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The algebra of logic, as an explicit algebraic system showing the underlying 
mathematical structure of logic, was introduced by George Boole (1815-1864) 
in his book The Mathematical Analysis of Logic (1847). The methodology 
initiated by Boole was successfully continued in the 19th century in the work of 
William Stanley Jevons (1835-1882), Charles Sanders Peirce (1839-1914), Ernst 
Schröder (1841-1902), among many others, thereby establishing a tradition in 
(mathematical) logic. From Boole’s first book until the influence after WWI of 
the monumental work Principia Mathematica (1910–1913) by Alfred North 
Whitehead (1861-1947) and Bertrand Russell (1872 – 1970), versions of the 
algebra of logic were the most developed form of mathematical above all 
through Schröder's three volumes Vorlesungen über die Algebra der Logik 
(1890–1905). Furthermore, this tradition motivated the investigations of 
Leopold Löwenheim (1878-1957) that eventually gave rise to model theory. In 
addition, in 1941, Alfred Tarski (1901-1983) in his paper “On the calculus of 
relations” returned to Peirce's relation algebra as presented in Schröder's 
Algebra der Logik. The tradition of the algebra of logic played a key role in the 
notion of Logic as Calculus as opposed to the notion of Logic as Universal 
Language. Beyond Tarski’s algebra of relations, the influence of the algebraic 
tradition in logic can be found in other mathematical theories, such as category 
theory. However this influence lies outside the scope of this entry, which is 
divided into 10 sections. 
 
Summary 
 
0. Introduction 
1. 1847—The Beginnings of the Modern Versions of the Algebra of 
Logic 
2. 1854—Boole's Final Presentation of his Algebra of Logic 
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3. Jevons: An Algebra of Logic Based on Total Operations 
4. Peirce: Basing the Algebra of Logic on Subsumption 
5. De Morgan and Peirce: Relations and Quantifiers in the Algebra 
of Logic. 
6. Schröder’s systematization of the algebra of logic 
7. Huntington: Axiomatic Investigations of the Algebra of Logic 
8. Stone: Models for the Algebra of Logic 
9. Skolem: Quantifier Elimination and Decidability 
 
0. Introduction 
 
Boole’s The Mathematical Analysis of Logic presents many interesting logic 
novelties: It was the beginning of nineteenth-century mathematization of logic 
and provided an algorithmic alternative (via a slight modification of ordinary 
algebra) to the catalog approach used in traditional logic (even if reduction 
procedures were developed in the latter). That is, it provided an effective 
method for proving the validity of deductive arguments based on a system of 
postulates. As Boole wrote later, it was a proper “science of reasoning”, and not 
a “mnemonic art” like traditional Syllogistics (Boole 1997, p. 136). Three-
quarters of the way through this book, after finishing his discussion of syllogistic 
logic, Boole started to develop the general tools that would be used in his Laws 
of Thought (1854) to greatly extend traditional logic by permitting an argument 
to have many premises and to involve many classes. To handle the infinitely 
many possible logical arguments of this expanded logic, he presented theorems 
that provided key tools for an algorithmic analysis (a catalog was no longer 
feasible).  
 
Boole’s ideas were conceived completely independently of earlier anticipations, 
like those developed by G. W. Leibniz. However, they emerged from the 
particular contexts of English mathematics (see Peckhaus 2009). According to 
Víctor Sánchez Valencia, the tradition that originated with Boole came to be 
known as the algebra of logic since the publication in 1879 of Principles of the 
Algebra of Logic by Alexander MacFarlane (see Sánchez Valencia 2004, p. 389). 
MacFarlane considered “the analytical method of reasoning about Quality 
proposed by Boole” as an algebra (see MacFarlane 1879, p. 3). 
 
This approach differs from what is usually called algebraic logic, understood as 
“a style [of logic] in which concepts and relations are expressed by 
mathematical symbols [..] so that mathematical techniques can be applied. 
Here mathematics shall mean mostly algebra, i.e., the part of mathematics 
concerned with finitary operations on some set” (Hailperin 2004, p. 323). 
Algebraic logic can be already found in the work of Leibniz, Jacob Bernouilli and 
other modern thinkers, and it undoubtedly constitutes an important antecedent 
of Boole’s approach. In a broader perspective, both are part of the tradition of 
symbolic knowledge in the formal sciences, as first conceived by Leibniz (see 
Esquisabel 2012). This idea of algebraic logic was continued to some extent in 
the French Enlightenment in the work of Condillac and Condorcet (see Grattan-
Guinness 2000, pp. 14 ff.) 
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Boole's methodology for dealing with logical problems can be described as 
follows: 
 
1. Translate the logical data into suitable equations; 
2. Apply algebraic techniques to solve these equations; 
3. Translate this solution, if possible, back into the original language. 
In other words, symbolic formulation of logical problems and solution of logical 
equations constitutes Boole’s method (see Sánchez Valencia 2004, p. 389). 
 
Later, Jevons (1864) changed Boole's partial operation of union of disjoint sets 
to the modern unrestricted union and eliminated Boole's questionable use of 
uninterpretable terms. Peirce (1880) eliminated explicitly the Aristotelian 
derivation of particular statements from universal statements by giving the 
modern meaning for “All A is B.” In addition, he extended the algebra of logic 
for classes to the algebra of logic for binary relations and introduced general 
sums and products to handle quantification. Ernst Schröder, taking inspiration 
from previous work by Hermann (1809–1877) and Robert Grassmann (1815–
1901) and using the framework developed by Peirce, developed and 
systematized the 19th Century achievements in the algebra of logic in his three-
volume work Vorlesungen über die Algebra der Logik (1890–1910). 
 
The contributions of Gottlob Frege (1848–1925) to logic from the period 1879–
1903, based on an axiomatic approach to logic, had very little influence at the 
time (and the same can be said of the diagrammatic systems of C. S. Peirce 
developed at the turn of the Century). Whitehead and Russell rejected the 
algebra of logic approach, with its predominantly equational formulations and 
algebraic symbolism, in favor of an approach inspired by the axiomatic system 
(as in Frege’s logic) and based on the notation developed by Giuseppe Peano, 
namely to use logical connectives, relation symbols and quantifiers.  
 
During the first two decades of the twentieth century, the algebra of logic was 
still developed in the works of Poretzsky, Luis Couturat, Leopold Löwenheim, 
and Heinrich Behmann. In particular, elimination theorems in the algebra of 
logic influenced decision procedures for fragments of first-order and second-
order logic (see Mancosu, Zach, Badesa 2009). 
 
After WWI David Hilbert (1862-1943), who had at first adopted the algebraic 
approach, picked up on the approach of Principia, and the algebra of logic fell 
out of favor. However, in 1941, Tarski treated relation algebras as an 
equationally defined class. Such a class has many models besides the collection 
of all binary relations on a given universe that was considered in the 1800s, just 
as there are many Boolean algebras besides the power set Boolean algebras 
studied in the 1800s. In the years 1948–1952 Tarski, along with his students 
Chin and Thompson, created cylindric algebras as an algebraic logic companion 
to first-order logic, and in 1956 Paul Halmos (1916–2006) introduced polyadic 
algebras for the same purpose. As Halmos (1956) noted, these new algebraic 
logics tended to focus on studying the extent to which they captured first-order 
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logic and on their universal algebraic aspects such as axiomatizations and 
structure theorems, but offered little insight into the nature of the first-order 
logic which inspired their creation. 
 
1. 1847—The Beginnings of the Modern Versions of the Algebra of 
Logic 
 
In late 1847, Boole and Augustus De Morgan (1806- 1871) each published a 
book on logic—Boole's Mathematical Analysis of Logic (1847) and De Morgan's 
Formal Logic (1847). De Morgan's approach was to dissect every aspect of 
traditional deductive logic (usually called 'Aristotelian logic') into its minutest 
components, to consider ways to generalize these components, and then, in 
some cases, undertake to build a logical system using these components. 
Unfortunately, he was never able to incorporate his best ideas into a significant 
system. His omission of a symbol for equality made it impossible to develop an 
equational algebra of logic. It seems that synthesis was not De Morgan's strong 
suite.  
 
Boole approached logic from a completely different perspective, namely how to 
cast Aristotelian logic in the garb of symbolical algebra. Using symbolical 
algebra was a theme with which he was well-acquainted from his work in 
differential equations, and from the various papers of his young friend and 
mentor Gregory, who made attempts to cast other subjects such as geometry 
into the language of symbolical algebra. Since the application of symbolical 
algebra to differential equations had proceeded through the introduction of 
differential operators, it must have been natural for Boole to look for operators 
that applied in the area of Aristotelian logic. He readily came up with the idea of 
using “selection” operators, for example, a selection operator for the color red 
would select the red members from a class. In his 1854 book, Boole realized 
that it was simpler to omit selection operators and work directly with classes. 
(However he kept the selection operators to justify his claim that his laws of 
logic were not ultimately based on observations concerning the use of 
language, but were actually deeply rooted in the processes of the human 
mind.) From now on in this article, when discussing Boole's 1847 book, the 
selection operators have been replaced with the simpler direct formulation 
using classes. 
 
Since symbolical algebra was just the syntactic side of ordinary algebra, Boole 
needed ways to interpret the usual operations and constants of algebra to 
create his algebra of logic for classes. Multiplication was interpreted as 
intersection, leading to his one new law, the idempotent law XX = X for 
multiplication, rediscovering a logical law already formulated by Leibniz. 
Addition was defined as union, provided one was dealing with disjoint classes; 
and subtraction as class difference, provided one was subtracting a subclass 
from a class. In other cases, the addition and subtraction operations were 
simply undefined, or as Boole wrote, uninterpretable. The usual laws of 
arithmetic told Boole that 1 must be the universe and 1−X must be the 
complement of X. 
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The next step in Boole's system was to translate the four kinds of categorical 
propositions into equations, for example “All X is Y” becomes X = XY, and 
“Some X is Y” becomes V = XY, where V is a new symbol. To eliminate the 
middle term in a syllogism Boole borrowed an elimination theorem from 
ordinary algebra, but it was too weak for his algebra of logic. This would be 
remedied in his 1854 book. Boole found that he could not always derive the 
desired conclusions with the above translation of particular propositions (i.e., 
those with existential import), so he added the variants X = VY, Y = VX, and VX 
= VY. (See the entry on Boole [LINK].) 
 
The symbolic algebra of the 1800s included much more than just the algebra of 
polynomials, and Boole experimented to see which results and tools might 
apply to the algebra of logic. For example, he proved one of his results by using 
an infinite series expansion. His fascination with the possibilities of ordinary 
algebra led him to consider questions such as: What would logic be like if the 
idempotent law were replaced by the law X3 = X? His successors, especially 
Jevons, would soon narrow the operations on classes to the ones that we use 
today, namely union, intersection and complement. 
 
As mentioned earlier, three-quarters of the way through his brief book of 1847, 
after finishing derivations of the traditional Aristotelian syllogisms in his system, 
Boole announced that his algebra of logic was capable of far more general 
applications. Then he proceeded to add general theorems on developing 
(expanding) terms, providing interpretations of equations, and using long 
division to express one class in an equation in terms of the other classes (with 
side conditions added). 
  
Boole's theorems, completed and perfected in 1854, gave algorithms for 
analyzing infinitely many argument forms. This opened a new and fruitful 
perspective, deviating from the traditional approach to logic, where for 
centuries scholars had struggled to come up with clever mnemonics to 
memorize a very small catalog of valid conversions and syllogisms and their 
various interrelations. 
 
De Morgan's Formal Logic did not gain significant recognition, primarily because 
it was a large collection of small facts without a significant synthesis. Boole's 
The Mathematical Analysis of Logic had powerful methods that caught the 
attention of a few scholars such as De Morgan and Arthur Cayley (1821 – 
1895); but immediately there were serious questions about the workings of 
Boole's algebra of logic: Just how closely was it tied to ordinary algebra? How 
could Boole justify the procedures of his algebra of logic? In retrospect it seems 
quite certain that Boole did not know why his system worked. His claim, 
following Gregory, that in order to justify using ordinary algebra it was enough 
to check the commutative law XY = YX for multiplication and the distributive 
law X(Y + Z) = XY + XZ, is clearly false. Nonetheless it is also likely that he had 
checked his results in a sufficient number of cases to give substance to his 
belief that his system was correct. 
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2. 1854–Boole's Final Presentation of his Algebra of Logic 
 
In his second book, The Laws of Thought, Boole not only applied algebraic 
methods to traditional logic but also attempted some reforms to logic. He 
started by augmenting the laws of his 1847 algebra of logic (without explicitly 
saying that his previous list of three axioms was inadequate), and made some 
comments on the rule of inference (performing the same operation on both 
sides of an equation). But then he casually stated that the foundation of his 
system actually rested on a single (new) principle, namely it sufficed to check 
an argument by seeing if it was correct when the class symbols took on only 
the values 0 and 1, and the operations were the usual arithmetical operations. 
Let us call this Boole's Rule of 0 and 1. No meaningful justification was given for 
Boole's adoption of this new foundation, it was not given a special name, and 
the scant references to it in the rest of the book were usually rather clumsily 
stated. For a modern analysis of this Rule of 0 and 1 see Burris & 
Sankappanavar 2013. 
 
The development of the algebra of logic in the Laws of Thought proceeded 
much as in his 1847 book, with minor changes to his translation scheme, and 
with the selection operators replaced by classes. There is a new and very 
important theorem (correcting the one he had used in 1847), the Elimination 
Theorem, which says the following: given an equation F(x, y, z, …) = 0 in the 
class symbols x, y, z, etc., the most general conclusion that follows from 
eliminating certain of the class symbols is obtained by (1) substituting 0s and 1s 
into F(x, y, z, …) for the symbols to be eliminated, in all possible ways, then (2) 
multiplying these various substitution instances together and setting the 
product equal to 0. Thus eliminating y and z from F(x, y, z) = 0 gives F(x, 0, 
0)F(x, 0, 1)F(x, 1, 0)F(x, 1, 1) = 0. This theorem also played an important role 
in Boole’s interpretation of Aristotle’s syllogistic. 
From an algebra of logic point of view, the 1854 treatment at times seems less 
elegant than that in the 1847 book, but it gives a much richer insight into how 
Boole thinks about the foundations for his algebra of logic. The final chapter on 
logic, Chapter XV, was an attempt to give a uniform proof of the Aristotelian 
conversions and syllogisms. (It is curious that prior to Chapter XV Boole did not 
present any examples of arguments involving particular propositions.) The 
details of Chapter XV are quite involved, mainly because of the increase in size 
of expressions when the Elimination and Development Theorems are applied. 
Boole simply left most of the work to the reader. Later commentators would 
gloss over this chapter, and no one seems to have worked through its details. 
 
Aside from the Rule of 0 and 1 and the Elimination Theorem, the 1854 
presentation is mainly interesting for Boole's attempts to justify his algebra of 
logic. He argued that in symbolical algebra it was quite acceptable to carry out 
equational deductions with partial operations, just as one would when the 
operations were total, as long as the terms in the premises and the conclusion 
were interpretable. He said this was the way ordinary algebra worked with the 
uninterpretable √−1, the square root of −1. (The geometric interpretation of 
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complex numbers was recognized early on by Wessel, Argand, and Gauss, but it 
was only with the publications of Gauss and Hamilton in the 1830s that doubts 
about the acceptability of complex numbers in the larger mathematical 
community were overcome. It is curious that in 1854 Boole regarded √−1 as 
uninterpretable.)  
 
There were a number of concerns regarding Boole's approach to the algebra of 
logic: 

1. Was there a meaningful tie between his algebra of logic and the algebra 
of numbers, or was it just an accident that they were so similar? 

2. Could one handle particular propositions in an algebraic logic that 
focused on equations? 

3. Was it really acceptable to work with uninterpretable terms in equational 
derivations? 

4. Was Boole using “Aristotelian” semantics (the semantics presupposed in 
traditional logic, where the extension of a term is nonempty)? 

 
3. Jevons: An Algebra of Logic Based on Total 
Operations 
 
Jevons, who had studied with De Morgan, was the first to offer an alternative to 
Boole's system. In 1863 he wrote to Boole that surely Boole's operation of 
addition should be replaced by the more natural ‘inclusive or’ (or ‘union’), 
leading to the law X + X = X. Boole 
completely rejected this suggestion (it would have destroyed his system based 
on ordinary algebra) and broke off the correspondence. Jevons published his 
system in his 1864 book, Pure Logic. By ‘pure’ he meant that he was casting off 
any dependence on the algebra of numbers —instead of classes, which are 
associated with quantity, he would use predicates, which are associated with 
quality, and his laws would be derived directly from the (total) fundamental 
operations of inclusive disjunction and conjunction. But he kept Boole's use of 
equations as the fundamental form of statements in his algebra of logic.  
 
By adopting De Morgan's convention of using upper-case/lower-case letters for 
complements, Jevons' system was not suited to provide equational axioms for 
modern Boolean algebra. However, he refined his system of axioms and rules of 
inference until the result was essentially the modern system of Boolean algebra 
for ground terms, that is, terms where the class symbols are to be thought of 
as constants, not as variables.  
 
It must be noticed that modern equational logic deals with universally 
quantified equations (which would have been called laws in the 1800s). In the 
19th century algebra of logic one could translate “All X is Y” as the equation X 
= XY. This is not to be viewed as the universally quantified expression 
(∀X)(∀Y)(X = XY). X and Y are to be treated as constants (or schematic 
letters). Terms that only have constants (no variables) are called ground terms. 
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By carrying out this analysis in the special setting of an algebra of predicates 
(or equivalently, in an algebra of classes) Jevons played an important role in 
the development of modern equational logic. As mentioned earlier, Boole gave 
inadequate sets of equational axioms for his system, originally starting with the 
two laws due to Duncan Farquharson Gregory (1813 – 1844) plus his 
idempotent law; these were accompanied by De Morgan's inference rule that 
one could carry out the same operation (Boole's fundamental operations in his 
algebra of logic were addition, subtraction and multiplication) on equals and 
obtain equals. Boole then switched to the simple and powerful (but 
unexplained) Rule of 0 and 1. 
 
Having replaced Boole's fundamental operations with total operations, Jevons 
proceeded, over a period of many years, to work on the axioms and rules for 
his system. Some elements of equational logic that we now take for granted 
required a considerable number of years for Jevons to resolve: 
 
The Reflexive Law (A=A). In 1864 Jevons listed this as a postulate (p. 11) and 
then in §24 he referred to A = A as a “useless Identical proposition.” In his 
1869 paper on substitution it became the “Law of Identity.” In the Principles of 
Science (1874) it was one of the three “Fundamental Laws of Thought.” 
 
The Symmetric Law (B = A follows from A = B). In 1864 Jevons wrote “A = B 
and B = A are the same statement.” This is a position he would maintain. In 
1874 he wrote “I shall consider the two forms A = B and B = A to express 
exactly the same identity written differently.” 
 
For a final form of his algebra of logic we turn to the laws which he had 
scattered over 40 pages in Principles of Science (1874), having replaced his 
earlier use of + by ·|·, evidently to move further away from any appearance of 
a connection with the algebra of numbers: 
 
Laws of Combination 
 
A = AA = AAA = &c. Law of Simplicity (p. 33) 
AB = BA A Law of Commutativeness (p. 35) 
A ·|·A = A Law of Unity (p. 72) 
A ·|·B = B·|·A A Law of Commutativeness (p. 72) 
A(B·|·C) = AB·|·AC (no name given) (p. 76) 
 
Laws of Thought 
A = A Law of Identity (p. 74) 
Aa = o Law of Contradiction (p. 74) 
A = AB·|·Ab Law of Duality (p. 74) 
 
For his single rule of inference Jevons chose his principle of substitution —in 
modern terms this was essentially a combination of ground replacement and 
transitivity. He showed how to derive transitivity of equality from this; he could 
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have derived symmetry as well but did not. The associative law was missing—it 
was implicit in the lack of parentheses in his expressions.  
 
It was only in his Studies in Deductive Logic (1880) that Jevons mentioned 
McColl's use of an accent to indicate negation. After noting that McColl's accent 
allowed one to take the negation of complex bracketed terms he went on to say 
that, for the most part, he found the notation of De Morgan, the notation that 
he had always used, to be the more elegant. 
 
4. Peirce: Basing the Algebra of Logic on 
Subsumption 
 
Peirce started his research into the algebra of logic in the late 1860s. In his 
paper “On an Improvement in Boole’s calculus of Logic” from 1867, he arrived 
independently at the same conclusion that Jevons had reached earlier, that one 
needed to replace Boole's partial operation of addition with the total operation 
of union (see CP 3.3.6). In his important 1880 paper, “On the Algebra of Logic,” 
Peirce quietly broke with the traditional extensional semantics and introduced a 
usual assumption of modern semantics: the extension of a concept, understood 
as a class, could be empty (as well as the universe), and stated the truth values 
of the categorical propositions that we use today. For example, he said the 
proposition “All A is B” is true if A and B are both the empty class. Conversion 
by Limitation, that is, the argument “All A is B” therefore “Some B is A,” was no 
longer a valid inference. Peirce said nothing about the reasons for and merits of 
his departure from the traditional semantic assumption of existence.  
 
Peirce also broke with Boole's and Jevons' use of equality as the fundamental 
primitive, using instead the relation of “subsumption” interpretable in different 
ways (subclass relation, implication, etc.). He stated the partial order properties 
of subsumption and then proceeded to define the operations of + and × as 
least upper bounds and greatest lower bounds—he implicitly assumed such 
bounds existed—and listed the key equational properties of the algebras with 
two binary operations that we now call lattices. Then he claimed that the 
distributive law followed, but said the proof was too tedious to include. The 
fruitfulness of this perspective is evident in his seminal paper from 1885. There 
Peirce introduced a system for propositional logic based on five axioms for 
implication (represented by the sign ’>-‘), including what is now called Peirce’s 
law. 
 
5. De Morgan and Peirce: Relations and Quantifiers in the Algebra of 
Logic 
 
De Morgan wrote a series of six papers called “On the Syllogism” in the years 
1846 to 1863. In his efforts to generalize the syllogism, De Morgan (1850) 
replaced the copula “is” with a general binary relation in the second paper of 
the series. By allowing different binary relations in the two premises of a 
syllogism, he was led to introduce the composition of the two binary relations to 
express the conclusion of the syllogism. In this pursuit of generalized syllogisms 
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he introduced various other operations on binary relations, including the 
converse operation, and he developed a fragment of a calculus for these 
operations. His main paper on this subject was the fourth (1859) in the series, 
called “On the syllogism, No. IV, and on the logic of relations.”  
 
Following De Morgan's paper, Peirce, in his paper “Description of a Notation for 
the Logic of Relatives, resulting from an Amplification of the Conceptions of 
Boole’s Calculus of Logic” from 1870, lifted Boole's work to the setting of binary 
relations—with binary relations one had, in addition to union, intersection and 
complement, the natural operations of composition and converse. A binary 
relation was characterized as a set of ordered pairs (see 3.328). He worked on 
this new calculus between 1870 and 1883. Like De Morgan, Peirce also 
considered a number of other natural operations on relations. Peirce's main 
paper on the subject was “On the Algebra of Logic” (1880). By employing 
unrestricted unions, denoted by Σ, and unrestricted intersections, denoted by Π, 
Peirce thus introduced quantifiers into his algebra of logic. 
 
In a paper from 1882, “Brief Description of the Algebra of Relatives”, he used 
these quantifiers to define operations on relations by means of operations on 
certain kind of coefficients. De Morgan gets credit for introducing the concept of 
relation, but Peirce is considered the true creator of the theory of relations (see 
v.g. Tarski 1941, p. 73). However, Peirce did not develop this theory. As Calixto 
Badesa wrote, “the calculus of relatives was never to Peirce’s liking” (Badesa 
2004, p. 32). He considered it too complicated because of the combination of 
class operations with relational ones. Instead, he preferred from 1885 onwards 
to develop a “general algebra” including quantifiers but no operation on 
relations. In this way, he arrived at an elementary and informal presentation of 
what is now called first-order logic (see Badesa 2004, loc. cit.). 
 
6. Schröder’s systematization of the algebra of logic 
 
The German mathematician Ernst Schröder played a key role in the tradition of 
the algebra of logic. A good example was his challenge to Peirce to provide a 
proof of the distributive law, as one of the key equational properties of the 
algebras with two binary operations. Peirce (1885) admitted that he could not 
provide a proof. Years later Huntington (1904, pp. 300–301) described part of 
the content of a letter he had received from Peirce in December 1903 that 
claimed to provide the missing proof—evidently Peirce had stumbled across the 
long lost pages after the death of Schröder in 1902. Peirce explained to 
Huntington that he had originally assumed Schröder's challenge was well-
founded and that this apparent shortcoming of his paper “was to be added to 
the list of blunders, due to the grippe, with which that paper abounds, …” 
Actually Peirce's proof did not correct the error since the distributive law does 
not hold in lattices in general; instead his proof brought in the operation of 
complementation—he used the axiom ‘if a is not contained in the complement 
of b then a and b have a common lower bound’.  
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On the basis of his previous algebraic work, Schröder wrote an encyclopedic 
three volume work at the end of the 19th century called Vorlesungen über die 
Algebra der Logik (1890– 1905), built on the subsumption framework with the 
modern semantics of classes as presented by Peirce. This work was the result 
of his research in algebra and revealed different influences. Schröder aimed at 
a general algebraic theory with applications in many mathematical fields, where 
the algebra of logic was at the core. As Geraldine Brady pointed out, it offers 
the first exposition of abstract lattice theory, the first exposition of Dedekind's 
theory of chains after Dedekind, the most comprehensive development of the 
calculus of relations, and a treatment of the foundations of mathematics on the 
basis of the relation calculus (see Brady 2000, pp. 143 f.) 
 
The first volume concerned the equational logic of classes, the main result 
being Boole's Elimination Theorem of 1854. Three rather complicated counter-
examples to Peirce's claim of distributivity appeared in an appendix to Vol. I, 
one of which involved nine-hundred and ninety identities for quasigroups. On 
the basis of this volume, Dedekind (1897) composed an elegant modern 
abstract presentation of lattices (which he called Dualgruppen); in this paper he 
presented a five-element counter-example to Peirce's claim of the distributive 
law. 
 
Volume II augments the algebra of logic for classes developed in Volume I so 
that it can handle existential statements. First, using modern semantics, 
Schröder proved that one cannot use equations to express “Some X is Y.” 
However, he noted that one can easily express it with a negated equation, 
namely XY ≠ 0. Volume II, a study of the calculus of classes using both 
equations and negated equations, attempted to cover the same topics covered 
in Vol. I, in particular there was considerable effort devoted to finding an 
Elimination Theorem. After dealing with several special cases, Schröder 
recommended this topic as an important research area—the quest for an 
Elimination Theorem would be known as the Elimination Problem. 
 
 

 

Inspired mainly by Peirce’s work, Schröder examined the algebra of logic for 
binary relations in Vol. III of his Vorlesungen über die Algebra der Logik.  As 
Tarski once noted, Peirce's work was continued and extended in a very 
thorough and systematic way by Schröder. One item of particular fascination for 
him was this: given an equation E(x, y, z, …) = 0 in this algebra, find the 
general solution for one of the relation symbols, say for x, in terms of the other 
relation symbols. He managed, given a particular solution x = x0, to find a 
remarkable term S(t, y, z, …) with the following properties: (1) x = S(t, y, z, …) 
yields a solution to E = 0 for any choice of relation t, and (2) every solution x of 
E = 0 can be obtained in this manner by choosing a suitable t. Peirce was not 
impressed by Schröder's preoccupation with the problem of solving equations, 
and pointed out that Schröder's parametric solution was a bit of a hoax—the 
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expressive power of the algebra of logic for relations was so strong that by 
evaluating the term S(t, y, z, …) one essentially carried out the steps to check if 
E(t, y, z, …) = 0; if the answer was yes then S(t, y, z, …) returned the value t, 
otherwise it would return the value x0.  
 
Summing up, Schröder constructed an algebraic version of modern predicate 
logic and also a theory of relations. He applied it to different fields (e.g. 
Cantor’s set theory), and he considered his algebraic notation as a general or 
universal language (pasigraphy, see Peckhaus 2004 and Legris 2012). It is to 
noted that Löwenheim in 1940 still thought it was as reasonable as set theory. 
According to him, Schröder's idea of solving a relational equation was a 
precursor of Skolem functions, and Schröder inspired Löwenheim's formulation 
and proof of the famous theorem that every "arithmetical" sentence with an 
infinite model has a countable model. Schröder’s calculus of relations was the 
basis for the doctoral dissertation of Norbert Wiener (1894 – 1964) in Harvard 
(1913). According to Brady, Wiener gave the first axiomatic treatment of the 
calculus of relations, preceding Tarski's axiomatization by more than twenty 
years (see Brady 2000, p. 165).  

7. Huntington: Axiomatic Investigations of the Algebra of Logic 

At the turn of the 19th Century, David Hilbert (1862 – 1943) presented, in his 
Grundlagen der Geometrie,  Euclidean geometry as an axiomatic subject that 
did not depend on diagrams for its proofs (Hilbert 1899). This led to a wave of 
interest in studying axiom systems in mathematics; in particular one wanted to 
know if the axioms were independent, and which primitives led to the most 
elegant systems. Edward Vermilye Huntington (1874 – 1952) was one of the 
first to examine this issue for the algebra of logic. He gave three 
axiomatizations of the algebra of logic, showed each set of axioms was 
independent, and that they were equivalent (see Huntington 1904). In 1933 he 
returned to this topic with three new sets of axioms, one of which contained 
the following three equations (1933, p. 280):  

a + b = b + a  
(a + b) + c = a + (b + c)  
(a′ + b′)′ + (a′ + b)′ = a.  

Shortly after this, Herbert Robbins (1915-2001) conjectured that the third 
equation could be replaced by the slightly simpler 

[(a + b)′ + (a + b′)′]′ = a.  

Neither Huntington nor Robbins could prove this, and later it withstood the 
efforts of many others, including even Tarski and his talented school at 
Berkeley. Building on partial results of Winker, the automated theorem prover 
EQP, designed by William McCune of the Argonne National Laboratory, found a 
proof of the Robbins Conjecture in 1996. This accomplishment was popularized 
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as “Computer Math Proof Shows Reasoning Power” in the New York Times, 
December 10, 1996, by Gina Kolata. 

According to Huntington (1933, p. 278), the term “Boolean algebra” was 
introduced by Henry M. Sheffer (1882–1964) in the paper where he showed 
that one could give a five-equation axiomatization of Boolean algebra using the 
single fundamental operation of joint exclusion, now known as the Sheffer 
stroke (see Sheffer 1913). Whitehead and Russell claimed in the preface to the 
second edition of Principia that this was the greatest advance in logic since the 
publication of Principia. (Hilbert and Ackermann (1928), by contrast, stated that 
the Sheffer stroke was just a curiosity.) Neither realized that decades earlier 
Schröder had discovered that the dual of the Sheffer stroke was also such an 
operation—Schröder's symbol for his operation was that of a double-edged 
sword. 

In the 1930s Garrett Birkhoff (1911–1996) established the fundamental results 
of equational logic, namely (1) equational classes of algebras are precisely the 
classes closed under homomorphisms, subalgebras and direct products, and (2) 
equational logic is based on five rules: reflexivity, symmetry, transitivity, 
replacement, and substitution. In the 1940s, Tarski joined in this development 
of equational logic; the subject progressed rapidly from the 1950s till the 
present time. 

8. Stone: Models for the Algebra of Logic 

Traditional logic studied certain simple relationships between classes, namely 
being a subclass of and having a nonempty intersection with. However, once 
one adopted an axiomatic approach, the topic of possible models besides the 
obvious ones surfaced. Beltrami introduced models of non-Euclidean geometry 
in the late 1860s. In the 1890s Schröder and Dedekind constructed models of 
the axioms of lattice theory to show that the distributive law did not follow. But 
when it came to the algebra of classes, Schröder considered only the standard 
models, namely each was the collection of all subclasses of a given class.  

The study of general models of the axioms of Boolean algebra did not get 
underway until the late 1920s; it was soon brought to a very high level in the 
work of Marshall Harvey Stone (1903 – 1989) (see his papers 1936, 1937). He 
was interested in the structure of rings of linear operators and realized that the 
central idempotents, that is, the operators E that commuted with all other 
operators in the ring under multiplication (that is, EL = LE for all L in the ring) 
and which were idempotent under multiplication (EE = E) played an important 
role. In a natural way, the central idempotents formed a Boolean algebra. 

Pursuing this direction of research led Stone to ask about the structure of an 
arbitrary Boolean algebra, a question that he answered by proving that every 
Boolean algebra is isomorphic to a Boolean algebra of sets. In his work on 
Boolean algebras he noticed a certain analogy between kernels of 
homomorphisms and the ideals studied in ring theory—this led him to give the 
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name “ideal” to such kernels. Not long after this he discovered a translation 
between Boolean algebras and Boolean rings; under this translation the ideals 
of a Boolean algebra corresponded precisely to the ideals of the associated 
Boolean ring. His next major contribution was to establish a correspondence 
between Boolean algebras and certain topological spaces now called Boolean 
spaces (or Stone spaces). This correspondence would later prove to be a 
valuable tool in the construction of exotic Boolean algebras. These results of 
Stone are still a paradigm for developments in the algebra of logic. 

Inspired by the rather brief treatment of first-order statements about relations 
in Vol. III of the Algebra der Logik, Löwenheim (1915) showed that if such a 
statement could be satisfied in an infinite domain then it could be satisfied in a 
denumerable domain. In 1920 Thoralf Skolem (1887- 1963) simplified 
Löwenheim's proof by introducing Skolem normal forms, and in 1928 Skolem 
replaced his use of normal forms with a simpler idea, namely to use what are 
now called Skolem functions. He used these functions to convert first-order 
sentences into univeral sentences, that is to say, into sentences in prenex form 
with all quantifiers being universal (∀). 

9. Skolem: Quantifier Elimination and Decidability 

Skolem was strongly influenced by Schröder's Algebra der Logik, starting with 
his PhD Thesis. Later he took a particular interest in the quest for an 
Elimination Theorem in the calculus of classes. In his 1919 paper he established 
some results for lattices, in particular, he showed that one could decide the 
validity of universal Horn sentences (i.e, universal sentences with a matrix that 
is a disjunction of negated and unnegated atoms, with at most one positive 
atom) by a procedure that we now recognize to be a polynomial time algorithm. 
This algorithm was based on finding a least fixed point of a finite partial lattice 
under production rules derived from universal Horn sentences. Although this 
result, which is equivalent to the uniform word problem for lattices, was in the 
same paper as Skolem's famous contribution to Löwenheim's Theorem, it was 
forgotten until a chance rediscovery in the early 1990s. (Whitman (1941) gave 
a different solution to the more limited equational decision problem for lattices; 
it became widely known as the solution to the word problem in lattices.)  

Skolem (1920) gave an elegant solution to the Elimination Problem posed by 
Schröder for the calculus of classes by showing that if one added predicates to 
express “has at least n elements,” for each n = 1, 2, …, then there was a 
simple (but often lengthy) procedure to convert a first-order formula about 
classes into a quantifier-free formula. In particular this showed that the first-
order theory of the calculus of classes was decidable. This quantifier-elimination 
result was used by Mostowski (1952) to analyze first-order properties of direct 
powers and direct sums of single structures, and then by Feferman and Vaught 
(1959) to do the same for general direct sums and direct products of 
structures. 
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The elimination of quantifiers became a main method in mathematical logic to 
prove decidability, and proving decidability was stated as the main problem of 
mathematical logic in Hilbert and Ackermann (1928)—this goal was dropped in 
subsequent editions because of the famous undecidability result of Church and 
Turing. 

10. Tarski and the Revival of Algebraic Logic 

Model theory can be regarded as the product of Hilbert’s methodology of 
metamathematics and the algebra of logic tradition, represented specifically by 
the results due to Löwenheim and Skolem. But it was Tarski who gave the 
discipline its classical foundation. Model theory is the study of the relations 
between a formal language and its interpretation in “realizations” (that is, a 
domain for the variables of the language together with an interpretation for its 
primitive signs). If the interpretation happens to make that a sentence of the 
language state something true, then the interpretation is a model of the 
sentence (see the entry on Model Theory [LINK]). Models consists basically  of 
algebraic structures, and model theory became an autonomous mathematical 
discipline with its roots not only in the algebra of logic but in abstract algebra 
(see Sinaceur 1999). 

Apart from model theory, Tarski revived the algebra of relations in his 1941 
paper “On the Calculus of Relations.” First he outlined a formal logic based on 
allowing quantification over both elements and relations, and then he turned to 
a more detailed study of the quantifier-free formulas of this system that 
involved only relation variables. After presenting a list of axioms that obviously 
held in the algebra of relations as presented in Schröder's third volume he 
proved that these axioms allowed one to reduce quantifier-free relation 
formulas to equations. Thus his calculus of relations became the study of a 
certain equational theory which he noted had the same relation to the study of 
all binary relations on sets as the equational theory of Boolean algebra had to 
the study of all subsets of sets. This led to questions paralleling those already 
posed and resolved for Boolean algebras, for example, was every model of his 
axioms for relation algebras isomorphic to an algebra of relations on a set? One 
question had been answered by Arwin Korselt (1864 – 1947), namely there 
were first-order sentences in the theory of binary relations that were not 
equivalent to an equation in the calculus of relations—thus the calculus of 
relations definitely had a weaker expressive power than the first-order theory of 
relations. Actually the expressive power of relation algebra is exactly equivalent 
to first-order logic with just three variables. However, if in relation algebras (the 
calculus of relations) one wants to formalize a set theory which has something 
such as the pair axiom, then one can reduce many variables to three variables, 
and so it is possible to express any first-order statement of such a theory by an 
equation. Monk (1964) proved that, unlike the calculus of classes, there is no 
finite equational basis for the calculus of binary relations. Tarski and Givant 
(1987) showed that the equational logic of relation algebras is so expressive 
that one can carry out first-order set theory in it.  
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Furthermore, cylindric algebras, essentially Boolean algebras equipped with 
unary cylindric operations Cx which are intended to capture the existential 
quantifiers (∃x), were introduced in the years 1948–1952 by Tarski, working 
with his students Louise Chin and Frederick Thompson (see Henkin & Tarski 
(1961)), to create an algebra of logic that captured the expressive power of the 
first-order theory of binary relations. Polyadic algebra is another approach to an 
algebra of logic for first-order logic—it was created by Halmos (1956). The 
focus of work in these systems was again to see to what extent one could 
parallel the famous results of Stone for Boolean algebra from the 1930s. 
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