication, NC and virion assembly (9). In the first stages of 

viral infection, NC is transported to the cytoplasm (10), approaches the basolateral cell 

membrane (CM) (11) and emerges as budded virus (BV) (12) in the spots where the viral 

envelope fusion protein (EFP) (14) accumulates using the secretory pathway (13). In the 

very late stages of infection, NC are enveloped in the nucleus and occluded in the polyhedral 

shaped protein matrix (OB) (15) (adapted from [27], copyright 2013, The Authors). 

Once released, ODV face the barrier of the peritrophic membrane (PM), a lattice of chitin, 

mucopolysaccharides and proteins that separates food from midgut tissue [28]. The PM lattice has pore 

sizes ranging from 21 to 36 nm in diameter [29], so that small particles, such as degradative enzymes, 

can pass freely through the lattice as part of the digestive process, but the passage of larger particles, 
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such as pathogens, is restricted. ODV must damage the PM to gain access to the midgut epithelium. In 

order to do this, some baculoviruses encode a class of metalloproteases called enhancins, which cleave 

mucin-like proteins bridging chitin strands in the PM lattice [30]. It has ben reported that enhancins are 

co-occluded with ODVs in the OB matrix [31] or are present on ODV surfaces [32], and catalyze the 

disruption of the PM after the OB is dissolved. Not all the baculoviruses encode enhancins, and there 

are other viral and host-encoded factors that degrade the PM [33]. In these cases, the addition of 

enhancing proteins from other baculoviruses may contribute to a faster PM degradation and reduced 

significantly the time of action of the virus [34]. The ODV enter the midgut cell after fusion with 

epithelial cell membrane. The virions are uncoated and the nucleocapsids (NC) enter the nucleus, where 

viral genes are expressed in a controlled manner. The first type of progeny that emerges from the primary 

infection consists of BV, which spreads the infection to other tissues. In the very late stages the production 

of infectious BV is reduced, and the newly assembled NC acquire an envelope in the nucleus and are 

finally occluded by polyhedrin, which makes up more than 95% of the OB. Up to 1010 polyhedra are 

produced per larva, frequently accounting for more than 30% of the dry weight of a caterpillar [35]. 

However, in some baculovirus-host systems infection cannot spread beyond the midgut epithelium.  

In [36], Passarelli thoroughly reviews the barriers that baculovirus have to overcome in order to establish 

efficient systemic infections. 

Fibrillar structures composed mostly of the very late protein P10 accumulate in the cell in association 

with microtubule and are involved in the proper assembly of polyhedral envelope (PE) [17]. These 

structures have been implicated in the disintegration of the host cells [37]. In the final stages of infection, 

viral-encoded enzymes, chitinase, and cathepsin, are essential for the breakdown of the host cuticle and 

the final liquefaction of the larvae [38]. Polyhedra released from the dead larvae remain in the 

environment and can be horizontally transmitted to other caterpillars when they ingest OBs present on 

leaves [39]. Vertical transmission via contamination of eggs may also play a role in spreading  

the virus [40]. 

The first well-documented introduction of a baculovirus to the environment which resulted in 

effective suppression of a pest occurred in the 1930s, when, along with a parasitoid imported from 

Europe to the USA and Canada to control spruce sawfly Diprion hercyniae, a NPV specific for this 

insect was introduced accidentally [41,42]. Since then, no control measures have been required against 

Diprion hercyniae. Moreover, the NPV now occurs in populations of Neodiprion sertifer and  

Diprion hercyniae in North America. The introduction of an exogenous baculovirus is unusual. More 

commonly, two alternative strategies of pest management are used: infested areas are sprayed with 

highly concentrated baculovirus insecticide formulations to control the pest as quickly as possible, or 

sprayed with lower concentrations of baculovirus, leading to the establishment of the virus for several 

insect generations [43]. Most of the examples refer to baculoviruses isolated from the local insect host 

and are one of the causes for the fluctuations in population dynamics in particular areas. 

2. Examples of Baculovirus Control Programs in Latin America 

The most significant cases of insect pest control programs based on baculovirus in Latin America are 

described in the following sections. Special consideration should be given to the context of each case, 

since the feasibility and success of a program relies on the commitment of governments, extension 
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agencies, research groups, farmers and general public information. Although the use of baculoviruses 

for the protection of agricultural annual crops, fruit orchards and forests has not been as extensive as it 

was expected, there are a number of successful examples that are summarized in the following sections 

and that will hopefully be expanded as studies on new baculovirus-host systems progress. We shall 

concentrate on case studies in Latin America. 

A summary of baculovirus-based products commercialized and mostly produced in Latin America 

can be found in Table 1, and Figure 3 is a sample of these commercial products. 

Table 1. Examples of baculovirus-based products commercialized in Latin America. 

Virus Host Crops Product Country Producer company 

Anticarsia 

gemmatalis 

MNPV 

Anticarsia 

gemmatalis 
Soybean 

Baculo-soja 1, 

Baculovirus Nitral 2, 

Coopervirus SC 3, 

protégé 4, Multigen 5 

Brazil 

Nova Era Biotecnología 

Agrícola 1, Nitral Urbana 2, 

COODETEC 3,  

Milenia 4,  

EMBRAPA 5 

Autographa 

californica 

MNPV + 

Spodoptera 

albula NPV 

Autographa 

califórnica  

Trichoplusia ni  

Pseudoplusia 

includens  

Heliothis virescens  

Spodoptera exigua  

Estigmene acrea  

Plutella xylostella 

Alfalfa, vegetable 

crops 
VPN-ULTRA Guatemala Agricola El Sol 

Spodoptera 

sunia NPV 
Spodoptera spp. Vegetables VPN 82 Guatemala Agricola El Sol 

Cydia 

pomonella 

GV 

Cydia pomonella,  

C. pomonella, 

Grapholita molesta 

Apple, pear, 

walnut  

Apple, peach 

Carpovirus Plus 6  

Madex 7  

Carpovirusine 6  

Madex Twin 7 

Argentina 6 

Argentina 7 

Chile 6 

Uruguay 7 

NPP-Arysta Life Science 6 

Andermatt Biocontrol 7 

Erinnyis ello 

GV 
Erinnyis ello 

Cassava 8  

Rubber trees 9 
Baculovirus erinnyis 8,9,10 

Brazil 8  

Colombia 9 

Colombia 10 

Empresa de Pesquisa 

Agropecuária e Extensão 

Rural de Santa Catarina 

S.A. 8  

BioCaribe SA 9   

CORPOICA 10 

Helicoverpa 

zea SNPV 

Heliothis and 

Helicoverpa spp. 

Maize, tomato, 

cotton and 

tobacco 

Gemstar 11  

HzNPV CCAB 12 

Mexico 11  

Brazil12 

Certis USA 11  

AgBiTech Australia 12 

Helicoverpa 

armigera 

NPV 

Heliothis and 

Helicoverpa spp. 

Tomato, sweet 

pepper, maize, 

soybean, tobacco, 

vegetable crops 

Diplomata 13  

Helicovex 14 
Brazil 13, 14 

Koppert 13 

Andermatt Biocontrol 14 
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Table 1. cont.  

Virus Host Crops Product Country Producer company 

Phthorimaea 
operculella GV 

Phthorimaea 
operculella  

Tecia solanivora 
Potato 

Baculovirus Corpoica 15  
PTM baculovirus 16, 17 

Colombia 15  
Peru 16  

Costa Rica 17 

CORPOICA 15  
SENASA Peru 16  

INTA Costa Rica 17 

Phthorimaea 
operculella GV 

+ Bacillus 
thuringiensis 

Phtorimaea 
operculella  

Tecia solanivora 
Symmetrischema 

tangolias 

Potato 
Matapol Plus 18  
Bacu-Turin 19 

Bolivia 18  

Ecuador 19 

PROINPA 
Foundation 18  

INIAP, Ecuador 19 

Spodoptera 
exigua NPV 

Spodoptera exigua 
Tomato, chili, 

eggplant 
SPOD-X LC Mexico 

Certis USA—
SUMMIT AGRO 

Mexico 

Spodoptera 
frugiperda 

MNPV 

Spodoptera 
frugiperda 

Maize, sorghum - Brazil 
EMBRAPA (in 
development) 

Note: the superscripts (1-19) are included for disambiguation in order to associate the biopesticide (product), the 

producer company and the country or countries where the particular biopesticides are applied. In particular, 

two products identified with the same designation, e.i. PTM baculovirus 16, 17 are produced by different 

organizations in two different countries Peru16 and Costa Rica 17. 

 

Figure 3. Some baculoviral pesticides commercialized in Latin America. 

2.1. AgMNPV for the Control of the Velvetbean Caterpillar in Soybean Crops 

The velvetbean caterpillar, Anticarsia gemmatalis (Lepidoptera: Noctuidae), is one of the major 

foliage feeding pests of legume crops in South America, affecting mainly soybean fields. In Brazil,  

the severe impact on soybean crops was reduced in the past with organochlorine and organophosphorus 

chemical insecticides. The control of A. gemmatalis required two insecticide applications during  

one season, which raised the concern for the impact on both environment and human health. This led to 

the development of an IPM program [44] based on the periodic monitoring of the pest and the application 

of minimal dosages of nonpersistent chemical pesticides only when insect pest exceeded thresholds 

based on assessment of defoliation levels, pest populations, and presence of pathogens, mainly the 

fungus Nomuraea rileyi (Farlow) Samson. 
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In the 1970s, a nucleopolyhedrovirus of A. gemmatalis (AgMNPV) was isolated in different regions 

of Brazil [45,46]. Initial field experiments with the AgMNPV revealed its potential as a biopesticide in 

soybean IPM programs. In 1980/1981 and 1981/1982, a pilot use of AgMNPV was conducted under the 

coordination of Dr. Flavio Moscardi (EMBRAPA) on 21 farms in the southern states of Brazil. These 

trials, conducted with virus produced by collecting dead larvae in the fields, were accompanied by the 

training of extension workers in the application of AgMNPV. These extension workers played a critical 

role, providing a direct connection with the farmers, monitoring the fields and collecting data that 

allowed evaluating the performance of the biopesticide [47]. 

The subsequent success of the AgMNPV program (reviewed in [48,49]) was due in large part to the 

collaborative work of EMBRAPA researchers and extension workers to convince farmers of the benefits 

of the use of AgMNPV in the biological control of the pest. This was achieved through the organization 

of outreach activities focused on showing and discussing the results obtained. In addition, farmers that 

participated in the pilot phase were helpful to convince other farmers to try the AgMNPV-based insecticides. 

Results of the pilot phase were satisfactory, and EMBRAPA and official and private extension 

services decided to implement a program for the use of AgMNPV in the 1982/83 season. For this phase, 

AgMNPV was produced in A. gemmatalis larvae reared on artificial diet. From this point, dead larvae 

from AgMNPV treated fields were collected to provide inoculum to spray other areas during the same 

season or to store inoculum for the next season. The model of AgMNPV field production was established 

as the most convenient method to obtain large amounts of OBs at a low cost. 

In 1986 a wettable powder formulation based on AgMNPV was developed [47,50] and at the end of 

the 1980s EMBRAPA started to negotiate contracts with private companies interested in producing  

and commercializing the biopesticide. The commercialization of the AgMNPV by five private  

companies expanded its use to about one million hectares in 1990–1991 and two million hectares by 

2002–2003 [51,52]. 

Despite the efforts deployed by EMBRAPA and other research institutes to develop and improve 

mass-production of AgMNPV under controlled laboratory conditions, the private companies that tried 

to implement this methodology lost economic competitiveness against those that used the more primitive 

field production methodology [47]. This was due to the high cost of labor, disposable rearing containers 

and components of the artificial diet. Field production demanded a large amount of manpower, since the 

dead larvae were harvested manually, and had the disadvantage that the quality and quantity of infected 

larvae was dependent upon the natural prevalence of the host insect that could vary from year to year. 

Harvesting of infected insects in the field involved from 200 to 300 larval pickers per day, and resulted 

in the collection of hundreds of kilograms of dead larvae. In the most productive AgMNPV season 

(2002/2003), about 45 tons of AgMNPV-killed caterpillars were collected, representing more than 2.0 

million hectares-equivalents of biopesticide [53]. 

More problems appeared when manual larvae harvesting was replaced by an automated collection 

procedure in which the plants were shaken over drop cloths. This method led to a poor quality product 

because the material included other insects, debris, and A. gemmatalis that were not in the final stages 

of the virus infection cycle. The final product was of lower infectivity and caused problems  

during application. 

The limitations of AgMNPV field production stimulated studies aiming at improving the laboratory 

production of the biopesticide. The artificial diet components for A. gemmatalis rearing were evaluated 
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and their cost was reduced about seven-fold and the AgMNPV laboratory production rates on the revised 

diet were comparable to those of AgMNPV from larvae collected in the field [54]. The private company 

Codetec adopted a laboratory production method, with a potential to treat 1.8–2.0 million hectares per 

year. However, this company discontinued this initiative due to the reduced demand for AgMNPV for 

the reasons that are discussed in the following paragraph. 

The reduced demand of AgMNPV resulted from the advent of no-till agricultural systems in Brazil, 

which caused soybean growers to adopt the common practice of applying herbicides before sowing. 

Unfortunately, many farmers acquired technological packages sold by companies that included the 

combined application of chemical insecticides and herbicides. This practice led to the decline of natural 

enemies, [49,55]. In this context, other insects that usually caused little damage in soybean crops became 

important pests [48,56]. The use of AgMNPV in Brazil was reduced substantially, and presently this 

virus is applied to about 200,000 hectares per year in recent last seasons [57]. 

AgMNPV was also used in soybean fields in Paraguay since the early 1990s with good results [58]. 

The biopesticide is still used in Paraguay in about 100,000 hectares per year. Field trials assays were 

also carried out in Argentina and Colombia, although in these countries pest control programmes based 

on AgMNPV have not been still established. 

More recently researchers at Mexico’s National Institute for Agriculture, Forestry and Livestock 

Research (INIFAP) began studying the use of the virus for control of the velvetbeen caterpillar in 

soybean in the north of the country. As a result, AgMNPV is now used regularly over an area of  

15,000 ha of soybean, with major reductions in the use of chemical insecticides, yielding the additional 

benefit of maintaining higher population densities of natural enemies and lower incidence of secondary 

pests [59]. Large quantities of the biopesticide are produced using an in-field-production system. 

2.2. CpGV for the Control of the Codling Moth in Apple and Pear Orchards 

Cydia pomonella granulovirus (CpGV) was originally isolated from larvae collected in Chihuahua, 

Mexico [60,61]. Since its description and development as a bioinsecticide, it has provided an effective 

alternative for the control of the codling moth in integrated and organic pome fruit and walnut production 

in several countries [62,63]. In Argentina, the first field trials were conducted during the early 1980s, in 

pear and apple orchards in the province of Mendoza (western Argentina). Since 1987, the work was 

continued by the Institute of Agricultural Microbiology and Zoology (IMYZA, INTA), resulting in the 

development of CpGV-INTA-503 as an active ingredient and its registration for experimental use. Since 

2000, subsequent development was conducted through material and technology transfer agreements 

signed by INTA and Natural Plant Protection (France)—Arysta Life Science for the registration of the 

commercial product Carpovirus, and AgroRoca S.A. (Argentina) for its commercialization. Since 2002, 

a new formulation (Carpovirus Plus®) has been available in the market and successfully used for the 

management of codling moth in the main production areas [64]. In 2007, other CpGV based product, 

Madex® (Andermatt Biocontrol—Switzerland), was registered by Agricheck SRL. 

In Alto Valle del Río Negro, the largest region of pear and apple production in Argentina, highly 

satisfactory results were achieved when the virus was applied as the only control method or in 

combination with conventional chemicals at doses of 1013 OBs/hectare at intervals of 8–10 days between 

treatments (Figure 4). 
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Figure 4. Application of Carpovirus Plus® in apple orchards in Río Negro, Argentina. Inset: 

C. pomonella larvae infected by CpGV (Image kindly provided by Graciela. Quintana; 

Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología 

Agropecuaria (IMYZA.INTA), Castelar, Argentina). 

In organic production, with a 14 day interval between treatments, no detectable levels of damage were 

apparent at time of harvest, when the biopesticide was combined with a pheromone-based mating 

disruption technique. Annually, thousands of tons of fresh fruit treated with the virus enter the 

demanding international market [65,66]. The growing use of CpGV in walnut orchards impacted 

significantly on small farms in the valleys of Catamarca and La Rioja (Northwestern Argentina),  

where this safe and effective product doubled or even tripled the amount of fruit produced. The  

virus applications were performed every 10–12 days, with doses of 1013 OBs/hectare alone or in  

combination with conventional chemical insecticides, such as azinphos-methyl, lambda-cyhalothrin and 

cypermethrin [67,68]. 

In 2005, after more than twenty years of use, evidence emerged on the existence of European  

C. pomonella populations resistant to commercial CpGV pesticides [69–73]. European CpGV products 

were based on a Mexican isolate (CpGV-M) first described in [60]. This finding stimulated the search 

and selection of new CpGV isolates [74–77]. In Argentina, after more than 10 years of sustained use of 

the virus, resistant CpGV-M populations have not been detected. However, in order to prevent or delay 

the expression of resistance in local pest populations, studies were initiated to evaluate the effectiveness 

of new isolates and the use of strategies which include the use of CpGV in combination with insecticides 

with minimal environmental impact (i.e., methoxyfenozide, rynaxypyr). In parallel, research institutes 

are working in coordination with SENASA-Argentina (National Health and Food Quality Service) in 

the framework of the National Program for the Suppression of Codling Moth [66]. In addition,  

new isolates and formulations are being assayed to provide control of the oriental fruit moth,  

Grapholita molesta in peach [78]. 

In Chile, Carpovirusine® was registered for commercial use by Arysta Life Science and more recently, 

Madex Twin was approved in Uruguay for the control of two pests, the codling moth and the oriental 

fruit moth. Finally, experimental field trials were also conducted recently in Mexico using  

0.77–3.3 × 1012 OBs per hectare. Significant protection levels of of fruit were achieved indicating that 
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low CpGV doses are effective for controlling the codling moth, as long as they are applied on the day of 

emergence of the larvae [79]. 

2.3. Phthorimaea Operculella GV for the Control of the Potato Tuber Moth Complex 

The potato (Solanum tuberosum L., Solanaceae) is the third most important food crop in the world 

after rice and wheat in terms of human consumption. The global production of potato exceeds  

300 million metric tons annually [80]. Although the potato originated in South America, this region has 

the lowest level of production (less than 16 million tons). However, for most small farmers in the Andes 

this crop remains a traditional food stuff, and is cultivated with other species of Solanum unknown to 

the rest of the world. There are over 4000 edible potato varieties, mostly found in the Andean region.  

In countries, such as Argentina, Brazil, Colombia, and Mexico, the commercial scale production of 

Solanum tuberosum is increasing. 

Among the main insect pests, species belonging to the potato tuber moth (PTM) complex 

(Lepidoptera: Gelechiidae) cause severe damage worldwide [81,82]. Their larvae produce losses by 

mining the tubers in the field and during storage [83]. Originally an insect of the Andean region, the 

PTM, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) has become an invasive potato pest 

globally [84]. Another tuber moth present in Peru, Bolivia and Colombia is Symmetrischema tangolias, 

and more recently, Tecia solanivora (Povolny) has invaded several countries in Central America. 

A granulovirus (PhopGV) has been isolated from P. operculella in many countries in the world, and 

examined for their potential to control the pest [85–91]. 

In Peru, a PhopGV isolate has been developed as a microbial pesticide through an initiative of the 

International Potato Center (CIP). Virus infected larvae were ground and mixed with talc at a ratio of  

20 larvae per kg talc and used as a suspension in 1 L of water. In addition, a dry product has been applied 

at a dose of 5 kg per ton of stored potatoes, providing high levels of control (ca. 95% mortality) [83,92]. 

The program was then established in Bolivia, Ecuador and Colombia [47]. In Bolivia, it was carried out 

by PROINPA (Fundación de Promoción e Investigación de Productos Andinos), and the bioinsecticide 

(Matapol®) was produced in a pilot plant with a capacity of 6 tons/year. The product was effective in the 

control of P. operculella but not against S. tangolias, and consequently, a new formulation containing 

PhopGV and Bacillus thuringiensis was developed [93] and is available in the market with the 

commercial name Matapol Plus® in this country and as Bacu-Turicin in Ecuador [94]. 

It is well established that different PhopGV isolates vary in their activity against different populations 

of P. operculella and alternate hosts [95–98]. PhopGV is able to infect other species of Gelechiidae, 

such as Tuta (Scrobipalpuloides) absoluta (Meyrick) and T. solanivora [99–103], and with the aim to 

find isolates also effective against these species, there is a renewed interest in characterization and 

evaluation of new isolates in several countries, in order to develop new biopesticidal products. The 

Colombian Corporation for Agricultural Research (CORPOICA) conducted samplings of T. solanivora 

larvae in Colombia with the purpose of finding local virus isolates. As a result, five geographical 

granulovirus isolates from T. solanivora (named VG001, VG002, VG003, VG004, and VG005) were 

identified, and analysis by restriction endonuclease cleavage patterns revealed the presence of three 

different genotypic variants. Based on their DNA restriction patterns and biological activity, VG001 and 

VG005 isolates were selected for further analysis as potential biological control agents [104]. Mixtures 
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of virus isolates showed a higher insecticidal activity compared to individual PhopGV isolates when 

applied to both T. solanivora and T. absoluta. This level of pathogenicity was maintained after numerous 

passages. The mixtures were about 3- to 25-fold (from 7.15 OBs/mm2 to 0.10 OBs/mm2) more 

pathogenic against P. operculella than the Peruvian isolate applied alone by surface contamination 

techniques. When tested on T. solanivora, they were between ca. two- and five-fold (from 12.29 

OBs/mm2 to 1.25 OBs/mm2) more pathogenic than the isolate VG003 alone. A study of a biopesticide 

containing a mixture of various selected genotypes active against the target pests was conducted to 

develop a biopesticide effective against P. operculella and T. solanivora [105]. At present, a formulation 

of PhopGV, “Baculovirus CORPOICA” is the only baculovirus product registered in Colombia, and is 

recommended for the control of T. solanivora in stored potatoes. 

Another PhopGV isolate collected from diseased P. operculella larvae collected in Costa Rica 

(PhopGV-CR1) was characterized. PhopGV-CR1 was highly pathogenic against its two indigenous 

hosts, although significant differences of up to four-fold were detected against P. operculella  

(LD50 = 17.9 OBs/mm2) and Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae)  

(LD50 = 69.1 OBs/mm2). Serial passage of PhopGV-CR1 over four generations in T. solanivora resulted 

in an increase in its pathogenicity by about five-fold in three generations, suggesting a rapid adaptation 

to its alternate host [106]. The isolate was also evaluated under storage conditions, resulting in a decrease 

of damage of over 70% when compared with the untreated controls. In a prospective study, a  

French-Ecuadorean research team isolated some twenty different PhopGV from P. operculella,  

T. solanivora, and other gelechid species. More recently, in an effort to develop a viral biopesticide for 

the control of the Guatemala PTM T. solanivora they tested eight of these isolates and found a 14-fold 

difference in pathogenicity among them [107]. 

In Brazil, an indigenous PhopGV isolated from the PTM was characterized and evaluated against  

P. operculella and T. absoluta [108]. This isolate was formulated as a liquid suspension and evaluated 

alone, in mixtures with two commercial neem oil-based products (NeemAzal™ and DalNeem™, 

produced from the neem tree Azadirachta indica), and compared with a dry powder formulation of viral 

granules. High larval mortality (about 90%) was achieved when OBs and DalNeem™ (azadirachtin 

preparation) were applied together (104 OBs/mL and 4 mg of azadirachtin/L). This combination resulted 

in ≥50% increase in efficacy compared with each of the components alone. A talc-based virus 

formulation resulted in 100% larval mortality at 5 × 108 OBs/g, and provided a better control efficiency 

on PTM than an aqueous virus suspension. The PhopGV combined with DalNeem™ at low rates or 

formulated with talc powder appeared to represent a viable option for control of the PTM under  

storage conditions. 

2.4. Spodoptera Frugiperda MNPV and GV (SfMNPV and SfGV) for the Control of the Fall 

Armyworm in Maize Crops 

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a migratory pest 

endemic to the Americas that occurs from Southern Canada to Argentina [109]. It is a polyphagous insect 

that causes economic losses in several important crops, such as maize, sorghum, rice, cotton, and 

pastures [110]. Its control is based on the use of broad spectrum chemical insecticides or Bt transgenic 
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crops, with the negative environmental effects and control failure due to development of resistance in 

the target pest [111–115]. 

In this context, the use of baculoviruses seems to be a promising alternative. Countries like  

Argentina [116,117], Brazil [118–120], Colombia [121], Honduras [122], Mexico [123–126],  

Peru [127], and Venezuela [128] have evaluated the effectiveness of geographical variants of SfMNPV 

in laboratory or field conditions, against local populations of S. frugiperda. 

Naturally occurring SfMNPV has a wide genetic diversity [129]. Nine different genotypes were 

identified in the Nicaraguan isolate Sf-NIC [130,131]. From these nine genotypes, three were classified as 

defective (since they were not orally infective) and the rest of the genotypes were significantly less 

infective when compared individually against the complex wild type isolate. Interestingly, cell  

culture-co-occluded mixtures of complete and defective genotypes restored the pathogenicity of the virus 

to levels comparable with the complex wild type isolate [132–134]. 

This phenomenon, also found in a Colombian field isolate of SfMNPV consisting of at least  

ten distinct genotypes [135], is an interesting case of study of a heterogeneous population structured to 

optimize the viral fitness that poses challenges when a biopesticidal product is to be formulated. In a 

previous study, three native isolates of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) 

were characterized [136]. Moreover, biopesticidal formulations based on those viruses were obtained 

and field trials revealed that the isolates were effective in controlling the pest and keep the pest 

population below the economic damage threshold. The efficacy in controlling the pest were similar to 

that of chemical insecticides when treatment of plots was up to 22 days post emergence of the pest [137]. 

These studies allowed the development of a SfMNPV-based commercial formulation for the biological 

control of S. frugiperda by CORPOICA, which is in the process of registration [138]. 

In Brazil, an indigenous isolate of SfMNPV was used to control the insect in maize and was applied 

to 20,000 ha/year [47,139]. Owing to the high cost of SfMNPV production by EMBRAPA, this program 

has been discontinued [49]. Two major problems have limited the large-scale production of SfMNPV. 

First, the liquefaction of the integument as soon as the larvae die makes the process laborious and the 

final product expensive. Second, the cannibalistic behavior of the fall armyworm requires individual 

larval rearing, which is labor-intensive, increases the risk of contamination and raises the production 

costs [140]. 

Recently, an SfMNPV isolate that does not cause the liquefaction of the integument of larvae 

immediately after death was assayed in a two-step bioassay. The cannibalistic behaviour of S. frugiperda 

larvae and the number of OBs/larva produced was examined in an experimental design involving 

different size larvae fed on two food sources, maize (Zea mays) and castor bean (Ricinus communis) 

leaves inoculated with SfMNPV OBs. A decrease of cannibalistic behaviour and the highest number of 

OBs/larva was observed in larvae fed on castor bean leaves. By selecting the optimal larval instar and 

food for OB production, the amount of OB per larvae produced is higher and thus the number of larval 

equivalents (LE: number of larvae required to control 1 hectare) is lower [140]. 

The biopesticidal properties of several isolates of SfMNPV were also evaluated in Mexico. Different 

isolates varied significantly in their infectivity to its host, and only some had a potential to control the 

pest. Nevertheless, in field trials SfMNPV formulations have faced some shortcomings related to the 

low percentage of mortality achieved (less than 50%) and the insufficient environmental persistence of 

the OBs [141]. These limitations have led to the study of the stability of the formulations and the 
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incorporation of UV protectors, phagostimulants, and the integration of SfMNPV in products containing 

azadiractin [142–144]. 

Recently, a Colombian Spodoptera fugiperda granulovirus was also characterized [24,145] and 

preliminary data suggest that, although this GV is very slow acting on its own, the addition of this 

baculovirus to SfNPV formulations may enhance NPVs biopesticidal performance, most likely due to 

enzymatic activities present in GV OBs [138]. 

2.5. Erinnyis ello GV for the Control of the Cassava Hornworm 

Cassava (Manihot esculenta) is the basic source for dietary energy of 500 million people in tropical 

and subtropical areas of Africa, Asia, and Latin America [146]. The hornworm Erinnyis ello 

(Lepidoptera: Sphingidae) is an important pest which impacts cassava production in the Neotropics, 

causing complete plant defoliation, losses in bulk root production and reduced root quality. Together, 

these damages can cause yield losses of about 50%. It is also the most serious pest of the rubber tree 

(Hevea brasiliensis) in the New World. E. ello species tends to migrate in swarms, and fields can be 

completely defoliated with little warning when a swarm arrives and oviposits en masse. It is 

hypothesized that this migratory behavior is a possible defense against the large complex of natural 

enemies associated with E. ello, rendering natural biological control ineffective [147]. 

In 1973, the CIAT (International Center for Tropical Agriculture) found a virus infecting their  

E. ello colonies that caused the death of the larvae. This virus was later identified by G. Thomas at the 

University of Califirnia, in Berkeley [148] and classified as a granulovirus (Erinnyis ello granulovirus, 

ErelGV). This virus has been evaluated in the CIAT as a potential biological control agent. In field trials 

carried out in Brazil, damage caused by E. ello to cassava plantations ceased three days following the 

application of ErelGV [149]. 

Subsequently, a program for the production and distribution of the virus among farmers was 

implemented [149,150] in Southern Brazil by EMPASC (Empresa de Pesquisa Agropecuaria de Santa 

Catarina) in collaboration with CIAT. In addition, ErelGV was extensively used for hornworm control 

in Venezuela from the 1990s, being applied to more than 7000 hectares. In this case, the levels of control 

achieved were close to 100%, and the use of chemical pesticides was virtually eliminated [151]. 

The ErelGV genome was recently sequenced [22]. Apart from the importance of the molecular study 

of the virus, this information can be used for comparison of ErelGV isolates and for the assessment of 

the genetic stability of the isolates currently used in biopesticidal formulations. 

E. ello is also an important pest for rubber trees and has been submitted for registration as a microbial 

control agent in Colombia by CORPOICA [138]. 

2.6. Other Baculoviruses Used as Biological Control Agents in Latin America 

The Old World cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) was considered a 

quarantine pest in the Americas. Recently, its presence was detected in Brazil [152–154],  

Paraguay [155], and Argentina [156]. As mentioned in [157], it is possible that the introduction of this 

species occurred before the date of those reports, because the identification using external morphological 

characters of the larvae and adults of the Helicoverpa/Heliothis complex is difficult for a non-expert. 
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Generally, before H. armigera was detected, the major damages in maize were caused by H. zea, while 

in soybean, chickpea and other legumes the incidence of H. gelotopoeon and H. virescens prevailed. 

More recently, H. armigera has been reported to cause damages in cotton, soybean, corn, green beans, 

tomatoes, citrus and pastures, in Brazil [154]. To control this pest, emergency measures were established 

including the identification of the pest and approval of chemical and biological insecticides, as part of 

an intense effort carried out by research institutions such as EMBRAPA, universities, farmers 

associations and private enterprise. In this context, products based on baculovirus were imported and 

incorporated in the management of the pest (Table 1). 

Perigonia lusca (Lepidoptera: Sphingidae) is an important pest of “yerba mate” also known as 

“Paraguay tea” in many European countries (Ilex paraguariensis) [158,159]. This pest was observed in 

Argentina, Paraguay [159], and Brazil [160]. The damage caused by P. lusca increased following the 

introduction of the monoculture in response to the increasing demands of yerba mate in South American 

countries [161]. A baculovirus (Perigonia lusca SNPV) was isolated from this species first in  

Argentina [162] and later in Brazil [161]. It has been successfully used by farmers as a crude preparation, 

in over 2500 ha of yerba mate plantations, at a dose equivalent to 15 infected last instar larvae per  

hectare [159,162]. Perigonia lusca SNPV genome has been recently sequenced [163]. Although no 

product is commercially available, the virus is currently used in IPM programs and for organic 

production of yerba mate in Argentina and Paraguay. 

Epinotia (=Crocidosema) aporema (Lepidoptera: Tortricidae) is distributed from Southern USA to 

Argentina, Chile, and Uruguay. It produces variable losses in several leguminous crops including 

soybean. In Argentina, a betabaculovirus (Epinotia aporema GV, EpapGV) was isolated and 

characterized [164–166]. A formulation was assayed under controlled greenhouse conditions resulting 

in 80% larval mortality with a dose equivalent to 2 × 1012 OBs/hectare. Quality control procedures of 

the viral product were developed [167,168] and permission has been granted for experimental  

field studies. 

During the 1990s Brazilian, Argentinean, and Uruguayan researchers carried out a cooperative project 

with the aim of evaluate baculovirus isolates that could be used to control Chrysodeixis includens (syn. 

Pseudoplusia includes) and Rachiplusia nu (Lepidoptera: Plusiinae) [169]. Nowadays, there is a renewed 

interest in the study on native isolates for the control of these pests, due to the increment in the insect 

populations that cause significant losses in soybean and other economically important crops in the 

region. In this regard, seven isolates of Pseudoplusia includes SNPV (PsinSNPV) collected from larvae 

present on cotton and soybean in Guatemala and Brazil, were characterized and evaluated [170,171]. 

The most virulent PsinSNPV-IE isolate was selected as candidate for the development of a biopesticide. 

Recently its genome was completely sequenced and analyzed [25]. 

In Argentina, two native isolates from Rachiplusia nu are being characterized and evaluated under 

laboratory conditions. One of them is an MNPV that could be considered a variant of Autographa 

californica MNPV with a different host range, while the other (designated RanuSNPV-SF92), seems to 

be a virus not yet described in the literature, which warrants further biological and molecular studies 

aimed at its characterization [172,173]. 

Among the biocontrol of forest pests, a baculovirus was isolated from larvae of Condylorrhiza 

vestigialis (Lepidoptera: Crambidae), a pest of poplar (Salicaceae: Populus sp.) plantations in  
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Brazil [174]. A product based on the CoveMNPV was recently approved for commercial use in this 

country, under the brand name of Baculovirus Alamo. 

3. Production Technology and Product Formulations 

A formulation is the result of an active ingredient (such as baculovirus OBs) mixed with various 

components that improve the efficacy, stability and handling of the pesticide [175]. The basis for the 

formulation of baculovirus was set in the 1980s, making use of the formulation technologies previously 

developed for chemical pesticides [176]. In most cases, the product is formulated to optimize storage, 

and in the moment of use, it is suspended to obtain an applicable formulation. Infected larvae are dried 

by methods, such as dehydration [177], lyophilization [178], or by a humid air flow [179], to generate a 

powder. The application of lactose in the drying process improves the stability and infectivity of the 

virus [179]. To achieve the desired concentration, the powder is mixed with an inert carrier substance. 

The carrier must be cheap, not repellent for the larvae, and should keep the OBs well dispersed [180,181]. 

Silica and clays are commonly used carriers. Some of the components added to the formulation of 

application and their functions are listed in Table 2. 

Table 2. Additives commonly used in baculovirus pesticide formulations. 

Component Function References 

Surfactants 

Reduce the surface tension of the drops allowing the drops to be 
retained on the leaves.  
Facilitate the spread of drops that reach the leaves  
Act as emulsifier agent, allowing the oil to be mixed with water in 
the formulation. 

[182] 

Adherents Increase adherence of the drops to the leaf surface. [183] 

Thickeners Keep the formulation as a homogeneous mix. [182,184,185]

Binders Increase the tendency of the OB to adhere with the carrier. [186,187] 

Baits and 
phagostimulants 

Attract the larvae to ingest the formulated pesticide.  
Attract natural enemies to the formulation.  

[188,189] 

UV protectors 
Avoid the UV inactivation of the OB.  
Some of them also damage peritrophic membrane structure. 

[190] 

The liquid formulations are the most used when the biopesticide is applied to large areas. In this case, 

the OBs are suspended in water including an oily substance to avoid the evaporation of the droplets 

before they reach the surface of the plant [191]. 

One group of adjuvants of particular interest are collectively called optical brighteners, derived from 

stilbene compounds, such as Tinopal LPW, Blankophor BBH, Blankophor HRS, Blankophor P167, and 

Blankophor RKH. Since these compounds absorb UV radiation and emit light in the visible range, they 

were evaluated as UV protectors [192]. When the light protective activity of two optical brighteners 

(Tinopal CBS and Tinopal C1101) was evaluated, the results indicated SfMNPV OBs retained its 

biological activity against S. frugiperda larvae after 240 min of exposure to UV light [193]. In contrast, 

OBs without optical brighteners were completely inactivated after 15 min of exposure to UV light. 

The addition of optical brighteners to Spodoptera exigua NPV not only increased the stability of the 

formulation, but also enhanced their pesticidal activity [194]. Some of the optical brighteners appear to 
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exert their action by binding to chitin molecules, promoting degradation of the peritrophic membrane in 

the insect midgut and, thus, increasing the probability of infection of midgut epithelial cells [195,196]. 

Another optical brightener, Calcofluor M2R, was evaluated as enhancing factor in SfMNPV 

formulations [194]. When added to the formulation at a concentration of 0.1% p/v, it enhanced the 

pesticidal activity in 2.7, 6.5, and 61.6 times in second, third, and fourth instar S. frugiperda larvae, 

respectively. Moreover, the addition of Calcofluor M2R also lowered the CL50 of the biopesticide for 

third and fourth instar S. frugiperda larvae rendering it similar to that of second instar S. frugiperda 

larvae. These results indicate that optical brighteners, such as Calcofluor M2R, may be of help to control 

larvae from instars that are less susceptible to the virus. 

There are other compounds that have demonstrated enhancing effects in the biopesticidal properties 

of baculovirus. For example, boric acid was found to reduce the median lethal time (LT50) of  

A. gemmatalis larvae infected with AgMNPV [197]. A more moderate effect was observed with 

SfMNPV [198]. Moreover, boric acid seemed to cause no effect on natural enemy populations at the 

concentrations used. It has been hypothesized that boric acid acts as a physiological stress factor, 

rendering the insect more susceptible to virus infection. 

Microencapsulation has been evaluated as a strategy to maintain the components of the formulation 

in close contact. For example, B. thuringiensis and the NPV of Heliotis were encapsulated in starch 

granules [199]. Among the substances used to encapsulate are gelatin, pectin, chitin, calcium alginate 

and maize starch [200,201], although it has to be considered that the substance must not affect the 

viability of the virus, must not be alkaline and should dissolve easily in the insect midgut. For example, 

SfNPV was encapsulated in Eudragit-S100 microparticles (MPs), and the resulting particles were more 

resistant to UV-inactivation than OBs alone [202]. Microencapsulation seems promising for exploiting 

the activities of the components of a baculoviral formulation, but the possibilities that the technology 

offers have not been explored thoroughly. 

Phagostimulants were studied as formulation components in the region as well [175,203]. In this 

respect, a granule recipe comprising of pregelatinized flour, starch, ground maize cob, maize oil, and 

water was identified that was evaluated for SfNPV. This formulation improved the efficacy and the 

stability of the pesticide in field [144]. 

In Latin America, baculovirus pesticides are produced in vivo either in-field or in insectaries. 

Production costs in cell culture are higher due to several reasons, including expensive culture media. To 

address this problem, studies on the metabolic and cytological aspects of A. gemmatalis cell line  

UFL-AG-286 and the effects of the culture medium and suspension culture on AgMNPV productivity 

were conducted in Argentina. These studies led to the adaptation of UFL-AG-286 to grow in agitated 

suspension cultures in spinner-flasks [204] and reduced the medium costs by replacing fetal bovine 

serum with low-price natural products [205,206]. With these adjustments, the cost of producing 

AgMNPV OB in vitro was reduced significantly, although there is still a long way ahead to achieve that 

of the production in larvae. 

There have been many efforts to improve the economic efficiency of the production of baculovirus 

in cell cultures. Part of the improvement in cost efficiency comes from the advances in bioprocess 

technology and cell culture media formulations, a subject under continuous study [207–209]. These 

advances could, in future, be coupled with the development of transgenic cell lines with improved growth 

properties and OB productivity, a less explored possibility. Moreover, since the potential of lowering 
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the costs is significant, production in cell cultures emerges as the key to achieving economic 

competitiveness with chemical pesticides. In addition, the viruses that exhibit a high speed of kill (either 

natural isolates or genetically modified viruses) can be mass-produced in cell culture due to the low 

production of OBs in insects that succumb to infection before a sufficiently large number of OBs can be 

produced. Alternatively, a tetracyclin-sensitive expression system has been developed allowing larvae 

to grow normal quantities of OBs [210]. 

4. Genetic Improvement of Baculovirus Biopesticides. Possibilities in Latin America 

The baculoviruses have evolved to successfully infect their hosts, but they must overcome a series of 

obstacles to produce enough progeny and finally kill the insect [36]. The concept of genetically 

modifying the baculovirus to improve its endogenous insecticidal activity was developed in the United 

States during the 1980s [35,211–213]. The practical application of this concept was not long in coming: 

soon recombinant baculoviruses were developed and assayed in laboratory for their biopesticidal 

properties [214]. Since then, different strategies of genetic engineering have been explored to increase 

baculovirus speed of action. Several reviews covered the use, development, and ecology of genetically 

modified (GM) baculoviruses as biopesticides [215–217]. 

The first studies were conducted with a recombinant AcMNPV containing an insect-specific toxin 

gene [214]. Other strategies were based on the introduction of lepidopteran hormones that disrupt the 

normal physiology of the larvae [212,218–220]. A variant of this approach consisted in deleting or 

interrupting the viral ecdysteroid UDP-glycosyltransferase (egt) gene. The product of the viral egt gene 

prevents larval molting during infection, by inactivating ecdysone, thus increasing feeding activity of 

infected larvae and maximizing viral progeny [221,222]. The infection with an egt defective recombinant 

resulted in a moderate increase in the baculovirus speed of kill (about 20%–30%) and a more drastic 

reduction in food consumption and crop damage [222]. Other strategies are based on the insertion and 

expression of a group of baculovirus genes such as enhancins [223], cathepsins and chitinases [38] that 

damage the host peritrophic membrane resulting in an improved speed of colonization of the primary 

infected tissues compared to baculovirus lacking these genes. 

Among the various genes evaluated to be inserted in the baculoviral genome, the most promising 

results were obtained with insect-specific toxins [214]. Insect predators and parasites use venoms to 

immobilize their prey in nature. Although arthropod venoms are in fact a mixture of toxins that may 

have a broad-spectrum activity against various organisms other than insects, it is possible to isolate toxin 

genes that target insects with high specificity. 

In Latin America, genetic engineering of baculoviruses commonly used as biological control agents 

has been applied in studies aimed at improving their biopesticidal properties. Substantial progress has 

been made for the AgMNPV—A. gemmatalis system, starting with the development of recombinant 

occlusion-negative baculovirus expressing reporter genes [224,225] and the knockout of the egt  

gene [226]. More recently, a highly efficient system to produce AgMNPV recombinants was generated, 

which will be applied to test alternative genetic modifications aimed at improving biopesticidal 

parameters [227]. Additionally, an occlusion-negative AgMNPV was occluded in transgenic cell lines 

expressing AgMNPV polyhedrin [228]. The OBs produced can infect larvae orally, but no polyhedra can be 

formed in the larvae. The generation of OBs containing polyhedrin-negative baculovirus genomes has 
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been previously proposed as a strategy to provide ecological containment [229], based on the observation 

that the oral infectivity and persistence of non-occluded virus in the environment is very low [230]. It is 

expected that this technology will allow a safer evaluation and application of genetically modified 

AgMNPV in field. 

Recently, chitinase and cathepsin genes from Choristonera fumiferana DEF multiple 

nucleopolyhedrovirus (CfDEFNPV) were introduced in AgMNPV-2D genome (lacking these genes), 

and the recombinant showed a reduction of about 60% in the lethal concentration (LC50) for third instar 

A. gemmatalis larvae [231], and a moderate increase in the speed of kill. 

A “bacmid” form of the SfMNPV genome that is able to replicate in E. coli was developed [232]. It 

is expected that this bacmid will facilitate the improvement of the biopesticidal properties of SfMNPV 

through genetic engineering. 

Wild type AcMNPV is a component of the commercial biopesticide VPN ULTRA made in Guatemala 

by the private company Agrícola El Sol, and substitution with a GM AcMNPV should not pose an 

important technological problem. Many recombination systems are available and this facilitates the 

generation of GM virus. Moreover, tools are available to occlude polyhedrin-negative AcMNPV in 

complementing cell lines [228]. Many toxic genes have been evaluated in AcMNPV and field trials have 

been carried on with GM virus [229,230,233,234]. 

The legal regulations are very stringent regarding the incorporation of GM organisms in crops 

intended for human consumption; however, when enough data from controlled field trials become 

available, it is posssible to envisage a niche for pesticidal products based on recombinant baculovirus. 

5. Conclusions and Perspectives 

Over the previous two decades, the application of baculoviruses in Latin American countries has 

grown substantially and there are several reasons for this. First, the concern of some governments and 

the public about the effects caused by chemical pesticides generated support for the development of IPM 

programs and established incentives for organic production. Second, farmers faced with some of the 

drawbacks of chemical pesticides (e.g., resistance development and secondary pest resurgence), have 

adopted a greater openness towards the use of baculoviruses. Third, research advances have led to a 

larger inventory of diverse baculovirus species and to improvements in biopesticidal production 

technologies. Finally, the distribution of informative literature and activity of extensionists has had a 

positive influence on public perception and farmer’s acceptance of environmentally friendly microbial 

control agents. In parallel, regulations experienced changes in several countries of the region in order to 

favor the registration of biopesticides, use and commercial distribution. 

However, the use of baculovirus-based pesticides has not reached its full potential. In this regard, it 

is important to consider that Latin America has one of the most diverse range of farming systems. 

Furthermore, in many farming systems the agricultural and socio-economic situations differs, and 

enterprises of large farmers (more than 500 ha, with prevalence of monoculture) contrast with  

small-holders, mainly family farmers. In general, pest management remains particularly dependent on 

broad-spectrum chemical insecticides, and the advance of the urbanization to rural areas increase the 

environmental problems. The regulatory frameworks vary between countries and even in different 
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districts within each country. In such a way, the perspectives on the use of baculoviruses as microbial 

control agents can be analyzed in particular contexts. 

For high-value products (such as apple, pear, or walnut), and especially in the commercial production 

for export, the demand of biopesticides has grown steadily due to restrictions on the traces of toxic 

chemicals in the final product. The market for CpGV-based pesticides and the demand of new products 

for the control of other lepidopteran pests in organic and conventional orchards is expanding. The 

perspectives for growing use of biopesticides in small and large horticultural farms are also very 

promising for the near future, and new products will be necessary. 

A different scenario emerges in extensive agriculture, involving mainly soy and maize. The massive 

adoption of glyphosate-tolerant/Bt transgenic crops has lowered the demand of baculovirus products 

(such as AgMNPV), which became restricted to smaller extensions with non-transgenic crops and to 

organic production farms. It is possible that this situation will likely change due to the public concern 

about the cumulative effects of the pesticides in the environment, and to the recent emergence of 

resistance in certain insect populations. 

Anyway, the scenario of a crop with a single economically important pest is unlikely to occur.  

In this context, there is a need to develop complex multispecies-baculovirus formulations that are able 

to control several pests simultaneously. In order to achieve this, it is necessary to increase the number of 

baculovirus species (or isolates) available and to find the most effective isolate(s) for each pest in each 

region. Moreover, the synergistic effect observed in the pesticidal activity among baculoviruses may 

encourage the development of mixed virus formulations. There are only eight indigenous baculoviruses 

completely sequenced [23–25,163,166,235–237], and this clearly indicates that the genetic diversity of 

baculoviruses has not been fully explored. 

The research related to the scaling up of OBs production emerges as a key element to increase the 

competitiveness of baculovirus, especially for the protection of crops that are cultivated over large 

extensions of land. This is crucial in order to attract investments and produce baculovirus  

pesticides locally. 

The results obtained in field trials of GM baculoviruses indicate that it is possible that the combination 

of the expression of insect-specific toxins, genes encoding enzymes that damage the insect midgut 

peritrophic membrane and genes aimed at interfering host physiology will enable to achieve a 

performance similar to the chemical insecticides. The combination of the mentioned elements has not 

been fully exploited so far. Furthermore, since there are diverse insect-specific toxins affecting different 

targets, it is likely that the simultaneous expression of two different toxins with different mechanisms of 

action will have an additive or synergistic effect on the performance of the biopesticide. Another factor 

that has not been fully explored is the timing and location of expression of the heterologous genes and 

their topology in the structure of the infectious virus. For example, chitinases, cathepsins and enhancins 

have an important effect in degrading the peritrophic membrane, before the virus enters the cell and 

starts its infective cycle. Thus, it is likely that the effects caused by these gene products are due to the 

presence of active proteins in the OBs. In this context, it is possible to envisage strategies to increase the 

effect of these proteins by routing them to the OB architecture. A similar case can be appreciated in GM 

baculoviruses expressing insect-specific toxic genes. The virus must enter the cell, the gene must be 

transcribed and the toxic protein must find its route to the target cell, limiting the speed of action of the 

transgene. If toxic gene products are incorporated as fusion proteins in OBs, they might act immediately 
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after the virus enters the organism. Finally, approaches including gene silencing and the new DNA 

editing technologies have not yet been explored for the genetic improvement of baculoviral pesticide 

candidates [238,239]. 

In view of the complex population dynamics described for different virus-host systems, the impact of 

genetic modification on the performance of a particular baculovirus should be carefully evaluated by 

selecting the fittest genotype within the context of a formulation containing more than one genotype. 

It is clear that the potential for the use of baculoviral pesticides in Latin America is enormous. The 

fulfilment of this potential will depend on the commitment of the governments in supporting biological 

control programs. This includes the continuous and consistent support of fundamental and applied 

research, the support to technology transfer from academic and agricultural research state agencies to 

private companies wishing to produce baculoviral pesticides, and education, training and actions to 

increase public awareness of the advantages of choosing biopesticidal products [240]. Finally, the 

cooperation between countries is extremely important in order to implement biological control programs, 

since there are many lepidopteran pests that are currently invading Mesoamerican and South American 

countries that are committed to ecologically sensitive manners of agricultural pest management and the 

preservation of biodiversity and the environment. 
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