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1. Introduction

Let R, R+, R
p, and R

p×q denote the sets of real numbers, positive real numbers,
real valued p-dimensional vectors, and real valued p by q matrices, respectively.
When A,B ∈ R

p×q, let A′ be the transpose of A and let A◦B = [aijbij ] ∈ R
p×q

be the Hadamard product of A and B. When A ∈ R
p×p, let tr(A) denote the

trace of A, let |A| denote the determinant of A, and define S
p = {A ∈ R

p×p :
A = A′}. When A ∈ S

p, let ϕj(A), ϕmin(A), and ϕmax(A) denote the jth largest
eigenvalue, minimum eigenvalue, and maximum eigenvalue of A, respectively.
Define S

p
0 = {A ∈ S

p : ϕmin(A) ≥ 0} and S
p
+ = {A ∈ S

p : ϕmin(A) > 0}.
Since the sample covariance matrix S is singular with probability one when

the number of variables p is greater than the sample size n, regularization is
required to estimate an inverse covariance matrix. There are many types of
regularization that could be applied, e.g. a Moore–Penrose generalized inverse
of S or the inverse of a linear combination of S and the identity matrix (Ledoit
and Wolf, 2003). Pourahmadi (2011) reviews several approaches.
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We study regularized inverse covariance estimators obtained by weighted
bridge penalized Gaussian likelihood. The inverse covariance matrix estimator
is

Ω̂λ,q(M) = arg min
Ω∈S

p

+







tr(ΩS)− log |Ω|+
λ

q

∑

i,j

mij |ωij |
q







, (1)

where M ∈ S
p is a known weight matrix with non-negative entries, λ is a non-

negative tuning parameter, and q ∈ [1, 2] is the bridge parameter. The weight
matrix M allows the user to incorporate prior information in the penalty, e.g. if
it were known that the (i, j)th entry of the population inverse covariance matrix
were non-zero or large, then one could set mij = 0. Without prior information
on the location of small entries, one could set M = Mall or M = Moff , where
Mall is the weight matrix of ones and Moff is the weight matrix with ones on its
off-diagonal and zeros on its diagonal.

The inverse covariance estimator obtained through (1) with q = 1 has been
studied extensively. Yuan and Lin (2007) proposed and analyzed Ω̂λ,1(Moff) and
Rothman et al. (2008), Lam and Fan (2009), and Ravikumar et al. (2011) estab-
lished theoretical properties when p > n. Banerjee, El Ghaoui and d’Aspremont
(2008) proposed and studied the optimization to compute Ω̂λ,1(Mall). The gen-
eral weighted penalty in (1) with q = 1 was considered by Friedman, Hastie and
Tibshirani (2008), Lu (2010), and Hsieh et al. (2012). The solution to (1) with
q = 1, when it exists, could be computed with the graphical lasso algorithm
(Yuan, 2008; Friedman, Hastie and Tibshirani, 2008) or the QUIC algorthm
(Hsieh et al., 2011). Speed improvements to compute Ω̂λ,1(Mall) for large values
of λ were proposed by Witten, Friedman and Simon (2011) and Mazumder and
Hastie (2012). A benefit of using q = 1 is that for λ sufficiently large, a subset of
the off-diagonal entries in Ω̂λ,1(M) are zero and when S is computed from n in-
dependent copies of a p-variate Normal random vector, the locations of non-zero
entries in Ω̂λ,1(M) could be used to estimate the edges in a Gaussian graphical
model (Yuan and Lin, 2007).

The use of the bridge penalty in (1) was proposed by Rothman et al. (2008)
in the special case when M = Moff . They proposed an algorithm to compute
Ω̂λ,q(Moff) for q ∈ [1, 2], but they only explored its use when q = 1. Witten and

Tibshirani (2009) derived a closed-form solution to compute Ω̂λ,2(Mall).

The inverse covariance estimator Ω̂λ,q(M) could be used within methods for
supervised learning, e.g. discriminant analysis (Rothman et al., 2008), covariance
regularized regression (Witten and Tibshirani, 2009), and multivariate regres-
sion with covariance estimation (Rothman, Levina and Zhu, 2010b). When the
population inverse covariance matrix is sparse or approximately sparse, there
are theoretical advantages to set q = 1, but in general settings q ∈ (1, 2] may be
useful.

There has been some study of sufficient conditions for the solution to (1) to
exist: Banerjee, El Ghaoui and d’Aspremont (2008) showed that the solution
to (1) exists with probability one if q = 1, M = Mall, and λ > 0; Ravikumar
et al. (2011) showed that the solution to (1) exists if q = 1, M = Moff , λ > 0,
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and S ◦ I ∈ S
p
+; and Lu (2010) showed that the solution to (1) exists if q = 1

and S + λM ◦ I ∈ S
p
+. Necessary and sufficient conditions for there to exist a

solution to (1) are still unknown, and we establish these in this article.

2. Properties of the optimization

2.1. Solution existence

The optimization in (1) is strictly convex. When an optimal solution exists, this
solution is the unique global minimizer. Let U = {(i, j) : mij = 0} be the set of
unpenalized indices.

Theorem 1. Suppose that λ ∈ R+ and q ∈ (1, 2]. An optimal solution to (1)
exists if and only if the set A(M) = {Σ ∈ S

p
+ : σij = sij when (i, j) ∈ U} is not

empty.

Theorem 2. Suppose that q = 1. An optimal solution to (1) exists if and only
if the set A1(λ,M) = {Σ ∈ S

p
+ : |σij − sij | ≤ λmij for all i, j} is not empty.

We prove Theorems 1 and 2 in Appendix A. Hsieh et al. (2012) stated a dual
problem to (1) with q = 1 for which A1(λ,M) is the feasible set; however, we
do not use this duality to prove Theorem 2. Our proof technique is also used to
prove Theorem 1.

When the diagonal entries are unpenalized, i.e. maxj mjj = 0, the condition
that A(M) is not empty is necessary and sufficient for the maximum likelihood
estimator of the inverse covariance matrix to exist in the Gaussian graphical
model with edge set U ; see, for example, Theorem 2.1 of Uhler (2012). As a
consequence, we have the following example.

Example 1. Suppose that S is computed from an iid sample of size n from
a p-variate normal distribution with positive definite covariance matrix and
mij = 1(|i − j| > k), where k ∈ {0, . . . , p − 1}. Then the set of unpenalized
indices U is the edge set of a Chordal graph with maximum clique size k + 1.
From Corollary 2.3 of Uhler (2012), the MLE of the Gaussian graphical model
with edge set U exists with probability one if and only if k < n− 1. This result
is also in Buhl (1993) and the MLE in this case can be computed by inverse
Cholesky banding (Rothman, Levina and Zhu, 2010a). Thus, by Theorem 1, the
solution to (1) with q ∈ (1, 2] exists with probability one if and only if k < n−1.

Define the weighted soft-thresholded sample covariance matrix by
soft(S, λM) = [sign(sij)(|sij | − λmij)+], where (y)+ = y1(y > 0).

Corollary 1. An optimal solution to (1) exists if at least one of the following
conditions is true: (i) λ ∈ R+ and minj mjj > 0; (ii) S ◦ I ∈ S

p
+, λ ∈ R+, and

mini6=j mij > 0; (iii) S ∈ S
p
+; (iv) soft(S, λM) ∈ S

p
+.

We prove Corollary 1 in Appendix A. In particular, if all diagonal entries
are penalized in (1), then a solution exists for any choice of the off-diagonal
of M . Also, if all off-diagonal entries are penalized and the diagonal entries of
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S are positive, then a solution exists for any choice of the diagonal of M , e.g.
the diagonal of zeros. One could check if soft(S, λM) is positive definite, which
guarantees an optimal solution to (1) exists, but we have encountered several
examples where the realization of soft(S, λM) was indefinite and an optimal
solution to (1) with q = 1 existed.

Since A1(λ,M) ⊂ A(M) for all λ ≥ 0, we see that if Ω̂λ,1(M) exists for some

λ ∈ R+, then Ω̂
λ̂,q

(M) exists for all (λ̂, q) ∈ R+ × (1, 2]. Also, if there exists a

Σ̄ ∈ A(M), then there exists a λ̄ ∈ R+ sufficiently large such that Σ̄ ∈ A1(λ̄,M).
From this and the definition of A(M) we have that if Ω̂λ,q(M) exists for some

(λ, q) ∈ R+ × (1, 2], then Ω̂λ̃,q̃(M) exists for all (λ̃, q̃) ∈ R+ × (1, 2] and there

exists a λ̄ ∈ R+ sufficiently large such that Ω̂λ̄,1(M) exists.

2.2. The effect of unpenalized entries

From first-order conditions and convexity, a feasible point Ω̂ ∈ S
p
+ is optimal for

(1) if and only if it solves the zero gradient equation when q ∈ (1, 2] or the zero
subgradient equation when q = 1. In both cases, this equation can be written
as

0 = S − Ω̂−1 + λM ◦G, (2)

where the (i, j)th entry of G is a function evaluated at the (i, j)th entry of Ω̂,
e.g. Meinshausen (2008) gave an expression for (2) when q = 1 and M = Moff .
We see that if Ω̂ is optimal for (1) then (Ω̂−1)ij = sij when (i, j) ∈ U .

3. Discussion

In an earlier submission of this work, we proposed an accelerated majorize min-
imize algorithm to solve (1) with q = 2 and any weight matrix M . This special
case can be used to iteratively solve (1) with q ∈ [1, 2) (Rothman et al., 2008).
In our numerical experiments, our algorithm was competitive for all values of
the tuning parameter when M = Moff , but it was uncompetitive for mid-range
values of the tuning parameter when mij = 1(|i − j| > k) with k ≥ 1. We are
currently addressing this problem.
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Appendix A: Proofs

For c, d ∈ R+, define the set Gc,d = {Ω ∈ S
p
+ : c ≤ ϕmin(Ω) ≤ ϕmax(Ω) ≤ d}.

To prove Theorems 1 and 2 we will use the following Lemma, which is a
modification of an argument made by Bien and Tibshirani (2011).
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Lemma 1. Suppose that a function v : Sp+ → R satisfies v(Ω) ≥ a+ b tr(Ω)−
log |Ω| for all Ω ∈ S

p
+, where a ∈ R and b ∈ R+. If Ω0 ∈ S

p
+, then there exist

c, d ∈ R+ such that {Ω ∈ S
p
+ : v(Ω) ≤ v(Ω0)} ⊂ Gc,d.

Proof of Lemma 1. Our proof modifies an argument of Bien and Tibshirani
(2011). We have that

v(Ω) ≥ a+

p
∑

j=1

{bϕj(Ω)− logϕj(Ω)}. (3)

Define r(; b) : R+ → R by r(x; b) = xb − log x. Then ∇xr(x; b) = b − 1/x, so
x̂ = 1/b minimizes r(; b) and r(x; b) ≥ r(x̂; b) = 1 + log b. From (3),

v(Ω) ≥ a+

p
∑

j=1

r{ϕj(Ω); b}

= a+ r{ϕj(Ω); b}+

p
∑

k=1,k 6=j

r{ϕk(Ω); b}

≥ a+ r{ϕj(Ω); b}+ (p− 1)(1 + log b),

for j ∈ {1, . . . , p}. Given any Ω0 ∈ S
p
+ define R(Ω0) = {Ω ∈ S

p
+ : v(Ω) ≤ v(Ω0)}.

For all Ω̄ ∈ R(Ω0), v(Ω0) ≥ v(Ω̄) ≥ a+ r{ϕj(Ω̄); b}+ (p − 1)(1 + log b) and so
for all Ω̄ ∈ R(Ω0),

ϕj(Ω̄) ∈ {φ ∈ R+ : r(φ; b) ≤ δ0}, j = 1, . . . , p,

where δ0 = v(Ω0) − (p − 1)(1 + log b) − a. Since r(; b) is decreasing on (0, x̂),
increasing on (x̂,∞), limx→0+ r(x; b) = ∞, and limx→∞ r(x; b) = ∞, there exist
c, d ∈ R+ such that c ≤ ϕmin(Ω̄) ≤ ϕmax(Ω̄) ≤ d for all Ω̄ ∈ R(Ω0).

Proof of Theorem 1. Let f be the objective function in (1). Suppose that A(M)
is not empty and that Σ̄ ∈ A(M). Then

f(Ω) + log |Ω| = tr{ΩΣ̄}+ tr{Ω(S − Σ̄)}+
λ

q

∑

i,j

mij |ωij |
q

= a1 + a2 + a3.

We have that a1 ≥ ϕmin(Σ̄)
∑p

j=1
ϕj(Ω). Also,

a2 + a3 =
∑

i,j

{ωij(sij − σ̄ij) + λmij |ωij |
q/q}.

If mij = 0 then sij = σ̄ij so the (i, j)th entry in this sum is zero. The non-
zero entries in this sum are also bounded from below because λmij |ωij |

q/q >
|ωij(sij − σ̄ij)| if |ωij | is sufficiently large. Thus there exists an a ∈ R for which
a2 + a2 ≥ a. We have shown that f(Ω) ≥ a + btr(Ω) − log |Ω|, where b =
ϕmin(Σ̄) ∈ R+. So for any Ω0 ∈ S

p
+, Lemma 1 implies that there exists c, d ∈ R+

such that {Ω ∈ S
p
+ : f(Ω) ≤ f(Ω0)} ⊂ Gc,d. Given Ω0 ∈ S

p
+, we can shrink the
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feasible set in (1) to the compact subset Gc,d and since f is convex, a global
minimizer exists in Gc,d.

Now suppose that a global minimizer Σ̂−1 ∈ S
p
+ of (1) exists. Then Σ̂ ∈ S

p
+

and since∇f(Σ̂−1) = 0, we have that S−Σ̂+λM◦G = 0, where the (i, j)th entry
of G is determined by the (i, j)th entry of Σ̂−1, so sij = σ̂ij when (i, j) ∈ U .

Thus Σ̂ ∈ A(M), so A(M) is not empty.

Proof of Theorem 2. Let u be the objective function in (1) with q = 1. Suppose
that A1(λ,M) is not empty and take Σ̄ ∈ A1(λ,M). Then

u(Ω) + log |Ω| = tr{ΩΣ̄}+ tr{Ω(S − Σ̄}+ λ
∑

i,j

mij |ωij |

= a1 + a2 + a3.

We have that a1 ≥ ϕmin(Σ̄)
∑p

j=1
ϕj(Ω). Also,

a2 + a3 =
∑

i,j

{ωij(sij − σ̄ij) + λmij |ωij |}.

Since Σ̄ ∈ A1(λ,M), |sij − σ̄ij | ≤ λmij for all i, j, so a2 + a3 ≥ 0. Therefore,
u(Ω) ≥ a + btr(Ω) − log |Ω| for all Ω ∈ S

p
+, where a = 0 and b = ϕmin(Σ̄).

Thus, for any Ω0 ∈ S
p
+, Lemma 1 implies that there exists c, d ∈ R+ such that

{Ω ∈ S
p
+ : u(Ω) ≤ u(Ω0)} ⊂ Gc,d. Given Ω0 ∈ S

p
+, we can shrink the feasible

set in (1) to the compact subset Gc,d and since u is convex, a global minimizer
exists in Gc,d.

Now suppose that a global minimizer Σ̂−1 ∈ S
p
+ of (1) exists. From the

discussion in Section 2.2, S− Σ̂+λM ◦G = 0, where, in this case, G has entries
in [−1, 1]. So Σ̂−S = λM ◦G, which implies that |σ̂ij − sij | = λmij |gij | ≤ λmij

for all i, j. Thus Σ̂ ∈ A1(λ,M).

Proof of Corollary 1. Since A1(λ,M) ⊂ A(M) for all λ ≥ 0, by Theorems 1 and
2, we only need to show that each of the four conditions imply that A1(λ,M)
is not empty.

For (i), take Σ̄1 = S + λminj mjjI. Then Σ̄1 ∈ A1(λ,M). For (ii), pick an
α ∈ R+ sufficiently close to zero and let Σ̄2 = (1−α)S+αS ◦ I. Then Σ̄2 ∈ S

p
+,

σ̄2,jj = sjj , and when i 6= j, |σ̄2,ij − sij | = α|sij | ≤ λmij provided that α is
sufficiently close to zero. So Σ̄2 ∈ A1(λ,M). For (iii), S ∈ A1(λ,M). For (iv)
take Σ̄4 = soft(S, λM). From Rothman, Levina and Zhu (2009), |σ̄4,ij − sij | ≤
λmij so Σ̄4 ∈ A1(λ,M).
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