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ABSTRACT18

19 We report on the VERITAS discovery of very-high-energy (VHE) gamma-

ray emission above 200 GeV from the high-frequency-peaked BL Lac object

RXJ0648.7+1516 (GBJ0648+1516), associated with 1FGLJ0648.8+1516. The

photon spectrum above 200 GeV is fit by a power law dN/dE = F0(E/E0)
−Γ

with a photon index Γ of 4.4 ± 0.8stat ± 0.3syst and a flux normalization F0 of

(2.3± 0.5stat ± 1.2sys)× 10−11 TeV−1cm−2s−1 with E0 = 300 GeV. No VHE vari-

ability is detected during VERITAS observations of RXJ0648.7+1516 between

2010 March 4 and April 15. Following the VHE discovery, the optical identifica-

tion and spectroscopic redshift were obtained using the Shane 3–m Telescope at

the Lick Observatory, showing the unidentified object to be a BL Lac type with a

redshift of z = 0.179. Broadband multiwavelength observations contemporaneous

with the VERITAS exposure period can be used to sub-classify the blazar as a

high-frequency-peaked BL Lac (HBL) object, including data from the MDM ob-

servatory, Swift-UVOT and XRT, and continuous monitoring at photon energies

above 1 GeV from the Fermi Large Area Telescope (LAT). We find that in the

absence of undetected, high-energy rapid variability, the one-zone synchrotron

self-Compton model (SSC) overproduces the high-energy gamma-ray emission

measured by the Fermi -LAT over 2.3 years. The SED can be parameterized sat-

isfactorily with an external-Compton or lepto-hadronic model, which have two
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and six additional free parameters, respectively, compared to the one-zone SSC

model.

Subject headings: gamma rays: galaxies — BL Lacertae objects: individual20

(RXJ0648.7+1516, 1FGLJ0648.8+1516, VERJ0648+152)21

1. Introduction22

1FGLJ0648.8+1516 was detected by Fermi -LAT in the first 11 months of operation at23

greater than 10 standard deviations, σ (Abdo et al. 2010a). This source was flagged as a24

very-high-energy (VHE; E>100 GeV) emitting candidate by the Fermi -LAT collaboration25

by searching for ≥30GeV photons. This information triggered the VERITAS observations26

reported here. 1FGLJ0648.8+1516 is found to be associated with RXJ0648.7+1516, which27

was first discovered by ROSAT (Brinkmann et al. 1997). A radio counterpart was identified28

in the NRAO Green Bank survey (Becker et al. 1991). Two subsequent attempts to identify29

an optical counterpart were unsuccessful (Motch et al. 1998; Haakonsen et al. 2009).30

At 6◦ off the Galactic plane and without optical spectroscopy, the nature of this object31

remained unknown until optical spectroscopy was obtained in response to the VERITAS32

detection. These observations allow the active galactic nucleus (AGN) to be classified as a33

BL Lac, a type of AGN that has a jet co-aligned closely with the Earth’s line of sight and34

displays weak emission lines. These AGN are characterized by non-thermal, double-peaked35

broadband spectral energy distributions (SED). Based on the radio and X-ray flux, the BL36

Lac can further be classified as a high-frequency-peaked BL Lac (HBL) (Padovani & Giommi37

1995), or if classified by the location of its low-energy peak, a high-synchrotron-peaked BL38

Lac (HSP) (Abdo et al. 2010b).39

2. Observations and Analysis40

2.1. VERITAS41

VERITAS comprises four imaging atmospheric Cherenkov telescopes and is sensitive42

to gamma-rays between ∼100 GeV and ∼30 TeV (Weekes et al. 2002; Holder et al. 2006).43

The VERITAS observations of RXJ0648.7+1516 were completed between 2010 March 4 and44

April 15 (MJD 55259-55301), resulting in 19.3 hours of quality-selected live time. These45

observations were taken at 0.5◦ offset in each of four directions to enable simultaneous back-46

ground estimation using the reflected-region method (Fomin et al. 1994).47
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The VERITAS events are parameterized by the principal moments of the elliptical48

shower images, allowing cosmic-ray background rejection through a set of selection criteria49

(cuts) which have been optimized a priori on a simulated, soft-spectrum (photon index 4.0)50

source with a VHE flux 6.6% of that observed from the Crab Nebula. The cuts discard51

images with fewer than ∼50 photoelectrons. Events with at least two telescope images52

remaining are then cosmic-ray discriminated based on the mean-scaled-width (MSW) and53

the mean-scaled-length (MSL) parameters. Events with MSW < 1.1, MSL < 1.4, a height of54

maximum Cherenkov emission > 8 km and an angular distance to the reconstructed source55

position in the camera (θ) of less than 0.14 degrees are kept as gamma-ray candidate events.56

The results are reproduced in two independent analysis packages (Cogan 2008; Daniel 2008).57

After background rejection, 2711 events remain in the source region, with 16722 events58

remaining in the background regions (larger by a factor of 6.89). The 283 excess events59

result in a significance of 5.2σ, calculated using Equation 17 from Li & Ma (1983).60

A differential power law dN/dE = Fo(E/300 GeV)−Γ is fit to the VERITAS data61

from 200 to 650GeV, shown in the top panel of Figure 1. The fit (χ2 = 0.90 with 362

degrees of freedom (DOF), probability of 0.83) results in a flux normalization of Fo = (2.3±63

0.5stat ± 1.2syst)× 10−11 photons cm−2 s−1 TeV−1 and an index of Γ = 4.4± 0.8stat ± 0.3syst,64

corresponding to 3.3% of the Crab Nebula flux above 200 GeV.65

The angular distribution of the excess events is consistent with a point source now66

designated VERJ0648+152, located at 102.19◦ ± 0.11◦stat RA and 15.27◦ ± 0.12◦stat Dec67

(J2000). The systematic pointing uncertainty of VERITAS is less than 25′′ (7×10−3 degrees).68

This position is consistent with the radio position of RXJ0648.7+1516 (Becker et al. 1991).69

A nightly-binned VHE light curve is fit with a constant and shows a χ2 null hypothesis70

probability of 0.39, showing no significant variability during the observation.71

2.2. Fermi-LAT72

The Fermi -LAT is a pair-conversion telescope sensitive to photons between 20 MeV73

and several hundred GeV (Atwood et al. 2009; Abdo et al. 2009). The data used in this74

paper encompass the time interval 2008 Aug 5 through 2010 Nov 17 (MJD 54683-55517),75

and were analyzed with the LAT ScienceTools software package version v9r15p6, which76

is available from the Fermi Science Support Center (FSSC). Only events from the “diffuse”77

class with energy above 1 GeV within a 5◦ radius of RXJ0648.7+1516 and with a zenith78

angle < 105◦ were used. The background was parameterized with the files gll iem v02.fit and79
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isotropic iem v02.txt 1. The normalizations of the components were allowed to vary freely80

during the spectral point fitting, which was performed with the unbinned likelihood method81

and using the instrument response function P6 V3 DIFFUSE.82

The spectral fits using energies above 1 GeV are less sensitive to possible contamination83

from unaccounted (transient) neighboring sources, and hence have smaller systematic errors,84

at the expense of slightly reducing the number of source photons. Additionally, there is no85

significant signal from RXJ0648.7+1516 below 1 GeV. The analysis of 2.3 years between86

2008 Aug 5 and 2010 Nov 17 (MJD 54683–55517) of Fermi -LAT events with energy between87

0.3–1 GeV (fixing the spectral index to 1.89) yields a test statistic (TS) of 9, corresponding88

to ∼ 3σ 2. In addition to the background, the emission model includes two nearby sources89

from the 1FGL catalog: the pulsars PSRJ0659+1414 and PSRJ0633+1746. The spectra90

from the pulsars are parameterized with power-law functions with exponential cutoffs, and91

the values are fixed to the values found from 18 months of data. The spectral fluxes are92

determined using an unbinned maximum likelihood method. The flux systematic uncertainty93

is estimated as 5% at 560MeV and 20% at 10GeV and above.394

The results from the Fermi -LAT spectral analysis are shown in the bottom panel of95

Figure 1. There is no variability detected in four time bins evenly spread over the 2.396

years of data. The dataset corresponding in time to the VERITAS observations between97

between 2010 March 4 and April 15 (i.e. MJD 55259−55301) does not show any significant98

signal and thus we report 2σ upper limits that were computed using the Bayesian method99

(Helene 1983), where the likelihood is integrated from zero up to the flux that encompasses100

95% of the posterior probability. When using the data accumulated over the expanded full101

2.3 years of data, we find that 1FGLJ0648.8+1516 is significantly detected above 1GeV102

with a TS of 307. The spectrum is fit using a single power-law function with photon flux103

F>1GeV = (1.8± 0.2stat)× 10−9 photons cm−2s−1 and hard differential photon spectral index104

ΓLAT = 1.89± 0.10stat. The analysis is also performed on five energy ranges equally spaced105

on a log scale with the photon index fixed to 1.89 and only fitting the normalization. The106

source is detected significantly (TS>25) in each energy bin except for the highest energy107

(100-300 GeV), for which a 95% confidence level upper limit is calculated.108

1The files are available at http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

2See Mattox et al. (1996) for TS definition.

3See http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT_caveats.html

http: //fermi.gsfc.nasa.gov/ssc/data/access/lat/ BackgroundModels.html
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2.3. Swift-XRT109

The Swift-XRT (Gehrels et al. 2004; Burrows et al. 2005) data are analyzed with HEA-110

SOFT6.9 and XSPEC version 12.6.0. Observations were taken in photon counting mode111

with an average count rate of ∼ 0.3 counts per second and did not suffer from pile-up. Six112

target-of-opportunity observations summing to 10.5 ks were collected on six different days113

between 2010 March 18 and April 18 (MJD 55273 and 55304), inclusive. These observations114

were combined with a response file created from summing each observation’s exposure file115

using ximage. The photons are grouped by energy to require a minimum of 30 counts per116

bin, and fit with an absorbed power law between 0.3 and 10 keV, allowing the neutral hy-117

drogen (HI) column density to vary. A HI column density of 1.94±0.14×1021cm−2 is found,118

only slightly higher than the 1.56 × 1021cm−2 quoted in Kalberla et al. (2005). The com-119

bined X-ray energy spectrum is extracted with a fit (χ2 = 114 for 88 DOF, null hypothesis120

probability of 3.2×10−2) with a photon index of 2.51± 0.06 and an integral flux between 0.3121

and 10 keV of (1.24± 0.03stat)× 10−11 ergs cm−2 s−1. This corresponds to a 0.3 to 10 keV122

rest frame luminosity of 1.1 × 1045 ergs s−1. The deabsorbed spectrum is used to constrain123

modeling.124

2.4. Swift-UVOT125

The Swift-XRT observations were supplemented with UVOT exposures taken in the U,126

UVM2, and UVW2 bands (centered at 8.56 × 1014Hz, 1.34 × 1015Hz, and 1.48 × 1015Hz,127

respectively; Poole et al. (2008)). The UVOT photometry is performed using the HEASOFT128

program uvotsource. The circular source region has a 5′′ radius and the background regions129

consist of several circles with radii between 10 − 15′′ of nearby empty sky. The results are130

reddening corrected using R(V)=3.32 and E(B-V)=0.14 (Schlegel et al. 1998). The Galactic131

extinction coefficients were applied according to Fitzpatrick (1999), with the largest source132

of error resulting from deredenning. A summary of the UVOT analysis results is given in133

Table 1.134

2.5. Optical MDM135

The region around RXJ0648.7+1516 was observed in the optical B, V, and R bands136

with the 1.3-m McGraw-Hill Telescope of the MDM Observatory on four nights during 2010137

April 1–5 (MJD 55287-55291). Exposure times ranged from 90 sec (R-band) to 120 sec138

(B-band). Each night, five sequences of exposures in B, V, and R were taken. The raw data139
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were bias subtracted and flat-field corrected using standard routines in IRAF4. Aperture140

photometry is performed using the IRAF package DAOPHOT on the object as well as five141

comparison stars in the same field of view. Calibrated magnitudes of the comparison stars142

are taken from the NOMAD catalog5, and the magnitudes of the object are determined using143

comparative photometry methods. For the construction of the SED points, the magnitudes144

are extinction corrected based on the Schlegel et al. (1998) dust map with values taken145

from NASA Extragalactic Database (NED)6 : AB = 0.618, AV = 0.475, and AR = 0.383.146

These data (summarized in Table 1) are used to constrain the modeling shown in this work,147

although the same conclusions result with the UVOT points as model constraint.148

3. Spectroscopic Redshift Measurements149

Two spectra were obtained during the nights of UT 2010 March 18 and 2010 November 6150

(MJD 55245 and 55506, respectively) with the KAST double spectrograph on the Shane 3-m151

Telescope at UCO/Lick Observatory. During the first night, the instrument was configured152

with a 600/5000 grating and 1.5′′ long slit, covering 4300 − 7100 Å. A single 1800 second153

exposure was acquired. During the night of November 6, another 1800 second exposure was154

acquired with a 600/4310 grism, D55 dichroic, a 600/7500 grating and 2′′ long slit, covering155

the interval 3500 − 8200 Å. The data were reduced with the LowRedux pipeline7 and flux156

calibrated using a spectro-photometric star. The flux calibration is uncertain due to non-157

photometric conditions. Inspection of the March spectrum reveals Ca H+K absorption lines158

at redshift z = 0.179. This redshift is confirmed in the second spectrum at higher signal-to-159

noise (S/N) (S/N ∼ 20 in the blue and S/N ∼ 50 in the red) where Ca H+K, G band, Mg I160

λλλ 5168, 5174, 5184 and Na I λλλ 5891, 5894, 5897 absorption lines with equivalent width161

< 5 Å are detected (see Figure 2 and Table 2 for details). No Ca H+K break is observed.162

These spectral features provide evidence for an early-type nature of the blazar host galaxy163

and allow for BL Lac classification, following Marcha et al. (1996) and Healey et al. (2007).164

4http://www.noao.edu/credit.html

5http://www.nofs.navy.mil/nomad.html

6http://nedwww.ipac.caltech.edu/

7http://www.ucolick.org/∼xavier/LowRedux/index.html

http://www.noao.edu/credit.html
http://nedwww.ipac.caltech.edu/
http://www.ucolick.org/~xavier/LowRedux/index.html
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4. Broadband SED Modeling165

The contemporaneous multiwavelength data are matched with archival radio data from166

NED and are shown in Figure 3. Since the radio data are not contemporaneous they are167

shown only for reference. The synchrotron peak appears at a frequency greater than 1016 Hz,168

representing the first subclassification of RXJ0648.7+1516, specifically as an HBL. These169

data are used to test steady-state leptonic and lepto-hadronic jet models for the broadband170

blazar emission. The absorption of VHE gamma rays by the extragalactic background light171

(EBL) is accounted for through application of the Gilmore et al. (2009) EBL model; the172

model of Finke et al. (2010) provides comparable results.173

Leptonic models for blazar emission attribute the higher-energy peak in the SED to174

the inverse-Compton scattering of lower-energy photons off a population of non-thermal,175

relativistic electrons. These same electrons are responsible for the lower-energy synchrotron176

emission making up the first peak. The target photon field involved in the Compton upscat-177

tering can either be the synchrotron photons themselves, as in synchrotron self-Compton178

(SSC) models, or a photon field external to the jet in the case of external Compton (EC)179

models.180

We use the equilibrium SSCmodel of Böttcher & Chiang (2002), as described in Acciari et al.181

(2009). In this model, the emission originates from a spherical blob of relativistic electrons182

with radius R. This blob is moving down the jet with a Lorentz factor Γ, corresponding to183

a jet speed of βΓc. The jet is oriented such that the angle with respect to the line of sight is184

θobs, which results in a Doppler boosting with Doppler factor D = (Γ[1 − βΓ cos θobs])
−1. In185

order to minimize the number of free parameters, the modeling is completed with θobs = 1/Γ,186

for which Γ = D.187

Within the model, electrons are injected with a power-law distribution at a rate Q(γ) =188

Q0γ
−q between the low- and high-energy cut-offs, γ1,2. The electron spectral index of189

q = 4.8 required for the models applied in this work might be the result of acceleration190

in an oblique shock. While standard shock acceleration in relativistic, parallel shocks is191

known to produce a canonical spectral index of ∼2.2, oblique magnetic-field configurations192

reduce the acceleration efficiency and lead to much steeper spectral indices (Meli & Quenby193

2003; Sironi & Spitkovsky 2011). The radiation mechanisms considered lead to equilibrium194

between the particle injection, radiative cooling and particle escape. The particle escape is195

characterized with an efficiency factor η, such that the escape timescale tesc = η R/c, with196

η = 100 for this work. This results in a particle distribution streaming along the jet with197

a power Le. Synchrotron emission results from the presence of a tangled magnetic field B,198

with a Poynting flux luminosity of LB. The parameters Le and LB allow the calculation of199

the equipartition parameter ǫBe ≡ LB/Le.200
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The top panel in Figure 3 shows the SSC model for RXJ0648.7+1516, with parameters201

summarized in Table 3. The model is marginally in agreement with the data only through use202

of parameters well below equipartition. The Fermi -LAT contemporaneous 95% confidence203

level upper limits in the energy ranges 1-3 GeV and 3-10 GeV are just above and below the204

one-zone SSC model predictions. Additionally, these SSC model predictions are above the205

2.3 year Fermi -LAT spectrum by more than a factor of 2, although this spectrum is not206

contemporaneous with the other data. Variation of the model parameters within physically207

reasonable values does not provide better agreement between model and data. Generally,208

HBLs are well characterized by one-zone SSC models and hence these observations might209

suggest the existence of one or more additional emission mechanisms that contribute to the210

higher-energy peak.211

An external-Compton model is also used to describe the data. The EC model is a212

leptonic one-zone jet model with two additional parameters beyond the SSC parameters,213

the thermal blackbody temperature TEC and radiation energy density uEC of the external214

photon field, which is assumed to be isotropic and stationary in the blazar rest frame. The215

EC model provides a better representation of the SED, as can be seen in the middle panel216

of Figure 3, with the parameters listed in Table 3.217

A lepto-hadronic model is also applied to the data. Within this model, ultrarelativistic218

protons are the main source of the high-energy emission through proton synchrotron radi-219

ation and pion production. The resulting spectra of the pion decay products are evaluated220

with the templates of Kelner & Aharonian (2008). Additionally, a semi-analytical descrip-221

tion is used to account for electromagnetic cascades initiated by the internal γγ absorption222

of multi-TeV photons by both the π0 decay photons and the synchrotron emission of ultra-223

relativistic leptons, as explained in Böttcher (2010). Similar to the particle populations in224

the leptonic models described above, this lepto-hadronic model assumes a power-law distri-225

bution of relativistic protons, n(γ) ∝ γ−q between a low- and high-energy cut-off, Emin,max
p .226

This population of relativistic protons is propagating along the blazar jet and has a total227

kinetic luminosity of Lp. The lepto-hadronic modeling results are above ǫBp equipartition228

and are shown in the bottom panel of Figure 3 with parameters (including energy partition229

fractions ǫBp ≡ LB/Lp and ǫep ≡ Le/Lp) summarized in Table 3.230

In conclusion, multiwavelength followup of the VERITAS detection of 1FGLJ0648.7+1516231

has solidified its association with RXJ0648.7+1516, which is identified as a BL Lac object232

of the HBL subclass. Other contemporaneous SEDs of VHE-detected HBLs can be well233

described by one-zone SSC models close to equipartition, while for RXJ0648.7+1516 this234

model provides a poor representation with parameters below equipartition. The addition235

of an external photon field for Compton up-scattering in the leptonic paradigm provides236
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a better representation of the gamma-ray (Fermi and VERITAS) data. Alternatively, a237

lepto-hadronic model is successful in characterizing the higher-energy peak of the SED with238

synchrotron emission from protons. Both of these latter models require super-equipartition239

conditions.240
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México), 1325283

Gilmore, R. et al. 2009, MNRAS, 399, 1694284

Helene, O. 1983, Nuclear Instruments & Methods in Physics Research, 212, 319285

Fitzpatrick, E. 1999, PASP, 111, 63286

Finke, J. et al. 2010, ApJ, 712, 238287

Fomin, V. P. et al. 1994, Astropart. Phys., 2, 137288

Gehrels, N. et al. 2004, ApJ, 611, 1005289

Healey, S. et al. 2007, ApJS, 171, 61290

Haakonsen, C. B. et al. 2009, ApJS, 184, 138291

Holder, J. et al. 2006, Astropart. Phys., 25, 391292



– 13 –

Kalberla, P. et al. 2005, A&A, 440, 775293

Kelner, S. R. & Aharonian, F. A., 2008, Phys. Rev. D., 78, 3, 034013294

Li, T. & Ma, Y. 1983, ApJ, 272, 317295

Marcha, M. et al. 1996, MNRAS, 281, 425296

Mattox, J. et al. 1996, ApJ, 461, 396297

Meli, A., & Quenby, J., 2003, ApJ, 19, 649298

Motch, C. et al. 1998, A&AS, 132, 341299

Padovani, P. & Giommi, P., 1995, ApJ, 444, 567300

Poole et al. 2008, MNRAS, 383, 627301

Shlegel, D. et al. 1998, ApJ, 500, 525302

Sironi, L., & Spitkovsky, A. 2011, ApJ, 726, 75303

Weekes, T. C. et al. 2002, Astropart. Phys., 17, 221304

This preprint was prepared with the AAS LATEX macros v5.2.



– 14 –

Energy (GeV)1 10 210

) 
   

-1
 s

-2
 c

m
-1

dN
/d

E
 (

T
eV

-1110

-1010

-910

-810

-710

-610

-510
Fermi-LAT

Energy (TeV)

) 
   

   
-1

 s
-2

 c
m

-1
dN

/d
E

 (
T

eV

-1410

-1310

-1210

-1110

-1010

0.2                           0.3                                   0.5                                                 1

VERITAS

Fig. 1.— Top: The differential photon spectrum of RXJ0648.7+1516 between 200 and 650

GeV measured by VERITAS between 2010 4 March and 15 April (MJD 55259–55301). The

solid line shows a power-law fit to the measured flux derived with four equally log-spaced

bins and a final bin boundary at 650 GeV, above which there are few on-source photons.

A 99% confidence upper limit evaluated between 650 GeV and 5 TeV assuming a photon

index of 4.4 is also shown. The shaded region shows the systematic uncertainty of the fit,

which is dominated by 20% uncertainty on the energy scale. Bottom: The differential photon

spectrum of RXJ0648.7+1516 as measured by Fermi -LAT over 2.3 years between 2008 Aug

5 and 2010 Nov 17 (MJD 54683–55517, grey circles) with the highest energy bin containing a

95% confidence upper limit. Fermi -LAT upper limits from the VERITAS observation period

are also shown (MJD 55259–55301, grey triangles).
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Fig. 2.— Spectrum of RXJ0648.7+1516 showing the Ca H+K, G-band, Na I and Mg I

spectral features indicating a redshift of z = 0.179. Since the G-band arises in stellar

atmospheres, we interpret this as the redshift for the host galaxy and not an intervening

absorber. The blazar was observed at Lick Observatory using the 3−m Shane Telescope on

6 November 2010.
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Fig. 3.— The SED models applied to the contemporaneous multiwavelength data of

RXJ0648.7+1516. Fermi -LAT data points are shown for 2.3 years of data along with up-

per limits extracted from data limited to the VERITAS observation period. The models

shown here are constrained by the MDM points; modeling constrained by the UVOT data

produces similar results. The top panel shows the synchrotron emission (dotted line), the

self-Compton emission (dashed) and the EBL-corrected (Gilmore et al. 2009) total one-

zone SSC model (solid). The middle panel shows the synchrotron emission (dotted line),

the self-Compton emission (dashed line), the external-Compton (dash-dotted line) and the

EBL-corrected total EC model (solid). The bottom panel shows the electron (and positron)

synchrotron emission (dotted line), the proton synchrotron emission (dash-dotted) and the

EBL-corrected total lepto-hadronic model (solid).
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Table 1. Analysis summary of the optical MDM (B, V, R) and Swift-UVOT (U, UVM2,

UVW2) data.

Band Date νFν νFν Error

(MJD) (Jy Hz) (Jy Hz)

B 55287 7.47×1011 3.4×1010

B 55289 7.64×1011 3.8×1010

B 55290 5.75×1011 2.7×1010

B 55291 7.59×1011 3.4×1010

V 55287 5.77×1011 3.5×1010

V 55289 5.74×1011 3.7×1010

V 55290 2.92×1011 1.6×1010

V 55291 6.00×1011 3.6×1010

R 55287 5.99×1011 4.2×1010

R 55289 5.51×1011 3.7×1010

R 55290 2.03×1011 1.5×1010

R 55291 5.99×1011 4.3×1010

U 55288 4.542×1011 6.8×109

U 55292 4.253×1011 6.3×109

U 55300 3.856×1011 6.1×109

U 55304 3.737×1011 5.5×109

UVM2 55274 5.987×1011 8.8×109

UVW2 55273 5.066×1011 7.9×109

Table 2. Analysis summary of the VER J0648+152 Lick Observatory Kast spectrum from

2010 November 5 (MJD 55505)

Ions Rest Wavelength Centroida FWHM Redshiftb Observed E. W.c Notes

(Å) (Å) (Å) Absorbed (Å)

Ca II (K) 3934.79 4639.07 20.7 0.1789 2.60 ±0.21

Ca II (H) 3969.61 4678.26 16.4 0.1785 2.47±0.19

G band 4305.61 5077.46 17.5 0.1792 1.70±0.18

Mg I 5174.14 6102.32 22.1 0.1793 2.35±0.20 [1]

Na I 5894.13 6951.66 23.0 0.1794 2.48±0.15 [2]

aBased on Gaussian fit

bMeasured from line centroid

cError is only statistical

Note. — [1] Blanded with Mg I 5168.74 Mg I 5185.04 [2] Blanded with Na I 5891.61 and Na I

5897.57
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Table 3. SED Modeling Parameters: Summary of the parameters describing the

emission-zone properties for the SSC, EC and lepto-hadronic models. See text for

parameter descriptions.

Parameter SSC External Compton Lepto-Hadronic

Le [erg s−1] 7.5× 1043 4.9× 1041 4.9× 1041

γ1 6.7× 104 8.2× 104 9× 103

γ2 106 106 5× 104

q 4.8 4.8 4.8

B [G] 0.14 0.1 10

Γ = D 20 20 15

TEC [K] — 103 —

uEC [erg cm−3] — 7.0× 10−8 —

Lp [erg s−1] — — 4.9× 1041

Emin
p [GeV] — — 103

Emax
p [GeV] — — 1.5× 1010

qp — — 2.0

ǫBe 0.16 41 1.7× 104

ǫBp — — 4.2

ǫep — — 2.5× 10−4

tmin
var [hr] 1.1 10.9 7.2
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