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SUMMARY 

Background: Hepatocyte apoptosis, the hallmark of Non-alcoholic steatohepatitis (NASH) 

contributes to liver injury and fibrosis. Although, both the intrinsic and extrinsic apoptotic 

pathways are involved in the pathogenesis of NASH, the final common step of apoptosis is 

executed by a family of cysteine-proteases termed caspases.  

Thus, our aim was to ascertain if administration of Emricasan, a pan-caspase inhibitor, 

ameliorates liver injury and fibrosis in a murine model of NASH. Methods: C57/BL6J-mice 

were fed regular chow or high fat diet (HFD) for 20 weeks. All mice were treated with 

vehicle or Emricasan.  

Results: Mice fed a HFD diet demonstrate a 5-fold increase in hepatocyte apoptosis by the 

TUNEL assay and a 1.5-fold and 1.3-fold increase in caspase-3 and-8 activities respectively; 

this increase in apoptosis was substantially attenuated in mice fed a HFD treated with 

Emricasan (HFD-Em).  Likewise, liver injury and inflammation were reduced in mice fed 

HFD-Em as compare to HFD by measuring serum AST and ALT levels, NAS histologic score 

and IL 1-β, TNF-α, MCP-1 and CXCL2 qPCR. These differences could not be attributed to 

differences in hepatic steatosis as liver triglycerides content were similar in both HFD 

groups. Hepatic fibrosis was reduced by Emricasan in HFD animals by decreasing αSMA (a 

marker for HSC activation), fibrosis score, Sirius red staining, hydroxyproline liver content 

and profibrogenic cytokines by qPCR.  
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In Conclusion, these data demonstrate that in a murine model of NASH, liver injury and 

fibrosis are suppressed by inhibiting hepatocytes apoptosis and suggests that Emricasan 

may be an attractive anti-fibrotic therapy in NASH  

 

INTRODUCTION 

Non-alcoholic fatty liver disease (NAFLD) is currently the most common form of chronic 

liver disease, affecting 20-30 % of western countries population 1, and is closely associated 

with insulin resistance (IR) and overweight 2. A subset of these individuals, approximately 

5%, develops hepatic inflammation and fibrosis, a syndrome referral as nonalcoholic 

steatohepatitis (NASH) 3. This hepatic inflammatory disorder can progress to cirrhosis, 

liver failure, and hepatocellular carcinoma 4. The mechanisms underlying the progression 

of simple steatosis to steatohepatitis are not known; however, it is recognized that 

hepatocyte apoptosis correlates with NASH. Indeed, apoptosis is a cardinal pathological 

feature of NASH and is associated with hepatic inflammation and fibrosis 5. Consistent 

with this concept, elevated serum cytokeratin-18 fragments (M30 Neo-epitopes), markers 

of hepatocyte apoptosis by caspase activation, distinguish simple hepatic steatosis from 

NASH 6.  

Apoptosis, or programmed cell death, is a form of highly regulated cell death. Steatotic 

hepatocytes can undergo apoptosis via an extrinsic pathway activated by death ligands, 

Fas 5 7 and tumor necrosis factor related apoptosis inducing ligand (TRAIL) 8 9 10 or via 

activation of the intrinsic pathway 11 12, which can be triggered by intracellular stress of 
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membrane-bound organelles, such as lysosomes 13, endoplasmic reticulum (ER) 14, and 

mitochondria 11. Both pathways of apoptosis converge on caspases activation which 

makes this pathway mechanistically attractive by pharmacological inhibition. This group of 

proteases, term caspases (cysteinyl aspartate specific proteases), play a central role as 

executors of apoptosis. The caspases are constitutively expressed as inactive proenzymes 

and generally require proteolytic cleavage on the aspartic acid residue for their activation. 

Caspases are capable of self activation, as well as of activating each other in a cascade-like 

process. Among the 14 mammalian caspases identified to date, some are primarily 

involved in apoptosis (caspases-2, -3, -6, -7, -8, -9, -10, and -12) 15, and other caspases, 

such as caspases-1, -4, -5, and -11, are involved in inflammation 16. These caspases can be 

divided into initiator caspases or effector caspases. Initiator caspases (-2, -8, -9, -10) that 

are activated by death receptors; and effector caspases (-3, -6, and -7) that require 

cleavage by initiator caspases for their activation 17. On initiation of apoptotic cascades, 

activation of initiator caspases occur causing mitochondria dysfunction, with release of 

proapoptotic factors into the cytosol (e.g., cytochrome c, SMAC/Diablo, endonuclease G 

and AIF) 18. Cytosolic cytochrome c promotes activation of downstream effector caspases, 

cleavage of cellular targets and dismantle the cell causing characteristic apoptotic 

morphology. These apoptotic bodies are phagocytosed by adjacent cells, and it has been 

demonstrated that phagocytosis of apoptotic bodies by Kuppfer cells 19 and hepatic 

stellate cells (HSC) 20 is one of the mechanisms that promote inflammation and 

fibrogenesis. Based on this concept, decreasing hepatocytes apoptosis by caspases 

inhibitors protects the liver in murine models of acute liver failure 21, and attenuates 
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inflammation and fibrosis in murine models of cholestatic- 22, ethanol- 23 and 

methionie/choline deficient diet-induced 24 25 liver injury. Thus, the use of a pan-caspase 

inhibitor could be an attractive therapeutic approach for various types of liver disease. 

However, its efficacy for long term treatment such as NASH merits further evaluation.  

Emricasan (IDN-6556) is an irreversible pan-caspase inhibitor, orally active that is retained 

in the liver for prolonged period of time 26 21, which was evaluated in clinical trials for 

chronic liver disease 27 28. Therefore, in this study, we examined the effect of the pan-

caspase inhibitor emricasan on liver injury and fibrosis in a diet induced metabolic 

syndrome with NASH murine model. To address our aim, we formulated the following 

questions: Does the pan-caspase inhibitor … 1) attenuate hepatocyte apoptosis and liver 

injury?, 2) reduce hepatic steatosis?, 3) decrease hepatic inflammation?, and 4) attenuate 

hepatic fibrogenesis in diet induced NASH model?. The results demonstrate that in a 

murine model of NASH, liver injury and fibrosis are attenuated by inhibiting hepatocytes 

apoptosis and suggest that emricasan may be an attractive anti-fibrotic therapy in NASH.  

 

EXPERIMENTAL PROCEDURES  

Reagents and diet: Sucrose, Direct red 80 and Fast-green FCF (color index 42053) were 

obtained from Sigma. Emricasan (formerly named IDN-6556 or PF-03491390), was 

provided by Pfizer Ltd., was suspended in vehicle [2% (v/v) DMSO in 0.5% (w/v) 

methylcellulose] and administered to mice per os daily. The high fat diet used was from 

Cathedra of Bromatology, Faculty of Pharmacy and Biochemistry, University of Buenos 
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Aires (Cátedra de Bromatología. Facultad de Farmacia y Bioquímica. Universidad de 

Buenos Aires), which contains 47% of calories from fat (mostly from Milk fat, 50% 

saturated fat) with 2% of cholesterol, 35% from carbohydrate (78% of carbohydrate from 

Sucrose) and 18% of calories from protein, and was designed to approximate the typical 

human diet from patients with NASH 29 30.  

 

Animals. Studies were performed in male C57BL/6J mice (Bioterio Central, Facultad de 

Ciencias Exactas y Naturales, Universidad de Buenos Aires). All animals were maintained in 

a temperature (24°C) and light controlled (12:12 hr light:dark) facility, and had free access 

to food and water. Animals were age-matched and used at approximately 12-16 weeks of 

age. Four groups were studied (n = 60) with 15 mice per group. Groups 1 and 3 received 

regular chow. Groups 2 and 4 received high fat diet and 50 g/L (Sucrose) was added to 

drinking water for 20 weeks. Groups 3 and 4 received Emricasan 0.3mg/kg/day i.g., and 

group 1 and 2 received the vehicle. The dosing was based on previous data 21 that 

demonstrates that oral administration of emricasan at doses of 0.3 mg/kg corresponded 

to the ED90 value to prevent liver injury in the model of α-Fas-induced liver injury. Total 

body weight was measured at 0, 5, 10, 15 and 20 weeks. All protocols dealing with animals 

were reviewed and approved by the University of Buenos Aires Animal Studies Committee 

(CICUAL, Comité Institucional de Cuidado y Uso de Animales de Experimentación). This 

study followed the guidelines outlined in the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals. 
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Serum and Tissue Analysis. Blood samples and liver tissue were collected under deep 

anesthesia after a 8-h fast. Serum alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), glucose and cholesterol levels were measured using Roche-

Hitachi 911 Chemistry Auto-Analyzer. Plasma insulin was measured using a mouse insulin 

enzymelinked immunosorbent assay kit (Milipore). Insulin resistance was calculated using 

the homeostasis model assessment of insulin resistance (HOMA-IR) 31. Whole liver were 

homogenized in 1 mL of cold lysis buffer (50 mM HEPES [pH 7.5], 150 mM NaCl, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 2.5 mM ethyleneglycol tetraacetic acid [EGTA], 1 

mM dithiothreitol, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride [PMSF], 10 μg/mL 

each of aprotinin and leupeptin, 50 mM NaF and 0.1 mM sodium orthovanadate) per 100 

mg of tissue 32. Homogenates were clarified by centrifugation at 10,000g for 10 minutes at 

4°C and stored at -70°C. Thiobarbituric acid reactive substances (TBARS) assay were 

measured to quantify lipid peroxidation and tissue oxidative stress in whole liver 

homogenate using a colorimetric assay as described by Ohkawa et al 33. Commercial ELISA 

kits were used to measure hepatic levels of TNF-alpha (Mouse TNF-α ELISA Kit, EZMTNFA, 

Milipore) and MCP-1 (Mouse MCP-1 Elisa kit, RAB0056, Sigma) following the 

manufacturers’ instructions. Hepatic lipid content was analyzed for total triglycerides (TG) 

and cholesterol, briefly, frozen liver tissue (100 mg) was homogenized in 1.6 ml 

phosphate-buffered saline and protein concentration was determined using Bradford 

Protein Assay (Bio-Rad). Lipid was extracted using chloroform:methanol (2:1) and 0.1% 

sulfuric acid as described 34. An aliquot of the organic phase was collected, dried with 

chloroform containing 1% Triton, and resuspended in water (final Triton concentration = 
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~2%). TG content was determined using commercially available kits (Wako Chemicals) in 

microtiter plates and normalized to protein concentration of the homogenate. The hepatic 

lipid concentration was expressed as μg of TG/mg of liver protein.  

 

Terminal Deoxynucleotidyl Transferase–Mediated dUTP Nick-End Labeling (TUNEL) 

Assay. Tissue sections (5 μm) were prepared, and terminal deoxynucleotidyl transferase 

dUTP nick-end labeling (TUNEL) assay was performed following manufacturer’s 

instructions (ApopTag Fluorescein In Situ Apoptosis Detection Kit, Chemicon). Apoptotic 

cells were quantified by the TUNEL assay, which enzymatically labels free 3′-OH ends of 

damaged DNA with a fluorescently labeled nucleotide as we have previously described in 

detail35. TUNEL-labeled cells (that is, fluorescent nuclei) were quantified by the number of 

positive cells per high-power field being counted. A total of 10 high-power fields were 

analyzed for each animal, using Nikon Eclipse E800 microscope (Nikon, Melville, NY) 

coupled to a Nikon DN100 CCD camera. Data were expressed as the number of TUNEL-

positive cells per 10 high-power fields.  

 

α-Smooth Muscle Actin Staining. Livers were dissected and processed for paraffin 

inclusion. Five micron-thick sections of formalin-fixed, paraffin-embedded liver were used 

for α-SMA immunofluorescence staining. Slides were deparaffinized in xylene and serially 

rehydrated in graded ethanol (100 to 70%). Endogenous peroxidase was quenched with 

0.5% hydrogen peroxide in 90% ethanol for 20 min. Prior to primary antibody incubation, 
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endogenous avidin and biotin were blocked for 20 min using the Vector Laboratories 

blocking kit and unspecific binding of the antibody was subsequently blocked for 30 min in 

1% BSA in PBS. Tissue was incubated overnight with a mouse monoclonal Cy3-coupled 

anti-smooth muscle actin antibody (αSMA; 1/200; Sigma). After extensive washing, 

sections were coverslip-mounted for microscopic observation. As technical control, 

incubation with primary antibody was omitted rendering no significant staining. Pictures 

were taken using a Nikon DN100 CCD camera coupled to a Nikon Eclipse 800 fluorescence 

microscope. Quantitative analysis of immunohistochemical staining of αSMA was 

performed by computerized morphometric analysis (CMA). Approximately 100-200 

microscopic field (x400) per specimen were captured and analyzed using a color threshold 

detection system developed in Matlab 6.0 (Mathworks,Inc, USA). The results obtained 

were expressed as unit of αSMA positive area per field.  

 

Assessment of Liver Fibrosis. Liver fibrosis was semiquantified using Sirius red staining as 

described by Camino et al 36. Liver sections were stained with picrosirius red staining, and 

red-stained collagen fibers were quantified by computerized morphometric analysis 

(CMA). For CMA whole liver samples were analyzed with the excepetion of large 

centrilobular veins and large portal tract (≥ 150 μm). Two hundred light microscope 

images per speciem were captured and analyzed using color threshold detection system 

(Matlab 6.0, Mathworks,Inc, USA). The results were expressed as a percentage of positive 

area.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Additionally, collagen deposition was measured by hydroxyproline assay as detailed 

previously 36. Briefly, hydroxyproline content was quantified colorimetrically in duplicate 

from 0,2 g liver sample at 557 mm from a standard curve the amino acid alone and against 

a blank reagent. The results were expressed as mg/g of liver tissue.  

 

Histopathology. For histological review of hematoxylin and eosin (H&E)–stained liver 

sections by light microscopy (Eclipse, Nikon), the liver was fixed in 10% formalin buffer, 

and then embedded in paraffin. Tissue sections of 5-μm-thick were prepared and placed 

on glass slides. H&E and Mallory Trichrome staining were performed according to 

standard techniques. The slides were coded, without the pathologist knowing the specific 

treatment group that the slides represented. The histology was graded according to a 

number of histological features. Steatohepatitis was assessed using NAFLD activity score 

by the modified semiquantitative Brunt score 37. This measures degree of steatosis (0=  

<5%; 1: 5%-33%; 2= 33%-66%; 3= >66%), inflammation (0= no foci; 1= <2 foci per 200x 

field; 2= 2-4 foci per 200x field; 3= >4 foci per 200x field), and hepatocyte ballooning 

degeneration (0= none; 1= few balloon cells; 2= many cells/prominent ballooning). 

Fibrosis was determined by the following scale, 0= none; 1= zone 3 only, perisinusoidal; 2= 

zone 2-3, perisinusoidal; 3= perisinusoidal and portal/periportal; 4= bridging fibrosis; 5= 

cirrhosis.  

Analysis of Caspase Activation. For detection of the active form of caspases-3 and -8, 

colorimetric protease assay kits (Chemicon International, Inc.) were used. Proteins 

obtained from cytosolic extracts from liver tissue (100 μg) and were incubated with 200 
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μM DEVD-pNA (for caspase-3) or IETD-pNA (for caspase-8), The assay was based on the 

spectrophotometric detection of the chromophore p-nitroanilide (pNA) after cleavage 

from the labeled substrates. p-NA light emission was quantified using a microtiter plate 

reader at 405 nm. Comparison of the absorbance of p-NA from HFD fed mice samples with 

regular chow fed mice allowed determination of the-fold increase in caspase activity 38, 

samples were evaluated in triplicate each.  

 

Real-Time Polymerase Chain Reaction. Total RNA was extracted from liver tissue using 

the Trizol Reagent (Invitrogen), and was reverse-transcribed into complementary DNA 

with Moloney leukemia virus reverse transcriptase and random primers (both from 

Invitrogen). Quantification of the complementary DNA template was performed with real-

time polymerase chain reaction (PCR) (Mx3000P QPCR thermocycler, Stratagene) using 

SYBR green (Invitrogen) as a fluorophore. PCR primers (all obtained from Invitrogen) were 

as follows: murine αSMA Forward: 5′-ACT ACT GCC GAG CGT GAG AT-3′,  Reverse: 5′-AAG 

GTA GAC AGC GAA GCC AG-3′; murine Collagen1-α Forward: 5′-GAA ACC CGA GGT ATG 

CTT GA-3′, Reverse: 5′-GAC CAG GAG GAC CAG GAA GT-3′; murine Interleukin-1β Forward: 

5′- GCC CAT CCT CTG TGA CTC AT-3′, Reverse:  5′-AGG CCA CAG GTA TTT TGT CG-3′; 

murine CHOP Forward: 5′- CTG CCT TTC ACC TTG GAG AC-3′, Reverse: 5′-GGA CGC AGG 

GTC AAG AGT AG-3′;  murine TGF-β Forward: 5′- CTC CCG TGG CTT CTA GTG C-3′, Reverse: 

5′-GCC TTA GTT TGG ACA GGA TCT G-3′, murine TNF-α: Forward 5′- CCC TCA CAC TCA GAT 

CAT CTT CT-3′, Reverse: 5′-GCT ACG ACG TGG GCT ACA G-3′; murine TIMP-1: Forward 5′- 

CAT GGA AAG CCT CTG TGG ATA TG-3′, Reverse: 5′-GAT GTG CAA ATT TCC GTT CCT T-3′; 
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murine CXCL-2: Forward 5′-CTC TCA AGG GCG GTC AAA AAG TT-3′, Reverse: 5′-TCA GAC 

AGC GAG GCA CAT CAG GTA-3′; murine MCP-1: Forward 5′- CTT CTG GGC CTG CTG TTC A-

3′, Reverse: 5′-CCA GCC TAC TCA TTG GGA TCA-3′. As an internal control, primers from 

murine β-Actin were used as follow: Forward: 5′- TTC TAC AAT GAG CTG CGT GT-3′, 

Reverse: 5′-CTC TCA GCT GTG GTG GTG AA-3′. After electrophoresis in 1,5% agarose gel, 

each expected base pair PCR product was cut out and eluted into Tris-HCl using a DNA 

elution kit (Gel extraction kit; Quiagen). The concentrations of extracted PCR products 

(copies per microliter) were measured using a spectrophotometer at 260 nm and were 

used to generate standard curves. The inverse linear relationship between copy and cycle 

numbers was then determined. Each resulting standard curve was then used to calculate 

the number of copies per microliter in experimental samples. The relative expression level 

of each product was expressed as a ratio of β-Actin copies of PCR Product for each sample. 

Data were expressed as fold change from regular chow fed mice.  

 

Statistical Analysis. All data represent are expressed as the mean ± 95% CI for mean, or 

otherwise indicated.  Differences between groups were compared by an ANOVA analysis 

followed by a post-hoc Student-Newman–Keuls test, parametric test or the Kruskall–

Wallis nonparametric test. Differences were considered to be statistically significant at 

P<0.05.  
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RESULTS  

Is Liver injury attenuated in Emricasan treated HFD fed mice?    

We first examined the effects of the pan-caspase inhibitor Emricasan on hepatocyte 

apoptosis in C57BL/6J mice fed a high fat diet. Hepatocyte apoptosis was assessed by 

TUNEL assay and caspase -3 and -8 activities were evaluated to determine the efficiency of 

the pharmacological caspase inhibition by emricasan (Figure 1). TUNEL positive cells were 

considerably increased by 5 fold in mice fed a HFD and were reduced under emricasan 

treatment (Figure 1 A, and B). In accordance with this observation caspase -3 and -8 were 

increased in HFD-fed mice by 1.5 and 1.3 fold respectively and were significantly 

decreased by emricasan treatment (Figure 1 C and D). To further evaluate the effects of 

the pan-caspase inhibitor in reducing liver injury, we next examined liver histology score, 

serum AST and ALT values in HFD fed mice treated with vehicle or emricasan. 

Histopathologic examination of liver specimens demonstrated increased histological 

parameters of liver injury as assessed by NAFLD activity score (NAS) in the mice fed a HFD 

(Figure 2). In accord with this observation, serum AST and ALT were 3-5 fold higher in HFD 

than regular chow-fed mice, and the emricasan treated group showed a significant 

decrease in AST and ALT serum levels (Figure 3 A and B). Also, Lipid peroxidation was 

assessed as a surrogate for hepatic oxidative stress-mediated liver injury. Significantly 

higher levels of TBARS were detected in HFD-fed animals compared to regular chow diet, 

and the emricasan treatment significantly reduced TBARS (Figure 3 C). 

Next we evaluated the effect of emricasan on features of metabolic syndrome and hepatic 

steatosis. Mice fed a HFD had significantly increased weights, associated with 
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hyperglycemia, hyperinsulinemia and hypercholesterolemia as compared with regular 

chow-fed mice (Table 1). Moreover, HFD-fed mice had dramatically induced fat 

accumulation, increasing the score of steatosis (Figure 2) and hepatic content of 

triglycerides and cholesterol (Table 1). Treatment with emricasan did not significantly 

impact features of metabolic syndrome, insulin resistance or hepatic steatosis. 

Collectively, these data indicate a pathogenic role for caspase-mediated hepatocyte 

apoptosis in liver injury in a NASH murine model and demonstrate that the pan-caspase 

inhibitor emricasan decreases liver injury but not metabolic derangement in NASH.  

 

Is hepatic inflammation reduced in Emricasan-treated HFD-fed mice?  

To examine the changes of hepatic inflammation in HFD fed mice under Emricasan 

treatment, key mediators of inflammation (TNF-α, IL-1β), monocyte and neutrophil 

infiltration (MCP-1, CXCL2) were quantitated at protein level and messenger RNA 

transcripts using qPCR. In HFD fed mice, the inflammatory mediators TNF-α, IL-1β, MCP-1 

and CXCL2 were significantly increased compared with Emricasan-treated HFD fed animals 

(Fig. 4, A, B, C, D, E and F). Consistent with these results, histological examination of 

inflammation score demonstrated a clear decrease in inflammatory foci in emricasan-

treated mice compared with vehicle-treated HFD fed mice (Reg Chow: 0.3 ± 0.1, HFD: 2.2 

± 0.2*, HFD-Emricasan: 0.6 ± 0.2, * p<0.05 ) (Figure 2). Indeed the overall NAS score 

showed a protective effect by emricasan treatment (Reg Chow: 0.5 ± 01, HFD: 6.1 ± 0.3, 

HFD + Emricasan: 3.2 ± 0.4) (Figure 2). Such differences cannot be attributed to 

differences in hepatic steatosis as hepatic triglyceride content was similar in both groups 
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(Table 1). Therefore, these data demonstrate that inflammation is coupled to caspase-

dependent liver injury in HFD-diet induced NASH and the treatment with the pan-caspase 

inhibitor ameliorates inflammation and liver injury.  

 

Is hepatic fibrogenesis attenuated in Emricasan treated HFD fed mice?  

To investigate if the reduction in liver injury in HFD-fed mice with Emricasan is significant, 

it should also translate into reduced hepatic fibrogenesis. Because phagocytosis of 

apoptotic bodies promotes myofibroblastic transformation of HSC, we next evaluated α-

SMA expression, an established marker for HSC activation in NASH 39, by quantifying 

mRNA transcripts with qPCR analysis. In HFD-fed animals, α-SMA mRNA transcripts were 

significantly increased compared with regular chow group, indicating HSC activation in 

NASH (Figure 5 A). In contrast, the transcripts for α-SMA were significantly reduced by 

80% in Emricasan-treated HFD-fed animals compared with vehicle-treated HFD mice 

(Figure 5 A). These results were confirmed at the cellular level by performing α-SMA 

immunohistochemistry. Consistent with the mRNA data, the number of α-SMA-positive 

cells was increased along hepatic sinusoid lining cells in HFD-fed mice, and was 

dramatically reduced in drug-treated HFD mice and was confirmed by morphometric 

analysis (Figure 5 B and C). To ascertain whether other markers for HSC activation were 

also reduced in emricasan-treated HFD mice, transcripts for molecules implicated in 

fibrogenesis were quantified. TGF-β and TIMP-1, pivotal cytokines in promoting 

fibrogenesis, were also increased in HFD animals versus Emricasan-treated HFD mice 

(Figure 6 A and B).  
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To determine if the reduced α-SMA expression was accompanied by changes in liver 

fibrosis, collagen-1α (I) mRNA expression, the principal form of collagen in hepatic 

cirrhosis, was determined using qPCR techonology. Indeed, collagen-1α was clearly 

increased by 5-fold in HFD-fed mice versus Emricasan-treated mice (Figure 7 B). 

Furthermore, liver specimens were analyzed by Mallory´s trichrome and collagen 

deposition was stained using Sirius red and quantitated by digital image analysis (Figure 7 

A). Liver histology evaluation by Mallory´s trichrome observed evidence of perisinusoidal 

and pericellular fibrosis in HFD animals, as expected in NASH; in comparision, the amount 

of fibrosis was significantly reduced in HFD-fed mice treated with Emricasan (Modified 

fibrosis score: HFD: 2,3±0,3 Vs HFD-Emricasan: 0,3±0,2, p<0,001), and no fibrosis was 

observed in regular chow fed mice (Figure 7 A and C). Sirius red staining showed 

significant collagen staining like “chicken wire” along sinusoids (perisinusoidal) and around 

hepatocytes (pericentral) in HFD-fed mice; however, the quantity of collagen was again 

significantly reduced in Emricasan-treated mice (Figure. 7 A and D). Accordingly, the 

biochemical assessment of hydroxyproline showed a marked increase in the mean 

hydroxyproline levels by 8-fold in HFD-fed animals than in the Emricasan-treated mice 

(Figure 7 E). Collectively, these observations suggest that, in the murine NASH model, 

stellate cell activation and hepatic fibrogenesis are attenuated by administration of the 

pan-caspase inhibitor Emricasan.  
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DISCUSSION  

The principal findings of this study pertain to the role of caspase inhibition as a 

therapeutic pharmacological target in a murine model of metabolic syndrome with NASH. 

We demonstrate that prolonged pharmacological inhibition of caspases has a beneficial 

effect in NASH by reducing hepatocyte apoptosis and decreasing liver injury, hepatic 

inflammation and markedly reducing HSC activation and fibrogenesis. Together these 

observations suggest caspase activation has a clear pathogenic role in NASH and a 

treatment that inhibits hepatocyte apoptosis might limit hepatic injury and attenuate 

progression of fibrosis in NASH, a highly prevalent disease with no effective 

pharmacological therapy.  

In this study we used a high fat diet that recapitulates the clinical findings in human NASH 

such as obesity and insulin resistance 29 30. This diet also was enriched in fructose and 

cholesterol, two key components of the western diet induced NASH 40 41 that are 

associated with liver injury 42 43, inflammation 44 45 and fibrosis 46 47. Moreover, in our 

study the histopathological analysis of the liver specimens from HFD-fed mice depicts the 

characteristic features of NASH which are para-acinar steatosis, cellular ballooning, acinar 

inflammation, hepatocyte apoptosis, peri-sinusoidal and peri-celluar fibrosis 48 5. Thus, our 

diet induced NASH is a useful tool to examining therapeutic approaches during metabolic 

disturbances.  

Apoptosis has been implicated as cardinal feature of non-alcoholic fatty liver disease by 

serological markers and liver tissue analysis, where it correlates with histological severity 

and fibrosis progression 5 6. Hepatocyte apoptosis in vitro and in murine models of 
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steatohepatitis is mediated in part by the activation of the extrinsic pathway of apoptosis 

by death receptor Fas 49 5 and TRAIL-DR4/TRAIL-DR5 8 9 10, that can be activated by their 

ligands but also the toxic saturated fatty acid palmitate can activate TRAIL-DR5 by 

clustering 50 and augment the FADD-recruitment and caspase-8 activation of Fas by 

palmitoyltation 51. In vitro studies demonstrate that free fatty acids induce hepatocyte 

apoptosis by activation of the intrinsic pathway; the saturated fatty acids trigger ER stress-

associated JNK and CHOP activation engage apoptosis by enhancing expression and 

function of pro-apoptotic members of the Bcl-2 family, PUMA 12 52 and Bim 53 54. Both 

apoptotic pathways converge on caspase activation to induce cell death, and based on this 

concept the use of pharmacological inhibition of caspase is a useful tool to reduce 

hepatocyte apoptosis. In this study we demonstrate a significant increase in hepatocyte 

apoptosis and caspase activation in the NASH model of HFD-fed mice, and the treatment 

with emricasan, a pan-caspase inhibitor, abrogates liver cell apoptosis and caspase 

activation evaluated by TUNEL assay and caspase-3 and -8 activities. Our observations 

support previous in-vitro studies that showed FFA mediated cytotoxicity was completely 

blocked by a pan-caspase inhibitor 11 and a NASH clinical trial where use of the caspase 

inhibitor GS-9450 decreased cytokeratin-18 fragments, a serum marker of hepatocytes 

apoptosis 55.   

In liver, hepatocyte apoptosis has been linked to inflammation and fibrogenesis. The 

mechanisms by which apoptosis promotes inflammation relate to the engulfment of 

apoptotic bodies by monocyte/macrophage resident cells (Kupffer cells), engaging their 

activation and expression of death ligands (TNF-α, TRAIL and FasL) 19, pro-inflammatory 
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cytokines and chemokines 56. These recruit and activate inflammatory cells that may 

further aggravate liver inflammation, what is called the second phase of injury. In contrast 

to a decreased liver injury, we failed to observe a reduction in hepatic steatosis. This is not 

unexpected, since triglyceride synthesis has been suggested as a protective mechanism 

against lipotoxicity 57. Indeed, these observations is in accord with Anstee et al 25 that 

using a mice fed a high fat diet under the pan-caspase inhibitor VX-166 showed a marked 

decreased in hepatocyte apoptosis with no effect on liver steatosis, also in a NASH clinical 

trial 55 no effect was observed in parameters associated with metabolic syndrome using a 

pan-caspase inhibitor GS-9450. Our study is consistent with an anti-inflammatory effect of 

pan-caspase inhibitor treatment. In mice fed a HFD we observed a clear inflammatory 

milieu, with increased inflammatory foci in liver specimens, oxidative stress and elevated 

level of pro-inflammatory cytokines TNF-α and IL1-β, and chemokines CXCL2 and MCP-1. 

The pan-caspase inhibitor abrogates the induction of the pro-inflammatory cytokines and 

chemokines by HFD, and markedly reduced the inflammatory score of liver sections. 

Possibly, this phenomenon could be associated with inhibition of pro-inflammatory 

caspases, like caspase-1, -4, -5 and -11. In this way, recent data support a pro-

inflammatory effect of caspase-1 in diet induced NASH 58; in this work murine casp-1 -/- 

showed a decreased expression of pro-inflammatory cytokines, however there was no 

effect on hepatocyte apoptosis or serum aminotransferase levels. The current study 

extends this observation by demonstrating a reduction of aminotransferase and 

hepatocyte apoptosis under pan-caspase therapy in diet induced NASH. Also, our results 

support the data of Csak et al 59, that used an in-vitro model of free fatty acids induced 
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cytotoxicity, where a pan-caspase inhibitor decreased IL1-β production and 

inflammasome activation of steatotic hepatocytes. Perhaps, blocking pro-apoptotic 

caspases would have a hepatocyte-cytoprotective effect and inhibition of pro-

inflammatory caspases might prevent the second phase of injury. Future investigation will 

be necessary to elucidate the biological and clinical importance of each caspase in the 

pathogenesis and therapy of NASH. 

 

Recently the importance of adipokines in the development of hepatic steatosis and 

steatohepatitis has been recognized 60. Adipokines are polypeptides secreted in the 

adipose tissue in a regulated manner. Changes in levels of leptin, adiponectin, visfatin, 

resistin and TNF have been linked to the development of insulin resistance, obesity, and 

liver steatosis; an imbalance in these factors could potentially contribute to the initiation 

and progression of fatty liver disease 61. It is beyond the scope of this work to address the 

impact of caspase inhibition on adipokines levels. However recent data from Dixon et al 

have shown that total body adipose volumes were increased in Casp1-/- mice on the high 

fat diet to a greater extent than wild-type mice. Indeed subcutaneous adipose, rather than 

visceral adipose tissue, is increased in Casp1-/- mice on high fat diet 62. Perhaps, these 

shifts in adipose accretion to subcutaneous adipose tissue could modulate adipokines 

levels and may protect from diet-induced steatohepatitis in caspase1-deficient mice.   

As previously reported 22 24, this study demonstrates that pan-caspase inhibitor treatment 

improved hepatic fibrogenesis. Witek et al, using the obese leptin receptor deficient db/db 

mice fed methionine/choline-deficient diet (MCD) for 8 weeks under pan-caspase inhibitor 
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VX-166 showed a marked decrease in HSC activation and fibrosis. Canbay et al 22, reported 

in a murine model of cholestasis, using bile duct ligation (BDL), a marked reduction in HSC 

activation and collagen-1α deposition. Our study, using a HFD induced NASH with 

prolonged emricasan treatment, demonstrated a significant inhibition of HSC activation, 

reduced pro-fibrogenic cytokine expression, and marked improvement in fibrosis by 

reduced collagen-1α deposition and hydroxyproline liver content. The mechanism 

involved in this anti-fibrotic effect perhaps is related to the anti-inflammatory and anti-

hepatocyte apoptotic effect offered by pan-caspase inhibition. In this way, by reducing 

apoptotic bodies and decreasing the secondary inflammatory response, HSC activation is 

abolished and liver fibrosis prevented. The limits of the present study pertain to the 

experimental model used; we administered emricasan in conjunction with the HFD, 

leaving the question if the previously deposited collagen could be improved or not in well 

established fibrosis. One possibility is that emricasan, by limiting further injury, prevents 

inflammatory cell recruitment/activation, decreases the expression of TIMP-1, promotes 

HSC apoptosis and enhances matrix resorption 63 64 65. Additional studies using models of 

chronic fibrosis and cirrhosis will be necessary to evaluate the effects of Emricasan in 

established fibrotic models. 

Although long-term use of antiapoptotic agents raises the theoretical concern of increased 

risk of neoplastic transformation, this is unlikely. Whereas physiologic apoptosis helps 

protect from cancer, excessive apoptosis might, at least in some experimental situations, 

enhance neoplastic transformation 66. This was depicted by Weber et al, in mice lacking 

the a anti-apoptotic factor myeloid cell leukemia-1 (Mcl-1), have increased apoptosis, cell 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

turnover, which translates into development of malignant HCC-like lesions 67. Also, in the 

transgenic mice that over expressed Bcl-2 in the liver, HCC was prevented in transforming 

growth factor-alpha-induced genetic mouse model of HCC 68. Consistent with this data, 

deletion of proapoptotic BH-3-only protein PUMA protect against diethyl nitrosamine 

(DEN) induced liver cancer 69. Moreover, loss of the death receptor Fas also inhibits DEN 

induced carcinogenesis 70. Along these lines, knockout murine models of various death 

receptors do not develop spontaneous cancers. Based on this concept, persistent 

hepatocyte apoptosis promotes inflammation and associated compensatory cellular 

proliferation, increasing the risk of hepatic carcinogenesis. Thus abrogating apoptosis in 

chronic liver inflammation by caspase inhibitors should be safe with regard to cancer risk. 

Extrapolation of these interesting findings to human disease states should be carefully 

addressed in future investigations of this class of drugs.  

 

In summary, our results suggest the following scenario of liver protection by Emricasan in 

NASH: in the murine model of HFD diet induced NASH, cell damage or cell death products 

results in the production by inflammatory cells of pro-inflammatory cytokines and 

chemokines, triggering a pro-inflammatory milieu that further increases hepatocyte 

damage and inflammation. This phenomenon activates HSC by phagocytosis of apoptotic 

bodies and releasing of the pro-fibrogenic cytokines by inflammatory cells, thus 

accelerating production of extracellular matrix by collagen-1α, TIMPs and cytokines and 

promoting liver fibrosis of the liver. The pan-caspase inhibitor emricasan was found to 

suppress hepatocyte apoptosis by blocking pro-apoptotic caspases; this decrease in cell 
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damage and the inhibition of pro-inflamatory caspases may then interrupt the 

inflammatory milieu and prevent a pro-fibrogenic process and activation of HSC. 

Therefore, the use of a pan-caspase inhibitor might provide an attractive anti-fibrotic 

therapy in NASH.  

 

TABLES. 

Table 1. Metabolic biochemical profile 

 Reg Chow HFD HFD + Emricasan 

Final weigth (g) 31 ± 1 43 ± 2 ** 42 ± 2 ** 

Glucose (mg/dl) 208 ± 16 302 ± 30 * 281 ± 23 * 

Insulin 

(mU/mL) 17 ± 3  37 ± 4 ** 35 ± 5** 

HOMA-IR 8 ± 3  28 ± 10** 24 ± 8** 

Serum Cholesterol 

(mg/dl) 
68 ± 10 183 ± 25 ** 141 ± 7 ** 

Liver triglycerides 50 ± 5 89 ± 11 * 96 ± 11 * 
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(mg/g) 

Liver cholesterol 

(mg/g) 

5 ± 2 12 ± 2 ** 9± 2 ** 

Values are means ± SD, *  p < 0.05, ** p < 0.001 
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FIGURE LEGENDS 

FIGURE 1. Hepatocyte apoptosis and caspase activation are attenuated in Emricasan 

treated HFD-fed mice. A: Representative photpmicrograoh of TUNEL-stained liver sections 

are shown. B: The number of TUNEL-positive cells (marked with arrows) was quantitated 
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and expressed as apoptotic cells/high-power fields (HPF). C: Apoptosis was also evaluated 

by measuring caspase-3 biochemical activity (Percentage of activity from Reg Chow mice) 

and D: by measuring caspase-8 biochemical activity (Percentage of activity from Reg Chow 

mice). Data are expressed as the mean +/- 95% CI for mean. *p< 0.05. Regular Chow-fed 

mice (C), High Fat Diet-fed mice (HFD) and emricasan treated High Fat Diet-fed mice (HFD 

+ Emricasan). 

 

FIGURE 2. Pan-caspase inhibitor decrease the histopathological NAS score. A: 

Representative hematoxylin-eosin stained sections of the liver at 100X and 400X. Liver 

sections were evaluated using the NAS (Non-alcoholic fatty liver disease Activity Score) 

histological score. Data represent mean ± standard error of the mean.  * p<0.05. Regular 

Chow-fed mice (C), High Fat Diet-fed mice (HFD) and Emricasan treated High Fat Diet-fed 

mice (HFD + Emricasan). 

 

FIGURE 3. Serum markers of liver injury and hepatic oxidative stress are reduced in 

Emricasan treated HFD-fed mice A: Serum AST and B: ALT values were measured. C: 

Hepatic TBARS levels were evaluated, fold change was determined after normalization to 

regular chow fed mice. Data are expressed as the mean +/- 95% CI for mean. * p< 0.05. 

Regular Chow-fed mice (C), High Fat Diet-fed mice (HFD) and Emricasan treated High Fat 

Diet-fed mice (HFD + Emricasan). 
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FIGURE 4. Hepatic inflammatory mediators are reduced in Emricasan treated HFD-fed 

mice A: TNF-alpha mRNA and B: TNF-alpha protein level values were measured by qPCR 

and ELISA. C: MCP-1 mRNA and D: MCP-1 protein level were measured by qPCR and ELISA. 

E: CXCL2 mRNA and F: IL-1β mRNA were quantified by qPCR. Data are expressed as the 

mean +/- 95% CI for mean. *p< 0.05. Regular Chow-fed mice (C), High Fat Diet-fed mice 

(HFD) and Emricasan treated High Fat Diet-fed mice (HFD + Emricasan). 

 

FIGURE 5. HSC Activation is attenuated in Emricasan treated HFD-fed mice. A: mRNA was 

extracted from livers, αSMA mRNA expression, a marker of HSC activation, was quantified 

by qPCR. Fold induction was determined after normalization to Actin. B: Representative 

photomicrographs after immunofluorescence for αSMA are depicted (magnification 

400X). C: morphometric analysis of quantitation αSMA + area is shown. C:  Data are mean 

± standard deviation. Asterisks indicate p<0.05. Regular Chow-fed mice (C), High Fat Diet-

fed mice (HFD) and Emricasan treated High Fat Diet-fed mice (HFD + Emricasan). 

 

FIGURE 6. Pro-fibrogenic cytokine expression is reduced in Emricasan treated HFD-fed 

mice. A: mRNA was extracted from livers and qPCR analyses of hepatic pro-fibrogenic 

cytokines were performed. Fold induction was determined after normalization to Actin. A: 

TGF-β, B: TIMP-1. Data represent mean ± standard deviation. * p<0.05. Regular Chow-fed 

mice (C), High Fat Diet-fed mice (HFD) and Emricasan treated High Fat Diet-fed mice (HFD 

+ Emricasan). 
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FIGURE 7. Liver fibrogenesis is attenuated under pan-caspase inhibitor treatment in 

HFD-fed mice. A: Representative photomicrographs of Mallory's trichrome-stained (top) 

liver sections and Sirius red staining (bottom) a chemical stain of collagen deposition in 

the liver are shown. (magnification 400X) B: Collagen 1 (Coll-1) mRNA expression, marker 

of hepatic fibrogenesis, was quantified using qPCR, Fold induction was determined after 

normalization to Actin. C: Fibrosis was quantified using modified NAS histological score. D: 

Collagen fibers stained with Sirius red were quantified using digital image analysis in 

sinusoidal area. Representative photomicrographs of liver sections (left) are depicted 

(magnification 40X). (E) Hepatic hydroxyproline content. Data represent the mean ± 

standard deviation. * p < 0.05. 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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