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Abstract

Our aim in this paper is to take quite seriously Heinz Post’s claim
that the non-individuality and the indiscernibility of quantum objects
should be introduced right at the start, and not made a posteriori
by introducing symmetry conditions. Using a different mathematical
framework, namely, quasi-set theory, we avoid working within a label-
tensor-product-vector-space-formalism, to use Redhead and Teller’s
words, and get a more intuitive way of dealing with the formalism
of quantum mechanics, although the underlying logic should be mod-
ified. We build a vector space with inner product, the Q-space, using
the non-classical part of quasi-set theory, to deal with indistinguish-
able elements. Vectors in Q-space refer only to occupation numbers
and permutation operators act as the identity operator on them, re-
flecting in the formalism the fact of unobservability of permutations.
Thus, this paper can be regarded as a tentative to follow and enlarge
Heinsenberg’s suggestion that new phenomena require the formation
of a new “closed” (that is, axiomatic) theory, coping also with the
physical theory’s underlying logic and mathematics.
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1 Introduction

“The transition in science from previously investigated fields of experi-
ence to new ones will never consist simply of the application of already
known laws to these new fields. On the contrary, a really new field
of experience will always lead to the crystallization of a new system of
scientific concepts and laws (. . .). The advance from the parts already
completed to those newly discovered, or to be newly erected, demands
each time an intellectual jump, which cannot be achieved through the
simple development of already existing knowledge.” W. Heisenberg [15,
p. 25], quoted from [3]

In his paper “Individuality in physics” ([24]), Heinz Post claimed that
“[p]articles are non-individual in modern theory (. . .) [and] non-individuality
has to be introduced right at the start”. Our aim in this paper is to take quite
seriously Heinz Post’s claim. Usually, the way of dealing with indiscernible
objects within the scope of classical logic and mathematics is by restricting
them to certain structures, such that the relations and functions of the
structure are not sufficient to individuate them. Saying in other words, such
structures are not rigid, in the sense that there are automorphisms other
than the identity function. For instance, within the additive group of the
integers Z = 〈Z,+〉, there is no way of distinguishing between two integers
n and −n, for the function f(x) = −x is an automorphism of the structure.
But in standard mathematics, such as in that one that can be built in
Zermelo-Fraenkel set theory with the axiom of foundation (ZF), which we
can assume bases all physical theories and which we shall identify with
“classical mathematics”, any structure can be extended to a rigid structure,
that is, to a structure whose only automorphism is the identity function.
That means that, outside the group Z, for instance in the rigid extended
structure Z ′ = 〈Z,+, <〉, we of course can distinguish, say, between 3 and
−3 (for −3 < 3 but not reciprocally). The fact that any structure (built in
ZF) can be extended to a rigid structure makes the indiscernibility of the
objects something quite artificial. That means that, although we can deal
with certain objects as if they were indiscernible, from “outside” of these
structures these objects are not indiscernible, for they can be individualized
in the extended rigid structures. In particular, in the “whole ZF”, that is,
in the well-founded “structure” V = 〈V,∈〉, where V is the von Neumann
well founded universe and ∈ is the membership relation, every representable
object is an individual, in the sense that it obeys the laws of identity of
classical (first or higher order) logic. In other words, any object a can
be distinguished from any other object b, say by the fact that it (and it
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only) belongs to its singleton {a} (which can be identified –in extensional
contexts– with the property “being identical to a”, namely, P (x) def= x = a).

In quantum physics, which is of course standardly build within classical
mathematics (thus encompassing classical logic as well), the strategy is quite
similar to that one mentioned above. When a system composed of particles
of the same kind is considered, we start by labeling the particles we are
dealing with,1 say by naming them “1”, “2” and so on, and then consider
the relevant Hilbert spaces H1, H2, etc., for each particle and, for the join
system, we take the tensorial product H =

⊗
i∈I Hi. The base vectors

|α1〉 ⊗ |α2〉 ⊗ . . ., or simply |α1α2 . . .〉 must be so that for any permutation
operator Pij , which intuitively speaking exchanges the labels (hence, the
particles) i and j, we have

Pij |α1 . . . αi . . . αj . . .〉 = ±|α1 . . . αj . . . αi . . .〉,

that is, the state of indistinguishable particles is left invariant by permu-
tations. The plus sign stands for bosons, and the minus sign for fermions.
This labeled-tensor-product-Hilbert-space formalism (LTPHSF), as called by
Redhead and Teller [25], [26], [32], requires that symmetry conditions of
this kind are introduced: we start from individuals, say by choosing a vec-
tor basis {|αi〉} for a suitable Hilbert space, which serves as a kind of label
to the particle. There is no scape. In order to talk of objects, we need
to refer to them in some way (Toraldo di Francia says that our languages
–including those of science– are “objectual” [33]), and this perhaps is due
to the deficiencies of the language employed, taken from classical physics,
which, as said Schrödinger, “gets off on the wrong foot” by initially assign-
ing particle labels and then permuting them before extracting combinations
of appropriate symmetry [17]. It is a challenge to find a suitable language
that enables us to speak of indiscernible objects without making such first
hypothesis about their individuality. Really, once indiscernibility lies in the
core of quantum assumptions, perhaps we need to agree with Yuri Manin
when he says that “quantum mechanics has not its own language” ([22, p.
84]), for (ideally) a suitable language would refer to quantum objects with-
out identifying them as individuals (this of course poses difficulties also for

1The term “particle” would not be taken literally as denoting neither tinny entities
like usual bodies, nor entities as described by classical physics (for the differences, see [10,
chap. 6]). For our argumentation, it does not matter what sort of entities they “really”
are, but only that, yet far from the näıve idea associated with this word, “the particle
concept [of particle] was not given up. After the quantum revolution, physicists still speak
of particles” [10, p. 209]. We shall take this quotation ever in mind in this paper. An
analogous consideration holds for the term “system”.
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the use of quantifiers in physics). The introduction of symmetry conditions,
say by choosing symmetric and anti-symmetric functions (or vectors), are
necessary devices in the formalism. In the above mentioned papers, Red-
head and Teller point to various puzzles caused by such an assumption, and
propose the use of the Fock space formalism instead. We shall turn to their
claim later. Yet, “for all practical purposes” (in Bell’s words), LTPSF works
quite well, as present day physics exemplifies, but rigorously speaking, we
see that there is an enormous gap, for we are considering individuals at the
start, and them “make” them non-individuals by some mathematical trick,
like by “forgetting” that they are individuals and considering only certain
quantities of them in each situation (this strategy was called “the Weyl
strategy” in [12], where there are further philosophical discussions). Thus,
to pursue Post’s claim seems to be relevant.

We guess that quasi-set theory provides a language for dealing with
collections of indiscernible elements right from the start. In this theory,
the notion of indistinguishability (or indiscernibility) is taken as a primitive
notion, and a definite concept of identity is restricted so that there may
exist objects that are indiscernible without turning to be identical (to be
the same object). Thus, the theory is non-Leibnizian, for his principle of
the identity of indiscernibles is not valid in general: entities can have all
the same properties without turning to be identical. We sketch the quasi-
set theory Q in the next section (for further details, see [12, Chap. 7]).
In 2 we review general notions on quasi-set theory. In 3, we use the non
classical part of quasi-set theory to construct a vector spaces with inner
product, which is adequate to deal with bosons and fermions. In section
4, we use this space to formulate quantum mechanics of indistinguishable
particles without appealing to intermediate indexations. Finally, we expose
our conclusions in 5.

2 Quasi-set theory

We recall here some notions of quasi-set theory that will play an important
role in what follows (for further details, see [12, Chap. 7]). We shall not
present all the postulates and definitions of the theory, but just revise the
main ideas and results which interest us here. Intuitively speaking a quasi-
set is a collection of indistinguishable (but not identical) objects. This of
course is not a strict “definition” of a quasi-set, acting more or less as Can-
tor’s “definition” of a set as “any collection into a whole M of definite and
separate [that is, distinguishable] objects m of our intuition or our thought”
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(see the discussion in [12, §6.4]), giving no more than an intuitive account
of the concept.

The quasi-set theory Q was conceived to handle collections of indistin-
guishable objects, and was motivated by some considerations taken from
quantum physics, mainly in what respects Schrödinger’s idea that the con-
cept of identity would not be applied to elementary particles [30, pp. 17-18].
Of course the theory can be developed independently of any formulation of
quantum mechanics, but here we shall have this motivation always in mind.
Our way to deal with indistinguishability is by assuming that expressions
like x = y are not always well formed. We express that by saying that the
concept of identity does not apply to the entities denoted by x and y when
they “refer” to quantum objects. Due to the lack of sense in applying the
concept of identity to certain elements, informally, a quasi-set (qset), that
is, a collection involving such objects, may be such that its elements cannot
be identified by names, counted, ordered, although there is a sense in say-
ing that these collections have a cardinal (not defined by means of ordinals,
as usual –but see below). But we aim at to keep standard mathematics
intact, so the theory is developed in a way that ZFU (and hence ZF, per-
haps with the axiom of choice, ZFC) is a subtheory of Q. In other words,
the theory is constructed so that it extends standard Zermelo-Fraenkel with
Urelemente (ZFU) set theory; thus standard sets (of ZFU) can be viewed as
particular qsets (that is, there are qsets that have all the properties of the
sets of ZFU; the objects in Q corresponding to the Urelemente of ZFU are
termed M -atoms). These objects will be called Q-sets, or just sets when
there will be no confusion. But quasi-set theory encompasses another kind
of Urelemente, the m-atoms, to which the standard theory of identity does
not apply (that is, expressions like x = y are not well formed if either x or y
denote m-atoms). Thus, we can say that Q-sets are qsets whose transitive
closure (defined as usual –see below) does not contain m-atoms (in other
words, they are “constructed” in the ”classical” part of the theory –see Fig.
1).

When Q is used in connection with quantum physics, these m-atoms are
thought of as representing quantum objects (henceforth, q-objects), and not
necessarily they are ‘particles’; waves or perhaps even strings (and whatever
‘objects’ sharing the property of indistinguishability of pointlike elementary
particles) can be also be values of the variables of Q (see [10, Chap. 6] for an
account on the various ways to understand the word “particle” in connection
to quantum physics). The lack of the concept of identity for the m-atoms
makes them non-individuals in a sense, and it is mainly (but not only) to
deal with collections of m-atoms that the theory was conceived. So, Q is a
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Figure 1: The quasi-set universe: Q is a “model” of Q.

theory of generalized collections of objects, involving non-individuals. For
details about Q and about its historical motivations, see [12, Chap. 7].

In order to distinguish between Q-sets and qsets that have m-atoms
in their transitive closure, we write (in the metalanguage) {x : ϕ(x)} for
the former and [x : ϕ(x)] for the latter. In Q, the so called ‘pure’ qsets
have only q-objects as elements (although these elements may be not always
indistinguishable from one another), and to them it is assumed that the
usual notion of identity cannot be applied (that is, let us recall, x = y,
so as its negation, x 6= y, are not a well formed formulas if either x or y
stand for q-objects). Notwithstanding, there is a primitive relation ≡ of
indistinguishability having the properties of an equivalence relation, and
a concept of extensional identity, not holding among m-atoms, is defined
and has the properties of standard identity of classical set theories. More
precisely, we write x =E y (x and y are extensionally identical) iff they are
both qsets having the same elements (that is, ∀z(z ∈ x↔ z ∈ y)) or they are
both M -atoms and belong to the same qsets (that is, ∀z(x ∈ z ↔ y ∈ z)).
From now on, we shall use the symbol “=” for the extensional equality,
except when explicitly mentioned.

Since the elements of a qset may have properties (and satisfy certain
formulas), they can be regarded as indistinguishable without turning to be
identical (that is, being the same object), that is, x ≡ y does not entail x =
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y. Since the relation of equality (and the concept of identity) does not apply
to m-atoms, they can also be thought of as entities devoid of individuality.
We remark further that if the ‘property’ x = x (to be identical to itself,
or self-identity, which can be defined for an object a as Ia(x)

def= x = a) is
included as one of the properties of the considered objects, then the so called
Principle of the Identity of Indiscernibles (PII) in the form ∀F (F (x) ↔
F (y)) → x = y is a theorem of classical second order logic, and hence
there cannot be indiscernible but not identical entities (in particular, non-
individuals). Thus, if self-identity is linked to the concept of non-individual,
and if quantum objects are to be considered as such, these entities fail to
be self-identical, and a logical framework to accommodate them is in order
(see [12] for further argumentation).

We have already discussed at length in the references given above (so as
in other works) the motivations to build a quasi-set theory, and we shall not
return to these points here,2 but before to continue we would like to make
some few remarks on a common misunderstanding about PII and quantum
physics. People generally think that spatio-temporal location is a sufficient
condition for individuality. Thus, two electrons in different locations are dis-
cernible, hence distinct individuals. Leibniz himself prevented us about this
claim (yet not directly about quantum objects of course), by saying that
“it is not possible for two things to differ from one another in respect to
place and time alone, but that is always necessary that there shall be some
other internal difference” [20]. Leaving aside a possible interpretation for the
word ‘internal’, we recall that even in quantum physics, fermions obey the
Pauli Exclusion Principle, which says that two fermions (yes, they ‘count’
as more than one) cannot have all their quantum numbers (or ‘properties’)
in common. Two electrons (which are fermions), one in the South Pole and
another one in the North Pole, are not individuals in the standard sense
(and we can do that without discussing the concepts of space and time).
Here, by an individual we understand an object that obeys the classical
theory of identity of classical (first or higher order) logic (extensional set
theory included). In fact, we can say that the electron in the South Pole is
described by the wave function ψS(x), while the another one is described by
ψN (x) (words like ‘another’ in the preceding phrase are just ways of speech,
done in the informal metalanguage). But the wave function of the joint
system is given by ψSN (x1, x2) = ψS(x1)ψN (x2)− ψN (x1)ψS(x2) (the func-
tion must be anti-symmetric in the case of fermions, that is, ψNS(x1, x2) =
−ψNS(x2, x1)), a superposition of the product wave functions ψS(x1)ψN (x2)

2But see [16], [4], [5], [17], [6], [11], [?], [19], [12].
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and ψS(x2)ψN (x1). Such a superposition cannot be factorized. Further-
more, in the quantum formalism, the important thing is the square of the
wave function, which gives the joint probability density; in the present
case, we have ||ψSN (x1, x2)||2 = ||ψS(x1)ψN (x2)||2 + ||ψS(x2)ψN (x1)||2 −
2Re(ψS(x1)ψN (x2)ψS(x2)∗ψN (x1)∗). This last ‘interference term’ (though
vanishing at large distances), cannot be dispensed with, and says that noth-
ing, not even in mente Dei, can tell us which is the particular electron in the
South Pole (and the same happens for the North Pole). As far as quantum
physics is concerned, they really and truly have no identity in the standard
sense (and hence they have not identity at all).

2.1 The basic ideas of quasi-set theory

Quasi-sets are the collections obtained by applying ZFU-like (Zermelo-Fraenkel
plus Urelemente) axioms to a basic domain composed of m-atoms, M -atoms
and aggregates of them. The theory still admits a primitive concept of quasi-
cardinal which intuitively stands for the ‘quantity’ of objects in a collection.
This is made so that certain quasi-sets x (in particular, those whose elements
are q-objects) may have a quasi-cardinal, written qc(x), but not an ordinal.
It is also possible to define a translation from the language of ZFU into the
language of Q in such a way so that there is a ‘copy’ of ZFU in Q (the
‘classical’ part of Q). In this copy, all the usual mathematical concepts can
be defined (inclusive the concept of ordinal for the Q-sets), and the Q-sets
turn out to be those quasi-sets whose transitive closure (this concept is like
the usual one) does not contain m-atoms.3

To understand the basic involved ideas, let us consider the three protons
and the four neutrons in the nucleus of a 7Li atom. As far as quantum
mechanics goes, nothing distinguishes these three protons. If we regard these
protons as forming a quasi-set, its quasi-cardinal should be 3, and there is
no apparent contradiction in saying that there are also 3 subquasi-sets with
2 elements each, despite we can’t distinguish their elements, and so on. So,
it is reasonable to postulate that the quasi-cardinal of the power quasi-set
of x is 2qc(x). Whether we can distinguish among these subquasi-sets is a
matter which does not concern logic.

3So, we can make sense to the primitive concept of quasi-cardinal of a quasi-set x as
being a cardinal defined in the ‘classical’ part of the theory. The reason to take the concept
of quasi-cardinal as a primitive concept will appear below, when we make reference to the
distinction between cardinals and ordinals. The first two authors of this paper have defined
the quasi-cardinal for finite qsets; see [9]. Independently, Becker has extending this idea
with other considerations [2].
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In other words, we may consistently (with the axiomatics of Q) reason
as if there are three entities in our quasi-set x, but x must be regarded as a
collection for which it is not possible to discern its elements as individuals.
The theory does not enable us to form the corresponding singletons. The
grounds for such kind of reasoning has been delineated by Dalla Chiara and
Toraldo di Francia as partly theoretical and partly experimental. Speaking
of electrons instead of protons, they note that in the case of the helium
atom we can say that there are two electrons because, theoretically, the
appropriate wave function depends on six coordinates and thus “we can
therefore say that the wave function has the same degrees of freedom as a
system of two classical particles”.4 Dalla Chiara and Toraldo di Francia have
also noted that, “[e]xperimentally, we can ionize the atom (by bombardment
or other means) and extract two separate electrons . . .” (ibid.).

Of course, the electrons can be counted as two only at the moment of
measurement; as soon as they interact with other electrons (in the measure-
ment apparatus, for example) they enter into entangled states once more. It
is on this basis that one can assert that there are two electrons in the helium
atom or six in the 2p level of the sodium atom or (by similar considerations)
three protons in the nucleus of a 7Li atom (and it may be contended that the
‘theoretical’ ground for reasoning in this way also depends on these exper-
imental considerations, together with the legacy of classical metaphysics).
On this basis it is stated the axiom of ‘weak extensionality’ of Q, which
says that those quasi-sets that have the same quantity of elements of the
same sort (in the sense that they belong to the same equivalence class of
indistinguishable objects) are indistinguishable.

This axiom has interesting consequences. As we have said, there is no
space here for the details, but let us mention just one of them which is
related to the above discussion on the non observability of permutations
in quantum physics, which is one of the most basic facts regarding indis-
tinguishable quanta. In standard set theories, if w ∈ x, then of course
(x− {w})∪ {z} = x iff z = w. That is, we can ’exchange’ (without modify-
ing the original arrangement) two elements iff they are the same elements,
by force of the axiom of extensionality. But in Q we can prove the following
theorem, where z′ (and similarly w′) stand for a quasi-set with quasi-cardinal
1 whose only element is indistinguishable from z (respectively, from w –the
reader shouldn’t think that this element is identical to either z or w, for the

4Op. cit., p. 268. This might be associated to the legacy of Schrödinger, who says that
this kind of formulation “gets off on the wrong foot” by initially assigning particle labels
and then permuting them before extracting combinations of appropriate symmetry [31].
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relation of equality doesn’t apply here; the set theoretical operations can be
understood according to their usual definitions):

[Unobservability of Permutations] Let x be a finite quasi-set such that x
does not contain all indistinguishable from z, where z is an m-atom such
that z ∈ x. If w ≡ z and w /∈ x, then there exists w′ such that

(x− z′) ∪ w′ ≡ x

Supposing that x has n elements, then if we ‘exchange’ their elements z
by correspondent indistinguishable elements w (set theoretically, this means
performing the operation (x− z′)∪w′), then the resulting quasi-set remains
indistinguishable from the original one. In a certain sense, it is not important
whether we are dealing with x or with (x− z′) ∪ w′. This of course gives a
’set-theoretical’ sense to the following claim made by Roger Penrose:

“[a]ccording to quantum mechanics, any two electrons must
necessarily be completely identical [in the physicist’s jargon, that
is, indistinguishable], and the same holds for any two protons and
for any two particles whatever, of any particular kind. This is not
merely to say that there is no way of telling the particles apart;
the statement is considerably stronger than that. If an electron
in a person’s brain were to be exchanged with an electron in a
brick, then the state of the system would be exactly the same
state as it was before, not merely indistinguishable from it! The
same holds for protons and for any other kind of particle, and for
the whole atoms, molecules, etc. If the entire material content of
a person were to be exchanged with the corresponding particles
in the bricks of his house then, in a strong sense, nothing would
be happened whatsoever. What distinguishes the person from
his house is the pattern of how his constituents are arranged, not
the individuality of the constituents themselves” [28, p. 32].

Within Q we can express that ‘permutations are not observable’, without
necessarily introducing symmetry postulates, and in particular to derive ‘in
a natural way’ the quantum statistics (see [18], [12, Chap. 7]).

3 The Q-space

In the standard formulation of quantum mechanics, pure states of quantum
systems are represented by normalized to unit vectors in a Hilbert space.

10



In the case of identical particles, the vectors representing their states are
symmetrized or antisymmetrized, as mentioned above. In this section, we
will use Q to construct a vector space, which we will call Q-space, in which
the states are defined without labeling particles for they are represented by
m-atoms. The structure of this space will result analogous to that of the
Fock-space.

3.1 Motivation

Let us analyze with a deeper detail how quantum mechanics deals with a
system of two indistinguishable particles, just to introduce some notation
and to motivate our construction. Recall that the usual construction of a
vector space –and of the whole formalism of quantum mechanics– makes use
of set theory, which presupposes the individuality and distinguishability of
the elements of any set. First the Hilbert space H = H1

⊗
H2 is constructed

up from the one particle spaces H1 and H2. We use Dirac notation for
simplicity. Let {|α〉} be a basis set of Hi. Then, {|α〉 ⊗ |β〉} is a basis
for H. α and β run over all possible values of the corresponding physical
magnitudes and it is understood that the first ket corresponds to the particle
labeled “1” and the second to the one labeled “2”.

The scalar product of any two basis vectors is given by:

(〈α| ⊗ 〈β|)(|α′〉 ⊗ |β′〉) = 〈α|α′〉〈β|β′〉 (1)

and, in general, the scalar product between two product vectors |ψ〉 ⊗ |ϕ〉
and |ψ′〉 ⊗ |ϕ′〉 of the product space is given by:

(〈ψ| ⊗ 〈ϕ|)(|ψ′〉 ⊗ |ϕ′〉) = 〈ψ|ψ′〉〈ϕ|ϕ′〉. (2)

It is worth noting that when α and β are different, |α〉 ⊗ |β〉 will be not
the same vector as |β〉 ⊗ |α〉. Thus, in general, if |ψ′〉 and |ϕ′〉 are linear
combinations of basis vectors, it results that:

(〈ψ| ⊗ 〈ϕ|)(|ψ′〉 ⊗ |ϕ′〉) 6= (〈ψ| ⊗ 〈ϕ|)(|ϕ′〉 ⊗ |ψ′〉) (3)

and this has no sense when dealing with indistinguishable particles. To solve
this difficult, the symmetrization postulate is assumed.

Our aim is to develop a procedure that takes into account indistinguisha-
bility from the start, so we recall in which steps artificial labeling has oc-
curred. First of all, one assigns vectors states to each particle in their corre-
sponding Hilbert spaces and “names” in some way these spaces to perform
the tensor product. Informally, one says that one is making the product of
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the Hilbert space of particle “1” and the Hilbert space of particle “2”, and
does the same thing for the resulting states. As one arrives at a situation
in which particles seem to be distinguishable, one applies a symmetrization
postulate. Then, when defining the scalar product, the differentiation of
state spaces is maintained when taking brackets, the bra of particle “1”
with the ket of particle “1” and the same for particle “2”. Thus, there are
two steps to be avoided: the use of the tensor product and this differentiation
in the scalar product.

To introduce the formal construction which will be developed in the next
sections, consider the possibility of a definition of a scalar product resembling
the following: Let {|α〉 ⊗ |β〉} and {|α′〉 ⊗ |β′〉} be two basis vectors of the
state space of the two particle system, then we could define their scalar
product as

(〈α| ⊗ 〈β|) ◦ (|α′〉 ⊗ |β′〉) = δαα′δββ′ + δαβ′δβα′ . (4)

For any two vectors |ψ〉⊗ |ϕ〉 and |ψ′〉⊗ |ϕ′〉 that are linear combinations of
the basis ones, one would obtain:

(〈ψ| ⊗ 〈ϕ|) ◦ (|ψ′〉 ⊗ |ϕ′〉) = 〈ψ|ψ′〉〈ϕ|ϕ′〉+ 〈ψ|ϕ′〉〈ϕ|ψ′〉. (5)

It is easy to verify that this product satisfies:

(〈ψ| ⊗ 〈ϕ|) ◦ (|ψ〉 ⊗ |ϕ〉) = |ψ|2|ϕ|2 + |〈ψ|ϕ〉|2 ≥ 0, (6)

and also:

(〈ψ′| ⊗ 〈ϕ′|) ◦ (|ψ〉 ⊗ |ϕ〉) = ((〈ψ| ⊗ 〈ϕ|) ◦ (|ψ′〉 ⊗ |ϕ′〉))∗. (7)

where * stands for complex conjugation. Another possibility to be consid-
ered is

(〈ψ| ⊗ 〈ϕ|) • (|ψ′〉 ⊗ |ϕ′〉) = 〈ψ|ψ′〉〈ϕ|ϕ′〉 − 〈ψ|ϕ′〉〈ϕ|ψ′〉. (8)

This “product” clearly depends on the order of the terms, and it is defined
up to a minus sign. But recall that in quantum mechanics we are interested
in squared probability amplitudes and its square does not depend on the
order. Furthermore, the product • has the following interesting property:

(〈ψ| ⊗ 〈ψ|) • (|ψ〉 ⊗ |ψ〉) = 〈ψ|ψ〉〈ψ|ψ〉 − 〈ψ|ψ〉〈ψ|ψ〉 = 0, (9)

and this will turn of great importance, because if we interpret |ψ〉 ⊗ |ψ〉 as
an state with two fermions in the same state, the state is a vector of null
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norm, and thus, null probability, and also its scalar product with any other
vector is zero:

(〈ϕ| ⊗ 〈φ|) • (|ψ〉 ⊗ |ψ〉) = 〈φ|ψ〉〈ϕ|ψ〉 − 〈φ|ψ〉〈ϕ|ψ〉 = 0 (10)

Moreover, using Cauchy-Schwartz inequality we have that

(〈ψ| ⊗ 〈ϕ|) • (|ψ〉 ⊗ |ϕ〉) = |ψ|2|ϕ|2 − |〈ψ|ϕ〉|2 ≥ 0, (11)

or
(〈ψ| ⊗ 〈ϕ|) • (|ψ〉 ⊗ |ϕ〉) = −|ψ|2|ϕ|2 + |〈ψ|ϕ〉|2 ≤ 0. (12)

These two possibilities come from the ambiguity in the sign when we define
“•”. This ambiguity will be solved later.

3.2 Construction of the Q-space

In the following we apply the guiding ideas discussed above to define a
product in a Q-space constructed using the quasi-set theory Q.

3.2.1 Quasi-functions

Let us consider a Q-set ε =E {εi}i∈I , where I is an arbitrary (denumerable
or not) collection of indexes, such that Z(ε). From now own, by a “set”
we mean a Q-set, and “=” stands for “=E”, except if explicitly mentioned.
We also recall that all the usual mathematical concepts mentioned below
can be obtained in the “classical” part of Q. We take the elements εi to
represent the eigenvalues of a physical magnitude of interest. To fix the
ideas, they may be the energy eigenvalues of the Hamiltonian H of the
system, H|ϕi〉 = εi|ϕi〉, with |ϕi〉 being the corresponding eigenstates. The
construction we present is, of course, independent of this particular choice.
Consider then the quasi-functions f , f : ε −→ Fp, where Fp is the quasi-set
formed of all finite and pure quasi-sets. f is the quasi-set formed of ordered
pairs 〈εi;x〉 with εi ∈ ε and x ∈ Fp. Let us choice these quasi-functions
in such a way that whenever 〈εik ;x〉 and 〈εik′ ; y〉 belong to f and k 6= k′,
then x ∩ y = ∅. Let us further assume that the sum of the quasi-cardinals
of the quasi-sets which appear in the image of each of these quasi-functions
is finite, and then, qc(x) = 0 for every x in the image of f , except for a
finite number of elements of ε. Let us call F the quasi-set formed of these
quasi-functions. If 〈x; εi〉 is a pair of f ∈ F , we will interpret that the
energy level εi has occupation number qc(x). These quasi-functions will
be represented by symbols such as fεi1

εi2
...εim

(or by the same symbol with
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permuted indexes). This indicates that the levels εi1εi2 . . . εim are occupied.
It will be taken as convention that if the symbol εik appears j-times, then
the level εik has occupation number j. For example, the symbol fε1ε1ε1ε2ε3

means that the level ε1 has occupation number 3 while the levels ε2 and ε3
have occupation numbers 1. The levels that do not appear have occupation
number zero.

These quasi-functions will be used to construct quantum states. It is
worth to say that, because of the utilization of pure quasi-sets with in-
distinguishable elements, there is no reference to particle indexation. The
only reference is to the occupation numbers, because permutations make no
sense here, as it should be. Let us consider, for example, the quasi-function
fε1ε1ε1ε2ε3 . As we have said above, we interpret this as a state in which the
level 1 has occupation number three, the levels 2 and 3 only one, and the
others zero. Thus, a permutation of particles makes no change because the
quasi-function fε1ε1ε1ε2ε3 is a collection of ordered pairs. These pairs are
〈ε1;x〉, 〈ε2; y〉, 〈ε3; z〉 and 〈εn; ∅〉 (for n > 3), where x, y and z are pure and
disjoint quasi-sets which satisfy qc(x) = 3 and qc(y) = 1 = qc(z). Thus,
permutation of two particles is formally represented by the procedure that
takes an element of, say, x and interchanges it with an element of y (or z).
But it is a theorem of Q that permutation of m-atoms gives place to indis-
tinguishable quasi-sets (unobservability of permutations). By definition, we
have 〈ε1;x〉 = [[ε1]; [ε1;x]]. Also by definition, [ε1;x] is the collection of all
the indistinguishable from either ε1 or x (taken from some previously given
qset). For this reason, if we replace x by x′, with x ≡ x′ we will obtain
[ε1;x] = [ε1;x′]. Thus, we obtain 〈ε1;x〉 = 〈ε1;x′〉 and the ordered pairs
of the ‘permuted’ quasi-function will be the same and, consequently, the
new quasi-function is again fε1ε1ε1ε2ε3 . We thus see that the permutation of
indistinguishable elements does not produce changes in the quasi-functions
and, then, in any vector space constructed using them, the permutation
operation will be reduced to identity.

It is important to point out that the order of the indexes in a quasi-
function fεi1

εi2
...εin

has no meaning at all because up to now, there is no
need to define any particular order in ε, the domain of the quasi-functions
of F . Nevertheless, we may define an order in the following way. For each
quasi-function f ∈ F , let {εi1εi2 . . . εim} be the quasi-set formed by the
elements of ε such that 〈εik , X〉 ∈ f and qc(X) 6= 0 (k = 1 . . .m). We call
supp(f) this quasi-set (the support of f). Then consider the pair 〈o, f〉,
where o is a bijective quasi-function:

o : {εi1εi2 . . . εim} −→ {1, 2, . . . ,m}.
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Each of these quasi-functions o define an order on supp(f). For each f ∈ F ,
if qc(supp(f)) = m, then, there are m! orderings. Then, let OF be the
quasi-set formed by all the pairs 〈o, f〉, where f ∈ F and o is a a particular
ordering in supp(f). Thus, OF is the quasi-set formed by all the quasi-
functions of F with ordered support. For this reason, if we now say that
fεi1

εi2
...εin

∈ OF , we will be speaking of a quasifunction f ∈ F and of an
special ordering of {εi1εi2 . . . εin}. For the sake of simplicity, we will use the
same notation as before. But now the order of the indexes is meaningful.
It is also important to remark, that the order on the indexes must not be
understood as a labeling of particles, for it easy to check that, as above, the
permutation of particles does not give place to a new element of OF . This
is so because a permutation of particles operating on a pair 〈o, f〉 ∈ OF will
not change f , and so, will not alter the ordering. We will use the elements
of OF later, when we deal with fermions.

3.2.2 Vector space structure

A linear space structure is required to adequately represent quantum states.
To equip F and OF with such a structure, we need to define two operations
“?” and “+”, a product by scalars and an addition of their elements, respec-
tively. We will construct a vector space starting from the quasi-functions of
the quasi-sets F (or equivalently OF) defined above. Call C the collection
of quasi-functions which assign to every f ∈ F (or f ∈ OF) a complex num-
ber. That is, a quasi-function c ∈ C is a collection of ordered pairs 〈f ;λ〉,
where f ∈ F (or f ∈ OF) and λ a complex number. Let C0 be the subset
of C such that, if c ∈ C0, then c(f) = 0 for almost every f ∈ OF (i.e.,
c(f) = 0 for every f ∈ OF except for a finite number of quasi-functions).
We can define in C0 a sum and a product by scalars in the same way as it
is usually done with functions as follows.

Definition 3.1 Let α, β and γ ∈ C, and c, c1 and c2 be quasi-functions of
C0, then

(γ ∗ c)(f) def= γ(c(f))

(c1 + c2)(f) def= c1(f) + c2(f)

The quasi-function c0 ∈ C0 such that c0(f) = 0, for any f ∈ F , acts as the
null element of the sum, for

(c0 + c)(f) = c0(f) + c(f) = 0 + c(f) = c(f),∀f. (13)
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With the sum and the multiplication by scalars defined above we have that
(C0,+, ∗) is a complex vector space. Each one of the quasi-functions of C0

should be interpreted in the following way. If c ∈ C0 (and c 6= c0), let
f1, f2, f3,. . ., fn be the only functions of C0 which satisfy c(fi) 6= 0 (i =
1, . . . , n). These quasi-functions exist because, as we have said above, the
quasi-functions of C0 are zero except for a finite number of quasi-functions
of F . If λi are complex numbers which satisfy that c(fi) = λi (i = 1, . . . , n),
we will make the association

c ≈ (λ1f1 + λ2f2 + · · ·+ λnfn). (14)

The symbol ≈ must be understood in the sense that we use this notation to
represent the quasi-function c. The idea is that the quasi-function c repre-
sents the pure state which is a linear combination of the states represented
by the quasi-functions fi according to the interpretation given above. As
a particular case of this notation, we have that if cj ∈ C0 are the quasi-
functions such that cj(fi) = δij (δij is the Kronecker symbol), then cj ≈ fj

and in a similar way λ ∗ cj ≈ λfj . In this space, the vectors cj are the
“natural” basis vectors, while the others are linear combinations of them.

3.2.3 Scalar products

With the aid of a vector space structure, we can express quantum super-
positions. In order to calculate probabilities and mean values, we need to
introduce the notion of scalar product. In the following, we will introduce
two different products for bosons and fermions separately, following the ideas
of Section 3.1. Let us do it first for bosons.

Definition 3.2 Let δij be the Kronecker symbol and fεi1
εi2

...εin
and fεi′1

εi′2
...εi′m

two basis vectors, then

fεi1
εi2

...εin
◦ fεi′1

εi′2
...εi′m

def= δnm

∑
p

δi1pi′1
δi2pi′2

. . . δinpi′n (15)

The sum is extended over all the permutations of the index set i′ = (i′1, i
′
2, . . . , i

′
n)

and for each permutation p, pi′ = (pi′1, pi
′
2, . . . , pi

′
n).

This product can be easily extended over linear combinations:

(
∑

k

αkfk) ◦ (
∑

k

α′kf
′
k)

def=
∑
kj

α∗kα
′
j(fk ◦ f ′j) (16)

On the other hand, we can consider another “•” product as follows,
which will be adequate for fermions:
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Definition 3.3 Let δij be the Kronecker symbol and fεi1
εi2

...εin
and fεi′1

εi′2
...εi′m

two basis vectors, then

fεi1
εi2

...εin
• fεi′1

εi′2
...εi′m

def= δnm

∑
p

σpδi1pi′1
δi2pi′2

. . . δinpi′n (17)

where:

σp =
{

1, if p is even
−1, if p is odd

(18)

The result of this product is an antisymmetric sum of the indexes which
appear in the quasi-functions. In order that the product is well defined, the
quasi-functions must belong to OF . Once this product is defined over the
basis functions, we can extend it to linear combinations, in a similar way as
in (16). If the occupation number of a product is more or equal than two,
then the vector has null norm. As it is a vector of null norm, the product
of this vector with any other vector of the space would yield zero, and thus
the probability of observing a system in a state like it vanishes. This means
that we can add to any physical state an arbitrary linear combination of
null norm vectors for they do not contribute to the scalar product, which is
the meaningful quantity.

We have defined two products, “◦” and “•”, that are adequate for bosons
and fermions, respectively. We will return to this point in the following
section.

We point out that to formulate quantum mechanics in such a way that
no reference to particle individuality is made, we need to avoid labeling in
state vectors as much as in operators representing observable quantities. As
it is known, in the Fock-space formalism, the observables can be written in
terms of creation and annihilation operators, avoiding particle labeling. In
the following section we will introduce creation and annihilation operators
in order to express observable quantities, without making appeal to particle
labeling in the operators themselves.

4 The construction of quantum mechanics using
Q-spaces

In this section we will first briefly review for completeness the formulation
of quantum mechanics using the Fock-space formalism. After that, we will
rewrite that formulation using the language of the Q-space.
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4.1 Fock-space formalism

As is well known, the standard formulation of quantum mechanics and the
Fock-space formulation are deeply connected. Equivalence with wave me-
chanics is studied (for example) in [27]. Here we briefly recall some basic
notions of the standard formalism to fix notation. We call T1 the kinetic
energy of a single particle and V1 the external potential acting on it. For n
particles we have:

Tn
def=

n∑
i=1

T1(ri) (19)

and the same for the external potential. We represent by

Vn
def=

n∑
i>j=1

V2(ri, rj) (20)

the pairwise interaction potential. Thus, the total hamiltonian operator is
given by

Hn =
n∑

i=1

[T1(ri) + V1(ri) +
n∑

i>j=1

V2(ri, rj)] (21)

The n-particles wave function is written as

Ψn(r1, . . . , rn) (22)

The standard Fock-space is built up from the one particle Hilbert spaces.
Let H be a Hilbert space and define:

H0 = C
H1 = H
H2 = H⊗H
...
Hn = H⊗ · · · ⊗ H (23)

If no symmetry condition is required for the states, the Fock-space is con-
structed as the direct sum of n particles Hilbert spaces:

F =
∞⊕

n=0

Hn (24)
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When dealing with bosons or fermions, the standard procedure to obtain
the physical space state is as follows. Given a vector v = v1⊗· · ·⊗vn ∈ Hn,
define:

σn(v) = (
1
n!

)
∑
P

P (v1 ⊗ · · · ⊗ vn) (25)

and:
τn(v) = (

1
n!

)
∑
P

spP (v1 ⊗ · · · ⊗ vn) (26)

where:

sp =
{

1, if p is even
−1, if p is odd

(27)

It is important to realize that in this construction, particles are labeled
and then symmetry conditions are imposed by state symmetrization. Then,
calling

Hn
σ = {σn(v) : v ∈ Hn} (28)

and:
Hn

τ = {τn(v) : v ∈ Hn} (29)

we have the Fock-space

Fσ =
∞⊕

n=0

Hn
σ (30)

for bosons and

Fτ =
∞⊕

n=0

Hn
τ (31)

for fermions. Once each Fock-space is constructed, the usual procedure runs
as follows. Let ψ(r) and its hermitian conjugate ψ(r)† be operators acting
on the Fock-space and satisfying:

[ψ(r), ψ(r′)]∓ = 0
[ψ(r)†, ψ(r′)†]∓ = 0

[ψ(r), ψ(r′)†]∓ = δr−r′ (32)

where δ(r− r′) is the Dirac delta function. For any operators A and B, the
brackets are defined by:

[A,B]∓
def= AB ∓BA (33)
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Corresponding to the n particle wave function Ψn(r1, . . . , rn) of the standard
formulation, the n particle state in the Fock-space is defined:

|ψn〉
def= (n!)−

1
2

∫
d3r1 · · ·

∫
d3rnψ(r1)† · · ·ψ(rn)†|0〉Ψn(r1, . . . , rn) (34)

which can be shown to be an eigenvector (with eigenvalue n) of the particle
number operator:

N
def=

∫
d3rψ(r)†ψ(r) (35)

The connection between the two representations is given by:

Ψn(r1, · · · , rn) = (n!)−
1
2 〈0|ψ(r1) · · ·ψ(rn)|Ψn〉 (36)

In general, an arbitrary vector of the Fock-space:

|Ψ〉 =
∞∑

n=0

|Ψn〉 (37)

will not be an eigenstate of the particle number operator.
Corresponding to the kinetic energy operator of standard wave mechan-

ics, an operator in the Fock-space is defined as:

T
def=

∫
d3rψ†(r)T1(r)ψ(r) (38)

and it is easy to see that:
T † = T (39)

It can also be shown that:

T |Ψn〉 = (n!)−
1
2

∫
d3r1 · · ·

∫
d3rnΨ†(r1) · · ·Ψ†(rn)|0〉

n∑
i=1

T1(ri)Ψn(r1, · · · , rn)

(40)
Analogously, if there is a pairwise interaction potential V2(r, r′), the opera-
tor:

V
def=

1
2

∫
d3r

∫
d3r′ψ†(r)ψ†(r′)V2(r, r′)ψ(r′)ψ(r) (41)

is defined on the Fock-space. Its action on |Ψn〉 is given by:

V |Ψn〉 = (n!)−
1
2

∫
d3r1 · · ·

∫
d3r1[V, ψ†(rn) · · ·ψ†(r1)]|0〉Ψn(r1 . . . rn) (42)
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and it follows that:

V |Ψn〉 = (n!)−
1
2

∫
d3r1 · · ·

∫
d3r1ψ

†(rn) · · ·ψ†(r1)|0〉

×
n∑

i=1

i−1∑
j=1

V2(ri, rj)Ψn(r1, . . . , rn) (43)

It can be shown that that the following equations holds:

TnΨn(r1, · · · , rn) = (n!)−
1
2 〈0|Ψ(r1) · · ·Ψ(rn)T |Ψn〉 (44)

VnΨn(r1, · · · , rn) = (n!)−
1
2 〈0|Ψ(r1) · · ·Ψ(rn)V |Ψn〉 (45)

where:

Tn
def=

n∑
i=1

T1(ri) (46)

Vn
def=

n∑
i>j=1

V2(ri, rj) (47)

The equivalence with wave mechanics can now be established as follows.
If Ψn(r1, · · · , rn) satisfies the n particle Schrödinger wave equation with
Hamiltonian (21), it follows that in the Fock-space formulation |Ψn〉 must
satisfy the Fock-space Schrödinger equation:

[i~(
∂

∂t
)−H]|Ψn〉 = 0 (48)

with H def= T + V : given by:

H =
∫
d3rψ†(r)[T1 + V1(r)]ψ(r)

+
1
2

∫
d3r

∫
d3r′ψ†(r)ψ†(r′)V2(r, r′)ψ(r′)ψ(r) (49)

It is important to remark that the n particle Schrödinger wave equation
is not completely equivalent to its analogue in the Fock-space formalism.
Only solutions of the Fock-space equation which are eigenvectors of the
particle number operator with particle number n can be solutions of the
corresponding n particle Schrödinger wave equation. On the other hand, not
all the solutions of the n particle Schrödinger wave equation can be solutions
of the Fock equation, only those which are adequately symmetrized do. So,
both conditions, defined particle number and symmetrization, must hold in
order that both formalisms are equivalent.
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4.2 Creation and annihilation operators

The standard manner to handle with the equations in Fock-space is to write
physical magnitudes in terms of creation and annihilation operators. To do
so, one makes the following expansion:

ψ(r) =
∑

k

akuk(r) (50)

The coefficients of the expansion are the annihilation operators:

ak
def=

∫
d3ru∗k(r)ψ(r) (51)

A similar expansion stands for the creation operator: a†k. In quantum field
theory, it is commonly assumed that the action of the operator a†k describes
the “creation of a particle” with wave function uk(r). In a similar way, is
interpreted that the action of ak describes the “annihilation of a particle”.
It can be shown, that these operators satisfy the commutation relations:

[ak, al]∓ = 0

[a†k, a
†
l ]∓ = 0

[ak, a
†
l ]∓ = δkl (52)

Nk
def= a†kak (53)

We can cast these last equations in a more familiar form, using the “[, ]” sym-
bol for bosonic commutation relations and the “{, }” symbol for fermionic
(anti)commutation relations. Then for bosons we have:

[aα; a†β] = aαa
†
β − a†βaα = δαβI (54)

[a†α; a†β ] = 0 (55)

[aα; aβ ] = 0 (56)

and for fermions, (with C†α and Cα playing the role of fermionic creation
and annihilation operators respectively) we have:

{Cα;C†β} = CαC
†
β + C†βCα = δαβI (57)

{C†α;C†β} = 0 (58)
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{Cα;Cβ} = 0 (59)

Substitution of (50) in (49) yields:

H =
∑
kl

a†kTklal +
1
2

∑
klpq

a†ka
†
lVklpqapaq (60)

where the matrix elements Tkl and Vklpq are given by:

Tkl =
∫
d3ru∗k(r)[(−

~2∇2

2m ) + V1(r)]ul(r)
Vklpq =

∫
d3r

∫
d3r′u∗k(r)u

∗
l (r

′)V2(r, r′)up(r′)uq(r) (61)

and similar expressions can be found for more general obserables.

4.3 Using the Q-space

We have constructed two spaces whose vectors make no reference to particle
indexation and, besides, particles are not labeled in any step of the formal
construction. This is possible because these spaces are constructed using
the non classical part of Q, which may refer to intrinsically indistinguishable
entities. Vectors in these spaces are only distinguished by the occupation
number in each (energy) level. With these tools and using the language of
Q, the formalism of quantum mechanics may be completely rewritten giving
a straightforward answer to the problem of giving a formulation of quantum
mechanics in which intrinsical indistinguishability is taken into account from
the beginning, without artificially introducing extra postulates.

Let us first show that the Q-space is useful to provide a states space
analogous to Fock-space. With this aim, we make the following association
in order to turn the notation similar to that of standard quantum mechanics.
For each quasi-function fεi1

εi2
...εin

of the quasi-sets F or OF constructed
above, we will write:

αfεi1
εi2

...εin

def= α|εi1εi2 . . . εin)

with the obvious corresponding generalization for linear combinations.
Let us recall again that in |εi1εi2 . . . εin) ∈ F , the order of the indexes

has no meaning. But in |εi1εi2 . . . εin) ∈ OF , the order makes sense.
As we have already pointed out that, to avoid particle labeling in the ex-

pressions for observables, no reference to particle indexation should appear
in their corresponding operators. For that reason we will only use creation
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and annihilation operators. To do so, we construct creation and annihila-
tion acting on Q-spaces. In the rest of this section, we will develop the idea
of the symmetrized products (15) and (17) discussed in 3.2. We will first
develop the construction for bosons and later fermions. We will use creation
and annihilation operators and instead of postulating commutation rela-
tions, we will deduce them from their definitions and the properties of the
vectors of the Q-spaces (following an analogous procedure as that exposed,
for example, in [1, Chap. 17]).

4.4 Bosonic states

For bosons, the procedure is similar to the procedure of the standard ap-
proach for, as we have remarked earlier, a scalar product naturally arises
from the symmetric product (15). This implies that, once normalized to
unity, the vectors |αβγ . . .) constructed using Q, are equivalent to the sym-
metrized vectors |αβγ . . .〉 for bosonic states. This is so, because permuta-
tions alter the vector in none of the spaces.

Suppose then that vectors |αβγ . . .) are normalized to unity. If ζ repre-
sents an arbitrary collection of indexes, we define:

a†α|ζ) ∝ |αζ) (62)

in such a way that the proportionality constant satisfies

a†αaα|ζ) = nα|ζ) (63)

Then, it follows that:
((ζ|a†α)(aα|ζ)) = nα (64)

obtaining the usual

Definition 4.1

aα| . . . nα . . .) =
√
nα | . . . nα − 1 . . .) (65)

On the other hand,

aαa
†
α| . . . nα . . .) = K

√
nα + 1 | . . . nα . . .) (66)

where K is a proportionality constant. If we apply a†α once again:

a†αaαa
†
α| . . . nα . . .) = K2

√
nα + 1 | . . . nα + 1 . . .) (67)

and using (63):

(a†αaα)a†α| . . . nα . . .) =
√
nα + 1K| . . . nα + 1 . . .) (68)

so K =
√
nα + 1. Then,
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Definition 4.2

a†α| . . . nα . . .) =
√
nα + 1 | . . . nα + 1 . . .) (69)

Once this is established, let us obtain the commutation relations. By a
straightforward computation, we see that:

(aαa
†
β − a†βaα)|ψ) = δαβ |ψ) (70)

which is the same as:
[aα; a†β ] = δαβI (71)

In an analogous way we can show that:

[aα; aβ ] = [a†α; a†β ] = 0 (72)

This shows that the (bosonic) commutation relations that are obtained in
Q-space are the same ones as in the standard Fock-space.

4.5 Fermionic states

For the fermionic case, we will use C0 equipped with the antisymmetric
product given by equation (17). We define the creator operator C†α as fol-
lows:

Definition 4.3 Let ζ represent a collection of indexes with non null occu-
pation number, then

C†α|ζ) = |αζ) (73)

Note that if α was already in the collection ζ, then |αζ) is a vector with
null norm. To have null norm implies that (ψ|αζ) = 0 for all |ψ). Then,
if a given vector has null norm, its scalar product with any other vector in
the space is zero. It follows that in the case that a system were eventually
in a state of null norm, the probability of observing it would be zero. In
the same way, if a linear combination of null norm vectors were added to
the vector representing the state of a system, this addition would not give
place to observable results. It follows then that null norm vectors do not
represent real physical states, and the same holds for linear combinations
of them. Moreover, adding a vector of null norm to any other one does not
produce observable affects, because the terms of null norm do not contribute
to the mean values or to the probabilities. In order to express this situation,
we define the following relation:
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Definition 4.4 Two vectors |ϕ) and |ψ) are similar (and we will write
|ϕ) ∼= |ψ))) if the difference between them is a linear combination of null
norm vectors.

Let us now compute the effect of applying Cα to the vectors of OF . Using
Definition (4.3) we find that:

(ζ|Cα = (αζ| (74)

Then, for any vector |ψ):

(ζ|Cα|ψ) = (αζ|ψ) = 0 (75)

for α ∈ ζ or (ψ|αζ) = 0. Then, if we choose |ψ) = |0) it follows that:

(ζ|Cα|0) = (αζ|0) = 0 (76)

and thus we obtain that Cα|0) is orthogonal to any vector which contains α
and to any vector which does not contain α. Then, it is orthogonal to any
vector, and for that reason, it has to be a linear combination of null norm
vectors. Then, we do not loose anything if we establish Cα|0) = ~0. In an
analogous way we can assert that:

Cα|(∼ α) · · ·) = ~0 (77)

where (∼ α) means that α has occupation number zero, and the dots mean
that the other levels have arbitrary occupation numbers. Using (4.4) we can
also write:

Cα|0) ∼= ~0 (78)

and
Cα|(∼ α) . . .) ∼= ~0 (79)

In what follows we will use ∼= when it be necessary, but the same results are
obtained if we replace ∼= by the extensional equality. Making |ψ) = |α) in
(75) it follows that:

(ζ|Cα|α) = (αζ|α) = 0 (80)

in any case except for |ζ) = |0). In that case, (0|Cα|α) = 1. Then, it follows
that Cα|α) ∼= |0). In an analogous way we obtain:

Cα|αζ) ∼= |(∼ α)ζ) (81)
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if α does not belongs to ζ. But in the case that α belongs to ζ, (i.e., the
occupation number is greater than 1) we have that |αζ) has null norm, and
so:

(αζ|C†α|ψ) = (αζ|αψ) = 0,∀|ψ) (82)

From this equation it follows that:

(ψ|Cα|αζ) = 0,∀|ψ) (83)

and so, Cα|αζ) has null norm too.
Now, let us find the anti-commutation relations obeyed by the fermionic

creation and annihilation operators. Let us first calculate the commutation
relation between Cα and C†β. To do so, let us first study the relationship
between |αβ) ∈ OF and |βα) ∈ OF . With this aim, consider the vector
|αβ) + |βα) and perform the product of this sum with another arbitrary
vector. It suffices to study what happens with basis vectors. The product
yields trivially zero for any vector different from |αβ) or |βα). Making the
product with |αβ) we obtain:

(αβ|[|αβ) + |βα)] = (αβ||αβ) + (αβ||βα) =
δααδββ − δαβδβα + δαβδαα − δααδββ = 1− 0 + 0− 1 = 0 (84)

The same conclusion holds if we multiply it by |βα). Then, it follows that
|αβ)+|βα) is a linear combination of null norm vectors (which we will denote
by |nnlc)) and, thus:

|αβ) = −|βα) + |nnlc) (85)

We do not care about which is the particular null norm linear combination,
because it has no observable effects. Now, we can calculate

C†αC
†
β |ψ) = |αβ|ψ) =− |βαψ) + |nnlc) = −C†βC

†
α|ψ) + |nnlc) (86)

and thus
{C†α;C†β}|ψ) = |nnlc) (87)

Then, we do not loose generality if we set

{C†α;C†β}|ψ) = 0 (88)

In an analogous way, we conclude that

{Cα;Cβ}|ψ) = 0 (89)
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Now let us calculate the commutation relation between Cα and C†β . Suppose
first that α 6= β. If α /∈ ψ or β ∈ ψ then it is clear that

{Cα;C†β}|ψ) ≈ −→0 (90)

If α ∈ ψ and β /∈ ψ, suppose (without loss of generality), that α is the first
symbol in the list of ψ. Then,

{Cα;C†β}|ψ) = Cα|βψ) + C†β|ψ(∼ α)) ∼=
∼= −|βψ(∼ α)) + |βψ(∼ α)) = −→0 (91)

If α = β, and α ∈ ψ, then

{Cα;C†α}|ψ) = Cα|αψ) + C†α|ψ(∼ α)) ∼=
∼= −→0 + |ψ) = |ψ) (92)

If α = β, and α /∈ ψ, then

{Cα;C†α}|ψ) = Cα|αψ) + C†α|ψ(∼ α)) ∼=
∼= |ψ) +−→0 = |ψ) (93)

So, in any case, we recover the relation

{Cα;C†α}|ψ) ∼= δαβ |ψ) (94)

and then, we can set
{Cα;C†α} = δαβ . (95)

Thus, we have shown that the same commutation relations hold, as the
standard formalism hold in Q-space. This means that both formulations
are equivalent, for all the interesting information is contained in the com-
mutation relations. In the following section, we discuss some features of this
new formulation.

5 Discussion

We have shown that it is possible to construct the quantum mechanical for-
malism for indistinguishable particles without labeling them in any step. To
do so, we have built a vector space with inner product, the Q-space, using
the non-classical part of Q, the generalization of ZFU, to deal with indis-
tinguishable elements. Vectors in Q-space refer only to occupation numbers
and permutations operators act as the identity operator, reflecting in the
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formalism the fact of unobservability of permutations, already expressed in
terms of the formalism of Q.

We have also argued that it is useful to represent operators (which are
intended to represent observable quantities) as combinations of creator and
annihilation operators, in order to avoid particle indexation in the expression
of observable quantities. We have shown that creation and annihilation op-
erators which act on Q-space can be constructed. We have proved that they
obey the usual commutation and anticommutation relations for bosons and
fermions respectively, and this means that our construction is equivalent to
that of the Fock-space formulation of quantum mechanics. Thus, using the
results reviewed in section 4, this implies that we can recover the n-particles
wave equation using Q-space in the same way as in the standard theory.
Though both formulations are equivalent ‘for all practical purposes’, when
subjected to careful analysis, the conceptual difference turns very important.
Our construction avoids the LTPSF by constructing the state spaces using
Q, a theory which can deal with truly indistinguishable entities, and so, it
gives an alternative (and radical) answer to the problems posed in [26], so
as (we guess) answers Manin’s problem posed in [21].

This last point seems remarkable, for our construction incorporates in-
trinsical indistinguishability from the beginning. Thus, our approach fulfills
not only Post’s claim already mentioned, but also both Manin’s claim that
we should find an adequate “set theory” for expressing collections of in-
distinguishable quanta, and Heisenberg’s idea that new tools (perhaps new
logical tools) seem to be justified in approaching “new fields of experience”,
as we see in the quotation at the beginning of our Introduction (which we
invite the reader to have a new look), so as also the following quotation from
Manin:

“In accordance with Hilbert’s prophecy, we are living in Cantor’s
paradise. So we are bound to be tempted. . . .

“We should consider the possibilities of developing a totally new
language to speak about infinity.5 Classical critics of Cantor
(Brouwer et al.) argued that, say, the general choice axiom is an
illicit extrapolation of the finite case.

“I would like to point out that this is rather an extrapolation of
common-place physics, where we can distinguish things, count
them, put them in some order, etc. New quantum physics has
shown us models of entities with quite different behavior. Even

5Set theory is also known as the theory of the ‘infinite’.
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‘sets’ of photons in a looking-glass box, or of electrons in a nickel
piece are much less Cantorian than the ‘set’ of grains of sand.
In general, a highly probabilistic ‘physical infinity’ looks consid-
erably more complicated and interesting than a plain infinity of
‘things’.”

Manin is right. The foundation analysis of a living science is of course a
difficult problem. As far as we go to the details, science itself changes, and
in certain sense axiomatization becomes (as it was considered long time ago)
just a cosmetics to the scientific theories. But this conclusion does not make
justice to the advance of the modern techniques of logic and mathematics. A
careful look to the foundational details may illuminate conceptual problems,
open new windows and show new mathematical and logical questions. Once
more referring to Yuri Manin, we think he is right in saying that “The
twentieth century return to Middle Age scholastics taught us a lot about
formalisms. Probably it is time to look outside again. Meaning is what
really matters” [21]. Quantum physics is a wonderful land to look at. As
our author also says,

“The development of the foundations of physics in the twentieth
century has taught us a serious lesson. Creating and understand-
ing these foundations turned out to have very little to do with
the epistemological abstractions which were of such importance
to the twentieth century critics of the foundations of mathemat-
ics: finiteness, consistency, constructibility, and, in general, the
Cartesian notion of intuitive clarity. Instead, completely unfore-
seen principles moved into the spotlight: complementarity, and
the nonclassical, probabilistic truth function. The electron is in-
finite, capricious, and free, and does not at all share our love for
algorithms.” [22, pp. 82-83]
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