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ABSTRACT

The management of forests as carbon (C) reservoirs could be a valid strategy for mitigating
global climate change. In Salta, Argentina, there is an urgent need for updated information on
biomass stocks in order to assess the C sequestering and release made by native forests. We studied
three ecosystems (Chaco, Yungas and shrubland) by combining different data: a) field-estimated
above-ground biomass (AGB); b) field-spectral data, and c) spectral data from remote sensing.
AGB was estimated through allometric equations. Radiometric measurements were synthesized into
a set of spectral vegetation indices (VI). The satellite data was calibrated with those obtained
through field radiometry, allowing us to find a predictive AGB model which indicates an AGB
average of 85 + 250 t.ha™ for the center of the province of Salta. The model which was finally
selected increases the level of estimate detail made at the national level and will allow the
monitoring of such data.

Keywords: above-ground biomass; carbon stock; field radiometry; forest management; GIS; remote
sensing.

ESTIMACION, DE BIOMASA EN BOSQUES NATIVOS USANDO DATOS DE SATELITE Y
RADIOMETRIA ESPECTRAL

RESUMEN

El manejo de bosques como reservorios de carbono (C) puede ser una estrategia valida para
mitigar el cambio climatico global. En Salta, Argentina, hay una urgente necesidad de informacion
actualizada sobre el stock de biomasa para evaluar el secuestro y la liberacion de C hecha por esos
bosques nativos. Estudiamos tres ecosistemas (Chaco, Yungas y arbustales), combinando diferentes
datos: a) biomasa (AGB) estimada por mediciones de campo; b) radiometria de campo y datos c)
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espectrales de sensores remotos. La AGB fue estimada por ecuaciones alométricas. Los registros
radiométricos fueron sintetizados en indices de vegetacion (V1) y los datos de satélite fueron
calibrados con aquellos obtenidos por radiometria de campo. Construimos un modelo predictivo de
AGB que indica un promedio de 85 + 250 t.ha™ para el centro de la provincia de Salta. EI modelo
finalmente seleccionado aumenta el nivel de detalle de las estimaciones realizadas a nivel nacional
y permitira el seguimiento de estos datos.

Palabras clave: biomasa aérea; stock de carbono; radiometria de campo; manejo de bosques; SIG;
sensores remotos.

1. Introduction

The deforestation and degradation of biomass contribute significantly to increased global
concentration of CO, in the atmosphere and, therefore, to the processes which are probably causing
a change in global climate (IPCC, 2007).

Vegetation can act as a source of carbon (due to breathing, burning, degradation,
deforestation, decomposition) and as a sink for atmospheric carbon (due to photosynthesis and plant
growth) (Viglizzo et al., 1997; Boschetti et al., 2007). The processes involved in the storage and the
release of carbon in space and time from terrestrial ecosystems (carbon represents 50% of the
biomass, IPCC, 2000) are still little known in the world (Clark, 2007; Keith et al., 2009).

Forests could be managed to mitigate greenhouse gas (GHG) emissions in the atmosphere
(Dixon et al., 1994) using three general strategies: i) maintaining or increasing carbon stock in
existing forests; ii) creating new carbon stock by introducing new forests; and iii) replacing fossil
fuels with biomass use (IPCC, 1996; Baral and Guha, 2004; Fang et al., 2007).

Forests are complex, dynamic ecosystems, and maintaining ecosystem functions generates
numerous goods and services of benefit to society (Masera et al., 1997; MEA, 2005): regulatory
functions; support and structure functions (Haygarth and Ritz, 2009); and information and provision
functions (Holmlund and Hammer, 1999; De Groot et al., 2002). These functions depend on the
condition of the ecosystems, so that a less degraded ecosystem could provide better services and
benefits than a more disturbed one (Kumar and Kumar, 2008). Some studies report that the biomass
and carbon stock decreases markedly in secondary or degraded forests (Bonino, 2006; Sierra et al.,
2007; Orddbiiez et al., 2008), which can be reversed through timely planned management strategies
(Thornley and Cannell, 2000; Kirschbaum, 2003; Jong et al., 2007). The management of forests as
carbon reservoirs could complement other environmental objectives including the protection of
biological resources - water, soil, habitat, and raw materials, among others (Thornley and Cannell,
2000; Kirschbaum, 2003; Jong et al., 2007).

In Argentina there are 33.2 million ha of native forests, including forest lands (lands with a
crown cover of more than 20% of their surface and an area of more than 10 ha) and rural forests
(forest remnants in an agricultural landscape, less than 1,000 ha) (SAyDS, 2005). 81% of
Argentina's forest area is distributed between two phytogeographical regions (Cabrera, 1994): the
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Chaco and the Yungas, which are at different levels of degradation (Montenegro et al., 2005;
Boletta et al., 2006). In 2002, these formations were represented in the province of Salta with 5.6
million hectares of the Chaco and 2.3 million ha of the Yungas (UMSEF, 2005). Salta is one of the
provinces with the highest rates of deforestation in the country. According to the Ministry of
Environment and Sustainable Development of the Nation, between 2002 and 2006 the cleared area
exceeded 400,000 ha (UMSEF, 2007). Even more serious was the situation in 2007, when the
annual clearing reached an additional 435,000 ha (Paruelo et al., 2011).

Exploring, understanding, quantifying and monitoring of the province’s forest ecosystems is
urgent in terms of the assessment of carbon sequestration services and plans for the best GHG
mitigation strategies. Furthermore, this study and monitoring of forest AGB is urgent and necessary
to ensure the maintenance of remaining ecosystem functions which take place (Lara et al., 2009).
The AGB is the major component of terrestrial ecosystem biomass (Brown, 1997). Some authors
suggest that carbon sequestration is not the most important ecosystem function for local populations
(Masera et al., 1997), but identifying this ecosystem service will allow the planning and monitoring
of comprehensive strategies based on carbon sequestration.

However, achieving this wealth of knowledge and information over large areas, such as
those occupied by forest ecosystems in the province, requires expeditious methods which allow
manipulation of large amounts of data, coverage of large areas, as well as monitoring and creation
of projections in real time. Remote sensing is a suitable tool for measurements at different scales
(local to regional) in a reliable, systematic form, affording us both current and historical records
(Patenaude et al., 2005).

Spectral records from sensors have shown good relationships with the biomass in different
regions (Zheng et al., 2004; Lu et al., 2004; Anaya et al., 2009). Also, good relations have been
reported between field-estimated spectral records and different biophysical attributes of vegetation
(Jia and Akiyama, 2005; Yang et al., 2005; Grant et al., 2007; Stroppiana et al., 2009). Geographic
information systems are now being used increasingly in the study of forest systems (Boschetti et al.,
2007; Anaya et al., 2009; Fernandez et al., 2010). However, few bibliographic references were
found for the combination of radiometric field records, AGB field survey and remote sensing data
(Boschetti et al., 2007).

This paper develops a reliable methodology which integrates the three types of data
mentioned above in a Geographic Information System (GIS), which allows fast modeling of the
AGB and carbon present in native forests, and the mapping of these stocks. The developed
methodology, the database, and the biomass and carbon stock maps of the major native forests of
the province presented herein, will enable planners and decision makers in the province to do
appropriate monitoring to periodically update the database. The results obtained will enable design
strategies for forest management to mitigate GHG, including other local development goals.
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2. Materials and methods

2.1. Study area

This work was conducted in the Lerma Valley, in the centre of the province of Salta,
Argentina. The Lerma Valley has an area of 500,500 ha and is a fertile and highly-productive
region. The three most represented native ecosystems in the province of Salta (the Chaco, the
Yungas and a third one which we call the "shrubland™) occupy an area of almost 317,000 ha in the
Lerma Valley. The Chaco environment (Serrano and Transition Districts, according to Cabrera,
1994) makes up 44% of this area; the Yungas cover 35% of the total number (Pedemontana Forest,
Montana and Montane Forest Districts, Cabrera, 1994); and the rest (21%) corresponds to the
formation of plant communities dominated by shrubs and bushes. These three ecosystems were
studied in this paper. The field surveys and samplings took place in the municipality of Coronel
Moldes, in the centre of the Lerma Valley, which represents 17% of the total area of the valley. The
average altitude is approximately 1,100 meters above sea level (Nufiez et al., 2007). The climate in
the region is defined as dry subtropical (Martyn, 1992). The average annual temperature is 17.5°C,
with average maximum and minimum temperatures of 25.3°C and 10.7°C, respectively (Arias and
Bianchi, 1996).

2.2. Study Design

Samples were collected at random in each of the three previously defined environments. We
used rectangular plots, each with an area of 100 m?, and the number of plots was defined in terms of
the variability observed in each environment, starting with a 9-plot pre-sampling with an error of
20% and a probability level of 90%. From this pre-sampling AGB was estimated and the total
number of samples (69 plots) were defined. These plots were distributed as follows: 40% in the
Chaco, 36% in the Yungas and 23% in the shrubland. The geographical coordinates of the vertices
of each parcel were surveyed with a GPS (Global Positioning System).

Three types of data were surveyed:
a) Above-ground biomass (AGB);
b) Spectral signature from field radiometry; and
c) Spectral signature from remote sensing (Landsat 5TM).

Each is described in more detail in the next section.

2.2.1. Above-ground biomass (AGB)

The structural variables of woody vegetation (diameter at breast height or DBH > 1 cm and
height > 50 cm) recorded in the field were: stem height (from ground level to the first main branch,
expressed in meters), total height (from ground level to the top of the crown, expressed in meters)
and DBH (expressed in centimeters). The structural information obtained was used to estimate the
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AGB, which here refers to the total amount of living organic material of trees and shrubs > 1 cm in
diameter and > 50 cm in height, expressed as dry weight tons per ha.

For each site, the biomass (t.ha™) of each plot was considered as the sum of the total AGB
of the components or individual trees (kg), estimated through allometric equations (table 1). The
equations used were proposed in the literature for similar ecosystems. The wood density data which
is required in Equations 2 and 3 was obtained from the database compiled by INTI-CITEMA
(2008). Where no data was available or species could not be identified, the WD used for the
calculations were 0.766, 0.745, and 0.695 t.m™ for the Chaco, the Yungas and the shrubland,
respectively.

2.2.2. Spectral signature from field radiometry

Spectral reflectance is the ratio between the flow of incident and reflected radiant energies,
measured from an object or area in certain wavelengths (Peddle et al., 2001). The spectral signature
or reflectance of vegetation, defined as the capacity of vegetation to reflect electromagnetic energy
in a certain wavelength (Pinilla, 1995), was recorded in two different ways: i) in the field, using a
manual radiometer; and ii) from remote sensing using satellite imagery. In both cases, the obtained
data was processed and handled as vegetation indices (VI).

The reflectance of vegetation was determined as the ratio between radiation reflected by the
canopy and the incident radiation in the same time and place. The instrument used was a
spectroradiometer LI-COR 1800, with a sensitivity of 0.3-1.1 um, hemispheric reading and scan
resolution of 2 nm. In this work the visible and near infrared wavelength range (from 400 nm
onward), which covered approximately 66% of the total solar spectrum, only were processed.

In each sample plot (in its centre), there were two readings which we identified as a) and b):
a) upward lenses to record global radiation at each site, which varies according to the altitude of the
sun, the transparency of the atmosphere and the cloudiness (Pérez Priego, 2004); b) downward
lenses (at a height of 2.5 meters from ground level). The readings were taken at the same time every
day, from 10 to 14 hours, with a solar elevation angle over 75°, which sought to reduce the effect of
the solar angle on the radiation reflected by the vegetation (Almeida et al., 2007). The decision to
take a single field spectral measurement by plot was based on data analysis carried out previously in
a laboratory from a pre-sampling. In fact, for the first nine plots, three spectral field measurements
were realized of each type of reading, by plot - taken at identical distances within a linear transect
along the longest axis of the 100 m? plots-. However, by the type of hemispheric radiometer
reading, records by plot showed no statistically significant differences among themselves. We
decided to realize a record alone for plot, in the centre of the same one.

The analysis focused on the dry season, which runs from May to October in the region. The
decision to work in this time of year was because cloud-free satellite images are available. Also, the
central aim of the study was the natural ecosystems, and during the dry season, most of the rain-fed
agriculture is in land preparation phase and is seen in the satellite images as zones devoid of
vegetation differing more clearly from the natural vegetable coverage. On the other hand, much
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vegetation indices saturate at a given value of biomass (Fonseca, 2005), but if the biomass (as cover
and foliage) is low, this does not happen. In deciduous environments, identification of the areal
extent of each environment was verified by field surveys and analysis of a wet-season image.

Fieldwork was planned considering the date of capture of the satellite Landsat (every 16
days). Nine measurements were performed on September 7", thirty measurements on October, 9"
(both in 2008) and thirty measurements between these two dates.

2.2.3. Spectral signature from remote sensing radiometry

We used Landsat 5TM satellite images identified as path 231 and row 77 and 78, with
Transverse Mercator Projection System and Datum SAD 69. Landsat images were provided by the
National Institute of Spatial Investigations (INPE), in the Brazilian Department of Science and
Technology. These images provide fine-scale data. The spatial resolution for all bands is 30 m,
except for the thermal band (band 6), whose resolution is 120 m on the ground. This fine-scale data
is needed to detect high levels of spatial heterogeneity expected in native forest ecosystems. Landsat
images have allowed multispectral information required for the calculation of some comprehensive
indices having a high temporal frequency. We worked with the image of October 9", 2008.

The satellite images obtained were subject to basic adjustments or pre-processing. This pre-
processing is necessary to adjust the data for use in quantitative analysis (Foody et al., 2003) and it
consisted of geometric and radiometric corrections. These are explained in the next section. The
images were processed using ldrisi Kilimanjaro software.

2.2.4. Satellite images pre-processing

Scenes 231-077 and 231-078 were merged into a single mosaic. To remove the geometric
distortion of satellite images, there was a correction using ground control points (GCP). We
selected 18 GCP evenly distributed, available from a map of known projection and field data. Once
the spatial interpolation was performed, we proceeded to determine the intensity value of the output
image - interpolation of intensity or resampling. The resampling method used was the nearest
neighbor. The Root Mean Squared Error (RMS) was < 1 pixel. The Reference System used for all
satellite images and digital models was the Gauss Kruger Strip 3, Datum Campo Inchauspe. In the
same geometric transformation process, the limits of the resulting image that covers the entire
Lerma Valley were defined.

The radiometric calibration, performed by the module Radiance of Idrisi, consists of
conversion of the digital numbers in radiance values considering calibration coefficients available
for the satellite and the date used. To convert to radiance we used calibration factors (gain and bias)
recommended by the U.S. Geological Survey (Chandler and Markham, 2003) captured after May
5th, 2003. The values of gains and bias are incorporated into the unit mw.cm?sr*.um™.
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The atmospheric calibration serves to reduce the effect of mist and gases. It was performed
using the Atmosc module of Idrisi. After six out of seven Landsat bands were corrected (1, 2, 3, 4,5
y 7), we proceeded to perform the atmospheric corrections using the Cost model designed by
Chévez (1996), which is incorporated in the Atmosc module. This model estimates the atmospheric
effect and partially corrects the data according to the position of the sun and the transmittance; since
this represents the absorption by atmospheric gases and Rayleigh scattering, and was selected for
data simplicity and setting (Chuvieco, 2006).

In addition to the gain and bias values, the Atmosc module requires the date and time of
image acquisition, angle, and solar, satellite and average wavelength of the strip, to correct. The
data-dependent scenes, date and sun angle, were obtained from the metadata file header of the same.
For the dark object ND values were sought in the areas of known zero reflectance as deep water, in
this case the Cabra Corral dam (Reservoir General Belgrano in the municipality of Coronel
Moldes). For the satellite analysis of the samples from each environment, we extracted the
reflectance in the red (band 3 of Landsat TM) and near-infrared (band 4 of the same sensor) bands
of Landsat 5 TM.

2.2.5. Vegetation Indices (VI)

The spectral reflectance data is usually condensed into spectral vegetation indices (VI),
which are mathematical transformations designed to measure the spectral contribution of vegetation
in multispectral observations (Elvidge and Chen, 1995). These VI can be efficiently correlated with
biophysical vegetation parameters (Zha et al., 2003) and with biomass (Schino et al., 2003; Foody
et al.,, 2003; Soenen et al., 2010). Many VI have been used in remote sensing to estimate
biophysical vegetation properties (Roy and Ravan, 1996; Boyd and Ibarraran, 2002; Thenkabail et
al., 2002). Generally, these VI use red (RED) and near-infrared (NIR) bands, since 90% of the
vegetation information is contained in these bands (Medeiros, 1987). The best known VI, widely
used for monitoring natural biomes, is the Normalized Difference Vegetation Index (NDVI)
(Tucker et al., 1985; Sellers et al., 1992). Its correlation with aerial net primary productivity has
already been identified (Paruelo et al., 2000, 2004; Pifieiro et al., 2006). The NDVI is defined as
follows:

NIR —RED

NDVI = —————
NIR + RED 1)

Another widely used VI is the Ratio Vegetation Index (RVI), which is calculated as shown
in the following equation (Jordan, 1969):

RvI = NIR
AED 2)

This index is often used in mountainous areas to minimize the effect of shadows (Boschetti
et al., 2007). Finally, the SAVI (Soil-Adjusted Vegetation Index) is a VI that incorporates a
correction factor to compensate for the relative effect of the soil, and to take into account the
observed amount of vegetation (Huete, 1988). Its formula is as follows:

©Los autores
www.geo-focus.org

355



geo Revista Internacional de Cienda y Tecnologia de |a Informacién Geografica
International Review of Geographical Information Science and Technology

Manrique, S. M., Niifiez, V. y Franco, J. (2012): “Estimating aboveground biomass in native forest using remote sensing
data combined with spectral radiometry”, GeoFocus (Articulos), n°12, p. 349-373. ISSN: 1578-5157

SAVI = _NIR-RED x(1+L)
NIR+RED +L

3)

These three indices: RVI, NDVI and SAVI were estimated in this paper. In the case of
SAVI, the L parameter of the equation was used with a value of 1, according to Huete (1988). For
the calculation of the VI we used the bands TM3 (630-690 nm) and TM4 (760-900 nm),
respectively located in the RED and NIR regions of the electromagnetic spectrum. The crops areas
or bare soils were masked in the subsequent processes of classification and analysis of the satellite
image to avoid interference on the VI of native covers.

2.3. Data analysis

AGB and spectral (V1) data were used to derive and evaluate a set of predictive relations for
AGB estimation from remote sensing. For all data, the correlations between AGB and VI, as well as
those between the different VI (field and satellite), were assessed using the Spearman non-
parametric test (for a significance level of p=0.01 and p=0.05). The data with more statistically
significant relationships and higher correlation coefficient was selected to model the AGB in the
Lerma Valley.

Three AGB predictive models were obtained, through which the distribution of AGB for the
Lerma Valley and the corresponding frequency distribution histograms were simulated. For
validation of the estimated AGB, we used 60 randomly selected independent field plots during the
following year (2009), in the same season, located in different municipalities of the Valley. Field
AGB data and AGB data estimated through each of the models were statistically analyzed using the
Mann-Whitney test, for a significance level of p=0.05. This analysis allowed us to test and detect
the model with the best statistical fit for the observed distribution of AGB in the Lerma Valley. We
used the statistical software SPSS ver. 15.0.

3. Results and discussion

3.1. Vegetation indices: field radiometer

Table 2 shows the average above-ground biomass estimates (AGB) for each environment.
AGB increases from the low values found in the shrubland environment (with extensive areas of
bare soil and sparse vegetation), with intermediate values in the Chaco (with woody vegetation
interspersed with grasslands), to maximum values in the environment of the Yungas (with a denser
canopy than in the previous settings, and more than three vertical layers of vegetation). Some
discussions and details of the factors operating in AGB manifestation can be seen in Manrique et al.
(2011).

The relationships found between the VI obtained from records of field radiometry (and
AGB data) are shown in table 3. In general, all VI show a strong relationship with the AGB
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variable. The sites with more vigorous vegetation or more vegetation cover (Yungas environment)
present the highest values of RVI, NDVI and SAVI. Conversely, plots belonging to the shrubland
environment present the lowest VI. All data shows a logarithmic behavior. The best fitting index
proved to be the NDVI, as has already been indicated by other authors in the monitoring of
vegetation (Pifieiro et al., 2006; Julien and Sobrino, 2009). In contrast, Boschetti et al. (2007)
indicates that the NDVI exhibits low fidelity with the above-ground biomass of mountainous
grasslands.

Although many authors mention that the RVI and NDVI are not as effective as the SAVI,
which allows adjusting the soil influence, the calculations above are much simpler, since they do
not require the L parameter, which depends on an a priori knowledge of the study site in order to
define it (Gilabert et al., 1997). The results of this study show that the SAVI does not improve the
ratios obtained, with respect to any of the other two indices; the best fitting AGB index in this case
is the NDVI.

3.2. Vegetation indices: remote sensing

In a procedure similar to that used with the VI derived from field spectrum radiometry, the
VI estimated from satellite images were correlated with the AGB values per plot (table 4).

The best relationship found between AGB and VI data obtained from satellite imagery
shows r?=0.74, which is lower than the values found for field spectral data (table 3), whose
correlations appear to be highly significant (p <0.01). This suggests that field radiometry allows
better linkages with AGB data per plot than those which could be established only by using data
from remote sensors (Ducati, 2000). Perhaps the improved adjustments are related to the accuracy
of atmospheric correction. On the other hand, the spatial heterogeneity within the Landsat pixel
should be considered (Milton et al., 2007). Some authors have suggested that the field spectrum
radiometry allows a greater control of measurement conditions and that it is the suitable technique
for the study of relations between spectral parameters and information about the object (Ducati,
2001; Valeriano, 2003; Trishchenko, 2009). The results suggest that field radiometry could be a
technique for further studies for remote sensing, both for basic research and for operational
applications, and also might be useful as a tool for the development, refinement and assessment of
models relating to biophysical attributes of the data obtained from remote sensors.

NDVI values obtained from a satellite image approximate those of bare soil. The shrubland,
particularly, but also the Chaco ecosystem, in the dry season, show large areas of bare soil, because
herbaceous cover is completely dry. Moreover, in both ecosystems there are a large number of
small-leaved species, unlike the broad-leaved species in the Yungas ecosystem. The shrubland is
dominated by deciduous shrubs like Cercidium praecox, Acacia caven, Acacia aromo, Acacia
furcatispina, Acacia praecox, Celtis spinosa, and Acanthosyris falcata, among others. In the Chaco,
there are semi-deciduous xerophilous species adapting to significant fluctuations in water
availability like the herbivory. Among these species are Castela coccinea, alternating with
deciduous species such as Caesalpinia paraguarienses, Geoffroea decorticans, Gleditsia
amorphoides, and other evergreens such as Aspidosperma quebracho blanco, Capparis retusa,
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Capparis tweediana, Ziziphus mistol may be mentioned, as well as others. The Yungas is a forest
dominated by evergreens (although there are deciduous species under study in the area). Some of
the species in this sector are Calycophyllum multiflorum, Phyllostylon rhamnoides, Tipuana tipu,
Patagonula americana, and Eugenia mato.

By comparing the NDVI values of field and satellite radiometry, the NDVI data from field
radiometry shows higher values than those estimated from remote sensing, which can be seen in
figure 1. This relationship may be reversed or changed in the wet season, which has yet to be
studied. It would be desirable to replicate this study in a time series, including both dry and wet
seasons. However, woody biomass (AGB) values are not altered between seasons since changes
occur mainly in foliage, but not in the trunks of the trees (whose measurements are used in
allometric equations for estimating AGB). While NDVI values may change in the wet season, the
estimated field AGB values hardly change.

3.3. Biomass modeling

3.3.1. Method 1

We observed the relations between the AGB from the first nine plots (pre-sampling) and the
NDVI derived from the satellite image. Considering the best adjustment of this index and the
simplicity of its calculation, we proceeded to link the data of the NDVI with the AGB of each plot.
The model found and applied to the image is shown in table 5 (model 1). The equation found
between the values of NDVI and AGB is logarithmic (r?=0.67).

Through this model, the frequency distribution histogram was obtained. The highest
frequency of AGB values is in the range of 60-130 t.ha™. In particular, the category 101-111 t.ha™
occupies an area close to 80,000 ha in the Lerma Valley. The maximum AGB value estimated for
the Valley through this model is 180 t.ha™ (figure 2). This distribution results in a lower range from
that found for the AGB using allometric equations (table 2). In the assessment and verification of
the model, the Mann-Whitney test reveals that there are no statistically significant differences
(U=1,680 and p=0.067) between the AGB field data surveyed (60 plots) and the AGB data
estimated through this model. Nevertheless, this model underestimates the AGB of the Valley.

3.3.2. Method 2

In this case, a radiometric data field to improve the fit between satellite image data and its
relation to field data were used. The VI obtained through field radiometry was introduced into the
analysis. In this case the NDVI also showed the best fit for the AGB of each plot.

The equation linking the AGB and NDVI data (from field radiometry), considering AGB as
an dependent variable and NDVI as an independent variable, was used to estimate the values of the
AGB from the satellite image. The model found is shown in table 5. Using this model, the average
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AGB in the Valley is 60 t.ha™ (figure 2). The maximum AGB value estimated is 650 t.ha™, which is
far from the maximum AGB value obtained for the area. The statistical test applied to the estimated
AGB data (by model) and the AGB observed in the field indicates that there are significant
differences between both sets of data (U=525.2 and p<0.000). This model must be improved since it
does not have a good adjustment for field data and overestimates the biomass (AGB) of the Valley.

3.3.3. Method 3

As noted in a previous section, NDVI values from field radiometry are higher than those
estimated from the satellite image. Therefore, if working directly with the equation found between
field data (NDVI and AGB) to estimate the AGB from the image, the AGB mapping obtained is not
suitable. Based on the previous model, which correlates the three types of data obtained for forest
formations, we incorporated some modifications.

We estimate the magnitude of the difference between NDVI data from satellite and field,
for the same plots. The average of the differences found between NDVI values was 0.31. The
equation found between sets of data (NDV!I field and image data) was y=0.5161x+0.0204 (r?=0.92).
This equation was used as an adjustment factor and was applied to the image to obtain a new series
of NDVI data. AGB values were associated with this new series of NDVI data (calibrated with the
field radiometric data). The new logarithmic model applied to the image is shown in table 5 (model
3).

The average AGB obtained by this method is 85 t.ha™, with a good distribution in each
category. The maximum AGB value with this method is 353 t.ha™. The applied statistical test
indicated that there were no statistically significant differences between the AGB values observed
and estimated (using the model), with U=2,011 and p=0.86. While method 1, statistically, has a
good adjustment to the AGB field values, it underestimates the AGB. Method 2 overestimates the
AGB value and does not have a good adjustment. This method (number 3) overcomes both
weaknesses and, statistically, has a good adjustment. We found a correlation coefficient of
r’=0.8979 (p=0.001) as shown in figure 3.

3.4. Final biomass mapping

Field radiometry is a useful technique to calibrate reflectance data from satellites. Method 3,
which includes this calibration, approaches the values of AGB found in the field. This method and
its corresponding model provide better adjustment than the other two methods and were applied to
the satellite image previously treated. Consequently, a final AGB distribution map for the entire
Lerma Valley was obtained. Since, on average, 50% of the biomass is carbon, with this model it
was also possible to clearly estimate the distribution of fixed carbon in vegetation (IPCC, 2000)

(figure 4).

The results obtained through this model were analyzed in relation to the area occupied by
each cover type identified for the Lerma Valley, which can be seen in table 6. Further procedure
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details of the supervised and unsupervised classifications can be obtained from Nufez et al. (2007).
The estimated AGB average values for the three environments were considered as reference values.
On this basis, the other cover classes in the Valley were classified into three categories: i) zero
biomass (0 t.ha™), ii) biomass between 1 and 35 t.ha™ (average) and iii) biomass exceeding 35 t.ha™
(high). About 50% of the Valley’s area has biomass values that fall within the category of zero to
average biomass (0-35 t.ha™). 26.51% of the total corresponds to the category of zero biomass (0
t.ha™), since they are bare soils, bodies of water, or infrastructure. Agricultural crops were also
considered within this category and they were masked in the analysis to avoid disruptions in the
estimated vegetation indices for natural forest biomass (coverage is of more interest for the
purposes of implementing GHG mitigation strategies). 23.64% of the total corresponds to the
category of the average biomass (about 119.000 ha), among which are: sparsely vegetated slopes,
mountainous grasslands and shrubland/thickets. The remaining 50% of the surface corresponds to
the category of the high biomass, with values exceeding 35 t.ha™. The range of the maximum
biomass in the region of the Chaco (shown in yellow in figure 2) is up to 100 t.ha™, and in the
Yungas (shown in greenish-blue in figure 2) it is up to 300 t.ha™.

Model 3 corresponds closely to the situation in the Lerma Valley analyzed from the classes
of vegetation cover identified within it (NUfiez et al., 2007).

These are the first results obtained for the province of Salta, using a technique of field
radiometry for this type of estimating and the first study that combines triple data logging (above-
ground biomass, field radiometry and remote sensing radiometry). We recommend that
complementary studies in other forest formations in the province of Salta be carried out before
extrapolating the results found in this paper.

3.5. Importance of the estimates in the context of climate change

While in the primary sector GHG emissions globally are from the use of fossil fuels (70%
of global CO; emissions from transport, industry, buildings, etc.), the second sector is "LULUCF”
(Land Use, Land-Use Change and Forestry) with about 18 % global emissions; the sector includes
deforestation and degradation of biomass. Since approximately 50% of the biomass of a forest or
woodland ecosystem is carbon, burning or degradation emits that C into the atmosphere and
contributes to global warming. The CO, with an annual growth rate of 0.4%, is the main GHG
(McKeown and Gardner, 2009), accounting for about 80% of the increased greenhouse effect. Its
concentration is more than 200 times that of the next GHG (CH,) (measured in parts per million by
volume).

The role of native forests is of great importance in the context of climate change, not only
as carbon reservoirs, but also as providers of ecosystem goods and services, undoubtedly enabling
the survival of the world's population directly (goods) or indirectly (ecosystem services). The
forests in the province of Salta, which has 23% of the national forest area, mainly in the Chaco and
the Yungas formations, are subject to an intense process of transformation and degradation, mainly
due to the expansion of the agricultural frontier. The deforestation rate is three times the world
average.
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The results obtained in this study give us the information that carbon sequestered in the
aboveground biomass ranges is between 17.5 -50 tC.ha™ in the Chaco; 17.5-150 tC.ha™ in the
Yungas, and less than 5.17 tC.ha™ in the shrubland. For the Yungas, the C of the aboveground
biomass mean is 47.9% of the total C in the fixed ecosystem. The case of the Chaco implies 32.8%
of C, while in the case of the shrubland; it is only plotted for 19% of total C sequestration in this
environment, as per local references (Manrique et al., 2011; Manrique and Franco, 2012).
Considering the total area in which these forests are spread in the Valle de Lerma (over 300,000 ha),
we can estimate that CO, sequestration in the aboveground biomass is nearly 44 million tCO..
Assuming that the average Argentine citizen has a CF (Carbon Footprint) of 5.71 tCOZ2eq.yr-1
(SAyYDS, 2008), for the entire population of the Valle de Lerma in calculations (approximately
580,000 people), it could be assumed that the annual emissions of the population are on the order of
3.3 million tonnes of CO4q.yr™. The forests studied, representing more than 60% of the total area of
the Valley, could "compensate” for 13 years of the considered inhabitants emissions when stored
over time.

This methodology, which can be easily replicated, allows us to observe the AGB and
carbon distribution at the Valley level, and will enable its continued monitoring and updating. Not
only carbon sequestration, but also various ecosystem functions that depend on the condition of
woodlands, can be enhanced by using this information and tool for the development of planned
management schemes. Other applications, for which this method will be useful, are: modeling of
the standing timber volume per hectare for each ecosystem; calculation of the basal area of
woodlands in different areas of the Lerma Valley; estimates of carbon emission due to the advance
of cleared areas or the degradation of biomass and bioenergy distribution from natural biomass.

4. Concluding remarks

For the surveyed environments in the Lerma Valley, spectral records from field radiometry
are an important source of input to calibrate the spectral records obtained from satellite images, in
order to have better adjustments to the aboveground biomass of each site.

NDVI is the index that best explains the relationships between AGB and vegetation
reflectance. The satellite data was calibrated with those obtained through field radiometry, allowing
us to find a predictive AGB model and its corresponding distribution map, which indicates that the
AGB for the Lerma Valley (Salta) ranges between 0 and 353 t.ha™, with an average of 85 t.ha™.

The AGB ranges between 35-100 t.ha™ in the Chaco, 35-300 t.ha™ in the Yungas, and less
than 35 t.ha™ in the shrubland. The use of remote sensing techniques (field and satellite) and ground
surveys combined in a Geographic Information System enabled us to obtain a model for AGB
estimating and mapping of the entire Lerma Valley.

The results allowed us to estimate that the permanence of forests studied at the site, enable
the avoidance of emissions of about 44 million tCO, sequestered, found only in the aboveground
biomass.
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The obtained model, the collected database, and the resulting biomass and carbon maps will
be useful tools for planned exploitation and management of the Lerma Valley woodlands, with
GHG mitigation objectives which may, in turn, include other local development goals.
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TABLES

Table 1. Allometric equations used to estimate above-ground biomass (AGB). D = dbh
(cm); p and S = wood density (g.cm®); H = total height (m); BA = basal area (cm?); Y = tree

biomass (kg).
Ecosystem Equation Number Reference
Shrubland Y = 10{— 0.535+0.9996(I0og 10BA) | 1) Martinez Yrizar et al. (1992)
Chaco Y =0112x(px D2 x H ®) Chave et al. (2005)
Yungas ¥ = expl™ 24090+09522xIn(D? x H xS)] (3) Brown et al. (1989)

Table 2. Aboveground biomass for each environment (in t.ha™*). Results were obtained
considering all individuals with DBH > 1 cm and height > 50 cm. The density and basal area
are expressed in average values and corresponding standard deviation. Biomass values are
expressed in average and range (minimum and maximum).

Site Plots Density (\°ind.ha”)  Basal area (m’.ha) Biomass (t.ha™)
Shrubland 15 2013.7 £ 729.7 8.6+28 17.7 (1.5-34.1)
Chaco 26 1314.3 £ 3825 13.7£4.2 58.5 (17.5-92.0)
Yungas 23 1120.4 £ 5225 22.3+9.1 136.3 (21.8-302.6)

Table 3. Relations between field radiometry and AGB (y=VI1 y x=AGB). ** The
correlation is significant at a 0.01 level (bilateral) according to Spearman’s test.

Vegetation Indices Type of relation r? Equation
RVI Logarithmic 0.885** (p <0.01) Y =0.364 Ln(x)+ 0.465
NDVI Logarithmic 0.893** (p <0.01) Y=0.126 Ln(x) - 0.198
SAVI Logarithmic 0.861** (p <0.01) Y=0.102 Ln(x) - 0.233
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Table 4. Relations between AGB and VI obtained from satellite images. The correlation
is significant at a 0.05 level (bilateral) according to Spearman’s test.

Vegetation Indices  Type of relation r’ Equation
RVI Logarithmic 0.711 (p> 0.05) Y=0.493 Ln(x) + 0.051
NDVI Logarithmic 0.749*(p=0.053) Y=0.08 Ln(x) + 0.022
SAVI Logarithmic 0.723*(p=0.025) Y=0.07 Ln(x) - 0.176

Table 5. Derived models to assess and map AGB in the Lerma Valley. In all cases the
sample size is 60 plots.

Model Equation r
1 Y=120.79 Ln(x) + 220.63 0.673
2 Y=6.3132 e 9% 0.639
3 Y=180.86 Ln(x) + 285.81 0.761

Table 6. Thematic classes and area occupied by each of them.

Unit or Class Area of the Valley (%) Biomass potential values (t.ha™)
Natural watercourses 4,77 0
Dams and reservoirs 1,93 0

Agricultural plots 12,43 0

Airports and airfields 0,02 0

Urban areas 2,14 0

Bare soils and river beaches 5,22 0
Sparsely-vegetated slopes 4,45 1-35
Mountain pastures 5,78 1-35
Shrubland and scrubland 13,41 1-35
Chaco serrano and transition 27,75 >35
Subhumid Montano forest 18,38 >35
Humid Montano forest 3,72 >35

Total 100
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Figure 1. NDVI values estimated for shrubland, Chaco and Yungas from field spectral
radiometry (top) and from remote sensing spectral radiometry (bottom).
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Figure 2. Top: Maps of AGB (t.ha-1) for (a) model 1, (b) model 2 and (c) model 3.
Bottom: area represented in each AGB class. Indicates mean value, standard deviation (S.D.)
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and range of values obtained of AGB. The histogram of model 2 has been cut in its upper

classes of AGB.
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Figure 3. Estimated values of AGB (t.ha™) from the remote sensing-based (model 3) and
the observed values of AGB calculated from field measurements (n=60, p=0.001). Each point
represents the AGB for one of the 60 plots and the AGB for the pixel that the plot falls in.
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Figure 4. Distribution of fixed carbon in AGB. Method 3.
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