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An oscillatory instability has been observed experimentally on an horizontal cylinder
free to move and rotate between two parallel vertical walls of distance H. The vertical
motion of the cylinder, its rotation about its axis, and its transverse motion across
the gap have been investigated as a function of its diameter D, its density ρs, of the
mean vertical velocity U of the fluid, and of its viscosity ν. The relevant Reynolds
number Re is shown to be based on the cell aperture H and on the relative velocity
Vr between the fluid and the cylinder. For a blockage ratio D/H above 0.5 and Re
above 20, oscillations of the rolling angle of the cylinder about its axis and of its
transverse coordinate in the gap were observed together with periodic variations of
the vertical velocity. For a given fluid-cylinder pair, the relative velocity Vr as well
as the frequency f and the amplitude of the transverse velocity for these oscillations
are nearly independent of the flow velocity U. For given cylinder density and fluid
characteristics, f is also nearly independent of the ratio D/H in the range investigated.
The oscillations could be observed down to values of Re as low as 30: this is lower
than usual values for vortex shedding in confined geometries, which suggests that
one might deal with a different instability mechanism. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4775385]

I. INTRODUCTION

The influence of confinement on the motion of a cylinder facing a flow is relevant to many
applications such as the transport of particles or fibers in slits or the development and localization
of biofilms inside pores.1, 2 Many studies have been devoted to this problem but dealt mostly with
the determination of the forces on the cylinders (for instance, when they are left free to rotate or
eccentered in a stationary flow).

In the studies of the hydrodynamical transport of confined cylinders,3–6 it has usually been
assumed that, in the absence of vortex shedding, the motion of the cylinder is steady: the cylinder
translates at a constant velocity and, in some cases, rotates at a constant angular velocity and at a
fixed transverse distance from the mid plane of the gap. Following these views, non-stationary flows
would only appear at Reynolds numbers, Re, above the vortex shedding threshold. The present work
reports instead, at Reynolds numbers as low as 30, a periodic non-stationary transport regime, which
might reflect another type of flow instability strongly influenced by the viscosity.

Early studies of the torque and drag forces on a cylinder facing a flow have been performed in
the Stokes regime or at relatively small Reynolds numbers. For particles placed in the centre of the
channel, Faxen7 derived the expression of the drag for a confinement D/H less then 0.5; the case of
higher confinements has been recently considered by Ben Richou and co-workers.8, 9 An eccentered
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cylinder experiences, in addition, a positive torque decreasing sharply in the vicinity of the walls;3–6

for a cylinder translating closely along a wall or held fixed in a Poiseuille flow, this torque tends to
generate a rotation of sign opposite to that of contact rolling. This results from the backflow near
the second wall and has a sizable influence on the force distribution on the cylinder.10

The displacement of a free cylinder released from an eccentric position inside a vertical gap has
been computed by Hu6 for three values of the Reynolds number Re based on the terminal velocity
and the diameter of the particle. For Re ≤ 5, the cylinder reaches a final stable transverse position in
the middle of the gap. For Re � 100, instead, an off-axis cylinder rotates in the direction opposite
to the previous one, resulting in a lift force oriented away from the axis: this was accounted for by
the appearance of a recirculation zone.11 However, as the cylinder approaches one of the walls, the
recirculation zone recedes because of the interaction between the wake and the wall boundary layer.
The rotation and the lift force then change sign again, so that a stable off-axis position is finally
found.

Such observations are made at a Reynolds number close to the periodic vortex shedding regime,12

and are consistent with the conclusions of Zovatto and Pedrizzetti13 for a non rotating cylinder. Above
the critical Reynolds number, vortex shedding may induce vibrations with a frequency and amplitude
depending on the mechanical properties of the system.14–16

More recently, Semin et al.17 observed that a tethered cylinder placed in a Poiseuille flow between
vertical parallel planes oscillates spontaneously at Reynolds numbers well below the threshold for
vortex shedding: unlike in the present case, both the vertical and rolling motions of the cylinder were
blocked.

The present work deals with an horizontal cylinder free to translate and rotate inside the gap
of a vertical Hele Shaw cell. Either this cylinder sediments in a stationary fluid, or is submitted to
a vertical Poiseuille flow (i.e., transverse to its axis). The transverse and vertical components of the
motion of the cylinder and its rotation about its axis are studied: the influence of physical parameters
such as the diameter and density of the cylinder and the viscosity of the fluid and of hydrodynamical
variables such as the flow velocity is particularly investigated.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup consists of a Hele Shaw cell placed vertically (Fig. 1). Its height, width,
and aperture are, respectively, L = 350, W = 100, and H = 3 mm. The Hele Shaw cell is obtained
by milling two PMMA (plexiglass) plates; using this technique, the local aperture varies by less than
0.1 mm over the cell. The vertical sections of the cell have a Y-shape in their upper part; the upper
end of the cell is at the bottom of a rectangular bath with a slit allowing for the flow of the fluid
and the insertion of the cylinders. An upward flow may be imposed by a gear pump: the mean fluid
velocity U is counted in this case as negative.
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FIG. 1. Experimental setup. (a) Front view - U: mean flow velocity, Vcx : vertical component of the cylinder velocity.
(b) Side view - yc: transverse position of the center of mass of the cylinder, � : Torque.
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TABLE I. Physical properties of the fluids. Density: ρf, dynamical viscosity: μ. Temperature 23oC. N1 and N2 correspond
to natrosol solutions at, respectively, 1 and 2 g l−1. W G refers to a glycerol solution containing 20% in weight of glycerol.

Fluids ρf (g/cm3) μ (mPa s)

W G 1.05 1.56
N1 0.998 1.11 ± 0.04
N2 0.998 2.20 ± 0.04

In this set-up, at the highest Reynolds numbers ReU = UH/ν � 60 used here, the entry length
for achieving a stationary parabolic flow velocity profile L � 0.06 ReU H is of the order of 10 mm:
this is much lower than the distance between the inlet and the cylinder (100 − 300 mm). Moreover,
an injector is fitted to the bottom part of the cell in order to distribute evenly the flow across the
width W of the model. A 2D parabolic profile is therefore well established right upstream of the
cylinder.

Table I lists the characteristics of the fluids used in the experiments; the viscosity is measured
using a Contraves Low Shear-30 rheometer. In this study, the natrosol concentration is sufficiently
low so that the fluids can be considered as Newtonian: at a given temperature, their viscosity is
determined by the natrosol concentration (and increases with it). For shear rates ranging from 0.2
to 118 s−1, the viscosity (see Table I) of the two natrosol solutions is indeed found to be constant
(within ±0.04 mPa s). The density and temperature of the solutions are measured prior to any set of
experiments.

The cylinders are made of PMMA (density ρs = 1.20 ± 0.05 g cm−3) or of carbon (ρs = 1.54
± 0.07 g cm−3); their mean diameter D ranges from 1.1 to 2.1 mm. The diameter D of the cylinder
was measured at five different locations along its length; the value of D was found to vary by less
than 0.05 mm. The length Lc of the cylinders is smaller than but as close as possible to the internal
width W of the cell.

Initially, the cylinders are placed in the upper bath with their principal axis horizontal and one
lets them move down into the Y-shaped zone by reducing the flow rate Q. Then, Q may be adjusted
so that the cylinder remains at a fixed mean level either at rest (state 0) or oscillating about its
principal axis (state 1). Then, one may reduce Q (sometimes to zero) in order to analyze the motion
of falling cylinders; in a part of the experiments, Q is increased again after the cylinder has reached
the bottom of the cell for studying its upward motion (Vcx < 0).

The displacement of the cylinder is monitored by two cameras triggered synchronously at a
frame rate of 45 fps; they image, respectively, the displacements in the plane (x, z) over a window of
287 × 139 mm2 with a resolution of 0.28 mm/pixel and in the plane (x, y) of the gap with a resolution
of 0.111 mm/pixel over a vertical length of 80 mm. Processing digitally the two sets of images gives,
first, the instantaneous coordinates (xc, yc, zc) of the center of mass of the cylinder in the (x, z) and
(x, y) planes (yc = 0 is in the midplane between the walls). The angle θ between its axis and the
horizontal is also determined from the instantaneous location of its two ends in the (x, z) plane. In
order to analyze the rotations of the cylinder around its axis, its length is divided into four domains
of equal size. The two outside parts are painted in black and two black staggered stripes parallel to
the axis are painted on the central portions. The rotation angle α about the axis is estimated from
the local vertical distance between each of the stripes and the principal axis of the rod: dividing this
distance by the radius of the cylinder gives an estimated value αest of α. The variation of αest with
time provides an order of magnitude of the angular velocity α̇. These estimations are more valid
when the stripe is close to an horizontal diametral plane of the cylinder.

III. DYNAMICAL REGIMES AND TIME AVERAGED CHARACTERISTICS
OF CYLINDER MOTION

A. Oscillating and stationary regimes

Figures 2(a)–2(c) display experimental results obtained using a PMMA cylinder of diameter D
= 1.1 mm and solution N1. In these experiments, the cylinder remains located midway between the
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FIG. 2. Experimental measurements obtained using solution N1 (see Table I) with left: D = 1.1 mm (D/H = 0.37) and
U = −16.88 mm s−1 and right: D = 1.77 mm (D/H = 0.59) and U = −12.66 mm s−1. (a) xc vs time t (s). (b) α vs t.
(c) yc vs t.

two vertical walls (yc � 0 in Fig. 2(c)); it does not roll about its principal axis (α � 0 in Fig. 2(b))
and falls at a constant velocity (a linear regression gives Vcx = 2.7 ± 0.5 mm s−1).

Figures 2(d)–2(f) display experimental results obtained using a cylinder with a larger diameter
D = 1.77 mm. In this case, both the angle α of the cylinder about its axis and its transverse coordinate
yc in the gap oscillate at a well-defined frequency. The mean flow velocity has been selected so that
the average of the vertical velocity Vcx is zero: the average of the coordinate xc remains therefore
constant but xc is observed to oscillate with time at exactly twice the frequency observed for α and
yc. In our experiments, this oscillatory regime was only observed for a confinement parameter D/H
≥ 0.48. The two flow regimes of Figure 2 and the development of these oscillations are discussed in
more detail below in Secs. III and IV.

More quantitatively, the period Tosc = 1/f of the oscillations has been determined by computing
the time interval between the maxima of the first and last oscillations visible in the recording and
dividing by the total number N of these oscillations (15 ≤ N ≤ 30). Since this time interval can be
determined to within about Tosc/2, this leads to a relative error on the determination of the frequency
of the oscillation: �f/f = �Tosc/Tosc � 1/(2N): it varies therefore between 1.5% and 3%.

These experiments may be compared to the widely studied situation of a fixed cylinder in a
Poiseuille flow. For instance, the numerical simulations of Sahin and Owens,12 also for a cylinder
between parallel plates, suggest that vortex shedding only occurs at Reynolds numbers ReD above
120 for the same ratio D/H as in Figures 2(d)–2(f) (the definition ReD = U0D/ν used by these authors
is based on the maximum fluid velocity U0 and the cylinder diameter D). Using this same definition
of ReD, the oscillations displayed in Figures 2(d)–2(f) correspond to a Reynolds number ReD � 30
well below the critical value for vortex shedding mentioned above.

B. Variation of mean vertical translation velocity with the flow velocity

In this section, we are interested in the value of the vertical velocity Vcx of the cylinder, averaged
over a time larger than the period of the oscillations (if present) but short enough to avoid the influence
of global variations. Here, “velocity” always refers to such an average.

Figure 3 displays the variation of Vcx with U for the different cylinders and fluids used in the
experiments. This variation is found to be linear in all cases for both the oscillating and the stationary
regimes. For a same cylinder diameter (D = 1.45 mm) and a same fluid (N1), the velocity Vcx in the
oscillating regime is larger at a same velocity U than in the stationary one ((�) and (�) symbols in
Fig. 3). This reflects the lower drag in the stationary regime. Also, the slope of the variation of Vcx

with U is lower in this latter regime.
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FIG. 3. Vertical velocity Vcx of cylinders of diameter D in solutions N1 or N2 (see Table I) as a function of the fluid velocity
U. Open symbols: oscillating cylinders; solid symbols: no oscillations. PMMA cylinders (ρs = 1.20 g cm−3) - (�), (�): D
= 1.45 mm (D/H = 0.48), N1; (◦), (•): D = 1.63 mm (D/H = 0.54), N1 for (◦) and N2 for (•); (�): D = 1.77 mm (D/H
= 0.59), N1; (♦): D = 2.1 mm (D/H = 0.7), N1. Carbon cylinder (ρs = 1.54 g cm−3) - (�): D = 1.45 mm (D/H = 0.48), N2.

As previously observed by Dvinsky and Popel,3 the sedimentation velocity V 0
cx in a stationary

fluid (U = 0) decreases with the confinement: more generally, at a same velocity U, the cylinder
velocity Vcx is always slightly lower for D/H = 0.59 than for D/H = 0.48 and significantly lower
for D/H = 0.7 (respectively, (�), (�), and (♦) symbols in Fig. 3). This result is in agreement with
the numerical simulations of Ben Richou et al.,9 still in the confined case: these authors found
numerically in the lubrication approximation that the geometrical factor λs increases like D5/2 for
D/H > 0.1. Combining the variations of m and λs in Eq. (4) (see Sec. III C), the velocity V 0

cx must,
then, decrease with D (or equivalently with D/H) as is indeed observed.

An opposite result would be obtained in the low confinement case of cylinders falling in a tank
of size much larger than their diameter (D/H � 1): in that latter case, the sedimentation velocity
increases instead with D because the mass m per unit of length varies faster (as D2) than the drag
force.

The experiments also confirm that increasing the fluid viscosity for a same cylinder reduces the
value of Vcx and results in a transition from an oscillating to a stationary regime ((◦) and (•) symbols
in Fig. 3). For a significantly larger cylinder density, Vcx increases strongly, even for more viscous
fluids ((�) symbols in Fig. 3).

C. Relations between force and flow/cylinder velocities

The value of the vertical velocity Vcx reflects an equilibrium between gravity and the vertical
drag force Fx (averaged over the same time lapse):

mg + Fx = 0; (1)

here, m = π �ρ (D/2)2 is the mass per unit length reduced from the effect of buoyancy (with �ρ

= ρs − ρ f). Since mg is a constant, this implies that the drag force Fx must remain the same,
irrespective of the mean flow velocity U. For a cylinder moving at a constant velocity Vcx in a fluid
of constant mean velocity U away from the cylinder, the drag may be written in the low Reynolds
number limit and when the cylinder does not rotate:

Fx = −λs μ Vcx + λp μ U = −mg. (2)

The parameters λs and λp reflect the influence of the geometrical confinement and of the flow profiles
which are different for the flows associated to Vcx and U. For a long cylinder (Lc � W 	 D and Lc

	 H), λs and λp are only functions of the ratio of the cylinder diameter D and of the cell aperture
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with and without oscillations; dashed lines: numerical data from Ref. 9 (for λs) and Ref. 8 (for λp).

H.18 The vertical velocity of the cylinder is then

Vcx = λp

λs
U + V 0

cx , (3)

in which

V 0
cx = mg/(λsμ) (4)

is the velocity of the cylinder with no applied flow (U = 0). The validity of Eq. (3) is supported by
the linear variation of Vcx with U in Fig. 3.

The experimental data of Figure 3 allow one to determine the values of the coefficients λs and λp;
λs is first obtained by means of Eq. (4); its values in the oscillating and stationary regimes are plotted
in Figure 4. In both cases, the experimental variation of λs with D/H is similar to that predicted
by Ben Richou et al.8, 9 (also plotted on the figure). The difference between the experimental and
predicted data is at most 15% and is likely due to the difference between the Reynolds numbers used
by these authors, which are lower by a factor of 10 or more than in the present work; as shown by
Hu6 and Ben Richou,9 the higher Reynolds number leads to a larger value of λs.

Note that the influence of the space between the ends of the rod and the lateral sides of the cell
cannot account for this difference: the corresponding bypass flow would indeed instead reduce the
measured value of λs (see Fig. 9 in Ref. 18). For D/H = 0.48, the transition from the stationary to
the oscillation regime leads to a small increase (∼15%) of λs. This variation reflects the complex
interplay between the rolling motion of the cylinder and its displacement across the gap during the
oscillations. The values in the two regimes are however remarkably similar.

The second factor λp is determined from the slope of the curves Vcx vs U in Fig. 3; from
Eq. (3), this slope must indeed be equal to λp/λs. Again, the experimental values of λp are higher
than the theoretical ones for the same reason as for λs (Fig. 4).
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D. Characteristic velocity and Reynolds number of the phenomenon

From Eq. (1), the data points of Fig. 3 for a given cylinder and fluid all correspond to a same
drag force −mg so that

Fx = −mg = λp μ

[
U − λs

λp
Vcx

]
. (5)

For a set of values of U and Vcx , the drag force can therefore be deduced from the value obtained
for a stationary cylinder (Vcx = 0) by replacing U by the “effective” relative velocity

Vr =
[

U − λs

λp
Vcx

]
. (6)

Vr appears therefore as the logical characteristic velocity for characterizing the flow around the
cylinder in all cases. The value of λs/λp varies slightly from one curve of Fig. 3 to another but, for
all cases when oscillations are observed, one has λs/λp = 0.8 ± 0.03. For simplicity, the value 0.8 is
therefore applied in the following to the oscillatory regime (this choice has not a critical influence
on the results); in particular, the Reynolds number is defined by

Re = ρ f H Vr

μ
= ρ f H |U − 0.8Vcx |

μ
, (7)

in which ρ f and μ are the fluid density and viscosity. Let us point that, from Fig. 3 and the above
discussion, Vr (and therefore Re) remains nearly constant for all experiments corresponding to a
given fluid-cylinder pair and a given regime (oscillatory or stationary).

The choice of H as the characteristic length will be justified a posteriori by the analysis of the
data in Sec. IV B. For Vcx = 0 (cylinder fixed on the average in a flow), Eq. (7) is equivalent to the
definition of Re used by Semin et al.17 For comparison of the present results with those of other
authors, it must be taken into account that the definition ReD = ρ fUD/μ is often used instead of
Re8, 12, 13 for studying vortex emission behind fixed cylinders. In the case of a cylinder moving in a
quiescent fluid (U = 0), Re is also replaced in Refs. 6 and 9 by ReD = ρ f Vcx D/μ.

IV. OSCILLATORY REGIME

A. Amplitude of the transverse oscillations in the gap

Fig. 5 displays variations with time of the transverse coordinate yc of the cylinder for different
upward flow velocities U. As mentioned above, the corresponding diameter of the cylinder (D =
1.45 mm) is the lowest for which oscillations were observed. Moreover, their growth characteristics
depends on U although the Reynolds number associated to the relative velocity Vr is approximately
independent of U (Re � 49 ± 1). For U = 0, the cylinder is not well centered between the walls and
it is difficult to perform reliable measurements. For −6.3 ≤ U ≤ −2 mm s−1, the development of os-
cillations depends on the initial conditions. A stationary motion remains so while the cylinder keeps
oscillating if it has been perturbed initially, for instance by increasing and decreasing |U|. For U ≤
−8.4 mm s−1, the oscillations appear spontaneously after a time decreasing from a few seconds for U
� −10 mm s−1 to a value too short to measure for U � −15 mm s−1. When the duration of the tran-
sient phase is long enough, this allow one to measure a meaningful value of Vcx , which is included as
a no-oscillation data in Fig. 3. The oscillation amplitude |A| in the stationary regime increases rapidly
from a low value |A| ∼ 0.3 mm right above the threshold (U = −2.1 mm s−1) up to |A| � 1.3 mm for U
≤ −4 mm s−1. This maximum value is close to the clearance between the cylinders and the cell walls
(H − D � 1.55mm): then, the cylinders come very close to the walls during their motion and may
even touch them. This is confirmed by the clipping effect observed on the curve corresponding to U
= −12 mm s−1 (Re = 19). Similar features are observed for the variation as a function of U of the
maximum |V 0

cy| of the transverse velocity dyc/dt during an oscillation (this maximum is reached for
yc � 0). This variation is plotted in Fig. 6 for different cylinders and for solutions N1 and N2. The
velocity |V 0

cy| can generally be considered as constant with U but decreases as the diameter of the
cylinder increases ((◦) symbols in Fig. 6). |V 0

cy| also increases as the density of the cylinder and the
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FIG. 5. (a) Variation of the transverse coordinate yc of a PMMA cylinder (D = 1.45 mm) in the gap as a function of time for
different mean velocities U of solution N1 (for better visibility, only a small part of the total recording time is shown). Dotted
line: (U = −2 mm s−1, Re = 50), solid line: (U = −4 mm s−1, Re = 49.5), dashed-dotted line: (U = −12 mm s−1, Re = 48).

viscosity of the fluid become larger ((�) symbols in Fig. 6). The stronger dispersion of the values
for the carbon cylinder results both from the larger drift velocity, which reduces the measurement
time and from the higher value of |Vcy |, which makes the measurements less precise at the limited
frame rate available.

B. Frequency of the oscillations

The comparison of the continuous and dashed-dotted curves in Fig. 5 suggests that (again
except close to the threshold), the frequency f of the oscillation depends weakly on the flow velocity
U. More quantitatively, the frequency values obtained as described in Sec. III A for four different
cylinder diameters and for the two solutions N1 and N2 are plotted as a function of U in Figure 7.
For all curves, the typical relative deviation of f from its mean value as U varies is indeed less than
±5%. It should be noted that, for D = 2.1 mm, a fluttering motion superimposed onto the transverse
oscillation is observed: in view of the similar value of f compared to other ratios D/H, this does not
appear to influence significantly the instability.
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FIG. 6. Maximum velocity |Vcy |0 of the transverse oscillations inside the gap as a function of the mean flow velocity U. (�),
(◦): PMMA cylinders of respective diameters D = 1.45 and D = 1.63 mm in solution N1. (�): carbon cylinder in solution
N2 (D = 1.45 mm).
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FIG. 7. Variation of the oscillation frequency as a function of Re for different cylinders and Natrosol concentrations. Solution
N1 and PMMA cylinders of diameters D = 1.45 mm (�); D = 1.63 mm (◦); D = 1.77 mm (�); D = 2.1 mm (♦); solution
N2 and carbon cylinders of diameter D = 1.45 mm (�).

This weak dependence on U of both the amplitude and the frequency of the oscillations
(Figs. 6 and 7) confirms that Vr (constant for each fluid-cylinder pair), and not U or Vcx

separately, is the relevant characteristic velocity of the problem. Another evidence is that, still
for a given fluid-cylinder pair, either oscillations occur for all values of U or the motion remain
stationary. At a given Re value, one is therefore either above or below the threshold Rec at all flow
velocities U: then, in contrast with tethered cylinders,17 Rec cannot be determined by varying U.

The pair D = 1.45 mm - fluid N1 corresponds likely to the vicinity of the threshold: both the
stationary and the oscillating regimes are observed with, frequently, a transition during the motion.
Oscillations are more easily observed at U values such that Vcx is low because the cylinder remains
longer within the field of view and the instability has more time to develop.

A second important feature is that all frequency variation curves corresponding to the same
solution N1 but to different diameters D almost coincide over most of the range of variation of U:
this supports the assumption that H (and not D) is the relevant characteristic length of the problem.

Finally, the frequency f increases by 70% when solution N1 is replaced by N2 with twice its
viscosity. However, in order to observe these oscillations, the PMMA cylinder must be replaced by
a carbon one of same diameter D = 1.45 mm but higher density (1.54 instead of 1.2 g cm−3): due to
this larger density, the relative velocity Vr is higher, as can be seen in Figure 3. The increase of f may
therefore result from that of ν and/or of Vr ; Ref. 17 suggests, in addition, that the increase of the
weight of the cylinder may directly reduce f but only by a few % so that this last effect is neglected.

As a test of the dependence of f on ν, we have plotted in Fig. 8 the dimensionless parameter
fH2/ν = f τ ν as a function of the Reynolds number Re (τ ν is the characteristic viscous diffusion time
over the distance H). As could be expected from Fig. 7, the product f τ ν is nearly constant for all
PMMA cylinders with

f = (29 ± 2)
ν

H 2
. (8)

For the more viscous solution N2 and the denser carbon cylinder, the normalized values (� symbols)
are closer to the above ones than in the plot of Fig. 7 (they are lower by 20% with fτ ν � 23).

It must be noted that, for a given cylinder-fluid pair, nearly all data points of Fig. 8 correspond
to a very small range of Re values (since Re is nearly independent of U). Therefore, in contrast with
studies using fixed or tethered cylinders, the dependence of f on Re reflects the variation from one
fluid-cylinder pair to another and not a variation with Re for a single pair.

In order to compare these results to those reported for related configurations and to test the
influence of Vr , we also plotted in the inset of Fig. 8, together with data from Ref. 17, the variation
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FIG. 8. Variation of the normalized frequency f H2/ν as a function of Re for different cylinder diameters and Natrosol
concentrations. Inset: variation of the Strouhal number St = f H/|Vr | = f H/|U − 0.8Vcx | as a function of the Reynolds
number Re for the same experiments. Continuous line: variation as St = 30/Re; dotted line and (×) symbols: results of
numerical simulations for a tethered cylinder with D/H = 0.67 from Ref. 17; (+) symbols: experimental data from the same
reference. In both graphs, the meaning of the other symbols is the same as in Fig. 7.

with Re of the Strouhal number

St = f.H

|U − 0.8 Vcx | = f.H

|Vr | . (9)

For data obtained with solution N1 and the PMMA cylinder, the nearly constant value of f H2/ν leads
to a good collapse of the points on a common decreasing trend: St ∝ Re−1 (reflecting the relation St
= fτ ν Re−1). This plot also brings the data points for solution N2 and the carbon cylinder closer to
the global trend, although with values 15% lower.

Overall, the different dimensionless plots of Fig. 8 do not indicate therefore a dominant depen-
dence of f on either ν or Vr : further experiments and numerical simulations in which one of these
parameters will be controlled separately are therefore needed to solve this issue.

The closest comparison basis for the variation of St with Re discussed above is provided by
numerical simulations and experiments reported for a tethered cylinder in a similar flow geometry17

(dotted line in the inset of Fig. 8). These data correspond to the single blockage ratio D/H = 0.67
and to several values of Re; for the present data, instead, Re is practically constant for a given value
of D/H. New simulations and/or experiments with tethered cylinders (possibly free to rotate) will be
needed to extend the comparison to other values of D/H. Here, the comparison can only be performed
at the values of Re corresponding to blockage ratios as close as possible to 0.67: the two nearest
ones are D/H = 0.7 (D = 2.1 mm) and D/H = 0.59 (D = 1.77 mm), which correspond, respectively,
to Re � 32 and Re � 40.

The data from Ref. 17 for which Re is close to these values are shown by the symbols (×) for
numerical simulations and (+) for experiments. For D/H = 0.7 which is closest to the target value
0.67, St is, respectively, 20% and 30% lower for the experiments with the free cylinder than for the
simulations and the experiments using the tethered one. The difference is larger (30% and 45%) for
D/H = 0.59, which is farther from the target value 0.67. In spite of this difference, the values of
the Strouhal number are similar enough so that one may assume that the two oscillation phenomena
correspond to a same global mechanism.

A possible origin of the difference between these values of the frequency is the influence of the
additional degrees of freedom of the cylinder in the present work, i.e., rotation and vertical motion.
As will be seen in Sec. IV C, the tangential velocity associated to the rotation is of the same order
as the mean velocity |U|: it may therefore influence significantly the characteristics and the onset
of the oscillations. The very strong coupling between the oscillations of the cylinder and its global
motion is indeed shown for D/H = 1.45 by the strong reduction of the velocity Vcx between the
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FIG. 9. Oscillations of a PMMA cylinder D = 1.45 mm in solution N1 flowing at U = −12.7 mm s−1 (Re = 48.5). Solid
line: estimated roll angle αest; dashed line: transverse coordinate yc. The origin of the α axis is arbitrary.

stationary and the oscillation regimes (Fig. 3). Further tests such as numerical simulations in which
the degrees of freedom can be released independently are however needed to test their respective
influence. Although small, the residual clearance between the ends of the cylinder and the sides of
the cell may also introduce frequency variations by creating a by-pass for the fluid at the ends of the
cylinder.18

C. Time variation of the roll angle α

The variations with time of the both the estimated roll angle αest and the transverse coordinate
yc are plotted in Fig. 9. Both parameters oscillate periodically at the same frequency f. The roughly
triangular shape of the variation of αest suggests a sharp change of the direction of rotation shortly
after the cylinder reaches its minimal distance (� 200 μm) to a wall. A strong interaction with the
latter may account for this effect but it may also be influenced by the nonlinear relation between the
estimated angle and the actual value of α.

As the cylinder moves towards one of the walls, it rotates always in the direction opposite to
the local vorticity corresponding to the mean flow (see Fig. 1); the rotation changes direction while
it moves away so that it is again opposite to the local vorticity when it reaches the other wall. The
corresponding absolute tangential velocity |α̇|D/2 of the surface of the cylinder at that time is close
to 9 mm s−1. This latter value is of the same order of magnitude as the absolute flow velocity |U|:
as mentioned in the above section, this rolling motion may therefore influence significantly the
oscillation process.

D. Variation with time of the vertical velocity

Figure 10 displays the vertical and transverse coordinates xc and yc of the cylinder axis as a
function of time during 4 oscillations. In this oscillating regime, the vertical coordinate xc of the
cylinder still follows a global linear trend with time but the velocity Vcx = (dxc/dt) displays periodic
oscillating deviations from its mean value(dxc/dt)0 clearly visible in the inset of Figure 10. These
latter variations imply similar ones for the drag while the cylinder moves across the gap.

The variation of (dxc/dt) − (dxc/dt)0 displays two minima for each period of the oscillation, each
one when the cylinder is near one of the walls ((P1) or (P2)): this corresponds to a second harmonic
of the frequency of the transverse oscillation. Such a frequency component was also observed (and
was in that case dominant) in the variation of xc in Fig. 2(c). In this latter experiment, the time average
of the velocity (dxc/dt) is zero, in contrast to the present case. This frequency-doubling effect results
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FIG. 10. Time variation of the vertical coordinate xc (solid line) and of the transverse coordinate yc (dashed line) as a function
of time for the same experiment as in Fig. 9. Inset: time variation of the deviation (dxc/dt) − (dxc/dt)0 of the vertical velocity
from its mean value (dxc/dt)0 deduced from a linear regression over xc(t).

from the symmetry of the problem with respect to the mid plane of the cell. Let us assume first that
no rotation is present: moving the cylinder towards either of the walls leads to distortions of the flow
field and the resulting x component of the force is the same for the two walls while the y components
are opposite. If, in addition, there was a continuous rotation of the cylinder, this symmetry would be
broken: it is however recovered in the present oscillating regime because the rotation changes sign
at each half period and the relative velocity of the cylinder and the nearest wall remains the same.
Globally, therefore, the periodicity of the vertical force components corresponds to half the period
of the transverse oscillations.

In the inset of Fig. 10, one of the minima corresponding to each period is much shallower than
the other. This may imply that the transverse oscillation between the two walls is not symmetrical
with respect to the mid plane yc = 0 and/or that the motion of the cylinder is not completely two
dimensional.

V. DISCUSSION AND CONCLUSION

The experiments reported in this work have demonstrated that cylinders free to rotate and
translate in a vertical confined Hele Shaw cell may display transverse oscillations of large amplitude:
these oscillations were only observed for a confinement parameter D/H ≥ 0.48; at this lower value,
and for fluid N1, spontaneous transitions towards the oscillatory regime are observed, particularly
at low cylinder velocities Vcx . Actually, the key characteristic velocity of the oscillation process
is not the flow velocity U of the fluid but the effective relative velocity Vr = U − 0.8Vcx (or the
corresponding Reynolds number Re = |Vr |H/ν): the factor 0.8 corresponds to the slope of the
experimental variation of Vcx with U. The latter variation reflects the balance between the effective
weight of the cylinder and the viscous friction: as a result of this definition, Vr and Re remain
nearly constant for a given cylinder-fluid pair when U varies. For instance, the frequency of the
oscillations and the corresponding transverse velocity are nearly the same for a cylinder sedimenting
in a static fluid (U = 0) or kept at a constant average height xc by an upward flow. More generally,
the frequency, the amplitude and the occurrence of the oscillations as well as the relative velocity Vr

(and Re) do not depend on U for a given fluid-cylinder pair: as a result, and in contrast to tethered
cylinders, the threshold Reynolds number for the onset of the oscillations cannot be determined by
varying U for a given cylinder since Re remains nearly constant.

In this work, oscillations have been observed down to Reynolds numbers Re as low as 30,
which is of the same order of magnitude as for tethered cylinders.17 Compared to them, the present
phenomenon involves additional kinetic energy contributions associated to new degrees of freedom
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(rotation, vertical motion, tilt angle with respect to the horizontal). For moderate confinements (0.48
≤ D/H � 0.6), the phenomenon remains bidimensional. This agrees with observations of an increase
of the critical Re value for the onset of 3D instabilities for confined cylinders.19 In this 2D regime, the
motion of the cylinder combines transverse and rotational oscillations at the fundamental frequency
f and vertical oscillations generally superimposed onto a global vertical drift. The latter have a
component at the frequency 2f accounted for by the symmetry of the system. At higher values of
D/H such as 0.7, a fluttering 3D motion of the cylinder appears with oscillations of its angle with
respect to the horizontal and of its lateral position (coordinate z) at a lower frequency. This is likely
due to the strong blockage of the flow at large D/H values by the cylinder, which occupies 90% of
the cell width.

On the one hand, for a fixed cylinder density ρs and given fluid density and viscosity, the
frequency f of the oscillations is not only independent of the velocity U but, also, of the confinement
D/H. On the other hand, increasing at the same time ν and ρs (and, as a result, the velocity Vr ) led to
70% larger f values. The constant value of f for a varying D/H ratio is a puzzling feature. However,
while the relative velocity Vr is practically constant with U, it depends on D/H (see Fig. 3): it is
therefore possible that variations of f due to those of Vr and D/H compensate each other. Further
studies with a separate investigation of the influence of these variables will be necessary.

The scaling laws of the problem have been searched for by replotting the frequencies in a
dimensionless form (St = fH/ν and fτ ν = fH2/ν) as a function of the Reynolds number Re. The
Strouhal number is classically applied to inertial flow induced oscillations while fH2/ν is based on
the viscous diffusion time τ ν and is suitable for viscous processes; the oscillation might indeed result
from a phase shift due to viscous diffusion between the motion of the cylinder and the corresponding
variations of the flow and pressure fields.

For the PMMA cylinders and the N1 solution, the constant value of f leads to a variation of
the Strouhal number St ∝ 1/Re and to a nearly constant product fτ ν � 29. For the more viscous
solution N2 and the denser cylinder, the two types of adimensionalization reduce to 15% − 20% the
relative difference (compared to Fig. 7) with the global trends with, this time, lower values than in
the latter. There is therefore no conclusive advantage of one type of adimensionalization compared
to the other.

Globally, these results contrast with those reported for many oscillatory instabilities such as
vortex shedding:12, 15 in this case, the Strouhal number increases first with the Reynolds number
above the threshold before becoming constant. However, such variations are measured on a single
fluid-cylinder pair with varying flow velocities; here, instead, the plots of Fig. 8 combine results
corresponding to different ratios D/H, each of them corresponding to a very narrow range of Re
values. The influence of the different control parameters such as D/H, ν, and ρs will therefore have
to be studied separately in future work.

The properties of the frequency f have a direct relation to the variation of the transverse velocity
|Vcy | in the gap at large oscillation amplitudes. Assuming a constant absolute value of |Vcy | during
these oscillations and a peak to peak amplitude (D − H) of the latter leads to the estimation

|Vcy | � 2 f (H − D). (10)

Like f, the velocity |Vcy | should then be independent of the mean flow velocity U (for a given
fluid-cylinder pair) as indeed observed in Fig. 6 for |U| ≥ 5. Equation (10) also predicts that |Vcy |
increases with the frequency f and decreases as the diameter D increases, also in agreement with the
data of Fig. 6.

For comparison purposes, the phenomenon closest to the present one is likely the oscillation of
tethered cylinders in the same flow geometry17 although, as discussed above, the additional degrees
of freedom may introduce differences. For Re � 32 and D/H = 0.7, the Strouhal number in the
present experiments is 20% lower than for numerical simulations. A part of this difference is likely
accounted for by the additional degrees of freedom. It will be important to confirm and explain
these results, in particular by numerical simulations at different D/H values in which the different
degrees of freedom may be introduced independently. Another issue is the influence of these degrees
of freedom on the threshold value of Re, which may be determined numerically, for instance, by
varying the acceleration of gravity to control Re.
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Another question is the possible relation between the present oscillations and those resulting
from vortex shedding. For fixed confined cylinders,12, 20 the discussion of Sec. III A shows that vortex
shedding takes place at Reynolds numbers much larger than those for which the present oscillations
occur: for D/H = 0.7 and using the present definition, the values of Rec are, respectively, 110 and
less than 30. A similar increase of Rec due to confinement has also been reported for a lower ratio
D/H = 1/3.21 Also, the Strouhal number St often increases with Re above the threshold for vortex
shedding12, 20 while it decreases instead with Re for the type of instabilities studied here (dotted line
in the inset of Fig. 8).

For a moving cylinder, Hu6 reports oscillations due to vortex shedding for a cylinder sedimenting
between parallel plates (D/H = 0.25) and close to one of them at Re = 320, i.e., still at a value of
Re much larger than 100. For an infinite fluid, Namkoong et al.22 report a slightly larger threshold
RecD and a 10% lower Strouhal number StD for vortex emission behind a sedimenting cylinder than
behind a fixed one (both Re and St are based in this case on the diameter D). Finally, Ref. 17 reports
oscillations due to vortex shedding only for Re � 110 for tethered cylinders in a geometry close
to the present one: moreover, for high cylinder densities, confinement induced oscillations (likely
similar to the present ones) and vortex induced ones take place in distinct ranges of Re values and
the latter are of significantly lower amplitude. On the other hand, reduced critical Re values have
been reported when additional degrees of freedom are introduced for 2D bodies rising or falling in
a fluid:23, 24 however, this occurs in the case of non-circular cross sections.

Globally, while the above results do not completely rule out the occurrence of vortex shedding
in the present work, they suggest that the mechanism of the oscillations is different and likely more
dependent on the viscosity: its influence will have to be investigated further in future work. Actually,
the present results and those of Ref. 17 suggest that the present instability occurs only if the cylinder
can oscillate while vortex shedding is observed even for fixed cylinders and, for free cylinders,
generates forced oscillations of smaller amplitude.

Finally, for large D/H ratios, the clearance between the ends of the cylinders and the sides of
the cell may have an important influence. For cylinders of length Lc significantly lower than W ,
the bypass effect may influence the process and/or induce a fluttering motion. It will be interesting
to compare this latter phenomenon to motions involving a coupling between the vertical motion of
objects and lateral oscillations: these are encountered in such problems as the fall of leaves or paper
sheets,25, 26 of disks27 or the rise of bubbles in a liquid.28
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