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Abstract: Relative entropy between two states in the same Hilbert space is a fun-

damental statistical measure of the distance between these states. Relative entropy is

always positive and increasing with the system size. Interestingly, for two states which

are infinitesimally different to each other, vanishing of relative entropy gives a powerful

equation ∆S = ∆H for the first order variation of the entanglement entropy ∆S and

the expectation value of the modular Hamiltonian ∆H. We evaluate relative entropy

between the vacuum and other states for spherical regions in the AdS/CFT framework.

We check that the relevant equations and inequalities hold for a large class of states,

giving a strong support to the holographic entropy formula. We elaborate on potential

uses of the equation ∆S = ∆H for vacuum state tomography and obtain modified

versions of the Bekenstein bound.
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1 Introduction

Entanglement entropy has emerged as a remarkable theoretical tool providing new

insights into a variety of topics in physics. For example, in condensed matter theory, it

can be used to distinguish new topological phases or different critical points [1, 2]. In

the context of quantum field theory (QFT), entanglement entropy has been proposed
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as a useful probe of phase transitions in gauge theories [3]. Further, it has provided

new insights on the structure of renormalization group flows [4, 5]. In particular, it

was instrumental in establishing new c-theorems in three and higher dimensions [6, 7].

Of course, entanglement entropy has long been proposed as the origin of black hole

entropy [8–10]. More recently, considerations of entanglement have led to an exciting

new discussion on the nature of Hawking radiation and black hole evaporation [11–13].

At a more fundamental level, it has been suggested that entanglement entropy may play

an important role in understanding the quantum structure of spacetime, e.g., [14–16].

Entanglement entropy has also figured in many recent discussions of gauge/gravity

duality. The entanglement entropy in the boundary QFT is determined with an elegant

geometric calculation in the dual gravity theory [17]. In particular, the entanglement

entropy between a (spatial) region V and its complement V̄ in the boundary is com-

puted by

S(V ) =
2π

`d−1
P

ext
v∼V

[A(v)] (1.1)

where one extremizes over all surfaces v in the bulk spacetime which are homologous

to the boundary region V . Here, we have adopted the convention `d−1
P = 8πGN where d

is the spacetime dimension of the boundary. This prescription (1.1) was found to pass

wide range of consistency tests, e.g., see [17–19]. However, a derivation was provided

for the special case of a spherical entangling surface in [20] and quite remarkably, [21]

recently extended this derivation to general (smooth) entangling surfaces.

Quantum information theory provides a variety of other tools with which we might

refine our understanding of entanglement in holographic theories. For example, Rényi

entropies are an infinite family of measures of entanglement [22, 23], which in principle

provide a full description of the density matrix spectrum, e.g., [24]. Unfortunately,

progress towards understanding holographic Rényi entropies has been more limited

[18, 25, 26]. In particular, a good understanding of Rényi entropies has been developed

for a two-dimensional boundary CFT and further, these quantities are easily computed

for a spherical entangling surface in any number of dimensions [26]. However, an

effective and efficient approach to calculate holographic Rényi entropy for more general

situations is still lacking.

In the present paper, we will consider another quantity known as the relative

entropy in the context of holography. The relative entropy between two states in the

same Hilbert space yields a fundamental statistical measure of the distance between

these states. Given two density matrices ρ1 and ρ0, the relative entropy S(ρ1|ρ0) is

defined as

S(ρ1|ρ0) = tr(ρ1 log ρ1)− tr(ρ1 log ρ0) . (1.2)
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In general, S(ρ1|ρ0) ≥ 0 where it vanishes if and only if the states are equal. Further,

if ρ1 and ρ0 describe reduced states on some region V , the relative entropy always

increases with the size of V , i.e., S(ρ1|ρ0) increases under inclusion (for a review see,

e.g., [27, 28]). When the set is small, both states should approach the vacuum state on

the operator algebra of the region, and then the relative entropy tends to zero.

The positivity of S(ρ1|ρ0) can be given a physical interpretation in terms of ther-

modynamics. If the state ρ0 is thermal with respect to the Hamiltonian H, i.e.,

ρ0 = e−H/T

tr(e−H/T )
, then the relative entropy with any other state ρ1 can be expressed

as

S(ρ1|ρ0) =
1

T
(F (ρ1)− F (ρ0)) , (1.3)

where F (ρ) is the free energy given by

F (ρ) = tr(ρH)− T S(ρ) . (1.4)

We emphasize that ρ1 can be any other state and need not be thermal. Hence the

temperature used to define F (ρ1) is that of the initial state ρ0. Now given the expression

in eq (1.3), the positivity of the relative entropy is equivalent to the fact that the free

energy at a fixed temperature T is minimized by the thermal equilibrium state.

Now consider the reduced density matrices describing states of a QFT on a region

V . Since any such density matrix is both Hermitian and positive semidefinite, it can

be expressed as

ρ =
e−H

tr(e−H)
(1.5)

for some Hermitian operator H. The latter is known as the modular Hamiltonian in

the literature on axiomatic quantum field theory, e.g., [29],1 while it is referred to as the

entanglement Hamiltonian in the condensed matter theory literature, e.g., [30]. The

denominator is included in the above expression to ensure the normalization tr(ρ) = 1

and it could instead be absorbed with an additive constant in H. However, it will be

convenient to maintain this form below. While H plays an important role in addressing

certain questions, we emphasize that generically the modular Hamiltonian is not a local

operator and the evolution generated by H would not correspond to a local (geometric)

flow.

Returning to our considerations of the relative entropy and given eq. (1.5), formally

we can say the state ρ0 is thermal with a temperature T = 1. Hence we can apply

eq. (1.3) to express the relative entropy as

S(ρ1|ρ0) = ∆〈H〉 −∆S (1.6)

1The precise definition of the modular Hamiltonian for a region V in algebraic QFT also includes

an extension of H in eq. (1.5) to the algebra of operators outside the region V .
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where

∆〈H〉 = tr(ρ1H)− tr(ρ0H) and ∆S = S(ρ1)− S(ρ0) . (1.7)

Now the positivity of the relative entropy requires2

∆〈H〉 ≥ ∆S . (1.8)

That is, in comparing two states, the variation of the entanglement entropy is bounded

by the variation of the expectation value of the modular Hamiltonian. Much of our

analysis in this paper will focus on examining this inequality in a holographic setting.

The holographic prescription (1.1) allows us to calculate the necessary entanglement

entropies and hence ∆S. Further if the modular Hamiltonian is known, we can also

evaluate ∆〈H〉, e.g., after evaluating the expectation value of the stress energy 〈Tab〉
using standard methods. Unfortunately there are only few simple cases where the

modular Hamiltonian is explicitly known, as we describe below.

The cases where the precise form of H is known correspond to special situations,

in which the modular Hamiltonian (and the corresponding internal time flow generated

by H) are local.3 Let us enumerate a few of these cases here: One well-known example

is given by the vacuum state in any QFT restricted to the half space x > 0. In this case,

the modular Hamiltonian is proportional to K, the boost generator in the x direction

[31],

H = 2πK = 2π

∫
x>0

dd−1x xT00(~x) . (1.9)

In this case, H generates a geometric flow along the boost orbits in the Rindler wedge.

Of course, the density matrix then has a thermal interpretation with respect to time

translations along these orbits [32]. A second example corresponds to the vacuum of a

conformal field theory and a spherical entangling surface, which yields

H = 2π

∫
|x|<R

dd−1x
R2 − r2

2R
T00(~x) . (1.10)

This result is easily derived from eq. (1.9) since there is a special conformal transforma-

tion (and translation) which maps the Rindler wedge to the causal development of the

ball |x| < R — e.g., see [29, 33]. Another situation where the modular Hamiltonian

2This inequality can be regarded as a generalized statement of the Bekenstein bound which holds

for any region in QFT. This is explained in more detail in the appendix A.4.
3The simplest example is given by considering a global thermal state, with temperature T , and

taking V to be the whole space. Then, the modular Hamiltonian is simply the ordinary (local)

Hamiltonian divided by T , as is evident from eq. (1.5), and so H simply generates ordinary time

translations.
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is known to be local is the case of a two-dimensional CFT in a thermal state (with

temperature T ) on the Rindler wedge [34]. In this case, the modular Hamiltonian can

be expressed as

H =
1

T

∫
x>0

dx
(
1− e−2πTx

)
T00(~x) . (1.11)

In the following, we focus primarily on the case of a spherical entangling surface

with H given by eq. (1.10). As described above, our strategy will be to use holographic

techniques to calculate both ∆〈H〉 and ∆S and to test whether the inequality (1.8) is

satisfied. We will find that eq. (1.8) is always satisfied but further, that in many of

our examples, the inequality is in fact saturated to linear order in the perturbations

of the state. The appearance of an equality in these cases can be understood because

we are examining the relative entropy of two nearby states. Consider choosing a fixed

reference state ρ0 and then moving through a family of states ρ1(λ) with a parameter

λ such that ρ1(λ = 0) = ρ0. Since the two states coincide for λ = 0, we have that

S(ρ1(0)|ρ0) = 0 but S(ρ1(λ)|ρ0) > 0 for both positive and negative λ. Therefore if

S(ρ1(λ)|ρ0) is a smooth function of λ, its first derivative must vanish at λ = 0. Of

course, this vanishing implies

∆〈H〉 = ∆S (1.12)

to first order in λ (at λ = 0) — see further discussion in the appendix A. In thermo-

dynamical terms of eq. (1.3) this is the well known equation dE = TdS holding for

nearby equilibrium states.

While the above approach tests the positivity of the relative entropy, we can also

use our holographic results to examine the monotonicity constraint mentioned below

eq. (1.2). That is, the relative entropy should increase as the radius of the spherical

entangling surface increases. Of course, this property can only be tested in the cases

where ∆〈H〉 6= ∆S, where we should find

∂RS(ρ1|ρ0) = ∂R [∆〈H〉 −∆S] ≥ 0 . (1.13)

The remainder of the paper is organized as follows: In section 2, we test relative

entropy bounds and the linear equality (1.12) for simple examples containing black

branes in the bulk. In section 3 we analyze general linear perturbations of the vacuum

finding agreement with eq. (1.12). We also compute quadratic perturbations and find in

all our examples that relative entropy is positive and increasing. In section 4 we analyze

some examples in d = 2 which allow for exact analytic calculations of the entropy.

We discuss some puzzles about localizations of contributions to ∆〈H〉 in section 5.

We conclude with a summary of the results and further comments on section 6. In

particular, we discuss the potential of eq. (1.12) to make vacuum state tomography
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using entanglement entropy, and argue the results of section 3 are powerful enough

to reconstruct the full density matrix in a sphere from the minimal area prescription

for the entropy, in perfect accord with the CFT result. Finally, in appendix A we

review several issues related to relative entropy, including its relation to the strong

subadditivity property of entanglement entropy, the second law of thermodynamics,

and the Bekenstein bound.

2 Simple examples testing holographic entanglement entropy

As commented above, our strategy will be to test the inequality (1.8) in a holographic

setting for the case of a spherical entangling surface, for which the modular Hamiltonian

(1.10) is known. The RT prescription [17] allows us to calculate the entanglement

entropies and hence ∆S. But in these cases, we can also evaluate ∆〈H〉 given the

expectation value of the stress energy 〈Tab〉. In this section, while our reference state

(defining ρ0) is the vacuum of the CFT, our second state (defining ρ1) will be the

holographic dual of a black hole. This is a warm-up exercise to give us some insight

before proceeding with a more general analysis in the next section.

The bulk solution dual to the vacuum of the d-dimensional boundary CFT is simply

empty AdSd+1 space, which we write in the Poincaré coordinates:

ds2 =
L2

z2

(
−dt2 + d~x2

d−1 + dz2
)
. (2.1)

Now we are considering a spherical entangling surface in the boundary theory, i.e., the

region V is the ball {t = 0, r ≤ R}. Now the stress tensor has vanishing expectation

value in the vacuum state and so the expectation value of the modular Hamiltonian

(1.10) vanishes for this state, i.e., 〈H〉0 = tr(ρ0H) = 0. Applying the holographic

prescription (1.1) to evaluate the entanglement entropy, one finds that the minimal

area surface v is given by [17]

z = z0(r) ≡
√
R2 − r2 . (2.2)

Hence the entanglement entropy takes the form

S0 = 2π
A(v)

`d−1
P

= 2π
Ld−1

`d−1
P

Ωd−2

∫ R

0

dr
rd−2

zd−1

√
1 + ∂rz 2 , (2.3)

where Ωd−2 denotes the area of a unit (d− 2)-sphere, i.e.,

Ωd−2 =
2 π(d−1)/2

Γ((d− 1)/2)
. (2.4)
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We will not need to explicitly evaluate eq. (2.3) for the following, however, the interested

reader may find the result in [17, 20].

For our second state defining ρ1, we take the holographic dual of a bulk black brane

solution, i.e., a planar AdS black hole. In general, the (expectation value of the) stress

tensor dual to a stationary black brane takes the form of that for an ideal fluid,

〈Tµν〉 = (ε+ P )uµuν + P ηµν , (2.5)

where ε, P and uµ correspond to the energy density, pressure and d-velocity of the

fluid, respectively. Since the boundary theory is a CFT, we also have 〈T µµ〉 = 0 which

imposes P = ε/(d− 1).

As our first example, we consider a static planar AdS black hole, for which the

metric may be written as

ds2 =
L2

z2

(
−f(z) dt2 + d~x2

d−1 +
dz2

f(z)

)
with f(z) = 1− zd

zdh
. (2.6)

In this case, the dual plasma is at rest, i.e., uµ = (1,~0d−1), and so eq. (2.5) reduces to

〈Tµν〉 = ε diag(1, 1/(d− 1), 1/(d− 1), · · · ) . (2.7)

Now the usual holographic dictionary [35, 36] gives the energy density as

ε =
d− 1

2

Ld−1

`d−1
P

1

zdh
. (2.8)

The latter can be interpreted as ε = c T d using the expression for the black hole

temperature:

T =
d

4πzh
. (2.9)

With these expressions, it is straightforward to evaluate the expectation of the modular

Hamiltonian (1.10) for this state,

〈H〉1 = πΩd−2
ε

R

∫ R

0

dr rd−2
(
R2 − r2

)
=

2πΩd−2

d2 − 1
Rd ε . (2.10)

Hence we arrive at

∆〈H〉 = 〈H〉1 − 〈H〉0 =
πΩd−2

d+ 1

Ld−1

`d−1
P

Rd

zdh
(2.11)
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after replacing ε using eq. (2.8).

Now to complete our comparison in eq. (1.8), we need to evaluate the entanglement

entropy for a spherical entangling surface in the black brane background. Applying the

holographic prescription (1.1), the entropy functional in this new background becomes

S1 = 2π
Ld−1

`d−1
P

Ωd−2

∫ R

0

dr
rd−2

zd−1

√
1 +

(∂rz)2

f(z)
, (2.12)

where f(z) is the metric function given in eq. (2.6). In principle, we could extremize the

above expression, i.e., solve for z(r), and evaluate the entropy at an arbitrary temper-

ature, but this would require a numerical evaluation.4 To make progress analytically,

we will carry out a perturbative calculation for ‘small’ spheres or low temperatures,

in which we consider the limit R/zh � 1 (or alternatively, RT � 1). In this case,

the minimal surface is only probing the asymptotic region of the black brane geome-

try (2.6) and so the solution deviates only slightly from the AdS solution (2.2), i.e.,

z(r) = z0(r) + δz(r). Now since z0(r) extremizes the entropy functional for the AdS

background in eq. (2.3), the deviation δz(r) will not modify the result at first order in

our perturbative calculation.5 Hence, the leading order change in the entropy comes

from evaluating eq. (2.12) with z = z0(r) and determining the leading contribution in

R/zh. Expanding eq. (2.12) to leading order in 1/zdh yields

∆S = π
Ld−1

`d−1
P

Ωd−2

∫ R

0

dr
rd−2 z (∂rz)2

zdh
√

1 + (∂rz)2

∣∣∣∣∣
z=z0(r)

= π
Ld−1

`d−1
P

Ωd−2

∫ R

0

dr
rd

zdh R

=
πΩd−2

d+ 1

Ld−1

`d−1
P

Rd

zdh
(2.13)

Hence comparing to eq. (2.11), we see that to leading order

∆〈H〉 = ∆S (2.14)

and so we have saturated the inequality in eq. (1.8)! Of course, this equality is perhaps

not so surprising given the discussion around eq. (1.12).6 Here we are looking at a

4The interested reader is referred to [37] for various interesting analytic approximations.
5As well as a bulk term proportional to the equations of motion, the first order variation by δz(r)

will also generate a total derivative and so one may worry that there is a nonvanishing boundary

term at the cut-off surface. However, a careful examination shows that this boundary term actually

vanishes. The simplest approach is to simply define the entangling surface directly at the cut-off

surface and then δz vanishes there.
6Actually the discussion there does not apply directly to the present example since one would not

consider the energy density of the fluid dual to the black hole taking negative values. However, one

might consider a state where stress tensor locally takes the form in eq. (2.8) but with ε < 0 in a small

region around the entangling sphere.
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family of density matrices characterized by the temperature T and our perturbative

calculation is evaluating the leading order change in 〈H〉 and S, which appears linearly

at order (RT )d. Of course, it would be interesting to evaluate both sides of eq. (1.8)

at next order in the perturbative expansion, but we leave this exercise to our general

analysis in section 3. Of course, given the equality in eq. (2.14), we can not test the

monotonicity inequality (1.13) at this order. We should add that calculations similar

to those above has also been done in [38], without any reference to relative entropy.

2.1 Boosted black brane

We now repeat these calculations for a boosted AdS black brane. That is, the second

state defining ρ1 is a thermal plasma which is uniformly boosted in a certain direction.

Hence this new state ρ1 is characterized by the temperature T and the velocity v. Our

calculations will be to leading order in the temperature and all orders in the velocity.

The stress tensor takes the form given in eq. (2.5) now with uµ = (γ, γv,~0d−2)

where γ = 1/
√

1− v2, as well as P = ε/(d− 1). In particular, we have

〈T00〉 = ε

(
1 +

d

d− 1
γ2 v2

)
. (2.15)

The corresponding bulk black brane solution is simply derived by applying a boost

along, say, the direction of x1 ≡ x directly to the metric in eq. (2.6). It is convenient

to write the resulting metric as

ds2 =
L2

z2

−dt2 + dx2 + γ2 z
d

zdh
(dt+ vdx)2 + d~x2

d−2 +
dz2

1− zd

zdh

 . (2.16)

With the usual holographic approach [35, 36], one can verify eq. (2.15) with ε given by

eq. (2.8), as before. Now we wish to evaluate the change in the (expectation value of

the) modular Hamiltonian (1.10) for the boosted plasma. Since the energy density is

still uniform the calculation of 〈H〉1 is the same as before, up to the additional overall

pre-factor in eq. (2.15). Hence, we arrive at

∆〈H ′〉 = ∆〈H〉
(

1 +
d

d− 1
γ2 v2

)
, (2.17)

where ∆〈H〉 is the variation of the modular Hamiltonian given in eq. (2.11).

Now in principle, because the background (2.16) is stationary (but not static), we

must apply the covariant prescription suggested by [39] to evaluate the holographic en-

tanglement entropy. In fact, the holographic prescription presented in eq. (1.1) already
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accommodates this situation. In this new background, we would need to find the ex-

tremal surface with a profile defined by z = z(x, y) and t = t(x, y) where y2 ≡
∑d−1

i=2 (xi)2

— in particular, note that the extremal surface will not remain on a fixed time slice

in the bulk. However, our goal is to evaluate the change in the entanglement entropy

∆S ′ and reasoning as in the previous section, we deduce that the leading change will

be determined by simply evaluating the area in the new background geometry with

the zero-temperature profile (2.2). Hence we can ignore the deviations of the extremal

surface away from the constant time slice in the following.

With a profile z = z(x, y), it is straightforward to show that the entropy in the

boosted background (2.16) takes the form

S ′1 = 2π
Ld−1

`d−1
P

Ωd−3

∫ R

−R
dx

∫ √R2−x2

0

dy
yd−3

zd−1

[(
1 + γ2v2 z

d

zdh

)(
1 +

∂yz
2

f(z)

)
+
∂xz

2

f(z)

]1/2

,

(2.18)

where again f(z) is given in eq. (2.6). While no approximations were made in evaluating

∆〈H ′〉 in eq. (2.17), as before, in evaluating the change in the entropy, we will work

to leading order in the limit R/zh � 1. Again, applying the same reasoning as in

our previous calculations, we conclude that the leading order change in the entropy

comes simply from evaluating eq. (2.18) with the zero-temperature profile (2.2), i.e.,

z = z0(r) =
√
R2 − x2 − y2. We first expand the above expression to leading order in

1/zdh and then subtract the zero’th order contribution (2.3), which yields

∆S ′ = π
Ld−1

`d−1
P

Ωd−3

∫ R

−R
dx

∫ √R2−x2

0

dy
yd−3 z

zdh
√

1 + ∂rz 2

[
∂rz

2 + γ2v2
(
1 + ∂yz

2
)]
, (2.19)

where we have simplified ∂xz
2 + ∂yz

2 = ∂rz
2 in anticipation of substituting z = z0(r).

With this substitution, the first term in the square brackets will yield precisely the

‘unboosted’ result ∆S, given in eq. (2.13). Hence we are left with

∆S ′ = ∆S + π
Ld−1

`d−1
P

Ωd−3 γ
2v2

∫ R

−R
dx

∫ √R2−x2

0

dy
yd−3 z (1 + ∂yz

2)

zdh
√

1 + ∂rz 2

∣∣∣∣
z=z0(r)

= ∆S + π
Ld−1

`d−1
P

Ωd−3 γ
2v2

∫ R

−R
dx

∫ √R2−x2

0

dy
yd−3 (R2 − x2)

zdh R

= ∆S + π
Ld−1

`d−1
P

Ωd−3 γ
2v2R

d

zdh

√
π

d− 2

Γ (d/2 + 1)

Γ (d/2 + 3/2)

= ∆S

(
1 +

d

d− 1
γ2 v2

)
, (2.20)

where we have used eqs. (2.4) and (2.13) to produce the simple expression in the final

line.
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Recall that we found ∆〈H〉 = ∆S in the previous section and hence in comparing

to eqs. (2.17) and (2.20), we again find that to leading order

∆〈H ′〉 = ∆S ′ (2.21)

for the boosted plasma. While the expressions appearing in the calculations above

are somewhat more complicated, we may have still anticipated this equality from the

discussion around eq. (1.12). In this case, we are considering a family of density matrices

characterized by the temperature T and the velocity v. While our calculations are valid

to all orders in the velocity, we are only evaluating ∆〈H ′〉 and ∆S ′ to leading order in

(RT )d.

2.2 Charged black brane

Continuing the analysis of section 2, another interesting background to consider as

defining ρ1 is a charged AdS black brane. In this case, the state in the boundary

theory is characterized by the chemical potential µ, as well as the temperature T . Our

calculations will be to leading order in RT , however, we allow µ/T to be order one.

In this case, we consider the bulk gravity action

I =
1

2`d−1
P

∫
dd+1x

√
−g

(
d(d− 1)

L2
+R− L2

4
FµνF

µν

)
(2.22)

with d ≥ 3.7 The metric for a planar charged black hole can be written as

ds2 =
L2

z2

(
−h(z) dt2 + d~x2

d−1 +
dz2

h

)
(2.23)

where

h = 1−
(
1 + z2

h q
2
) zd
zdh

+ q2 z
2d−2

z2d−4
h

, (2.24)

and the corresponding gauge potential has only a single nonvanishing component

A0(z) =

√
2(d− 1)

d− 2
q

(
1− zd−2

zd−2
h

)
. (2.25)

Here, z = zh corresponds to the position of the horizon and q is related to the charge

density carried by the horizon. The temperature of the dual plasma is given by

T =
d

4πzh

(
1− d− 2

d
z2
h q

2

)
(2.26)

7The normalization of the gauge field term is typically determined by the microscopic details of

the holographic construction — see discussion in [40]. Here, we simply chose the factor of L2 for

convenience. Further we note that in the case d = 2, the following solution is modified by logarithmic

terms.
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and the chemical potential is given by the asymptotic value of the gauge potential, i.e.,

µ = lim
z→0

A0 =

√
2(d− 1)

d− 2
q . (2.27)

Since the CFT plasma is at rest, eq. (2.5) reduces to 〈Tµν〉 = ε diag(1, 1/(d −
1), 1/(d− 1), · · · ) and the usual holographic prescription yields [35, 36]

ε =
d− 1

2

Ld−1

`d−1
P

1

zdh

(
1 + z2

h q
2
)
. (2.28)

Now we wish to evaluate the change in the expectation value of the modular Hamilto-

nian produced by going to this new state. Since the energy density is again uniform,

evaluating 〈H〉1 is precisely the same calculation as in eq. (2.10), up to the additional

overall factor appearing in eq. (2.28). Hence, we arrive at

∆〈H ′′〉 = ∆〈H〉
(
1 + z2

h q
2
)
, (2.29)

where ∆〈H〉 is the result given in eq. (2.11).

Further since the black brane is static, the extremal surface appearing in the holo-

graphic entanglement entropy (1.1) again has a spherically symmetric profile z = z(r)

for a spherical entangling surface. Hence with the metric (2.23), the entropy functional

becomes

S ′′1 = 2π
Ld−1

`d−1
P

Ωd−2

∫ R

0

dr
rd−2

zd−1

√
1 +

(∂rz)2

h(z)
, (2.30)

where h(z) is given in eq. (2.24). In proceeding, we again limit our analysis to a

perturbative calculation with R/zh � 1 but we treat zhq = O(1). Further, as before,

the leading contribution to the change in the entropy comes from simply evaluating

eq. (2.30) with the vacuum profile z = z0(r) and expanding in R/zh. However, we would

like to refine our previous arguments. Here as in the previous examples, the leading

changes to the asymptotic metric are O(zd/zdh) and so we will find the leading change

in the entropy is ∆S ′′ = O(Rd/zdh). The leading change of the profile of the extremal

surface, δz, is also controlled by these leading changes in the metric. However, as we

argued before, the entropy is only changed at quadratic order in δz and hence we will

find that this contribution produces a change in the entropy ∆S ′′(δz2) = O(R2d/z2d
h ) —

see section 3.2 for an explicit calculation. Hence at this point, we note that the next-to-

leading order changes in the above metric 2.23 are O(z2d−2/z2d−2
h ) since we consider zhq

to be order 1. If we calculate with these changes in the metric and the original profile,

there will be an additional contribution to the change in the entropy at O(R2d−2/z2d−2
h )

— this is verified by our calculation below. This contribution is still lower order in the
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R/zh expansion compared to those arising from the change in the profile. Hence it is

legitimate to consider this contribution without concerning ourselves with the change

in the profile of the extremal surface. Therefore we expand eq. (2.30) as

∆S ′′ = π
Ld−1

`d−1
P

Ωd−2

∫ R

0

dr
rd−2 z (∂rz)2

zdh
√

1 + (∂rz)2

[(
1 + z2

h q
2
)
− q2 z

d−2

zd−4
h

]∣∣∣∣∣
z=z0(r)

= ∆S
(
1 + z2

h q
2
)
− πL

d−1

`d−1
P

Ωd−2
q2

z2d−4
h R

∫ R

0

dr rd
(
R2 − r2

) d−2
2

= ∆S
(
1 + z2

h q
2
)
− d− 1

2
π
d+1
2

Γ(d/2)

Γ
(
d+ 1

2

) Ld−1

`d−1
P

(zhq)
2R

2d−2

z2d−2
h

(2.31)

where ∆S corresponds to the variation given in eq. (2.13).

Recall that we found ∆〈H〉 = ∆S in eq. (2.14). Hence in comparing to eqs. (2.29)

and (2.31), we find that the leading order terms are again equal, however, including

the contribution at O(R2d−2/z2d−2
0 ) yields

∆〈H ′′〉 > ∆S ′′ . (2.32)

Hence we find that adding the chemical potential introduces a next-to-leading contri-

bution which ensures that the relative entropy is positive. Using the above expressions,

we have

S(ρ1|ρ0) ' π

2

Ld−1

`d−1
P

Ωd−2
Γ(d/2)Γ((d+ 1)/2)

Γ
(
d+ 1

2

) (zhq)
2R

2d−2

z2d−2
h

(2.33)

Since S(ρ1|ρ0) ∝ R2d−2, we can trivially verify that the relative entropy also satisfies

the monotonicity property (1.13), i.e., ∂RS(ρ1|ρ0) > 0. Using eqs. (2.26) and (2.27),

it is straightforward to re-express the right-hand side as a function of the temperature

and chemical potential. While the full expression is not particularly insightful, note

that in the regime 1 � µ/T � RT , we have S(ρ1|ρ0) ∼ (RT )2d−2(µ/T )2 and so, in

particular, we observe that this nonvanishing contribution begins at quadratic order in

the chemical potential.

In closing, we note that the result in eq. (2.31) was generated by a first-order

deformation in the asymptotic metric, however, the latter is produced by the back-

reaction of the gauge field on the geometry and so the leading change in the relative

entropy is quadratic in the corresponding coefficient q.

3 General analysis

In this section, we would like to generalize the previous analysis to examine the in-

equality (1.8) for more general holographic states. As long as we focus our attention on
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a spherical entangling surface, it is straightforward to evaluate ∆〈H〉 using eq. (1.10)

since a standard holographic prescription allows us to determine 〈Tµν〉 [35, 36]. In prin-

ciple, the calculation of the entanglement entropy using eq. (1.1) is more challenging

because we must determine the extremal surface in the bulk geometry describing the

second state ρ1. However, as we saw above, if this state describes a ‘small’ perturbation

of the initial vacuum state ρ0, our calculations are restricted to considering asymptotic

perturbations of the AdS geometry. Hence, our analysis of the holographic entan-

glement entropy was greatly simplified in this perturbative context. It also suggests

that it is natural to formulate these calculations in the framework of the asymptotic

Fefferman-Graham (FG) expansion [41] — see also [35]. In particular, such an approach

will allow us to consider a much broader class of perturbed states without concerning

ourselves with the details of the bulk geometry in the far infrared.

Using the FG expansion, we consider three distinct calculations in the following:

We begin by considering states described by purely gravitational excitations in the AdS

bulk. That is, the stress tensor is the only operator that has a nonvanishing expectation

value in these states. Now let us introduce a small perturbative parameter α which

controls the magnitude of 〈Tµν〉. Our first result is to demonstrate that we always

saturate the inequality (1.8), i.e., ∆〈H〉 = ∆S, when working to linear order in α.

We emphasize that this equality holds even when 〈Tµν〉 varies on scales comparable to

R, the size of the spherical entangling surface. Secondly, we extend these calculations

to second order in α in section 3.2. There while ∆〈H〉 is unchanged, we show that

the additional contributions to the entanglement entropy have a definite sign ensuring

that ∆〈H〉 > ∆S. The third case, which we consider in section 3.3, involves states

in which additional matter fields are excited in the dual AdS spacetime and hence

additional operators acquire expectation values. As we saw in section 2.2, it is relatively

easy to determine quadratic corrections to the entanglement entropy coming from such

perturbations. Below, we extend this analysis to a much broader class of states and

verify that the quadratic contributions again ensure that ∆〈H〉 > ∆S.

As commented above, our general analysis will be formulated in the context of the

Fefferman-Graham expansion of the asymptotic bulk solutions [35, 41]. Hence we begin

by considering a general bulk metric written in FG coordinates

ds2 =
L2

z2

(
dz2 + gµν(z, x

µ)dxµdxν
)
. (3.1)

We are considering the asymptotic geometry where z ' 0. We will always choose the

asymptotic metric (on which the boundary CFT is defined) to be flat and so we may

write

gµν(z, x
µ) = ηµν + δgµν(z, x

µ) (3.2)
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where δgµν begins with terms of order zd. We are interested in calculations of holo-

graphic entanglement entropy (1.1) and so we will want to evaluate the area of various

extremal surfaces in the bulk. In principle, for situations where the background geom-

etry is not static, the profile of these (d − 1)-dimensional surfaces would be specified

by giving both the radial position and time in the bulk as functions of the remaining

spatial coordinates, i.e., z = z(xi) and t = t(xi). However, our goal is to evaluate the

change in the entanglement entropy ∆S and discussed in section 2.1, it will suffice to

consider bulk surfaces that live in a constant time slice. Hence with a radial profile

z = z(xi) alone, the induced metric hij on this surface is given by

hijdx
idxj =

L2

z2
(gij + ∂iz∂jz) dxidxj (3.3)

and the corresponding area is then

A = Ld−1

∫
dd−1x

√
h = Ld−1

∫
dd−1x

√
detgij

√
1 + gij ∂iz ∂jz . (3.4)

In principle, eq. (3.4) can now be used as an effective action to determine the extremal

profile z = z(xi). However, as before, to determine the leading change ∆S, we will be

evaluating the area in the new background geometry with the original profile (2.2).

3.1 Linear corrections to relative entropy

We begin by considering states ρ1 whose small deviation of the vacuum state ρ0 is

characterized by an expectation value of stress tensor T 0
µν in the boundary CFT.8

We suppose the latter is ‘very small’ and that the smallness is characterized by a

(dimensionless) parameter α� 1. As before, we will limit our attention to a spherical

entangling surface for which the (vacuum) modular Hamiltonian (1.10) is linear in

the stress tensor and so ∆〈H〉 is linear in α. However, in eq. (1.8), the change in

the entanglement entropy will receive contributions at all orders in α. In the present

section, we will only evaluate ∆S to linear order in α.

In general, using the FG expansion, the deviation of the bulk metric from pure

AdS in eq. (3.2) takes the form.

δgµν =
2

d

`d−1
P

Ld−1
zd
∑
n=0

z2n T (n)
µν . (3.5)

The bulk Einstein equations will determine T
(n)
µν for n > 0 in terms of expectation

value T
(0)
µν . Following the above discussion, our strategy will be to only solve for T

(n)
µν

to leading order in α (or to linear order in T
(0)
µν ).

8For simplicity, we drop the angle brackets in denoting this expectation value throughout our

calculations here.

– 15 –



Before we solve the Einstein equations, we let us recall that the goal is to evaluate

the change in the holographic entanglement entropy in the perturbed metric. Here, we

may apply the same reasoning as in section 2. In particular, in the vacuum AdS, there

is an analytic solution (2.2) for the extremal bulk surface corresponding to a spherical

entangling surface of radius R in the boundary

z2
0 + r2 = R2, where r2 =

d−1∑
i=1

x2
i . (3.6)

Now in the perturbed background, the bulk entangling surface can also be given as

an expansion in α, i.e., z(xi) = z0(xi) + αz1(xi) + · · · . However, as described in the

previous section, since the profile z0 is extremal to leading order, the perturbation z1

only contributes at order α2. Hence we can evaluate the linear change in the area by

simply evaluating the area (3.4) with the original profile z0 in the perturbed background.

Hence given (3.5), one finds to linear order in α that

∆S = 2π
∆A

`d−1
P

=
2πR

d

∫
|x|≤R

dd−1x
∑
n=0

z2n
0

(
T (n)

i
i − T (n)

ij
xi xj

R2

)
. (3.7)

Now we return to solving the Einstein equations, which can be written as

R̂AB −
1

2
GAB

(
R̂ +

d(d− 1)

L2

)
= 0 , (3.8)

where R̂AB is the bulk Ricci tensor evaluated on the bulk metric GAB given as in

eq. (3.1). Using the results from [42], we can write to linear order in α,

R̂ρρ = − d

4ρ2
− 1

2
∂2
ρδg

µ
µ ,

R̂µρ =
1

2
(∂ρ∂νδg

ν
µ − ∂µ∂ρδgνν) ,

R̂µν = Rµν − 2ρ∂2
ρδgµν + (d− 2)∂ρδgµν + ηµν∂ρδgγ

γ − d

ρ
(ηµν + δgµν) ,

R̂ = −d(d+ 1) + ρR + 2(d− 1)ρ∂ρδgµ
µ − 4ρ2∂2

ρδgµ
µ , (3.9)

where we have chosen a (dimensionless) radial coordinate ρ = z2/L2. Also, Rµν and

R are curvature tensors evaluated on gµν treating z (or ρ) as an external parameter.

Explicitly, then the linear order in α, we have

Rµν =
1

2
(∂ν∂γδg

γ
µ + ∂µ∂γδg

γ
ν −�δgµν − ∂µ∂νδgγγ) . (3.10)
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Substituting eq. (3.5) and the above expression into the Einstein equations, we

obtain the following equations for T (n) using the ρρ and µρ components, respectively:

∂µ∂νT (n)
µν −�T (n)µ

µ + (d− 1)(d+ 2n+ 2)T (n+1)µ
µ = 0 , T (0)µ

µ = 0 , (3.11)

∂νT
(n)

µ
ν − ∂νT (n)µ

µ = 0 . (3.12)

Together, these two equations imply that

T (n)µ
µ = 0 , ∂νT

(n)
µ
ν = 0 , (3.13)

for all n. Hence we note that Einstein equations automatically ensure that T (n) is

traceless and conserved for all n. Finally, the µν components of Einstein equations

then reduce to

T (n)
µν = − �T

(n−1)
µν

2n(d+ 2n)
, (3.14)

which implies

T (n)
µν =

(−1)nΓ[d/2 + 1]

22nn!Γ[d/2 + n+ 1]
�nT (0)

µν . (3.15)

Of course, we can substitute these results back into eq. (3.7) to express ∆S entirely in

terms of T
(0)
µν .

For the following, it will be more convenient to express the stress tensor in a Fourier

expansion

T (0)
µν (x) =

∫
ddp exp(−ip · x) T̂µν(p) . (3.16)

Using the previous results, the change in the entanglement entropy (3.7) then becomes

∆S =
2πR

d

∫
dd−1x

∫
ddp exp(−ip · x) × (3.17)

Γ[d/2 + 1]

(z0|p|/2)d/2

∑
n=0

[
1

n!Γ[d/2 + n+ 1]

(
|p|z0

2

)2n+d/2
](

T̂i
i(p)− T̂ij(p)

xixj

R2

)
,

where |p| = |√pµpµ|. Now we may recognize that the sum in the square brackets yields

precisely ∑
n=0

[
1

n!Γ[d/2 + n+ 1]

(
|p|z0

2

)2n+d/2
]

= Id/2(|p|z0) . (3.18)

For time-like momenta p in Lorentzian signature, it gives instead Jd/2(|p|z0). That is,

we recover an expression that is precisely proportional to the Green’s function of the

graviton in AdSd+1. However, note that the asymptotic boundary condition is taken

to be one where the leading constant term is set to zero — for example, see [68].

The latter can be contrasted with the usual bulk-to-boundary Green’s function which

is proportional to Kd/2(|p|z0), where the boundary condition is chosen such that the

leading term near the AdS boundary is a constant.
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Saturating the inequality in eq. (1.8):

Turning to eq. (1.8), we would like to establish that this inequality is in fact saturated

at linear order in α for the general class of states considered here. Given the modular

Hamiltonian (1.10) (for a spherical entangling surface), we may write

∆〈H〉 =
π

R

∫
|x|≤R

dd−1x z2
0 T

(0)
00 . (3.19)

where z0 is the extremal profile in eq. (3.6). A priori, this expression bares no resem-

blance to the expression for ∆S in eq. (3.7), even after we substitute in the results in

eq. (3.15).

To prove the inequality (1.8) is saturated, we begin by examining eq. (3.17) for a

single momentum component with the corresponding quantity in δH above. We can

set the spatial direction of momentum in direction x1, i.e.,

T (0)
µν (x) = T̂µν e

−ip·x . (3.20)

We take the momentum to be time-like for definiteness. An analogous calculation holds

for space-like momentum.

Conservation and tracelessness of T
(0)
µν imply

T̂i
i = T̂00 , T̂10 = −p

0

p1
T̂00 and T̂11 =

(p0)2

(p1)2
T̂00 . (3.21)

Then we note that given the stress tensor chosen in eq. (3.20), the integral of eq. (3.17)

is symmetric under rotations leaving x1 fixed. This implies the integral containing the

term T̂ij x
ixj will vanish for i 6= j. Also for i = j = 2, · · · , (d− 2), all the integrals are

equal. Then inside the integral, we can replace

T̂i
i − T̂ij

xixj

R2
→ T̂00 − T̂11

(x1)2

R2
−

d−2∑
i=2

T̂ii
(xi)2

R2
(3.22)

→ T̂00 − T̂11
(x1)2

R2
−

d−2∑
i=2

T̂ii

∑d−2
j=2(xj)2

(d− 2)R2
→ T̂00 − T̂11

(x1)2

R2
−

d−2∑
i=2

T̂ii
r2 − (x1)2

(d− 2)R2

→ T̂00 − T̂11
(x1)2

R2
− (T̂i

i − T̂11)
r2 − (x1)2

(d− 2)R2
(3.23)

→ T̂00

1− (p0)2

(p1)2

(x1)2

R2
−

(
1− (p0)2

(p1)2

)
(r2 − (x1)2)

(d− 2)R2

 .

In the last transformation we have used (3.21). This final expression depends only on

T̂00, which is necessary for the equality with ∆〈H〉.
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Then ∆S reads in polar coordinates

∆S =
2(d+2)/2πR

d|p|d/2
Γ[d/2 + 1]Ωd−3 T̂00e

ip0t

∫ R

0

dr rd−2

∫ π

0

dθ sind−3θ e−ip
1r cos(θ)

×
Jd/2(|p|

√
R2 − r2)

(R2 − r2)d/4

1− (p0)2

(p1)2

r2 cos2 θ

R2
−

(
1− (p0)2

(p1)2

)
r2 sin2 θ

(d− 2)R2

 . (3.24)

The integrals over θ can then be done explicitly using∫ π

0

dθ sinq(θ)e−ix cos(θ) = 2q/2
√
π Γ[(q + 1)/2]

Jq/2(|x|)
|x|q/2

. (3.25)

Now for the variation of the modular Hamiltonian, we substitute eq. (3.20) into

the eq. (3.19) which yields

∆〈H〉 = 2πΩd−3 T̂00e
ip0t

∫ R

0

dr rd−2

∫ π

0

dθ sind−3θ
R2 − r2

2R
e−ip1r cos(θ) (3.26)

= 2(d−1)/2π3/2Ωd−3 Γ[(d− 2)/2] T̂00e
ip0t R

(d−1)/2

|p1|(d+1)/2
J(d+1)/2(|p1|R) .

Note the integral for ∆S in eq. (3.24) depends on an additional parameter |p| which

is not present in the integral in eq. (3.26). Then the equality between ∆S and ∆〈H〉
requires that the expression in eq. (3.24) is miraculously independent of p for a given

fixed value of p1. One can check this actually happens by making an expansion in

powers of p and p1 and also replacing (p0)2 = p2 + (p1)2 in the integral in eq. (3.24).

Collecting the terms with the same powers of p and p1, one arrives at expressions which

are possible to integrate in θ and r analytically. The result is that the coefficient of

(p1)mpn in the expansion of ∆S is zero for any n > 0. Hence, we may take the limit of

p→ 0 in the integrand to simplify the calculation and eq. (3.24) becomes

δS =
4π

d
Ωd−3 T̂00e

ip0t

∫ R

0

dr rd−2

∫ π

0

dθ sind−3θ
R2 − r2 cos(θ)2

2R
e−ip1r cos(θ) (3.27)

= 2(d−1)/2π3/2Ωd−3 Γ[(d− 2)/2] T̂00e
ip0t R

(d−1)/2

|p1|(d+1)/2
J(d+1)/2(|p1|R) .

Now comparing eqs. (3.26) and (3.27), we see

∆〈H〉 = ∆S . (3.28)

While this analysis was done for a single plane wave (3.20), since we are considering

linear perturbations, the same equality must hold for a general Fourier expansion (3.16).

Therefore, we conclude that eq. (3.28) holds for any first order perturbation of the

stress tensor. In particular, this equality still applies even when T
(0)
µν varies on scales

comparable to R, the size of the spherical entangling surface.
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3.2 Quadratic corrections to relative entropy

While it was technically difficult to establish, the equality in eq. (3.28) should have been

expected given the discussion preceding eq. (1.12). Similarly, if we extend the previous

calculation of ∆S to second order in α, we should expect that the new contributions

at this order result in the required inequality (1.8). In this section, we verify that this

expectation is indeed correct. For simplicity, we will restrict our attention to constant

stress tensors.

To obtain the quadratic correction to the relative entropy, we proceed in three

steps: First, we expand the bulk metric to quadratic order in the stress tensor. Then

we expand the area functional (3.4) to quadratic order in the perturbation parameter

α. In particular, we obtain the equations of motion governing the deformation of

the minimal surface to linear order in the stress tensor. Then solving the equations of

motion, we substitute the results back into the area functional and collect the aggregate

quadratic correction in the relative entropy.

Step 1: Bulk metric

In eq. (3.5) the bulk metric is expanded to linear order. To quadratic order, the

expansion will take the from

δgµν = ηµν + a zd Tµν + a2 z2d
(
n1 TµαT

α
ν + n2 ηµνTαβT

αβ
)

+ · · · , (3.29)

where

a =
2

d

`d−1
P

Ld−1
. (3.30)

The term, which is quadratic in the stress tensor, has the most general form allowed

by Lorentz invariance, symmetry between µ and ν, and that the trace of Tµν vanishes.9

Further the power of z2d in this term is simply determined by dimensional grounds. It

remains to fix the coefficients n1,2, which can be done by comparing this expression to

the black brane metric (2.6) when the latter is re-expressed in FG coordinates (3.1).

The latter requires transforming to a new radial coordinate in the asymptotic AdS

geometry

z̃ = z

(
1 +

1

2d

zd

zdh
+

2 + 3d

16d2

z2d

z2d
h

+ · · ·
)
. (3.31)

This new coordinate is chosen to produce Gzz = L2/z̃2, as required in eq. (3.1). With

this radial coordinate, the remaining metric components in the asymptotic expansion

9Recall that we are limiting our attention to Tµν being a constant and hence the derivative terms

(3.15), which appeared at linear order in α above, vanish here.
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take the form:

g00 = −1 +
d− 1

d

z̃d

zdh
− 4d2 − 9d+ 4

8d2

z̃2d

z2d
h

+ · · ·

gij = δij

(
1 +

1

d

z̃d

zdh
− d− 4

8d2

z̃2d

z2d
h

+ · · ·
)
. (3.32)

Recall that the stress tensor takes the form given in eqs. (2.7) and (2.8), as can be read

off from the leading terms above. Then comparing eqs. (3.29) and (3.32), we can read

off n1 and n2 as

n1 =
1

2
and n2 = − 1

8(d− 1)
. (3.33)

Step 2: Expansion of area functional and equations of motion

The profile of the extremal surface receives corrections since the bulk is altered. Recall

from the previous section that the minimal surface in static gauge can be described by

z(xi), i.e., the bulk radial coordinate is specified as a function of the spatial coordinates

xi. In the present perturbative construction, we can expand

z(xi) = z0(xi) + α z1(xi) + α2z2(xi) + · · · , (3.34)

where z0 is given in eq. (3.6). Note that since we are only interested in quadratic

corrections to the entanglement entropy, z2 is not needed since it would appear linearly

in the area functional and hence would vanish by virtue of equations of motion.

The order α2 correction to the area functional (3.4) can be written as

A(2) = A2,0 + A2,1 + A2,2 , (3.35)

where we are separating the contributions into three terms, according to the power of

z1 appearing in the expressions, which is denoted by the second index. Only A2,1 and

A2,2 contribute to the linearized equations of motion for z1.

Carefully expanding, we find

A2,0 = Ld−1a2

∫
dd−1xRzd0

(
− 1

16

(
1− r2

(d− 1)R2

)
(T 2

00 + TijT
ij)

+
Ti0T

i0

8

(
1 +

r2

(d− 1)R2

)
+
xixk

4R2
TiαT

α
k +

1

8
(T 2 − T 2

x − 2TTx)

)
, (3.36)

where

T ≡ Ti
i and Tx ≡ Tij

xixj

R2
. (3.37)
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Note that we have made use of z2
0 = R2−r2 to simplify the above expression.10 Further,

we find:

A2,1 = Ld−1a

∫
dd−1x

R

2z0

(
T
(
z1 −

z2
0

R2
xi∂iz1

)
+Tij

(
2z2

0x
i∂jz1

R2
− z1x

ixj

R2
− z2

0x
ixjxk∂kz1

R4

))
, (3.38)

and

A2,2 = Ld−1

∫
dd−1x

R

zd0

(
d(d− 1)z2

1

2z2
0

+
z2

0(∂z1)2

2R2

−z
2
0(xi∂iz1)2

2R4
+

(d− 1)

2

xi∂iz
2
1

R2

)
. (3.39)

Note that in A2,1, we have already dropped terms that vanish upon evaluating them

on the minimal surface z0. We also remind the reader that the boundary terms do not

contribute. Now the equations of motion for z1 are derived by varying A2,1 + A2,2 and

can be written as

1

zd−1
0 R

(
∂2(z0 z1)− xixj

R2
∂i∂j(z0 z1)

)
=

z0

2R
((d− 2)T + (d+ 2)Tx) . (3.40)

The perturbation z1 is expected to take the form Tf1(r) + Tijx
ixjf2(r). After some

trial an error to solve for f2, and setting the appropriate boundary conditions by adding

suitable choice of solutions to the homogeneous equation, we arrive at the following very

simple solution in general d:

z1 = −aR
2zd−1

0

2(d+ 1)
(T + Tx) . (3.41)

Step 3: Substitution into the area functional

With all the ingredients in place, we are ready to substitute everything back into the

area functional. This amounts to some more tedious algebra resulting in seven tensor

structures:

A(2) = Ld−1a2

∫
dd−1x

(
c1T

2 + c2T
2
x + c3T

2
ij +

c4Ti0T
i0 + c5

xiTijT
j
kx

k

R2
+ c6

xiTi0T
0
jx
j

R2
+ c7TTx

)
. (3.42)

10We emphasize that the Greek indices µ, ν, · · · run through all the indices corresponding to the flat

boundary directions, whereas Latin indices i, j, · · · are restricted to the spatial directions.
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The coefficients are given by

c1 =
zd−4

0

16(d+ 1)2(d− 1)R

(
(d+ 1)2r6 + (3 + d(3d2 + d− 15))r4R2

+(d2(13− 8d) + 2d)− 3)r2R4 + (3d3 − 7d2 + d+ 3)R6

)
, (3.43)

c2 =
zd−4

0

8(d+ 1)2

(
(1− 5d2)r2R3 + (d(4d+ 3)− 3)R5

)
, (3.44)

c3 =
( r2

d−1
−R2)zd0
16R

, (3.45)

c4 =
( r2

d−1
+R2)zd0
8R

, (3.46)

c5 = Rzd0
d(d− 2)− 1

4(d+ 1)2
, (3.47)

c6 =
R

4
zd0 , (3.48)

c7 = zd−4
0

R3(d− 1)

4(d+ 1)2

(
(1− 3d)r2 + (2d+ 1)R2

)
. (3.49)

Proceeding with the remaining integrals, it is useful to note that by symmetry,

whenever an integral has the form
∫
dd−1x (xixjxkxl · · · )f(r), i.e., there are n pairs of

xi’s in the integrand, we can simply replace them by

N(δijδkl · · ·+ permutations)

∫
dd−1x r2n f(r) , (3.50)

with some appropriate normalization constant N . Using this fact, we are left with a

final result of the form

A(2) = a2Ld−1Ωd−2

(
C1T

2 + C2T
2
ij + C3T

2
0i

)
, (3.51)

where

C1 = − d
√
πR2dΓ[d+ 1]

2d+4(d+ 1)Γ[d+ 3
2
]
,

C2 = C1 , (3.52)

C3 = −(d+ 2)
√
πR2dΓ[d+ 1]

2d+3(d− 1)Γ[d+ 3
2
]
.

Note that in the above expression, T 2
0i ≡ T0iT0jδ

ij ≥ 0. Therefore given that the three

coefficients are negative, we are assured that the second order perturbation to the area
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is negative and hence the second order contribution to the holographic entanglement

entropy ensures that the inequality (1.8) is satisfied. Since at second order, we have

∆〈H〉 6= ∆S, it is nontrivial to check the monotonicity property in eq. (1.13). However,

from the above result, we find that S(ρ1|ρ0) ∝ R2d and hence this inequality is simply

satisfied, i.e., ∂RS(ρ1|ρ0) > 0.

As an example, we might apply these general results to the static thermal gas

described by the planar AdS black hole. The corresponding stress tensor is given by

eqs. (2.7) and (2.8),11 i.e., we have T00 = ε and Tij = δijε/(d − 1). The solution of

eq. (3.40) can be written as

z1(r) =
k1√

R2 − r2
+ aε

(
((d− 1)Rd+2 − (R2 − r2)d/2(r2 + (d− 1)R2))

2(d2 − 1)
√
R2 − r2

)
, (3.53)

where k1 is an undetermined integration constant. To ensure that r → R as z → 0,

which is already satisfied by z0, we must choose

k1 = − aεR
d+2

2(d+ 1)
. (3.54)

This choice yields precisely the solution for z1 given in eq. (3.41). Substituting this

solution into the area functional, we find

∆S(2) = − π3/2dΩd−2 Γ[d− 1]

2d+1(d+ 1) Γ[d+ 3
2
]

Ld−1

`d−1
P

R2dε2 . (3.55)

which as required is a negative contribution. One should appreciate the fact that the

integrand involves a complicated collection of polynomials in d. However, the final

result reduces to the above simple form.

3.3 Corrections from additional operators

To this point, we have only considered a special class of states that give rise to a

nontrivial expectation value for the stress tensor. For generic perturbations away from

the vacuum, we would expect that other operators will acquire nontrivial expectation

values. Hence in this section, we consider states in which certain operators beyond

the stress tensor acquire an expectation value. The dual description will involve bulk

gravity solutions in which additional matter fields are excited. As we saw with the

11In keeping with the above analysis, we might introduce an explicit expansion parameter α to these

expressions. However, we adopt the simpler approach of formally setting α = 1 in the above expansion.

From our previous examination of the thermal bath, as well as the results here, we can infer that ∆S

appears as an expansion in the small parameter aRdε.
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charge black brane in section 2.2, it is relatively easy to determine quadratic corrections

to the entanglement entropy coming from such matter field perturbations. Below, we

evaluate the analogous contributions to ∆S for two types of states: The first will

involve a scalar operator acquiring an expectation value. The dual description involves

adding a massive scalar field to the gravitational theory. The second class will involve

perturbations by a conserved current in the boundary theory or a gauge field in the

bulk. Hence analyzing these latter configurations is a simple generalization of that

for the charged black brane. For both families of states, we find that the quadratic

contributions again ensure that ∆〈H〉 > ∆S.

Perturbing with a scalar condensate

In our first class of states, a scalar operator O of dimension ∆ acquires a non-trivial

expectation value (in the absence of any sources). The corresponding dual description

is that a scalar field has been turned on and subsequently back reacts on the geometry

to change the entanglement entropy. We will limit ourselves here to calculate only the

leading contribution of this back reaction. The bulk action, which we are considering

here, is given by

I =
1

2`d−1
P

∫
dd+1x

√
G

[
R− 1

2
(∂φ)2 − V (φ)

]
. (3.56)

Since we are only solving perturbatively in φ, we need only to keep up to quadratic

terms in the scalar, and thus the potential can be taken simply as

V (φ) = −d(d− 1)

L2
+

1

2
m2φ2 , (3.57)

where the first term provides the negative cosmological constant.

A standard result [43] in the AdS/CFT correspondence is that to leading order in

the condensate, the scalar field φ of mass m = ∆(d−∆) behaves asymptotically as

φ = γO z∆ + · · · , (3.58)

with some normalization constant γ. This can be substituted into the Einstein equation

which, in the presence of the scalar, can be written as

R̂AB =
1

2
∂Aφ∂Bφ+

1

d− 1
GABV (φ) . (3.59)

In the presence of the scalar field, we expect that the boundary expansion of the

metric is altered [35]. However, since we are only interested in the leading contribution

of the perturbation, cross terms between the boundary stress tensor and the scalar
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condensates need not be included here. To linear order in the boundary stress tensor

and quadratic order in the operator, the expansion of the metric δgµν in eq. (3.2) takes

the form

δgµν = azd
∑
n=0

z2nT (n)
µν + z2∆

∑
n=0

z2n σ(n)
µν + · · · , (3.60)

where, of course, terms in the first sum were analyzed in section (3.1). In both sums,

the superscript (n) indicates that the corresponding operator contains a total of 2n

derivatives, e.g., see eq. (3.15). Hence, for n = 0, the only possible contribution of the

scalar is σ
(0)
µν = α0 ηµνO2 where α0 is some constant. The latter is easily determined

by substituting the expansion of the metric and also that of the scalar field into the

Einstein equations (3.59), which yields

σ(0)
µν = − γ2

4(d− 1)
ηµν O2 . (3.61)

Note that the coefficient here is negative definite, which will be crucial in evaluating

the change in the entanglement entropy below.

For the interested reader, we also consider the next term σ
(1)
µν , which carries two

derivatives acting on the condensate O. Demanding Lorentz invariance and symmetry

in µ, ν, lets one to write the general form

σ(1)
µν = α1∂µO∂νO + α2O∂µ∂νO + α3ηµνO�O + α4ηµν(∂O)2 , (3.62)

with some undetermined coefficients αi. Again using the equations of motion (3.59),

we arrive at:

σ(1)
µν =

γ2

4(d− 1)(∆ + 1)(2∆ + 2− d)

((
(d− 2)O∂µ∂νO + ∆ ηµνO�O

)
−
(
d ∂µO∂νO − ηµν(∂O)2

))
. (3.63)

For general O(x), we would have to consider the sums in eq. (3.60) to all orders

in derivatives. However, if O is slowly varying on the scale of R, σ(0) provides the

leading contribution to the change in the entanglement entropy and we focus on this

scenario here. As in our previous calculations, we determine this leading contribution

by evaluating the area functional (3.4) with the perturbed metric but the leading order

profile (3.6) for the extremal surface. The resulting change in the entanglement entropy
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is given simply by

∆S(O) =
πLd−1R

`d−1
P

∫
dd−1x

zd−2∆
0

(σ(0) i
i − σ0

ij

xixj

R2
)

= −πγ
2Ld−1R

4`d−1
P

O2

∫
dd−1x

zd−2∆
0

(
1− r2

(d− 1)R2

)

= −γ
2Ld−1

`d−1
P

π3/2
(

∆− (d−2)2

2(d−1)

)
Γ[∆− d

2
+ 1]

8Γ[∆− d
2

+ 5
2
]

Ωd−2R
2∆O2 . (3.64)

Note that the unitarity bound ∆ > d
2
− 1 ensures that the numerical prefactor in the

last line is positive and hence the overall result for ∆S is negative. We note that this

overall minus sign descends directly from eq. (3.61). Hence it is interesting that at the

level of the FG expansion, the metric appears to know already about the positivity of

the relative entropy!

It is interesting to compare the above contribution of the scalar condensate O with

the leading order contribution coming from the stress tensor. In particular, one might

consider a scenario where the expectation value of both operators is set by a single

scale µ (e.g., the temperature), in which case, we would have O ∼ µ∆ and Tµν ∼ µd.

Then the corresponding contributions to the entropy would scale like ∆S(O) ∼ (Rµ)2∆

and ∆S(Tµν) ∼ (Rµ)d where our calculations would hold in a regime where Rµ � 1.

Hence if O is sufficiently relevant, i.e., d
2
− 1 < ∆ < d

2
, then its contribution would

be the dominant contribution. Of course, with d
2
< ∆ < d, the stress energy would

produce the dominant contribution while for the special case ∆ = d
2
, the scaling of both

contributions would be the same. In a more general situation where there are several

scales in the problem, the scale of Tµν would necessarily be related to that of O and

then there would be no obvious way to compare their respective contributions to ∆S.

It follows from the above expression (3.64) that relative entropy is proportional to

R2∆ and hence it also satisfies the monotonicity inequality (1.13).

Perturbing with a current

Here we provide a brief description of the extension of the analysis in section 2.2 to a

state with a general boundary current Jµ. Recall first we wish to construct a metric

in the FG form, as given in eqs. (3.1) and (3.2). For simplicity, we will assume that

the expectation value of the current is constant and then to leading order the metric

perturbation takes the form

δgµν = a zd T (0)
µν + z2d−2 (b JµJν + c ηµνJ

2) , (3.65)
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where the constants, a, b and c, are all dimensionless. Since we are working to linear

order in the metric perturbation, we can consider the contribution of each of the two

terms in eq. (3.65) independently, as above for the scalar operator. We know that the

T
(0)
µν contribution saturates the inequality (1.8) and hence the current perturbations

must produce a negative contribution to the change in the entanglement entropy.

Recall that a is given in eq. (3.30). To determine the remaining constants, we

compare to the charged black brane metric (2.23). It is convenient to write the metric

function in eq. (2.24) as simply

h = 1− γz̃d + βz̃2d−2 , (3.66)

with γ and β being positive constants. We have to change the radial coordinate z in

order to put the metric in the desired FG form (3.1). After this is done, we find to

leading order that the remaining metric components take the form

g00 = −
(

1− γ
(

1− 1

d

)
zd + β

(
1− 1

2d− 2

)
z2d−2

)
,

gij = δij

(
1 + γ

zd

d
− β z2d−2

2d− 2

)
. (3.67)

Setting Ji = 0 in eq. (3.65), we may compare the resulting expression with the above

and find:

b = −2(d− 1) c , c =
β

2(d− 1)J2
0

. (3.68)

Further identifying J0 ≡ limz→0 z
d−3∂zA0 in the charged black brane solution we find

that c as a positive constant independent of the current, i.e.,

c =
1

4(d− 1)2(d− 2)
. (3.69)

Now the relevant part of the metric perturbation becomes

δgµν = c z2d−2(−2(d− 1)JµJν + ηµνJ
2) . (3.70)

Inserting this expression into the area functional (3.4) yields

∆S =
πRLd−1

`d−1
P

∫
dd−1x

1

zd0

(
δgi

i − δgij
xixj

R2

)
. (3.71)

For a constant current, we then find that the integral yields

∆S = −π
3/2(d− 3)! Ωd−2

2d+1Γ[d+ 1
2
]

Ld−1R2d−2

`d−1
P

( ~J2 + (J0)2) . (3.72)

Then from eq. (3.72), it follows that relative entropy ∆〈H〉 − ∆S is positive, and it

also increasing as R2d−2, satisfying the monotonicity inequality (1.13).
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3.4 Corrections for general entangling surfaces

In this section, we consider extending our analysis to entangling surfaces, which are not

simply spheres. Let us begin by considering the area functional (3.4) with a generic

entangling surface in the boundary and a perturbation of the vacuum state in which

the stress tensor is excited. At linear order, the perturbation of the bulk geometry still

takes the form presented in eq. (3.5) where the coefficients T
(n)
µν are given by eq. (3.15).

As in our previous examples, the holographic calculation of the entanglement entropy

in the AdS vacuum will yield some extremal profile z0(xi) depending on the geometry

of the entangling surface. Now while this profile is perturbed in the excited state, the

perturbation will only contributes to the change in the area at second order. Hence we

can evaluate the linear change of the area by simply evaluating the area (3.4) with the

original profile z0 in the perturbed background. Therefore with a generic entangling

surface, the linear perturbation of the entanglement entropy becomes

∆S = 2π
∆A

`d−1
P

=
2π

d

∫
dd−1x

√
1 + (∂z0)2

∑
n=0

z2n+1
0

(
T (n)

i
i − T (n)

ij
∂iz0 ∂

jz0

1 + (∂z0)2

)
,

(3.73)

where (∂z0)2 = δij∂iz0∂jz0 and implicitly, the boundary geometry is simply flat space.

Previously we concluded in eq. (3.13) that all of the tensors T
(n)
µν are traceless and

hence we can replace T (n)
i
i = T

(n)
00 , which in turn are all related to the local energy

density T
(0)
00 by eq. (3.15). Hence the first term above is controlled entirely by the

energy density. However, there is no clear connection to the energy density in the

second term. In section 3.1, the rotational symmetry of the spherical entangling surface

and the corresponding bulk profile (3.6) was essential in reducing this expression to a

contribution which again was controlled by T
(0)
00 . Hence our observation here is simply

that we should expect other components of the stress tensor to contribute to ∆S, even

at linear order, for entangling surfaces with a less symmetric geometry.

To explicitly illustrate this behavior, we consider the well-studied case of a ‘slab’

geometry where the entangling surface is comprised of two flat planes at x = ±`/2 [17].

The extremal surface in the AdS vacuum has a profile z(x) and the area becomes

A = Ld−1Bd−2

∫ `/2

−`/2

dx

zd−1

√
1 + z′2 , (3.74)

where B is an IR length scale that regulates the size of the two planes, i.e., Bd−2 is

the area of one plane. Further regarding this area as an action for z(x), the profile is

constrained by a conserved quantity [17]

zd−1
√

1 + z′2 = zd−1
∗ . (3.75)
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Here z∗ is the maximum value of z which the extremal surface reaches in the bulk at

x = 0,

z∗ =
Γ[ 1

2(d−1)
]

2
√
π Γ[ d

2(d−1)
]
` . (3.76)

The change in the entropy (3.73) then becomes

∆S =
2π

d
Bd−2zd−1

∗

∫ `/2

−`/2
dx
∑
n=0

z2n+2−d
[
T

(n)
00 − T (n)

xx

(
1− z2(d−1)

z
2(d−1)
∗

)]
. (3.77)

Hence we see that both the energy density and the pressure along the x-axis are con-

tributing in this result. To produce a more explicit result, we can simplify the cal-

culation by assuming that the expectation value of the stress tensor is uniform, i.e.,

T (n)
µν = 0 for n ≥ 1. Then eq. (3.77) becomes

∆S =
2π

d
Bd−2zd−1

∗

∫ `/2

−`/2

dx

zd−2

[
T00 − Txx

(
1− z2(d−1)

z
2(d−1)
∗

)]
=

π1/2Γ[ d
d−1

]Γ[ 1
2(d−1)

]2

8dΓ[ 3d−1
2(d−1)

]Γ[ d
2(d−1)

]2
Bd−2`2

[(
d+ 1

d− 1

)
T00 − Txx

]
, (3.78)

where we have used eqs. (3.75) and (3.76) to evaluate the final expression above. Here

again, we see that the result contains a term proportional to Txx.

Then we observe that with the first order calculations described here, we expect

that the inequality (1.8) must be saturated, i.e., ∆〈H〉 = ∆S. Therefore from this

result, we can also infer that the modular Hamiltonian for the slab geometry also

contains terms which are linear in the operator Txx. Hence from these calculations, we

can begin to see the appearance of new operators, i.e., other components of the stress

tensor beyond T00, appearing in the modular Hamiltonian for regions with general

entangling surfaces.

Let us add a few more observations about ∆S for general entangling surfaces. First,

we note that if we make a Fourier transform of the stress tensor, as in eq. (3.16), then

eq. (3.73) can be rewritten using eq. (3.18) as

∆S = π Γ[d/2]

∫
dd−1x

∫
ddp exp(−ip · x)

√
1 + (∂z0)2 (3.79)

Id/2(|p|z0)

(z0|p|/2)d/2

(
T̂00(p)− T̂ij(p)

∂iz0 ∂
jz0

1 + (∂z0)2

)
,

where |p| = |√pµpµ|. Hence the same Green’s function Id/2(|p|z0) appears in evaluating

this leading contribution to ∆S for general entangling surfaces. Unfortunately, without
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the symmetry of a spherical entangling surface, this expression does not simplify in any

obvious way.

In fact, eq. (3.73) makes an important assumption about the extremal surface in

the bulk. Namely, that it is single-valued as a function of the boundary coordinates xi

or alternatively, that the extremal surface does not extend to values of xi beyond the

region V . Unfortunately, this assumption can be shown not to apply in many cases.

For example, a standard FG-like expansion of the extremal surface describes the bulk

surface as Xµ(ya, z) where ya are coordinates along the entangling surface and z is the

usual radial coordinate in the bulk [44, 45]. Then near the AdS boundary, one finds

X i = X i
0(ya)− 1

2(d− 2)
Ki(ya) z2 + · · · (3.80)

where X i
0(ya) describes the position of the entangling surface in the boundary and Ki is

the trace of the extrinsic curvature for the spatial normal to the entangling surface. Our

conventions are such that X i < X i
0(ya) corresponds to the region inside the entangling

surface and Ki = +(d− 2)X i/R2 for a sphere of radius R, centered at X i = 0. Hence

for a spherical entangling surface, the above expression shows how the extremal surface

begins towards the interior of V as it extends into the bulk geometry. However, if

the geometry is such that Ki < 0 on some portion of the entangling surface, then

the extremal surface actually extends to X i > X i
0(ya). Clearly, eq. (3.73) does not

accommodate this situation where the integration would include contributions from

outside of the region V – see section 5 for further discussion.

We can also use the above expansion (3.80) to make an interesting observation

about the contributions to ∆S from near the entangling surface. Let us assume that

Ki is positive everywhere and then use eq. (3.80) to evaluate ∂iz to leading order in

small z, or equivalently to leading order in X i −X i
0(ya),

∂iz = −d− 2

z

 1

Ki(ya)
−

∂Xi
0

∂yb
∂yb

∂Xi

Ki(ya)

+ · · · . (3.81)

We can choose coordinates ya to coincide with d−2 of the coordinates X i at linear order

in the vicinity of a point in the boundary, and we call r the remaining X coordinate,

orthogonal to the boundary. Substituting into eq. (3.73), we find to leading order

∆S = 2π
d− 2

d

∫
dd−1xK−1 (T00 − Trr) + · · · , (3.82)

where K =
√∑

(Ki)2. We have dropped the higher derivative contributions with T
(n)
µν

in the above expression. Further note the integrand is only well approximated above
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in the vicinity of the entangling surface. Now as we noted above, in the special case of

a sphere of radius R, we have Kr = +(d − 2)/R. Then the general expression (3.82)

reduces to

∆S =
2πR

d

∫
dd−1x

(
T00 − Trr

)
+ · · · , (3.83)

which agrees with expanding (3.7) to leading order in (R− r). However, we note that

this does not appear a good approximation of ∆H as given in eq. (3.19), even for small

(R − r). This suggests that the infinite derivative expansion in (3.7) is crucial to the

ultimate agreement between ∆S and ∆〈H〉, if we want to introduce localized sources

which test the vicinity of the region boundary.

As explained in section (6), one expects quite generally that if Tµν was localized suf-

ficiently close to the entangling surface, then ∆〈H〉 should reduce to that of the Rindler

modular Hamiltonian (1.9). Further then, in the regime where ∆S = ∆〈H〉, one must

expect this form to be reflected in the result for ∆S. However, as demonstrated above,

this agreement cannot be obtained in our holographic calculations purely by expanding

to leading order in z near the boundary, no matter how close and sharply localized

near the entangling surface Tµν is. In fact, the more localized Tµν becomes, the more

important the higher derivative terms will be, which leads to a significant correction to

the leading z term. As concluded above therefore, knowledge of the infrared completion

of the bulk minimal surface is always important.

4 Two-dimensional boundary theories

For a two-dimensional boundary theory, we can describe a thermal state with the BTZ

black hole [46]. However, in this case, the bulk geometry is still locally AdS3 space.

Further, in calculations of holographic entanglement entropy, the extremal surfaces are

simply geodesics. Combining these two observations, we are able to determine the

extremal surfaces analytically and hence we can extend our previous analysis beyond

perturbation theory. That is, in contrast with the results in section 2, in the following

we can evaluate ∆〈H〉 and ∆S for arbitrary values of RT . The present analysis also

allows us to see the effect of compactifying the AdS boundary and also to check the

validity of the inequality (1.8) in a situation where the extremal surface exhibits a

‘phase transition.’

Eq. (2.6) already describes the appropriate three-dimensional black hole. However,

since we wish to consider the spatial direction as compact, we write the (Euclidean)

BTZ metric [46] in more familiar coordinates as

ds2
E =

r2 − r2
+

R2
dτ 2 +

L2 dr2

r2 − r2
+

+ r2 dφ2 , (4.1)
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where, as usual, L is the AdS radius and the period of φ is 2π. The above geometry

is smooth as long as τ is chosen with period β = 2πLR/r+ and so the temperature is

given by simply T = 1/β = r+/(2πLR). The coordinates in eq. (4.1) are normalized

so that the boundary metric is

ds2
boundary = dτ 2 +R2 dφ2 . (4.2)

Hence the periodicity of the spatial direction is 2πR and the boundary is a cylinder with

a total area 2πRβ. We should note that because the spatial direction is compact, there

is a Hawking-Page phase transition [47]. The above black hole geometry is the dominant

saddle-point in the gravity path integral for T > 1/(2πR), while for T < 1/(2πR), the

dominant saddle-point is simply the thermal AdS3 geometry. We may write the metric

for the latter as

ds2
E =

r2 + L2

R2
dτ 2 +

L2 dr2

r2 + L2
+ r2 dφ2 . (4.3)

Implicitly, τ and φ are chosen with the same periodicity as in the previous case and

the boundary metric is again given by eq. (4.2).

Let us begin with the high temperature phase for which eq. (4.1) describes the

correct bulk geometry. It is relatively straightforward to evaluate the entanglement

entropy of an interval with an angular width ∆φ (and on a constant τ surface). Of

course following eq. (1.1), it is given by the length of the geodesic connecting the

endpoints of the interval V on the boundary [17],

S(V ) =
c

3
log

[
β

πε
sinh

(
πR∆φ

β

)]
, (4.4)

where c = 12πL/`P is the central charge of the boundary CFT and ε is the short-

distance cut-off in the CFT.12

This expression precisely matches the known result previously derived for two-

dimensional CFT’s at finite temperature [2, 48]. However, we should note that this

previous result was derived for the case where the spatial direction was noncompact.

That is, this same expression (4.4) was derived for any two-dimensional CFT but only

in the limit R → ∞ while holding ∆x = R∆φ fixed. Hence, we see here that in a

holographic d = 2 CFT, compactifying the spatial direction does not affect this finite

temperature entanglement entropy (4.4). Of course, this statement holds when the

bulk physics is accurately described by classical Einstein gravity and hence eq. (4.4)

only represents the leading contribution in an expansion for large c.

12The latter appears in the holographic calculation by terminating the geodesic at a UV regulator

surface positioned at r = rUV = LR/ε in the bulk geometry.
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(a) (b)

Figure 1. (Colour Online) Extremal surfaces in the high temperature phase. The figures

show a cross-section of the AdS3 black hole at constant t. (a) For sufficiently small ∆φ, the

holographic entanglement entropy (1.1) is evaluated with the red geodesic. The dashed green

geodesic passing on the other side of the black hole is not homologous to the interval V ,

however, it would yield the entanglement entropy for the complementary interval V̄ . (b) For

large ∆φ, the dominant saddle-point (in green) has two disconnected components, i.e., the

geodesic homologous to V̄ and the geodesic wrapping around the horizon.

Implicitly, the above result also assumes that ∆φ is sufficiently small. In this high

temperature phase, one finds for large enough ∆φ, that the holographic entanglement

entropy experiences a ‘phase transition,’ as described in figure 1. For any value of ∆φ,

there are two geodesics connecting the endpoints of the interval on the boundary, which

pass on either side of the black hole, as shown in figure 1a. However, only one of these

(the green geodesic in the figure) is homologous to the boundary interval V and hence

this one must be chosen to evaluate the holographic entanglement entropy. The other

(the dashed red geodesic) can be used to evaluate the entanglement entropy for the

complementary region V̄ , with the result

S(V̄ ) =
c

3
log

[
β

πε
sinh

(
πR(2π −∆φ)

β

)]
. (4.5)

Of course, for ∆φ > π, the latter expression is smaller than S(V ) in eq. (4.4). While this

geodesic by itself is not homologous to the region of interest, it can be used to construct

another extremal surface with two disconnected components, as shown in figure 1b,

which is homologous to V . The second component consists of a closed (spatial) geodesic

which wraps around (the bifurcation surface of) the black hole horizon. The latter
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contributes the standard horizon entropy, i.e.,

SBH =
2π

`P
A(r+) =

2π2r+

`P
=

2π2c

3

R

β
. (4.6)

Hence combining these results, the entropy for a general interval is given by

S =
c

3
min

[
log

(
β

πε
sinh

(
πR∆φ

β

))
, log

(
β

πε
sinh

(
πR(2π −∆φ)

β

))
+

2π2R

β

]
.

(4.7)

For general values of R/β, it would require a numerical evaluation to determine the

precise value of ∆φ at which there is a phase transition between the two saddle-points

occurs. However, in the high temperature limit with R/β � 1, it is straightforward to

show that the phase transition occurs at13

∆φ ' 2π − log 2
β

2πR
+ · · · , (4.8)

where the · · · denotes corrections that are exponentially suppressed by e−2π2R/β.

Recall in the low temperature phase with R/β < 1/(2π), the bulk geometry is

simply the thermal AdS3 geometry (4.3). In this case, there is always a single geodesic

joining the endpoints of the boundary interval and we have

S =
c

3
log

(
2R

ε
sin(∆φ/2)

)
. (4.9)

Again this expression precisely matches a known result derived for general two-dimensional

CFT’s [2, 49]. In this case, this expression (4.9) holds for any two-dimensional CFT

but only in the limit T = 0. Hence, we see here that in a holographic d = 2 CFT,

turning on a small temperature does not affect the entanglement entropy (4.4) to the

leading order in the large-c expansion.

Hence comparing the entropy of a low temperature state to that of the vacuum

(i.e., T = 0) for a fixed interval, we find ∆S = 0. Rather the order c contributions

cancel and hence ∆S is only a quantity of order one. If instead, we compare the entropy

of a state in the high temperature phase to that of the vacuum, we find

∆S =
c

3
log

(
1

2πRT

sinh (πRT∆φ)

sin (∆φ/2)

)
(4.10)

=
π2

18
c

(
R2T 2 +

1

4π2

)
∆φ2 +O

(
∆φ4

)
. (4.11)

13We thank Ian Morrison and Matt Roberts for pointing out an error in the result given here in our

original manuscript.
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In the first line, we have assumed that ∆φ is small enough that the finite temperature

entropy is given by eq. (4.4). In the second line, we are expanding the result for

∆φ� 1. Note that the two expressions in eqs. (4.4) and (4.9) are approximately equal

in this limit ∆φ � 1 where the effects of compactification and finite temperature can

be neglected.

The modular Hamiltonian of a d-dimensional CFT for the vacuum on the cylindrical

geometry R × Sd−1 can be obtained by conformally transforming the result (1.10) for

the sphere in Minkowski space [20]. Applying this transformation in the present case

with d = 2, we have

H = 2πR2

∫ ∆φ/2

−∆φ/2

dφ
cos(φ)− cos(∆φ/2)

sin(∆φ/2)
T00 . (4.12)

In the vacuum, on the cylinder, the energy density is given by T00 = − c
24πR2 [50].

In general at finite temperature, the expression for the energy density will be quite

complicated but to leading order in the central charge the energy density does not

change until the temperature reaches the high temperature phase RT > (2π)−1 [51].

In this high temperature phase we have T00 = π
6
c T 2, which is the standard result for

any CFT in the high temperature limit (or in decompactified space) [50].

Combining these results gives

∆〈H〉 =
2π2c

3

[
1− ∆φ/2

tan(∆φ/2)

] (
R2T 2 +

1

4π2

)
(4.13)

=
π2

18
c

(
R2T 2 +

1

4π2

)
∆φ2 +O

(
∆φ4

)
.

The second line gives an expansion of the result for ∆φ � 1. Comparing with the

expansion in eq. (4.10), we see the leading term in both cases agrees and so we saturate

the inequality (1.8) for small ∆φ.

Our results above apply for any value of ∆φ and so we may also examine the

inequality (1.8) for finite values. Figure 2a shows the difference ∆〈H〉 − ∆S as a

function of ∆φ for the high temperature phase. There we see that this difference is

positive and increasing for all angles. Hence the inequalities in both eqs. (1.8) and

(1.13) are satisfied throughout the full range of ∆φ. Note the phase transition at large

angular sizes, which was discussed above, contributes very little to the slope of the

curves. Figure 2b shows the ratio ∆S/∆〈H〉. This ratio decreases with size and the

figure clearly shows that ∆S ' ∆〈H〉 for intervals of small size, as noted above.

4.1 Thermal Rindler space

In this section, we consider a two-dimensional CFT in a thermal state in the Rindler

wedge. The modular Hamiltonian for this case is given in eq. (1.11). We will use this
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Figure 2. Comparing ∆〈H〉 and ∆S in the high temperature phase. Panel (a) shows the

log of the relative entropy and panel (b), the ratio ∆S/∆〈H〉, both as functions of angular

size ∆φ ∈ (0, 2π). The different curves are for β/R = 2π i
10 with i = 1, ..., 10. Curves

corresponding to higher temperature (smaller β) have greater relative entropy in (a) and

lower ratios ∆S/∆〈H〉 in (b).

to compute the relative entropy between states at different temperatures, i.e., both ρ0

and ρ1 will describe thermal states with temperatures, T0 and T1, respectively. The

expectation value of the stress tensor for both of these states is T00(x) = π
6
cT 2

i , where Ti
corresponds to the appropriate temperature. Since Rindler space has infinite volume,

we need to introduce a long-distance infrared cut-off Λ, i.e., we integrate only over

0 ≤ x ≤ Λ. Given eq. (1.11), we fix the modular Hamiltonian to be H0 = H(T = T0)

corresponding to ρ0. Then the change of the expectation value of modular Hamiltonian

between ρ1 and ρ0 given by

∆〈H〉 = Tr (ρ1H0)− Tr (ρ0H0) =
π

6
cΛ

(
T 2

1

T0

− T0

)
− c

12

(
T 2

1

T 2
0

− 1

)
. (4.14)

Here, we have dropped terms proportional to exp(−2πT0Λ). The first term on the right

hand side is the purely thermal and extensive (∝ Λ) contribution, which comes from

the large part of the Rindler wedge which is at distances larger than T−1 from x = 0.

One can regard the second term as the contribution of the entanglement across the

entangling surface x = 0.

Turning to the holographic calculation of the entanglement entropy, we use the

original metric (2.6) with d = 2 to describe the black hole geometry. The appropriate

extremal surface with which to evaluate eq. (1.1) is the geodesic which begins at x = 0

on the AdS boundary (z = 0) and extends out along the event horizon (z = zh) at large
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positive x. This geodesic is given by

x(s) =
1

2
zh log

(
4e2s/L + 1

)
, (4.15)

z(s) =
zh(

1
4
e−2s/L + 1

)1/2
,

where s is the affine parameter along the geodesic. Note that the geodesic approaches

the AdS boundary as s → −∞ and extends out along the horizon as s → +∞. With

d = 2, eq. (2.9) yields T = 1/(2πzh), and we recall that c = 12πL/`P. Imposing an

ultraviolet cut-off z = ε and an infrared cut-off at x = Λ, the entropy at a generic

temperature T becomes

S(T ) =
2π

`P
(s(x = Λ)− s(z = ε)) =

c

12
log

(
e4πTΛ − 1

4π2ε2T 2

)
. (4.16)

Given this expression, it follows that

∆S = S(T1)− S(T0) =
π

3
cΛ(T1 − T0)− c

6
log

(
T1

T0

)
, (4.17)

where again we are dropping terms that are exponentially small in Λ.

Combining eqs. (4.14) and (4.17), the relative entropy is

S(ρ1|ρ0) = ∆〈H〉 −∆S =
π

6
cΛT0

(
T1

T0

− 1

)2

+
c

12

(
1 + 2 log

(
T1

T0

)
− T 2

1

T 2
0

)
. (4.18)

For generic T1, this result is always positive because it is dominated by the first term

since ΛT0,1 � 1. Of course, one must treat the region T1 ∼ T0 more carefully. With T1 =

T0, both S(ρ1|ρ0) and the first derivative ∂T1S(ρ1|ρ0) vanish. The second derivative

yields

∂2
T1
S(ρ1|ρ0) =

c

6

(
2π

Λ

T0

− 1

T 2
0

− 1

T 2
1

)
. (4.19)

This quantity is again positive given ΛT0,1 � 1 and so the relative entropy is positive

in the vicinity of T1 = T0. Because of the vanishing first derivative, we also have the

equality for small deviations δT = T1 − T0

∆S = ∆〈H〉 = c

(
π

3
Λ− 1

6T0

)
δT . (4.20)

In previous calculations, we compared the vacuum state and a thermal state. To

compare the thermal state with the vacuum on Rindler space, we can set T1 = 0 and

∆〈H〉 follows from eq. (4.14) as

∆〈H〉 = −π
6
cΛT0 +

c

12
. (4.21)
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The vacuum in Rindler space has logarithmic entropy S ∼ c/6 log(Λ/ε). Hence the

difference in entropies is

∆S = −π
3
cΛT0 +

c

6
log(ΛT0) +O(Λ0) . (4.22)

Thus the inequality ∆〈H〉 > ∆S is always valid. Note that there is no meaningful

way to say that the relative entropy14 approaches zero, i.e., ∆〈H〉 → ∆S, for small

temperatures since we must keep ΛT0 � 1. In fact, the vacuum in Rindler space always

remains at an infinite statistical distance from a thermal state since far enough from

the origin, i.e., x� 1/T0, the thermally excited modes are in presence of a nearly zero

Unruh temperature vacuum. This does not happen in comparing the vacuum and a

thermal state over a finite interval of size `. At sufficiently small temperatures, i.e., T0 .
1/`, the change in the modular Hamiltonian will essentially match the change in the

entanglement entropy. In particular, in the previous section, we saw that ∆〈H〉 and ∆S

were always nearly identical for sufficiently small ∆φ, irrespective of the temperature.

5 Puzzles about localization

Most of our previous calculations only probed the asymptotic region in the bulk geom-

etry and in particular, the analysis in section 3 relied heavily on the asymptotic FG

expansion. With the latter approach, one can construct the asymptotic geometry for

states with an essentially arbitrary expectation value for the stress tensor and other

operators. However, one should be aware that in many cases, these expectation values

will not correspond to a physical state. In other words, if one really goes beyond the

asymptotic expansion to construct the full nonlinear gravity solution, one would find

that in many cases, the solution has a naked singularity somewhere in the infrared

region. Of course, string theory may be able to resolve some such singularities [52],

however, one should expect that most of these singular solutions are simply unphysi-

cal. Certainly, our previous analysis does not consider such issues which might arise

in defining a global state from imposing a ‘smoothness’ boundary condition in the

infrared. In this section, we consider some apparent paradoxes (and their resolution)

which appear from localizing the expectation values which contribute to ∆〈H〉 and ∆S.

From this perspective, the relative entropy provides interesting probe of the AdS/CFT

correspondence, which reveals constraints on the properties of physical states which

would not be easily seen by other means.

14Note that in evaluating S(ρ1|ρ0) = ∆〈H〉 − ∆S, ρ1 corresponds to the vacuum while ρ0 is the

thermal state. In our previous calculations, these roles were reversed.
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5.1 Complementary regions in a pure state

Our general arguments from the previous sections indicate that under the conditions of a

small linear perturbation δTµν , the inequality in eq. (1.8) is saturated with ∆S = ∆〈H〉,
for a spherical entangling surface. Further it is clear from the holographic calculations

that if the perturbation δTµν was completely localized outside of the sphere, it would

not change the entanglement entropy, i.e., ∆S = 0. Further given the form of the

modular Hamiltonian (1.10), it is also clear that for this situation that we also have

∆〈H〉 = 0. Of course, this is as it must be, since HV is a operator in the algebra

generated by local operators in the region V , i.e., the interior of the sphere.15 The

latter would then also extend to more general regions V , for which we also expect

∆〈HV 〉 to be given by contributions from the expectation values of operators inside V .

Now our first apparent paradox arise from considering instead the case where δTµν
is entirely localized inside the sphere. Again we suppose that eq. (1.8) is saturated with

∆SV = ∆〈HV 〉 . (5.1)

The modular Hamiltonian of the vacuum state in the region V outside the sphere is

given by

HV = 2π

∫
|x|>R

dd−1x
r2 −R2

2R
T00(x) . (5.2)

Our assumption is that the stress tensor vanishes in this complementary region. Hence

since 〈T00(x)〉 = 0 in V , we have

∆〈HV 〉 = 0 . (5.3)

However, if the perturbed state is pure, the entanglement entropy for the two

complementary regions, the interior and the exterior of the sphere, must be equal.

Holographically, ∆SV came from the changes in the corresponding extremal surface in

the bulk. However, assuming there are no additional horizons in the bulk, as should be

the case for a pure state, the same two extremal surfaces (i.e., the one for the vacuum

and the one for the perturbed state) also determine SV . Thus, in this case we have

∆SV = ∆SV . (5.4)

Now combining eqs. (5.1), (5.3) and (5.4), we see ∆〈HV 〉 6= ∆SV . In particular

then, the equality can not be achieved for V no matter how small δTµν is. In fact,

assuming we have injected a small positive energy inside the sphere, i.e., δT00 > 0, then

15The full generator of modular flow is HV −H−V , while HV is the generator for the modular flow

inside V .
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∆〈HV 〉 = ∆SV = ∆SV > 0. Then we have arrived at a clear contradiction with the

positivity of relative entropy since ∆〈HV 〉−∆SV < 0. Of course, the resolution to this

apparent paradox is that it is not possible to choose to inject (positive) energy only in

V and not in V for a pure state near the vacuum. There must be enough energy in both

V and V to ensure the equality of the expectation values of the modular Hamiltonians

for the two complementary regions. In the context of the AdS/CFT correspondence,

this is a constraint that would not be visible with the FG expansion but that one can

imagine arises from global issues in defining a smooth bulk geometry.

We can also make a field theory argument to directly demonstrate this conclusion

that the energy of the perturbed state cannot be strictly localized. To see this, we

construct the combination

H = HV −HV . (5.5)

This operator generates the conformal transformations which keep the sphere fixed [20].

It annihilates the global vacuum state

H|0〉 = (HV −HV )|0〉 = 0 . (5.6)

Now we can write an arbitrary pure state which approaches the vacuum as

|ψ〉 = |0〉+ ε|φ〉 (5.7)

with small ε. Then using eq. (5.6), we have

∆〈HV 〉 = 〈ψ|HV |ψ〉 ' ε(〈φ|HV |0〉+ 〈0|HV |φ〉)
= ε(〈φ|HV |0〉+ 〈0|HV |φ〉)
= ∆〈HV 〉 . (5.8)

For example then, |φ〉 might be generated by creation operators associated to wave

packets concentrated inside the sphere. However, the above equality indicates that

there is also some energy density built outside the sphere, to linear order in ε.

Moreover, the relation (5.6) is completely general, valid for the modular Hamilto-

nian of any region. To see this note the vacuum state is a pure state belonging to the

Hilbert space HV ⊗HV , and hence can be written in a Schmidt decomposition [53]

|0〉 =
∑
i

√
λi |ψVi 〉 ⊗ |ψVi 〉 . (5.9)

One readily checks doing the partial traces of this state that the |ψVi 〉 are the eigen-

vectors of ρV and |ψVi 〉 are those for ρV , while λi are the common eigenvalues of both

density matrices. Then a simple calculation shows

(ρV )iτ ⊗ (ρV )−iτ |0〉 = |0〉 . (5.10)
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These unitary operators leave the vacuum invariant for any τ .16 Expanding for small τ ,

and taking into account that ρV ∼ e−HV , ρV ∼ e−HV , we obtain (5.6) for any region. In

the limit which we are considering, where a perturbed state is approaching the vacuum,

there is no way to make a pure state with localized modular energy. This guarantees

once ∆〈HV 〉 = ∆SV we also have ∆〈HV 〉 = ∆SV for any region and any pure state in

this approximation.

Of course, the latter also represents a restriction that applies for holographic pure

states in the AdS/CFT correspondence. However, this observation has a limited utility

in general because, as we noted before, the precise form of the modular Hamiltonian

is not know except in certain special cases and in general, it is not even local (though

it is generated by local fields inside V ). However, in section 6, we will argue that

for holographic CFT’s dual to Einstein gravity, expectation values of the modular

Hamiltonian for any region, to first order in pure state deviations from the vacuum

state, are in fact given by expressions linear in the expectation value of the stress tensor.

Hence in this case, the above observation becomes a constraint on the localization of

the stress energy in pure states for such a holographic theory.

5.2 An inequality for ∆〈H〉

We can use the previous result to relate boundary data in the FG expansion with the

formation of horizons or singularities in the infrared region. Suppose as before that we

have a global state for which the stress energy inside of a given sphere is small enough

that ∆SV = ∆〈HV 〉. Further, if this global state is pure, it is SV = SV . However,

even if the density matrix describing V is not near the vacuum and there is no equality

between ∆〈HV 〉 and ∆SV , we still have from relative entropy in V that for a pure state

∆〈HV 〉 ≥ ∆〈HV 〉 , (5.11)

for any sphere V with small stress tensor 〈Tµν(x)〉. If this inequality is not maintained

then either the state is impure or the boundary data does not describe a consistent

physical state. In particular, as described above, we expect that the boundary data

yields a full gravity solution containing a naked singularity in the infrared region.

Let us consider further the case of an impure state, in which case we expect that

the bulk develops a horizon. The discussion in section 4 provides an explicit example of

the following considerations. A state near the vacuum inside the sphere V gives again

∆SV = ∆〈HV 〉. In this situation, we also know that generally ∆SV 6= ∆SV , because

for a global impure state the entropies of complementary regions do not coincide. We

16These unitary operators implement an evolution for an internal time τ . This time flow is called

the modular flow [29].
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may still ask what is the possible value of ∆SV . In the vacuum, the minimal surfaces

determining the entanglement entropy for V and V coincide, yielding SV = SV . In the

perturbed state, ∆SV comes from a small variation of this minimal surface. It seems

reasonable to expect that the minimal surfaces determining SV will contain as one

component the same (perturbed) minimal surface. Then this surface would contribute

the quantity ∆SV to ∆SV . However, there may also be a horizon contributing positively

some SH to SV , which of course is not present in the vacuum entropy. In this case, we

have ∆SV = ∆SV +SH > ∆SV . Thus, from the positivity of the relative entropy applied

to V , we again find that the inequality (5.11) is satisfied. It is a logical possibility that

the extremal surface determining SV does not contain the minimal surface yielding SV .

In this case, we would expect that there is again a horizon in the interior between the two

extremal surfaces preventing one from collapsing to the other. We think this possibility

is not probable if we are in the regime where ∆SV = ∆〈HV 〉. The area of any such

putative minimal surface would be very large compared to the two component surface

comprised of the horizon and the surface in the asymptotic region near V . However,

even in this situation, the area of the minimal surface determining SV would be much

larger than that for SV and eq. (5.11) would still hold.

In conclusion, it seems that inequality (5.11) cannot be violated even for impure

states. Hence violations of this inequality should signal that the boundary data ap-

pearing in the FG expansion does not correspond to a physical state. Recall that the

modular Hamiltonian for the interior and exterior of the sphere are explicitly given in

eqs. (1.10) and (5.2). Hence it is straightforward to explicitly evaluate ∆〈H〉 on both

sides of eq. (5.11) and test this inequality.

It would be interesting to have a purely QFT understanding on why 〈Tµν〉 not

satisfying this inequality is unphysical. Returning the QFT discussion above, eq. (5.8)

need not apply in general because the order ε2 terms are important in V . Instead

one would have ∆〈HV 〉 = ∆〈HV 〉 + ε2〈φ|HV |φ〉 and hence eq. (5.11) demands that

〈φ|HV |φ〉 ≥ 0. Examining HV in eq. (5.2), this inequality seems to indicate that CFT

states in Minkowski space cannot support a negative energy density over large regions,

which certainly seems an intuitive conclusion.

5.3 Annular regions

Consider now an annular region A bounded by two concentric spheres with radii R1 <

R2. We denote the regions within the two spheres as V1 and V2. In the holographic

context, depending on the ratio R2/R1 and the dimension d, the minimal surface can

have two different topologies. In one regime where R2 ∼ R1, the minimal surface has

the shape of a half torus connecting the two spheres in the asymptotic boundary. In

the opposite regime where R2 � R1, the surface is formed by two separate spherical
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R1

R2

Figure 3. The annular region on the AdS boundary is shown with the two solid lines. When

the radius R1 and R2 of the annulus approach each other the minimal surface has the shape

of a half torus connecting the two spheres (left panel). When R2/R1 is greater than a certain

value the minimal surface is formed by the two spherical caps ending at the spheres of radius

R1 and R2 at the boundary (right pannel).

caps, each one attached to one of the spheres on the boundary17 — see figure 3. We

focus on the latter regime in the following.

Now if we turn on a small expectation value for 〈Tµν〉 using the FG expansion,

we obtain a variation ∆SA for the annulus which is linear in 〈Tµν〉, and according to

the general arguments above, this variation will equal ∆〈HA〉. However, we note that

∆〈H〉 is the expectation value of an operator with support entirely inside the annular

region.

For the phase where the minimal surface has two disconnected components, one

attached to each spherical boundary of the annular region, we know the contribution

to ∆〈H〉 for any linear 〈Tµν〉 exactly. The contribution from each cap can be evaluated

independently, and as shown in section 3.1, each of these contributions satisfies ∆〈H〉 =

∆S. Hence we find

∆〈HA〉 =

∫
|x|<R1

dd−1x
R2

1 − r2

2R1

T00(x) +

∫
|x|<R2

dd−1x
R2

2 − r2

2R2

T00(x) . (5.12)

Clearly the expression on the right-hand side includes contributions of Tµν(x) from

outside of A, i.e., from x < R1, inside the smaller sphere. While we do not have a

precise expression for HA at this point, we re-iterate that it only has support inside of A.

As such, eq. (5.12) becomes a nonlocal constraint on small stress tensor perturbations

of physical states in the holographic framework.

17Note that the inner sphere of radius R1 provides an example where a portion of the entangling

surface has Ki < 0 and so, as discussed below eq. (3.80), the extremal surface in the bulk bends away

from the interior of A. In fact, this behaviour also persists in the regime where R2 ∼ R1 and the

minimal surface has the topology of a half torus, as observed in [54].
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We might also consider the exterior of the annulus, A = V1 ∪ V 2. Working again

in the regime with R2 � R1, holographic entanglement entropy is again determined by

the area of the two spherical caps in the bulk. In this case, we would have

∆〈HĀ〉 =

∫
|x|<R1

dd−1x
R2

1 − r2

2R1

T00(x) +

∫
|x|>R2

dd−1x
r2 −R2

2

2R2

T00(x) , (5.13)

where the contributions come entirely from the region external to the annulus or alter-

natively from within A. Hence one might guess that HA = HV1 + HV 2
. In particular,

this structure would yield a density matrix with the product form ρA = ρV1 ⊗ ρV 2
.

6 Discussion

In this paper, we have examined relative entropy for some particular states and en-

tangling surfaces in the context of the AdS/CFT correspondence using the standard

prescription for holographic entanglement entropy (1.1). Our results here constitute

a strong test of this holographic entropy formula. A notable case is the sphere for

which we have shown in section 3.1 by direct calculation that holographic entangle-

ment entropy yields the correct entropy for any perturbation of the vacuum, to linear

order.

It is remarkable the inequality (1.8) expressing the positivity of the relative entropy,

is in fact saturated at leading order and so this equality provides an equation that any

first order deviations of holographic entropy must satisfy. The equality ∆S = ∆〈H〉
then becomes an interesting tool. In fact, we can think of reversing the logic of our tests

and trying to obtain information about the modular Hamiltonian, or equivalently the

reduced density matrix, from the holographic entanglement entropy. In this sense, the

entanglement entropy has the potential to provide a full ‘vacuum state tomography.’

Let us recall that any pure perturbation of the vacuum can be written as

|ψ〉 = |0〉+ ε |φ〉 (6.1)

with some small ε. Then the expected change in the entropy and modular energy are

∆S = ∆〈HV 〉 = ε(〈0|HV |φ〉+ 〈φ|HV |0〉) . (6.2)

The knowledge of ∆S for any perturbation gives us the expectation values on the right

hand side. The knowledge of these expectation values for any |φ〉 and the fact that HV

is an operator localized in the region V imply we can in principle reconstruct the full

density matrix from the entropy functional. To see this let us recall the expression for
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the Schmidt decomposition of the vacuum: |0〉 =
∑

i

√
λi |ψVi 〉 ⊗ |ψVi 〉. In this basis,

an arbitrary global pure state writes

|φ〉 =
∑
i,j

βij|ψVi 〉 ⊗ |ψVj 〉 . (6.3)

Writing ρ0
V = e−HV , with the particular normalization Tr

[
e−HV

]
= 1, the modular

Hamiltonian is simply

HV =
∑
i

− log(λi)|ψVi 〉〈ψVi | . (6.4)

Then, after a little algebra, eq. (6.2) gives

∆S = εTr
(
(β + β†)HV e

−HV /2
)
. (6.5)

If ∆S is known for any φ, represented by the arbitrary matrix β in this equation, we

can obtain the matrix HV e
−HV /2 as a solution of a set of linear equations.18 In other

words, there is a unique operator in V such that all linear entropy perturbations for

pure state deformations coincide with the value of ∆〈HV 〉.
In principle, this idea allows us to reconstruct the full density matrix of a region

based only in the entanglement entropy functional. In particular then, in the context

of the AdS/CFT correspondence, it seems that the latter is readily accessible using the

standard holographic prescription (1.1). For example, based on our results in section 3,

we can reconstruct the full modular Hamiltonian operator for the vacuum reduced to the

region within a sphere and the result coincides precisely with the standard expression

(1.10) for a CFT. In order to show this, we note we are doing an experiment devised

to produce pure deviations of the vacuum as in eq. (6.1) in the boundary theory. In

the AdS/CFT context, this excitation is translated to the bulk language by the effect

which it has on expectation values of operators. We can say the excitation will be

defined by a series of expectation values for certain operators on the boundary which

are turned on linearly in ε,

∆〈O〉 ' 〈ψ|O|ψ〉 − 〈0|O|0〉 = ε (〈φ|O|0〉+ 〈0|O|φ〉) . (6.6)

Hence, the reasoning which leads to the vacuum state tomography for the sphere is

given by the following steps:

18Here all the eigenvalues λi are assumed to be different from zero, or equivalently the density matrix

ρV has inverse. Otherwise the modular Hamiltonian has infinite coefficient for |ψVi 〉〈ψVi |, and hence

is undefined under finite additions of this projector. This ambiguity for HV is seen clearly from 6.2

since in this case 〈φVi |0〉 = 0 and then additions of |ψVi 〉〈ψVi | in HV do not change ∆S. In QFT these

local excitations in V completely orthogonal to the vaccum are not allowed as a consequence of the

Reeh-Slieder theorem [55].
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1. Since the holographic prescription (1.1) yields the entanglement entropy purely

in terms of the geometry, linear (order ε) perturbations in the entropy should

depend only on linear (order ε) perturbations of the bulk metric.

2. Linear perturbations in the bulk metric can be separated as having two different

origins. The first one is due to order ε terms in the boundary data giving the

expectation value of the stress tensor, which modifies the boundary conditions.

The second one is due to perturbations of the bulk stress tensor which are also

linear in ε. The latter modify the source of Einstein equations.

3. The bulk stress tensor gets corrections from deviations of bulk matter fields and

these are in turn related to the boundary data for expectation values of dual

operators. However, the bulk stress tensor is quadratic in the matter fields and

so does not yield corrections linear in ε in the vacuum.19 Alternatively, one can

argue the absence of order ε corrections because if they did exist, changing the

sign of ε would lead to an unphysical bulk stress tensor, i.e., not satisfying the

null energy conditions.

4. Hence, correction to S linear in ε can only depend on the linear perturbations of

the boundary stress tensor for the minimal surface of any region.

5. For the case of the sphere, we have shown the linear terms on ∆S coincide with

the ones in the expectation value of the operator H = 2π
∫
dxd−1 R2−r2

2R
T00(x).

6. This operator H is localized inside the sphere (i.e., belongs to the algebra of

operators generated by local fields on the sphere). Hence, it is the unique operator

in the sphere which does the job of satisfying the equation ∆〈H〉 = ∆S for

any pure deviation of the vacuum to linear order in ε. Hence it is the modular

Hamiltonian of the sphere.

It is interesting to see what obstacles arise to reconstructing the modular Hamil-

tonian for other regions. As above, we have that for a general region ∆S is linear in

Tµν(x) to first order in ε. However, here we find two related problems. First consider

the case of a minimal surface corresponding to a region V which in terms of the FG

coordinate z is single-valued, that is, for any x ∈ V we have a unique z(x) describing

19We stress that this is only for variations around the vacuum, where the bulk stress tensor is given

by the cosmological constant alone. For other states, it is clear there will be linear terms in expectation

values of other operators, i.e., . charge density operator for a state with non zero chemical potential.

The argument fails in this case because the change of order ε in the stress tensor is infinitesimal with

respect to the stress tensor for ε = 0, which is non zero for non vacuum states. Hence we can change

the sign of ε without implying a failure of null energy condition.
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the surface (i.e., the one corresponding to an ellipsoidal region with Ki > 0 everywhere

along the entangling surface). Using the FG expansion, the contribution to ∆S in

eq. (3.73) involves time and spatial derivatives of Tµν(x) of arbitrarily high order. Even

if the spatial derivatives can be eliminated by integration by parts, the time deriva-

tives remain. In section 3.1, it was a surprising result that for the sphere these time

derivatives finally disappear from the final expression. However, the result for a general

surface cannot be considered as the expectation value of an operator localized in V ,

because even if it depends only of Tµν(x) for x ∈ V , it depends on arbitrary derivatives

of the stress tensor. For a minimal surface extending outside V , such as the annulus

discussed in section 5, this nonlocality of the contribution is seen more directly since

∆S involves Tµν outside V . In fact, these two types of nonlocality can be put on the

same basis by writing the variation of the metric tensor in terms of the boundary-to-

bulk Green’s function in coordinate representation. That is, we can write eqs. (3.5)

and (3.15) as

δgµν(y, z) =

∫
ddx G(x− y, z)Tµν(x) , (6.7)

where G(x − y, z) is proportional to the Fourier transform of the Green’s function of

section 3.1 in momentum space,20

G(x− y, z) =
ld−1
p

dLd−12d/2−1Γ[d/2 + 1]

∫
ddp

(2π)d
θ(−p2)

zd/2

pd/2
Jd/2(|p|z)e−ipx . (6.8)

Hence, generically, because this Green’s function is not of compact support, the contri-

bution of Tµν(x) for any spacetime point x will not vanish in the variation of the area

for a given minimal surface. This is so unless some conspiracy between the particular

minimal surface and the tracelessness and conservation of Tµν occurs. This is the case

of the sphere, where the contribution is localized inside V , but we do not expect the

latter property to extend to the case of general surfaces.

The question is how is this possible. The expectation value of the modular Hamil-

tonian should be localized in V . The answer to this apparent contradictions has to

reside in the fact that the expression of the result for ∆S in terms of operator expec-

tation values suffer from two different types of ambiguities. First, we do not have full

control on which perturbations for Tµν are generated by genuine pure deviations from

the vacuum, as discussed in section 5. Some of the constraints we know, for example,

the expectation value of Tµν has to satisfy ∆〈HV 〉 = ∆〈HV 〉 for any sphere. The same

equality holds for the (unknown) modular Hamiltonian for any general region. The

second source of ambiguities is due to the fact that since operators obey time evolution

20The integration is over time-like momentum since only time-like momentum appears in the con-

tributions 〈0|Tµν(x)|ψ〉+ 〈ψ|Tµν(x)|0〉 because physical states have momentum inside the light cone.

– 48 –



laws the expectation values at different times could in principle be rewritten as expec-

tation values for other operators at a single time. Hence, is its natural to suppose that

the expression of ∆S for a general surface, given in terms of Tµν in all spacetime, could

be converted into one of some other operator inside V once these constraints are fully

understood.

For the case of two (or more) well separated spheres A and B, where the minimal

surface consists of the separate minimal surfaces for the spheres, it is evident ∆S is

also the sum of ∆S for both spheres separately. In this case, one has that the modular

Hamiltonian can be reconstructed again, and coincides with the sum of the those for

separated spheres, because ∆S depends on Tµν inside the region A ∪ B only. This is

consistent with the mutual information I(A,B) = S(A) + S(B)− S(A∪B) being zero

in this case. Mutual information is an upper bound to connected correlators, and if

it is zero it means correlators of operators in A and B factor out, to leading order in

large N (or large central charge).21

It is intriguing that Renyi entropies [22, 23] for these same configurations do

not separate into the contributions of A and B to this same order in N , for d = 2

[18, 25] or higher dimensions [56]. However, recall that Renyi entropies are given by

Sn = (1−n)−1 log [trρn] and so depend on powers of the density matrix. These powers

are very different from the density matrix itself, as well as, very different from any

finite energy density state in the region. In contrast, the entanglement entropy is the

limit n→ 1 and hence only feels states near to ρ. Let us look at a simpler case which,

while it is quite different to the specific situation we are considering above, still exem-

plifies the relevant ideas. Hence we think of a global thermal state with ρ = e−H/T/Z

where H is the standard Hamiltonian. Then Renyi entropies are quantities related to

states at different temperatures. Now it is always possible to have a phase transition

at some critical temperature where the N dependence of various physical quantities

changes, e.g., section 4 described an example where the energy density suffers a phase

transition with different dependence on N .22 It follows then that the corresponding

Renyi entropies exhibit the same phase transition, since changing the Renyi order n

21It is worthwhile to note that our discussion of the reconstruction of the modular Hamiltonian for

holographic theories relies on the geometric prescription (1.1) to calculate the entanglement entropy.

Of course, this formula is only expected to yield the leading contribution in an expansion of large

central charge. In principle, this limitation represents another obstacle to recovering the full modular

Hamiltonian.
22In the case of two decoupled regions in d = 2, Renyi entropies for integer n > 1 do not decouple.

This corresponds to lower “internal” temperature for the region. Hence, the phase transition is better

described as a screening phase transition, where the entropy, corresponding to a state of higher internal

temperature (the vacuum state in A∪B here), does not see correlations, while Renyi entropies detect

these correlations at lower internal temperatures. We owe this observation to Hong Liu.
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and the temperature T are the same thing in this case. However, we can also expect

similar behaviour for the Renyi entropies in a more general context. In particular, our

discussion above indicates that the effective modular Hamiltonian, which is the one

relevant for computation of correlation functions, decouples for the two well separated

spheres. It does not include all information on higher order N corrections, which must

still play an important role in determining the Renyi entropies.

While in general the modular Hamiltonian for a generic region is not a local op-

erator, one expects that very close to the entangling surface of any region V , HV will

approach the simple local form given in eq. (1.9) for Rindler space. We readily see

this behaviour in eq. (1.10) as we approach r ∼ R for the spherical entangling sur-

face. However, the local Rindler expression should be the leading contribution in the

modular Hamiltonian independent of the shape of the surface. One approach [57] to

understanding this general result is this Rindler term provides short distance part of

ρV that encodes the correlators in the vicinity of the boundary of the causal domain

defined by the entangling surface and in the UV, these correlators have the same struc-

ture as in flat space, i.e., in the vicinity of a Rindler horizon. Alternatively, as alluded

to in various points in our discussion, one can think of the Rindler Hamiltonian as

defining a thermal density matrix with a local effective temperature of Teff = 1/(2πx)

where x is the (orthogonal) distance to the entangling surface. Hence as we approach

this boundary, the effective temperature diverges and this Rindler term overwhelms

any other fixed contributions to the density matrix. Hence along the lines of our dis-

cussion of vacuum state tomography, we might attempt to verify the appearance of

a Rindler-like contribution in the present holographic setting. In particular, we are

thinking here of evaluating ∆S for perturbations localized near the boundary of the re-

gion. This independence of shape for the contribution of these localized sources should

then be associated to the surface being minimal — remember in this calculation the

contribution would depend on a localized δgµν near the boundary and the dependence

on the variation of the surface shape far from the source would not contribute pre-

cisely because it is minimal. However, the results of section 3.4 suggest that to have

a sufficiently localized δgµν we might need to choose a gauge for the boundary-to-bulk

Green’s function which is different from the one in eq. (6.8). This reasoning would then

lead us closer to a purely thermodynamic understanding of the standard prescription

(1.1) for holographic entanglement entropy.

In our previous discussion, we argued that the expectation values of operators

other than Tµν only appear quadratically in ∆S and one form of this argument relies

on the null energy condition of the bulk stress tensor. Further, these quadratic order

contributions must be negative in order to preserve the positivity of the relative entropy.

It seems natural the sign of these contributions could be directly related to the null
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energy condition. In fact, for the sake of the argument, we can think directly in terms

of the change of entropy due to the bulk stress tensor perturbation. This encodes all

the information from the expectation value of fields at the boundary which is relevant

for the calculation of ∆S. The variation of the metric due to perturbations on the

bulk stress tensor can be written with an expression similar to eq. (6.7), but where

now the integration is over bulk spacetime, the boundary stress tensor is replaced by

the perturbation of the bulk stress tensor, and the Green’s function is the bulk-to-bulk

Green’s function [58]. It would be interesting to find out if null energy condition alone

can ensure a definite sign for this contribution of δgµν to the change in the area of the

minimal surface in a general situation. In other words, the area of the minimal surface

of any boundary region V in presence of a bulk Tµν satisfying the null energy condition

has to be smaller than the one corresponding to V in pure AdS spacetime.

Bekenstein argued that all systems must satisfy an inequality of the form [59]

S ≤ 2πRE , (6.9)

where S and E are the entropy and energy of a system confined to a region of size R —

see appendix A.4. While this bound was originally derived with a thought experiment

involving dropping an object into a black hole, eq. (6.9) does not involve Newton’s

constant and so it should be possible to understand the bound entirely in terms of flat

space physics. Unfortunately, as presented, all of the physical quantities in eq. (6.9)

are ambiguous. However, these ambiguities can be eliminated by re-interpreting the

bound in terms of the inequality (1.8) expressing the positivity of the relative entropy

[60, 61] i.e., ∆S ≤ ∆〈H〉. As described in the appendix, one can apply eq. (1.8) in

Bekenstein’s thought experiment where the region of interest is Rindler space and the

result is precisely the inequality in eq. (6.9). Relating eq. (6.9) to relative entropy makes

clear that the physics behind the Bekenstein bound is simply quantum mechanics and

special relativity.

Of course, to make progress with this approach, we must know the modular Hamil-

tonian for a given situation. Therefore, let us turn to the example of a spherical entan-

gling surface for a CFT in which case the modular Hamiltonian is given by eq. (1.10).

One observation is that if the bound is expressed in terms of the total energy enclosed,

as in eq. (6.9), then the precise bound depends very much on how the energy is de-

posited within the sphere. For example, for a smooth distribution of energy, analogous

to those considered in section (2), one finds ∆S ≤ 2π
d+1

RE while if the energy is lo-

calized near the center of the ball enclosed by the sphere ∆S ≤ πRE. Both of these

inequalities have the same form as that in eq. (6.9) and only the overall numerical

factor changes on the right-hand side. A more dramatic change arises if the energy is

deposited in a spherical shell of roughly radius R and width w with w � R. In this

– 51 –



case, eq. (1.8) becomes ∆S ≤ 2πwE and so the relevant length scale that emerges here

is, in fact, the width of the shell. This behaviour is reminiscent of the result in [62],

where it was argued that the Bekenstein bound is controlled by the shortest dimen-

sion (rather than the largest) for matter confined to an elongated region. Of course,

the discussion there relied on considerations of how the weakly gravitating matter fo-

cussed light rays passing through the region. A similar result can be inferred from our

holographic calculations for the strip geometry in section 3.4. To linear order where

eq. (1.8) is saturated, we find for a smooth energy distribution that ∆〈H〉 ∝ `E where

` is the width of the strip. Hence again it appears that the shortest distance sets the

geometric scale for the Bekenstein bound.

Of course, the example of the strip reminds us that in general the ‘modular energy’

in eq. (1.8) can be quite dissimilar to the energy appearing in eq. (6.9). Our holographic

result for ∆S in eq. (3.78) shows that the pressure Txx appears on a more or less equal

footing with the energy density T00. Hence using the saturation of eq. (1.8), we expect

for homogenous (CFT) matter distributions that the bound will be set by

∆〈H〉 ' ` V

[
d+ 1

d− 1
T00 − Txx

]
, (6.10)

where V = Bd−2` is the volume of the strip. The resulting bound is qualitatively

different from the Bekenstein bound in eq. (6.9) since we can not expect the quantity

in eq. (6.10) to be proportional to the energy in the strip. In principle, for quantum

matter, T00 and Txx do not need to satisfy any relation and are not even constrained

by classical energy conditions. So the bound set by eq. (6.10) can be much more (or

less) constraining than a bound set by T00 alone. In particular, if one could realize

Txx ' d+1
d−1

T00, we would have the interesting conclusion that ∆S ≤ 0, i.e., the entropy

in the perturbed state has to be smaller than that in the vacuum state. Of course,

these results are symptomatic of the fact that in general, the modular Hamiltonian will

contain contributions involving operators other than the energy density and in fact,

operators unrelated to the stress-energy tensor. Hence the bounds set by eq. (1.8) will

generically be far more complicated than the simple expression appearing in eq. (6.9).

Further we must add that although the interpretation of the Bekenstein bound in terms

of eq. (1.8) gives a general prescription which is free of ambiguities, unfortunately,

without a clear understanding of the modular Hamiltonian for a given situation, this

interpretation is left somewhat lacking.

Some recent references [38, 63] also consider relations similar to the first law of

thermodynamics, i.e., dE = T dS, for entanglement entropy — see also [64, 65]. In

particular, the discussion in [38] centers on the proportionality between the energy

within a small region and the entanglement entropy of the same region, which is seen
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in several examples. In the present paper, we have seen the origin of this proportionality

is the equation ∆〈H〉 = ∆S. However, we must again remark that it is in general a

different ‘type’ of energy, the modular ‘energy,’ that enters into a proper definition

of the equation. For example, if this is not taken into account, the proportionality

factor between energy and entropy for a spherical entangling surface depends on the

distribution of the energy inside it — as was already observed in [38]. For more general

(i.e., non-spherical) geometries, ∆S is simply not proportional to the energy, but rather

other operators will appear in the modular Hamiltonian and in the expression for ∆〈H〉.
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A Comments on Relative Entropy

Relative entropy provides a precise measure of the statistical distance between two

states. Given a state ρ1, the probability of confounding it with ρ0 after n trials of some

measurement is asymptotically exponentially decreasing for large n as

e−nS(ρ1|ρ0) . (A.1)

In this sense. relative entropy is commonly thought as a measure of the distinguisha-

bility between states [66].

As mentioned, relative entropy is positive and increasing with system size,

S(ρV1 |ρV0 ) ≥ 0 , (A.2)

S(ρV1 |ρV0 ) ≤ S(ρW1 |ρW0 ) , V ⊆ W . (A.3)

The monotonicity property (A.3) is a particular case of monotonicity under general

completely positive trace preserving maps (CPTP). These are linear maps of density

matrices in one space into density matrices in another one, which are physical in the
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sense they are combinations of operations such as unitary evolution, partial tracing and

enlarging the system with a new subsystem. The general expression of a CPTP map

is [53]

ρ′ =
∑
i

MiρM
†
i ,

∑
i

M †
iMi = I , (A.4)

for matrices Mi with arbitrary dimension, i.e., not necessarily square matrices. Then,

more generally the relative entropy satisfies

S(ρ1|ρ0) ≥ S(ρ′1|ρ′0) . (A.5)

The partial trace over a subsystem as in (A.3) is one example of CPTP map. Such

CPTP maps then generally entail the loss of distinguishability between states.

A.1 ∆S = ∆〈H〉 for first order perturbations

Recall that the relative entropy only vanishes for identical states. Here we expand on

the discussion around eq. (1.12) to see what to expect for the relative entropy of nearby

states. Keeping our reference state ρ0 fixed, we move through a family of states ρ1(λ)

with a parameter λ such that ρ1(λ = 0) = ρ0, i.e., the states coincide for λ = 0. Hence

we have that S(ρ1(0)|ρ2) = 0 but S(ρ1(λ)|ρ2) > 0 for both λ > 0 and λ < 0. Therefore

assuming that S(ρ1(λ)|ρ2) describes a smooth curve, it must have zero first derivative

at λ = 0. This then implies

∆S = ∆〈H〉 (A.6)

to first order in λ at λ = 0. For nearby thermal equilibrium states, this relation is just

the well known thermodynamic equation ∆S = ∆E/T .

Another way to see the above equality is to evaluate the first order perturbation

of S(ρ) and H(ρ) for a density matrix

ρ =
e−(H+δH)

tr(e−(H+δH))
. (A.7)

Then to linear order in δH, we have that both coincide with

∆S = ∆〈H〉 =
tr(e−HH)tr(e−HδH)

(tr(e−H))2
− tr(e−HHδH)

tr(e−H)
= 〈H〉〈δH〉 − 〈HδH〉 , (A.8)

where in the last expression the expectation values are computed with the unperturbed

density matrix. In deriving eq. (A.8), we have treated δH as a numerical perturbation

rather than as an operator. This approach is justified here because we are manipulating

the operators under the trace and taking only terms which are functions of H with
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only a single operator δH. Hence it is not necessary to keep track of the ordering of

operators.

However, this formula assumes the perturbation of ρ is small with respect to ρ.

At this point, we have to be careful in QFT because density matrices have an infinite

number of eigenvalues, which have to suffer small deviations. For example, inserting

a pure particle excitation, which is well localized inside the bulk of a large region

A, should not change very much the entropy with respect to the vacuum state. In

particular, as the particle is far from the boundary ∂A, where most of the entanglement

is produced, the entropy should be approximately the same as in the vacuum state.

However ∆〈H〉 will measure the energy of the particle wave packet. Of course, the

reason for the discrepancy between ∆S and ∆〈H〉 in this case is that the particle state

never approaches the vacuum state while the distance R between the wave packet and

the boundary of the region is greater than the wavelength λ of the wave packet. In fact,

the global state with the particle excitation is always orthogonal to the global vacuum

and we expect the relative entropy to increase to infinity in the limit of large R/λ,

corresponding to perfect distinguishability. Further, due to the uncertainty relations

the energy of the particle scales as 1/λ and ∆〈H〉 ∼ R/λ.

We can formulate the following intuitive picture as to when the equality (A.6) is

applicable. Near the boundary of a region, the density matrices will have a Rindler form

(1.9), which suggests a thermal interpretation in the sense of Unruh [32]. In particular,

there is a high temperature near the boundary and the temperature decreases with 1/x

as we move into the bulk of the region, where x is the distance to the boundary. For

a finite region of size R then, there is a minimal temperature T ∼ 1/R [67]. Now we

want to change the state by adding some perturbation. Suppose then that we have a

thermal state and mix it with a state |E〉〈E| of energy E with some small probability

p. In order that the change in eigenvalues is small, we must take p � e−βE/Z = pE,

i.e., p must be smaller than the probability with which the same state appears in the

thermal ensemble. The latter is always be achieved if the change in energy is smaller

than the typical average energy for the same state in the thermal bath. Hence in our

original problem, we require that the energy density deposited at a location, where the

local temperature is roughly T (x), must be much smaller that T d. Then the change

in the entropy satisfies ∆S ∼ ∆E/T � 1 and we are perturbing the thermal bath

by our thermodynamical analogy. Otherwise, the injection of excitations in the region

produces a far-from-equilibrium state.

The conclusion is that we can probe the equality (A.6) for compact regions with

any state in the limit of small stress tensor expectation value. We can have small energy

density perturbations inside A by taking an admixture (pure or impure) of the wave

packet with the vacuum. For example |0〉+ ε|φ〉 for small ε. In this case we can make
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the energy density of the state as low as we want without requiring the state to be of

large wavelength.

A.2 Strong subadditivity

Mutual information I(A,B) = S(A) + S(B)− S(AB) between two subsystems A and

B is a measure of the information shared by them. It can be written as a particular

relative entropy,

I(A,B) = S(ρAB|ρA ⊗ ρB) . (A.9)

Mutual information is positive and increasing with size as a consequence of the positiv-

ity and monotonicity of relative entropy. The monotonicity of the mutual information

gives

I(A,BC)− I(A,B) = S(AB) + S(BC)− S(ABC)− S(B) ≥ 0 . (A.10)

Then, strong subadditivity, which is the last inequality, is implied by monotonicity of

relative entropy. Note that using other properties of the entropy, one can also prove

the monotonicity of relative entropy starting from strong subadditivity [27]. However,

the monotonicity of relative entropy that we discuss in this paper does not reduce to

strong subadditivity of entropy for different regions in space.23 Instead, if written in

terms of strong subadditivity, it would involve a different kind of partition of the global

Hilbert space, combined with the property that the entropy is concave.

A.3 Second law of thermodynamics

The oldest physical interpretation of the positivity of the relative entropy S(ρ1|ρ0) is in

terms of thermodynamics. As we described in the introduction, if ρ0 is the equilibrium

state at temperature T , then the relative entropy takes the form S(ρ1|ρ0) = (F (ρ1) −
F (ρ0)/T ), where F (ρ) = tr(ρE) − TS(ρ) is the free energy evaluated for a general

state ρ but at a fixed temperature T . Hence, the positivity of relative entropy has the

meaning that the free energy is minimal for the equilibrium state.

The thermodynamical version of this inequality is now a consequence of the second

law. In general, for a system held in contact with a thermal bath at temperature T ,

the second law implies that the following the inequality holds in any process:

δF ≤ δW , (A.11)

where δW is the work done on the system. Hence it must be that for a spontaneous

transformation, in which no work is done, one must have δF ≤ 0. That is, the free

energy must decrease as the system evolves towards equilibrium.

23The latter has been discussed previously in the AdS/CFT context by [69].
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The second law can be proved using properties of the relative entropy under certain

assumptions for the quantum time evolution [66, 70]. We also note that relative entropy

inequalities have been applied to prove the generalized second law in the context of black

hole evaporation [71, 72].

In these proofs the second law is related to a generalized monotonicity prop-

erty: The relative entropy always decreases under completely positive trace preserving

(CPTP) maps between states. The CPTP maps are thought as very general class phys-

ical quantum evolutions of states [53]. For example, the evolution a subsystem which

is initially decoupled from the rest, and where the global system undergoes unitary

evolution, is CPTP.

The second law states that the entropy of an isolated system cannot decrease. Of

course a completely isolated system in quantum mechanics evolves unitarily and the

entropy does not change. We have to soften the condition of being completely isolated

in order to allow for some interchange of information with the ambient space. As a

model for this evolution consider the case of a quantum system with state ρ(t) evolving

under CPTP maps. Assume, in accordance with the idea of an “isolated” system, that

the total energy E is conserved. Also assume that time evolution preserves the thermal

equilibrium state24 ρT = e−H/T/tr(e−H/T ) at some temperature T , which corresponds

to the conserved energy E, tr(ρTH) = E.

Then the relative entropy S(ρ(t), ρT ) is decreased by the CPTP evolution, and we

have for t1 < t2,

F (ρ(t2))− F (ρT ) < F (ρ(t1))− F (ρT ) , (A.12)

where we used that the thermal state is invariant under time evolution. Expressing

this relation in terms of entropy and energy, and considering all the involved energies

are the same by assumption, we have

S(t2) > S(t1) , (A.13)

as required by the second law of thermodynamics. Note that the difference in free

energies between the state and the thermal state is positive and decreases in time. As

a consequence, the state approaches the thermal equilibrium state during evolution.

Eventually, if thermal equilibrium is reached, this free energy difference goes to zero.

Another case where the relative entropy allows one to prove the second law is when

the totally random state ρ0 = I/n, where n is the dimension of the Hilbert space, is

preserved under a CPTP evolution. This state can be regarded as the microcanonical

distribution. The second law follows from the fact that the relative entropy is in this

24In fact it is only necessary that there is a state such that its entropy and energies are preserved.
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case

S(ρ(t)|ρ0) = log(n)− S(ρ(t)) . (A.14)

The increase in entropy then follows again by the decrease of relative entropy.

A.4 Bekenstein bound

The Bekenstein bound [59] is a proposal that all systems in nature should satisfy an

inequality of the form

S ≤ 2πRE , (A.15)

where S and E are the entropy and energy of a system confined to a region of size

R. This proposed bound follows from considerations of thought experiments involving

black holes. However eq. (A.15) does not involve Newton’s constant and thus it should

express a general property that even applies outside of the context of gravity. In

particular, it should be possible to understand eq. (A.15) purely in terms of flat space

physics. While this inequality appears to have a rather simple form, discussions of its

possible validity, e.g., [61, 62, 73, 74], revealed a variety of subtleties in interpreting

the various quantities appearing in eq. (A.15). Eventually, it was realized that a well

defined version of this bound in QFT is given by the positivity of the relative entropy

between two states reduced to a given region [60, 61]. The connection between relative

entropy and the Bekenstein bound is essentially established by eq. (1.8).

To better understand this connection between relative entropy and the Bekenstein

bound, let us re-visit Bekenstein’s original thought experiment [59]. Imagine that a

small probe is released to fall into a large black hole, from a short distance R above

the horizon.25 The object then disappears behind the horizon carrying entropy S and

energy E, as measured by a local observer at the point from which it was released.

The energy swallowed by the black hole as measured asymptotically is red-shifted to

E TBH/Trel ' 2πRE TBH, where TBH and Trel are the Hawking temperature measured at

infinity and the local temperature measure at the release radius, respectively. Hence the

variation of the black hole’s mass is δM = 2πRE TBH and the corresponding variation

in the horizon entropy is given by δSBH = δM/TBH = 2πRE. Finally the generalized

second law demands that the increase in the horizon entropy must at least compensate

for the loss of entropy in the exterior region, i.e., δSBH ≥ S, and hence we have arrived

at the bound (A.15).

A drawback of the expression (A.15) is that the entropy (and the energy) of a

finite region are not well defined quantities. In order to eliminate the ambiguities

in the definition of the entropy, it was argued in [61] that the relevant quantity for

25Implicitly, we assume that the size λ of the probe is smaller than the original distance above the

horizon, i.e., R & λ.
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Bekenstein’s thought experiment was the difference of entropies between the state in

the relevant region V and the vacuum entropy in the same region ∆S = S(ρV )−S(ρ0
V ).

In Bekenstein’s thought experiment, V is the near horizon region just outside of the

black hole. In fact then, there is a large entanglement entropy, which can be seen as the

entropy in the thermal atmosphere around the black hole, both for the object localized

to the region outside the event horizon and for the vacuum state localized in the same

region. These are the initial and final states of the process and so only the change in

entropy, i.e., the difference between the two entanglement entropies, enters into the

inequality. That is, we should interpret S appearing on the left-hand side of eq. (A.15)

as ∆S, the same difference which appears on the right-hand side of eq. (1.8).

Further, the quantity 2πRE appearing on the right-hand side of eq. (A.15) suffers

from similar ambiguities. However, this product can also be given a precise meaning

as ∆〈H〉, the difference in expectation values of the modular Hamiltonian (for ρ0
V )

between the two states [60]. To make this connection precise, we first note that in

Bekenstein’s thought experiment, the relevant physics for the near horizon region of a

large black hole is very nearly the same as that for Rindler space. Hence, recall the

modular Hamiltonian in Rindler space is given by eq. (1.9). Hence evaluating ∆〈H〉
between the state with Bekenstein’s probe near the horizon and the vacuum state, we

find

∆〈H〉 = 2π

∫
x>0

dd−1x x 〈T00(x)〉ρV ' 2πRE . (A.16)

Hence ∆〈H〉 reproduces the expression appearing on the right-hand side of eq. (A.15) in

Bekenstein’s thought experiment and the inequality (A.15) found there is nothing but

the inequality (1.8) expressing the positivity of the relative entropy (1.8). Of course,

∆〈H〉 also provides an unambiguous definition for the product of energy and size when

applying the Bekenstein bound to more general systems and more general regions.

This discussion shows a well-defined version of the Bekenstein bound in QFT is

given by the positivity of the relative entropy ∆S ≤ ∆〈H〉 between an arbitrary state

and the vacuum state, both reduced to some finite region V [60]. This relative entropy

bound holds automatically, implying, despite the use of black holes in Bekenstein’s

thought experiment, that the physics behind the Bekenstein bound is simply quantum

mechanics and special relativity. It also generalizes the Bekenstein bound to arbitrary

regions, since the original derivation by Bekenstein is limited to Rindler space.

Relative entropy kills the species problem

Interestingly, the version of the Bekenstein bound arising from relative entropy, i.e.,

eq. (1.8) does not suffer from the species problem [61]. That is, considering theories

with a large number of species or different quantum fields will not lead to violations
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of eq. (1.8). This is because as the number of degrees of freedom is increased, the

entropy of a localized excitation can be made bigger for the same energy, but the

entropy already present in the vacuum entanglement also gets larger. Since ∆S is

bounded by ∆〈H〉, the difference in the entropies must converge to a fixed value as the

number of species becomes arbitrarily large. In terms of the relative entropy, adding

more species makes the distinguishability between the localized object and the localized

vacuum poorer, reducing the relative entropy. However, the distinguishability is always

positive, only becoming zero for the identical states. That is, an increased number of

species may mean that we will be closer to saturating the bound but it can never

produce violations of the inequality (1.8). The role of Hawking radiation and black

hole thermal atmosphere in preserving the bound in Bekenstein’s thought experiment

is then information theoretical and not mechanical, in the sense that radiation pressure

on the infalling object does not play a decisive role, as is sometimes considered, e.g.,

[73].

To see how the species problem is solved in more detail, we start by describing the

way it was originally posed, i.e., let us look at a canonical case with many species. In

particular, let us consider a theory consisting N decoupled copies of some QFT. For a

moment, let us set aside the idea of bounded regions and consider global states. Let

ρ̂0 = |0〉〈0| be the global vacuum for a single species, and ρ̂1 = |ψ〉〈ψ| is any other

orthogonal pure state (e.g., a one-particle state). We start with the global vacuum

|Ω〉 = |0〉 ⊗ · · · ⊗ |0〉 and the corresponding density matrix

ρ0 = |Ω〉〈Ω| = ρ̂0 ⊗ · · · ⊗ ρ̂0 . (A.17)

Now we replace the vacuum by the excited state |ψ〉 in the i’th copy of the field theory,

i.e., |Ψi〉 = |0〉 ⊗ · · · ⊗ |ψ〉 ⊗ · · · ⊗ |0〉. Then the corresponding density matrix becomes

ρi = |Ψi〉〈Ψi| = ρ̂0 ⊗ · · · ⊗ ρ̂1 ⊗ · · · ⊗ ρ̂0 (A.18)

So the states ρi are pure and we also have they correspond to orthogonal vectors,

〈Ψi|Ψj〉 = 0 if i 6= j. Hence, the mixed density matrix obtained by combining these

particle excitations for the different species as

ρmix =
1

N
∑

ρi =
1

N
∑
|Ψi〉〈Ψi| (A.19)

is already diagonalized in the basis of the |Ψi〉. It has N non-zero eigenvalues with

value 1/N . Hence it follows that S(ρmix) = log(N ) and

∆Stot = S(ρmix)− S(ρ0) = log(N ) . (A.20)
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Here ∆S increases without bound as N grows, while the energy in ρmix is independent

of N .

Considerations of a similar nature have been used to produce contradictions with

Bekenstein bound e.g., [74]. However, note that as we are considering global states here,

it is natural to assume that R → ∞ and so our discussion leads to no contradiction

with eq. (A.15). The discussion is slightly different using the interpretation in terms of

relative entropy. In this case, one may note that the global orthogonal pure states ρ̂0 and

ρ̂1 within a single copy are perfectly distinguishable and hence their relative entropy is

infinite. The same holds for the states in eqs. (A.18) and (A.19), e.g., S(ρmix|ρ0) =∞.

What allows ∆Stot in eq. (A.20) to increase without bound is the fact that ∆〈H〉 is

already divergent. Formally, this divergence can be seen as arising in writing |0〉〈0|
as ∼ e−H , we introduced an infinite coefficient for the orthogonal projector |ψ〉〈ψ| in

in the modular Hamiltonian H. For a more intuitive insight, let us instead consider

a thermal ensemble ρT ∼ e−H/T with H = H/T , where H is the usual Hamiltonian.

Now, the vacuum density matrix ρ0 can be seen as the zero temperature limit and

hence given that |ψ〉 has a fixed finite energy, one finds ∆H →∞ as T → 0.

However, these are global states, and a finite size R is necessary to formulate the

Bekenstein bound in a sensible way. For simplicity then, let us consider the case of

reduced states inside a ball V of radius R. The reduced state of the vacuum becomes

ρ0 = TrV̄ [|Ω〉〈Ω|] = ρ̂0 ⊗ · · · ⊗ ρ̂0 (A.21)

where now ρ̂0 = trV̄ [|0〉〈0|] is the ‘vacuum’ density matrix in each individual copy of

the field theory. Note that we are introducing Tr to denote tracing in the full Hilbert

space, i.e., over all copies of the field theory, and tr to denote a trace in a single copy

of the field theory. Now constructing the analogous density matrices for the excited

states (A.19) yields

ρi = TrV̄ [|Ψi〉〈Ψi|] = ρ̂0 ⊗ · · · ⊗ ρ̂1 ⊗ · · · ⊗ ρ̂0 (A.22)

where ρ̂1 = trV̄ [|ψ〉〈ψ|]. Further the corresponding mixed state is

ρmix =
1

N
∑

ρi . (A.23)

Now as the different copies are all decoupled, the modular Hamiltonian takes the form

Htot =
∑
Hi where

Hi = 11 ⊗ 12 ⊗ · · · ⊗H ⊗ · · · ⊗ 1N . (A.24)

In this expression, the H appearing as the i’th entry in the direct product is precisely

the modular Hamiltonian for a single copy of the QFT.

– 61 –



Now let consider a situation analogous to the one above, where we have a pure

excitation which is as different as possible from the vacuum. For global states, distin-

guishability of vacuum and particle states is infinite. However, inside the sphere, this

must be bounded. In order for the excited state to be as different as possible from the

vacuum in the sphere, we should construct a wave packet with a very short wavelength

λ far from the spherical boundary (well inside where the effective temperature is low).

Now if we specialize to the case where the QFT’s under consideration are conformal

field theories, the modular Hamiltonian H is given by eq. (1.10) and we can make a

precise statement. In particular, placing the wave packet at the center of the sphere,

we find

∆H = π
R

λ
� 1 . (A.25)

Certainly this result can be very large and when R
λ
� 1, we approach the that situation

the excited state is maximally distinguishable from ρ0. Note however, that while it can

be large, ∆H will never be divergent in the bounded region. Further, in this regime,

the entropy calculation is approximately same as described for the global states above

and we have

∆〈H〉 −∆S = π
R

λ
− log(N ) . (A.26)

As N increases the relative entropy decreases (the bound becomes tighter) as expected,

since relative entropy always decreases under mixing [27]

S(
∑

piρ
(1)
i |
∑

piρ
(2)
i ) ≤

∑
piS(ρ

(1)
i |ρ

(2)
i ) , (A.27)

for pi > 0 and
∑
pi = 1. However, since ∆〈H〉 is independent of N and relative

entropy is always positive, the log(N ) behavior of ∆S can not subsist for a very large

number of species N & eR/λ. Finally eq. (1.8) must be saturated with ∆S = ∆〈H〉.
Clearly there must be a change in the behavior ∆S away from the simple logarithmic

growth found in eq. (A.20) in the regime where N & eR/λ. Intuitively, the probability

of finding an excited wave packet from the i’th copy of the CFT in the vacuum density

matrix (which has an effective temperature of roughly 1/R at the wave packet location)

is e−R/λ/Z independently of N . For the excited state in ρmix, this probability becomes
1
N + e−R/λ

Z
. Hence when N & eR/λ, the vacuum and the mixed state are no longer very

different and we are actually in a regime where ∆S ' ∆〈H〉.
Hence, we see the importance both of expressing the original product 2πRE on the

right-hand side of the bound (A.15) as the change in the modular ‘energy’ ∆〈H〉, and

of considering the entropy difference ∆S, rather than simply the entropy S. This last

step ensures that ∆S saturates the bound in the case of large number of species. When

the number of species is sufficiently large, the particle excitation whose probability is
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distributed amongst the various copies in the mixed state is hidden behind the cloud of

excitations produced simply localizing the vacuum to a finite region. Hence ρmix and

ρ0 are no longer easily distinguished.

In general, the transition from the form in eq. (A.26) to zero for large enough

N will be some complicated function. However, let us determine the first nontrivial

corrections for the case of small deviations from vacuum state, i.e., the opposite regime

to that just analyzed above.26 Let us begin by considering the pure states (A.22).

Within any individual copy of the QFT, if ρ̂1 is a small perturbation of the vacuum

density matrix ρ̂0, then we will find as usual

∆〈H〉 = ∆S . (A.28)

Of course, for the copies containing no excitations, we find simply ∆〈H〉 = ∆S = 0.

Hence for these pure states, we find ∆〈Htot〉|ρi = ∆Stot|ρi , as expected.

Now for the mixed state (A.23), we find

∆〈Htot〉|ρmix
=

1

N
∑

(Tr[ρiHtot]− Tr[ρ0Htot])

=
1

N
∑

(tr[ρ̂1H]− tr[ρ̂0H])i

=
1

N
∑

∆〈H〉i = ∆〈H〉 (A.29)

where the subscript i in the second and third sums indicates that the corresponding

expression is evaluated only in the i’th copy of the QFT. The final ∆〈H〉 can be

evaluated in any single copy of the field theory and so the shift in the expectation value

of the modular Hamiltonian is unchanged that would be found for any of the pure states

ρi. Similarly, following our standard reasoning, one also finds ∆Stot|ρmix
= ∆〈H〉, as

usual for small deviations from the vacuum. That is, the new mixed state saturates

the inequality (1.8) with precisely the same values as the individual pure states ρi, to

first order. That is, these first order calculations do not distinguish the pure and mixed

states.

However, the mixed state should have more entropy than the pure states and

so we must go to higher orders, we should see this difference. As in the holographic

calculations in section 3, going to higher orders means evaluating the change in entropy

to higher orders since the linear calculations of ∆〈Htot〉 are complete. To begin let us

write the excited state within a single copy of the field theory as

ρ̂1 = ρ̂0 + δρ̂ = ρ̂0 (1 + ρ̂−1
0 δρ̂) . (A.30)

26Note that the following analysis would apply for any finite region and for a tensor product of N
copies of any QFT.
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Further note that since tr[ρ̂1] = 1 = tr[ρ̂0], we must have tr[δρ̂] = 0. To introduce some

more notation, let us write the i’th pure state as

ρi ≡ ρ0 [1 + δρ̃i] ≡ e−Htot e−δ̃Hi (A.31)

where

δρ̃i ≡ 11 ⊗ · · · ⊗ ρ̂−1
0 δρ̂⊗ · · · ⊗ 1N (A.32)

with ρ̂−1
0 δρ̂ appearing in the i’th factor of the tensor product. The ‘effective’ shift in

the modular Hamiltonian δ̃H i defined by eq. (A.31) is related to δρ̃i by

δ̃H i = − log (1 + δρ̃i) = −δρ̃i +
1

2
δρ̃2

i −
1

3
δρ̃3

i + · · · . (A.33)

Note that the definition of δ̃H i involves the product of two separate exponentials. So

in general, it does not precisely match the shift δHi appearing in the conventional

definition: ρi ≡ exp [−Htot − δHi] because δHi does not commute with Htot. That is,

δ̃H i = δHi requires [Htot, δHi] = 0.

Having established this notation, we would like to compare the shift in the entan-

glement entropy for the perturbed pure states (A.22) with that for the perturbed mixed

state (A.23). Towards that end, it is convenient to use the Baker-Campbell-Hausdorff

formula to expand the logarithm appearing in the entanglement entropy. For example,

we encounter

log ρi = log
[
e−Htot e−δ̃Hi

]
(A.34)

= −Htot − δ̃H i +
1

2
[Htot, δ̃H i]−

1

12
[Htot, [Htot, δ̃H i]] +

1

12
[δ̃H i, [Htot, δ̃H i]]

− 1

24
[δ̃H i, [Htot, [Htot, δ̃H i]]] + · · · ,

where the terms denoted by the ellipsis will involve four and more commutators of

Htot and δ̃H i. Note that in the present calculation, we will only concern ourselves

with the terms with two or fewer δ̃H i’s, however, there are an infinite number of such

contributions. However, we will only need to understand the general form of these

terms for the present comparison.

Applying the above definitions, we find for the pure states

∆Stot|ρi = −Tr[ρi log ρi] + Tr[ρ0 log ρ0] (A.35)

= Tr

[
ρ0

(
δ̃H i −

1

2
[Htot, δ̃H i] +

1

12
[Htot, [Htot, δ̃H i]]−

1

12
[δ̃H i, [Htot, δ̃H i]] + · · ·

)]
+Tr

[
ρ0 δρ̃i

(
Htot + δ̃H i −

1

2
[Htot, δ̃H i] +

1

12
[Htot, [Htot, δ̃H i]]− · · ·

)]
.
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Again, there is an infinite number of terms for each order in δ̃H i (or δρ̃i) in the above

expression. However, with the trace above, there is an enormous simplification with

Tr [ρ0[Htot, Z]] = Tr [ρ0Htot Z]− Tr [Htot ρ0 Z] = 0 (A.36)

for any matrix Z since Htot = − log ρ0 commutes with ρ0. Taking this simplification

into account, there are only two potential contributions at linear order,

∆Stot|ρi,linear = −Tr [ρ0 δρ̃i] + Tr [ρ0 δρ̃iHtot] (A.37)

= −tr [δρ̂] + tr [δρ̂H] = ∆〈H〉 ,

where the reduction between the first and second lines relies on the tensor product

structure of the various matrices and tr [δρ̂] = 0. Of course, this shift in the entropy at

linear order agrees with ∆〈Htot〉|ρi = ∆〈H〉, as in our previous discussion above. Now

the quadratic contributions take the form

∆Stot|ρi,quad = Tr

[
ρ0

(
1

2
δρ̃2

i −
1

12
[δρ̃i, [Htot, δρ̃i]] +

1

24
[δρ̃i, [Htot, [Htot, δρ̃i]]] + · · ·

)]
−Tr

[
ρ0 δρ̃i

(
δρ̃i −

1

2
[Htot, δρ̃i] +

1

12
[Htot, [Htot, δρ̃i]]− · · ·

)]
.(A.38)

Again there is an infinite number of terms in both lines above. We will not attempt

to simplify eq. (A.38) for the states ρi further. Rather we now turn to considering the

mixed state (A.23).

Hence, for the mixed state (A.23), we can define

ρmix = ρ0

[
1 +

1

N
∑

δρ̃i

]
≡ e−Htot e−δ̃Hmix (A.39)

where δρ̃i is defined in eq. (A.32). Further, the effective shift in the modular Hamilto-

nian δ̃Hmix defined above can be written as

δ̃Hmix = − log

(
1 +

1

N
∑

δρ̃i

)
= − 1

N
∑

δρ̃i +
1

2

1

N 2

∑
i,j

δρ̃iδρ̃j + · · · . (A.40)

Note that δ̃Hmix 6= 1
N
∑
δ̃H i since the latter sum would not contain all of the cross-

terms appearing in eq. (A.40).

Now it is a straightforward exercise to verify using the above expressions that to

linear order, we have: ∆Stot|ρmix,linear = ∆〈H〉 = 〈∆Htot〉|ρmix
. Turning then to the
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quadratic contributions, we have

∆Stot|ρmix,quad =
1

N 2

∑
i,j

Tr

[
ρ0

(
1

2
δρ̃iδρ̃j −

1

12
[δρ̃i, [Htot, δρ̃j]] +

1

24
[δρ̃i, [Htot, [Htot, δρ̃j]]] + · · ·

)]
− 1

N 2

∑
i,j

Tr

[
ρ0 δρ̃i

(
δρ̃j −

1

2
[Htot, δρ̃j] +

1

12
[Htot, [Htot, δρ̃j]]− · · ·

)]
(A.41)

=
1

N 2

∑
i,j

Tr

[
ρ0

(
1

2
δρ̃iδρ̃j −

1

12
[δρ̃i, [Hj, δρ̃j]] +

1

24
[δρ̃i, [Hj, [Hj, δρ̃j]]] + · · ·

)]
− 1

N 2

∑
i,j

Tr

[
ρ0 δρ̃i

(
δρ̃j −

1

2
[Hj, δρ̃j] +

1

12
[Hj, [Hj, δρ̃j]]− · · ·

)]
.

In the second equality, we have emphasized that because of the tensor product structure

of δρ̃i given in eq. (A.32), only the corresponding terms of Htot =
∑
Hi contribute in

the commutators. Further combining this structure with tr[ρ̂] = 0, we have that all of

the terms with i 6= j above will vanish. Hence all of the double sums can be reduced

as follows, e.g.,

1

N 2

∑
i,j

Tr
[
ρ0δρ̃i[Hj, · · · [Hj, δρ̃j]]

]
=

1

N 2

∑
i

Tr [ρ0δρ̃i[Hi, · · · [Hi, δρ̃i]]]

=
1

N
Tr [ρ0δρ̃1[H1, · · · [H1, δρ̃1]]] , (A.42)

where we have eliminated the sum in the last expression and chosen i = 1 as a repre-

sentative value, by using the fact that all of the terms in the previous diagonal sum are

identical. Hence the quadratic shift in the entropy simplifies to

∆Stot|ρmix,quad =
1

N
Tr

[
ρ0

(
1

2
δρ̃2

1 −
1

12
[δρ̃1, [Htot, δρ̃1]] +

1

24
[δρ̃1, [Htot, [Htot, δρ̃1]]] + · · ·

)]
− 1

N
Tr

[
ρ0 δρ̃1

(
δρ̃1 −

1

2
[Htot, δρ̃1] +

1

12
[Htot, [Htot, δρ̃1]]− · · ·

)]
.(A.43)

Here again, we have an infinite number of contributions above but comparing this result

with eq. (A.38), it is clear that we have ∆Stot|ρmix,quad = 1
N∆Stot|ρi,quad. That is, at

quadratic order, we have

(∆〈Htot〉 −∆Stot) |ρmix
=

1

N
(∆〈Htot〉 −∆Stot) |ρi +O(δρ̃3

i ) . (A.44)

Note that the above analysis did not reveal much about the structure of the

quadratic contributions and so we did not actually establish that the shifts in the

entropy in eqs. (A.38) and (A.43) are negative. However, the latter is easily shown by
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introducing the standard representation of the logarithm in terms of the resolvent, as

follows

log(ρ+ δρ) = −
∫ ∞

0

dβ

[
1

ρ+ δρ+ β
− 1

β + 1

]
. (A.45)

The advantage of this representation is that even when ρ and δρ do not commute, it is

straightforward to expand the above expression for small perturbations with

1

ρ+ δρ+ β
=

1

ρ+ β
− 1

ρ+ β
δρ

1

ρ+ β
+

1

ρ+ β
δρ

1

ρ+ β
δρ

1

ρ+ β
+ · · · . (A.46)

Now for any of the pure global states where the excitations appear in one copy of

the QFT, it is straightforward to show

∆Stot|ρi = −Tr[ρi log ρi] + Tr[ρ0 log ρ0] (A.47)

= −tr[ρ̂i log ρ̂i] + Tr[ρ̂0 log ρ̂0]

= −tr[(ρ̂0 + δρ̂) log(ρ̂0 + δρ̂)] + Tr[ρ̂0 log ρ̂0] .

That is, as before, the simple tensor product structure of ρi and ρ0 allows us to reduce

the calculation of ∆Stot to the single copy of the QFT carrying the excitation. Now

we can apply eqs. (A.45) and (A.46) to this expression. Examining the terms linear in

δρ̂, one again finds ∆Stot = ∆〈Htot〉. Hence to leading order, we recover the equality

already found twice above. Now also including the second order terms, we find

(∆〈Htot〉 −∆Stot) |ρi =

∫ ∞
0

dβ β tr

(
1

ρ̂0 + β
δρ̂

1

ρ̂0 + β
δρ̂

1

ρ̂0 + β

)
+ · · · . (A.48)

Note the second order term above is explicitly positive since the matrix (ρ̂0 + β)−1 in

the center of the integrand is positive definite. Further, this expression now captures

all of the second order terms and so as required the relative entropy is positive. Of

course, given the result in eq. (A.44), the same positivity applies for the mixed state.

As a final comment, let us note that Bekenstein’s thought experiment involves

a dynamical process and the exchange of entropy and energy between two systems.

Interpreting the Bekenstein bound in terms of relative entropy, the same reasoning can

also be applied in flat space and for any region, in particular without referring to black

holes. The flat space experiment would involve an excitation with a modular energy

difference ∆〈H〉 with respect to the vacuum in a region V . Under some evolution this

modular energy (the Rindler energy in Bekenstein’s experiment) is assumed to be at

the same time conserved but passed to a thermal reservoir i.e., being converted into

‘heat’ in the thermodynamical language (represented by the black hole in Bekenstein’s
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thought experiment).27 This gives ∆Sres = ∆〈H〉 because for the reservoir, with a

large number of degree of freedom, we are always in the small deviation scenario (note

the temperature here is T = 1). The increase of the entropy under this evolution

requires ∆Sres − ∆S = ∆〈H〉 − ∆S ≥ 0. In fact, as shown in section A.3, positivity

of relative entropy can always be interpreted in this way as a consequence of a second

law for specific time evolutions which are CPTP but nonunitary in the region. A

simple example for the present case is given by an evolution which adds identical and

independent field species and mixes the state in such larger Hilbert space, as described

above in this section. This process may represent for our purposes, the evolution of the

initial system which is finally absorbed by the reservoir. Implicitly, the above discussion

shows that this ‘evolution’ preserves the value of ∆〈H〉. Also in the limit of a large

number of species, we should get ∆Sres = ∆〈H〉. Here ∆Sres is the variation of the

entropy of the bath due to presence of the probe, which is now distributed among a

large number of field species. Hence, the relative entropy bound can also be considered

a cons equence of a second law under a CPTP evolution, in analogy with the derivation

of the Bekenstein bound using the generalized second law.
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