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OPEN

ORIGINAL ARTICLE

The microbiome regulates amygdala-dependent fear recall
AE Hoban1,2, RM Stilling1,2, G Moloney2, F Shanahan1, TG Dinan1,3, G Clarke1,3 and JF Cryan1,2

The amygdala is a key brain region that is critically involved in the processing and expression of anxiety and fear-related signals. In
parallel, a growing number of preclinical and human studies have implicated the microbiome–gut–brain in regulating anxiety and
stress-related responses. However, the role of the microbiome in fear-related behaviours is unclear. To this end we investigated the
importance of the host microbiome on amygdala-dependent behavioural readouts using the cued fear conditioning paradigm. We
also assessed changes in neuronal transcription and post-transcriptional regulation in the amygdala of naive and stimulated germ-
free (GF) mice, using a genome-wide transcriptome profiling approach. Our results reveal that GF mice display reduced freezing
during the cued memory retention test. Moreover, we demonstrate that under baseline conditions, GF mice display altered
transcriptional profile with a marked increase in immediate-early genes (for example, Fos, Egr2, Fosb, Arc) as well as genes
implicated in neural activity, synaptic transmission and nervous system development. We also found a predicted interaction
between mRNA and specific microRNAs that are differentially regulated in GF mice. Interestingly, colonized GF mice (ex-GF) were
behaviourally comparable to conventionally raised (CON) mice. Together, our data demonstrates a unique transcriptional response
in GF animals, likely because of already elevated levels of immediate-early gene expression and the potentially underlying neuronal
hyperactivity that in turn primes the amygdala for a different transcriptional response. Thus, we demonstrate for what is to our
knowledge the first time that the presence of the host microbiome is crucial for the appropriate behavioural response during
amygdala-dependent memory retention.

Molecular Psychiatry (2018) 23, 1134–1144; doi:10.1038/mp.2017.100; published online 16 May 2017

INTRODUCTION
The neurobiology of fear critically implicates the amygdala as the
key brain structure in anxiety disorders.1–4 Currently, our under-
standing of the underlying molecular pathophysiology of such
disorders is not well understood, although it is well appreciated
that the amygdala plays a key role in the acquisition and
expression of fear and anxiety-related behaviours.5,6 Over the past
decade, it has become clear that the host intestinal microbiota has
the capacity to alter behaviours relevant to anxiety and stress
responses7,8 and to regulate relevant central nervous system
molecular changes at a transcriptional level.9,10 In addition, the
use of microbiota-deficient animal models, such as germ-free (GF)
mice or gut microbiota-depleted animals, has allowed in-depth
assessment of the impact of an absence of the intestinal bacteria
on multiple aspects of host physiology11,12 including brain and
behaviour.13–18 These behaviours are known to be controlled, at
least in part, by the amygdala, a brain region critically involved in
fear learning.4,19,20

Recently, we have shown that the amygdala transcriptome in
GF mice is widely dysregulated and shows features of neuronal
hyperactivity at the gene expression level.21 Coinciding with these
findings, GF animals display greater amygdalar volume with
increased excitatory spine density in the basolateral nuclei,22

demonstrating that the presence of the host microbiome critically
regulates the morphology and transcriptional programming
within the amygdala. Attempts to understand the underlying
molecular mechanisms of many psychiatric disorders have
focussed attention on the role of microRNAs (miRNAs)23 that act

as posttranscriptional regulators of gene expression.24,25 It has
been demonstrated that brain-specific miRNA candidates within
the amygdala regulate anxiety and fear-related behaviours in
mice.26–28 However, there is a paucity of information about
whether the microbiome could regulate amygdala-dependent
fear behaviours or modify the expression of miRNAs in the central
nervous system.
To this end we investigated amygdala-dependent fear memory

in GF and an additional group of GF colonized mice (ex-GF).
Manipulating the timing of colonization in GF animals further
supports the importance that the microbiome has during neurode-
velopmental time windows that are crucial for establishing normal
behavioural responses in these mice.14,29 We used a modified cued
fear conditioning paradigm in a 1-day setting to test the hypothesis
that the microbiome regulates fear-related behaviours in an
amygdala-dependent manner. To compliment this, we investigated,
using unbiased genome-wide RNA sequencing the transcriptional
and posttranscriptional landscape in the amygdala of naive GF mice
and after stimulation by a memory-based recall challenge. Our data
uncovered a heretofore-undescribed role of the microbiome in
regulating fear memory in GF mice.

MATERIALS AND METHODS
Animals
C57BL/6J GF and conventionally raised (CON) breeding pairs were
obtained from Taconic (Germantown, NY, USA) with F1-generation
offspring used in all experiments. Male GF mice were housed in
gnotobiotic flexible-film isolators (2–4 mice per cage) kept on a strict
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12 h light/dark cycle. The ex-GF mice were all initially raised within the GF
isolators until postnatal day 21 when they were removed and housed in a
standard animal unit next to CON mice in order to allow for efficient
colonization by environmental microbes.30,31 The ex-GF mice were initially
put in clean cages with dirty bedding from CON, as mice are coprophagic
this will allow for efficient colonization. Male CON mice were housed in
controlled conditions with regulated temperature (20–21 °C) and humidity
(55–60%) with mice 2–4 per cage on the same 12 h light/dark cycle as GF
mice and in the same cage type. All mice, CON, GF and ex-GF received the
same autoclaved, pelleted diet (Special Diet Services, product code
801010, Essex, UK) until ∼ 10 weeks of life when tissue was harvested. All
experiments were conducted in accordance with the European Directive
86/609/EEC. Approval by the Animal Experimentation Ethics Committee of
University College Cork and Health Products Regulatory Authority (HPRA)
was obtained before commencement of all animal-related experiments.
Both the conventional and germ-free facility adhere to the same animal
care guidelines in terms of temperature, humidity and noise levels.

Experimental design
Two cohorts of male CON, GF and ex-GF mice were used in this study.
Cohort 1 was used to investigate the impact of GF status on amygdala-
dependent behaviours using a modified 1-day cued fear conditioning
paradigm (n= 13–15/group; Figure 1a). In addition, we investigated the
impact of microbiota colonization early in life on fear-related behaviours.
Cohort 2 was used to confirm the memory retention deficit and assess
gene expression priming and changes using both naive and fear
conditioned CON and GF animals 1 h after a cued fear stimulus26,32

(n=5–12/group; Figure 2). CON and GF cohort 2 mice were culled 1 h after
the fear retention stimulus.

Experimental group Abbreviation Pairwise comparison

CON naive CON-n CON-n vs GF-n
GF naive GF-n
CON after fear retention CON-fc CON-n vs CON-fc
GF after fear retention GF-fc GF-n vs GF-fc

Cued fear conditioning
In order to complete the testing protocol as quickly as possible, once
animals were removed from the isolators, a modified 1-day fear
conditioning was utilized. This was adapted from the protocol of Izquierdo
et al.33 See Supplementary Materials and Methods for full details of
adapted cued fear conditioning protocol.

Amygdala and RNA extraction
Whole mouse half brains were snap frozen in isopentane on dry ice and
stored in − 80 °C. Tissue was placed in a cryostat and allowed to reach
−20° C. A standard adult mouse brain matrix was used and 1 mm thick brain
slices were taken. Using the Palkovits punch technique34 and a standard
mouse atlas as a guide, whole amygdala tissue punches were taken
(1 punch per mouse, approximately bregma 1.82 mm). Amygdala punches
were stored in RNAlater (Sigma-Aldrich, Wicklow, Ireland) for 24 h, removed
and tissue was again stored at −80 °C until extraction. Following the
manufacturer’s protocol, a mirVana miRNA kit (Ambion/Life Technologies,
Dublin, Ireland) was used to extract total RNA from all animals. A Nanodrop
1000 (Thermo Scientific, UK) was used to determine RNA concentration.
Only germ-free samples and conventional, both naive and fear conditioned,
were sent for Illumina next-generation sequencing (Exiqon, Vedbæk,
Denmark). RNA was pooled (except for GF-n, n=5 after RNA extraction)
within each group by combining equal amounts of RNA from two animals
resulting in a final sample group of four (except CON-n, n=3, and GF-n,
GF-fc and CON-fc, n=4/group after pooling). Figure 2 depicts experimental
groups and describes RNA pooling before sequencing.

mRNA sequencing
Sequencing was conducted by Exiqon on the NextSeq500 with an
average of 50 million reads with a 50 bp single-end read length. Reference
genome of obtained sequences was performed using the reference
annotation: Mus musculus (organism), GRCm38, UCSC (University of

California, Santa Cruz) Genome browser (reference genome) and
Ensemble (Annotation reference). For full details see Supplementary
Materials and Methods.

Differential gene expression and GO term enrichment analyses
Data analysis conducted by Exiqon is as follows. Data analysis pipeline is
based on the Tuxedo software package that combines open-source
software and implements peer-reviewed statistical methods. Complemen-
tary to this, Exiqon employs specialized software developed internally to
interpret and improve readability of the final results. The components of
next-generation RNA-sequencing pipeline include Bowtie2 (v.2.2.2), Tophat
(v2.0.11) and Cufflinks (v2.2.1). Briefly, Tophat is used to align the
sequencing reads to the reference genome (GRCm38, UCSC Genome
browser and Ensemble (Annotation reference)). Cufflinks takes the
alignment results to assemble the aligned sequence into transcripts,
constructing a map of the transcriptome. Cufflinks assembles aligned reads
into different transcript isoforms based on exon usage and also determines
the transcriptional start sites. For comparison of groups Cufflinks is used to
calculate the FPKM (number of fragments per kilobase per million mapped
fragments) and tests for differential expression and regulation among the
assembled transcripts across the submitted samples using the Cufflinks
output. Differential expression analysis is conducted in the EdgeR statistical
software package (Bioconductor, http://www.bioconductor.org/). An
adjusted P-value of ⩽ 0.1 (Benjamini–Hochberg method)21,35 was con-
sidered significantly differentially regulated. Differentially expressed genes
were then analysed for enrichment of Gene Ontology (GO) terms using the
DAVID Bioinformatics Resources (v6.8).36

MicroRNA sequencing
For full details of miRNA sequencing in CON and GF mice and predicted
interaction with dysregulated mRNA see Supplementary Materials and
Methods.

Statistics
Fear conditioning. The effects of GF status on freezing during cued fear
conditioning behaviour was analysed using two-way repeated measures
analysis of variance for trial block in the case of extinction and respective
post hoc comparisons. Trial block 1 was additionally separated and analysed
for deficits in retention. One-way analysis of variance with Tukey’s post hoc
was conducted on fear retention data. Comparison of trial blocks 1 and 2 and
1 and 3 was conducted to determine presence of extinction learning.

mRNA sequencing. Differential expression analysis for RNA sequencing is
conducted in the EdgeR statistical software package (Bioconductor, http://
www.bioconductor.org/). An adjusted P-value of ⩽ 0.1 (Padj, Benjamini–
Hochberg method) was considered significantly differentially regulated as
per previously published sequencing data.21,37 A false discovery rate cutoff
of Padjo0.1 is commonly used in transcriptome-wide studies; using the
DESeq2 package it is the default setting in this analysis pipeline.35 In order
to further highlight the consistency of our data and test for potential
statistical confounding, we have also analysed our data using an even
more stringent cutoff of Padjo0.05 (Supplementary Figure 3).

RESULTS
One-day cued fear conditioning in CON mice
We successfully established a 1-day fear conditioning protocol
adapted from Izquierdo et al.33 This was necessary because of the
logistical and practical constraints of GF facilities and in order to
reduce potential for colonization. We subjected CON mice to cued
fear conditioning, either 2 or 3 conditioned stimulus/uncondi-
tioned stimulus pairings (Supplementary Figure 1a). Following a
6 h delay, all mice were subjected to fear retention/extinction
trials. Both groups of mice were able to learn the association
between conditioned stimulus and unconditioned stimulus and
show memory retention to tone presentations in a 1-day setting.
The freezing response was quantitatively somewhat lower in our
CON mice when compared with previous studies in this strain;33

however, the delay of 6 h was sufficient time to allow for memory
consolidation and subsequent expression of conditioning to tone
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(Supplementary Figures 1b and c). Scrutinizing the individual trial
blocks (each block composed of 5 tones in the absence of foot
shock), they showed reduced freezing (extinction) from trial blocks
1 to 2 (Supplementary Figure 1d).

GF mice display reduced freezing in retention and extinction trial
No difference in acquisition was observed between all three
experimental groups during conditioning to tone (Figure 1b).
When challenged 6 h after acquisition, GF mice displayed reduced
percentage freezing during retention (F(2,42) = 1.3028, Po0.0001)
and extinction trials (trial blocks 1–5) (housing, F(2,32) = 34.08,
Po0.0001 and trial blocks, F(7,32) = 3.222, Po0.01) when
compared with CON mice (Figures 1c and d). The ex-GF mice
during the initial first trial block (fear retention) was indistinguish-
able from CON mice (69.30 ± 2.957 vs 59.76 ± 4.021, mean ± s.e.m;
Figure 1c). However, like GF mice, they displayed reduced
percentage freezing during trial blocks 5 and 8 (Figure 1d).

When mice were placed back into the initial condition context
they displayed minimal percentage freezing to context with no
observed differences between the groups (Figure 1e). Cohort 2
again replicated our finding with GF animals displaying reduced
percentage freezing to tone during the retention test (F(2,26) =
4.913, P= 0.0163) with no statistically significant difference in
acquisition between groups (Interaction, F(4,66) = 1.0941,
P= 0.1139) (Supplementary Figures 2a and b). Again, ex-GF mice
displayed comparable freezing to CON mice both during
acquisition and retention tests (Supplementary Figures 2a and
b). In addition, CON and ex-GF mice displayed reduced freezing
from trial blocks 1 to 3 indicating extinction of the conditioned
stimulus/unconditioned stimulus association; however, this effect
was not present in GF mice. Interestingly, in our validation cohort
of 1-day fear conditioning (Supplementary Figure 1c) there was a
faster extinction in CON mice than test cohort (Figure 1) but both
cohorts of CON mice show reduced freezing by trial block 3 during
the extinction trial.
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Enrichment in genes related to neuronal transmission
and nervous system development in the amygdala of GF
naive mice
We performed unbiased deep sequencing of mRNA in the
amygdala of naive and fear conditioned GF and CON mice.
Analysing gene expression among all four groups by pairwise
comparisons, we found a number of differentially regulated genes
across all groups when comparing naive with stimulated mice
(CON-n vs CON-fc (270) and GF-n vs GF-fc (93); Figure 3a and
Supplementary Table 1). First, in comparison between naive
CON-n and GF-n mice, we see a total of 133 genes to be altered
because of germ-free status that can be further broken down to
85 up- and 48 down-regulated genes (Figures 3a and b and
Supplementary Table 1). Next, we investigated biological functions
linked to the differentially expressed genes. GO analysis of
up-regulated genes (CON-n vs GF-n) shows significant over-
representation of genes for both biological process and cellular
compartment categories (Figures 3c and d). Specifically, we found
enrichment in GO terms such as synaptic transmission,
cholinergic transmission, nervous system development and
neurogenesis (Figure 3c). In addition, we see a number of
immediate-early responding genes (Fos, Fosb, Egr2, Arc and
Nr4a1) and genes involved in neurotransmission (Drd2, Syt2, Chat
and Adora2a) to be up-regulated in naive GF mice, in line with our
previous finding indicating hyperactivity in the amygdala of GF
naive mice.21 To further investigate this potential hyperactive state
present in naive GF amygdala, we compared differentially
regulated genes under naive conditions (CON-n vs GF-n) to genes
that are differentially regulated upon the fear retention test in
control conditions (CON-n vs CON-fc) (Figure 3e). We note
common up-regulated or down-regulated of 11 genes and 21
genes, respectively, in both comparisons. Interestingly, over-
lapping up-regulated genes also include several immediate-early
genes such as Fos, Fosb and Egr2. Thus, a significant proportion of
genes (Po1.6− 13 for up-regulated genes, Po2.3− 27 for
down-regulated genes) differentially regulated between CON
and GF mice are genes that are necessarily induced during fear
memory retention. This further suggests elevated neuronal
activity in the amygdala in naive GF animals, whereas no
significant enrichment in GO terms was noted among down-
regulated genes in GF-n mice.

Unique transcriptional response to fear retention stimulus in CON
and GF mice
We found a number of genes to be differentially regulated in both
CON-fc and GF-fc 1 h after the retention test when compared with
their unconditioned counterparts (Figures 4a and c). Very little
overlap between CON-fc and GF-fc mice (11 down-regulated and
1 up-regulated) was present after fear retention (Col8a2, Lbp,
Thbs4, Capn11, Rp17a, Foxj1, Dnahc6, Aqp1, Hbb-1b, Dynlrb2 and
Ccdc135; Figure 4c). The 185 up-regulated genes and 68 down-
regulated genes were unique to CON-fc mice after fear retention,
with 58 and 15 up- and down-regulated genes unique in GF-fc
conditioned mice respectively (Figures 4a–c). Overall, we note that
CON-fc and GF-fc mice respond differently to retention testing at
the level of gene expression in the amygdala. Next, to investigate
the cellular response that was occurring in CON-fc mice, we
conducted GO analysis on the 185 down-regulated genes that
were unique to CON-fc mice that were not altered in GF-fc mice
after retention testing. We found a significant overrepresentation
of genes associated with GO terms such as oligodendrocyte
development, glial cell development and myelination (Sox10, Sox9,
Aspa, Plp1, Tlr4, Id4, Trp73, Fa2h; Figure 4d). However, some of
these genes were also associated with biological processes such
as gland development (Sox10, Sox9, Id4 and Fa2h). We found no
significant enrichment in up-regulated genes unique to CON-fc
fear conditioned mice. Enrichment on the 58 down-regulated
genes unique to GF-fc mice showed significant enrichment in
many GO terms in response to steroid hormones, nutrient
starvation, hormone stimulation and hormone-mediated signal-
ling (Figure 4e). In addition, a number of genes (22, overlap not
shown) that were up-regulated in CON-n vsGF-n were now down-
regulated in GF-n vs GF-fc (for example, Nr4a1, Crh, Fosl2, Gabre
and Chrna2).

Functional enrichment and predicted interaction with dysregulated
miRNAs and mRNAs in GF-n mice
We found by pairwise comparison a total of 13 miRNAs, 7
up-regulated and 6 down-regulated, in GF-n mice when compared
with CON-n (Figure 5a). Expression profile of miRNAs in GF-n
compared with CON-n is represented in Supplementary Table 2.
All up-regulated miRNAs have a fold change of 41.4 with strong
fold reduction in down-regulated miRNAs (Supplementary Table
2). Supplementary Table 3 shows the altered miRNA/mRNA (both
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Figure 4. Transcriptional response to fear retention in CON and GF mice. (a, b) Volcano plot of all the differentially regulated genes between
CON-n and CON-fc and GF and GF-fc. (c) Venn diagram showing the overlap between up- and down-regulated genes after comparison of
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Figure 5. Altered miRNAs in GF-n mice and their relevant Gene Ontology (GO) terms. (a) Number of dysregulated miRNAs based on raw
P-value for each experimental comparison. (b) Number of predicted mRNA for individual down-regulated miRNAs in GF-n mice when
compared with CON-n that occur in more than 3 prediction algorithms. (c, d) Venn diagram of the number of significant (Padj) GO terms for
biological processes for each miRNA overlapped with significant GO terms from mRNA sequencing. Bar graphs represent a selection of
significant terms that were common between mRNA sequencing and enriched from individual mRNAs. (e) Venn diagram showing the number
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up and down-regulated) predicted interaction with dysregulated
mRNAs in GF-n mice. As our mRNA sequencing revealed among
up-regulated gene an orchestrated enrichment for GO terms for
synaptic transmission, cognition, cholinergic transmission, nervous
system development and neurogenesis, we investigated whether
any of our miRNAs have predicted targets that are enriched for
such GO terms. As only our up-regulated mRNAs showed
significant enrichment we listed all the predicated targets (present
in 3 prediction algorithms) of down-regulated miRNAs in GF-n
mice (Figure 5b) and conducted GO enrichment analysis. We then
overlapped significant GO terms from our mRNA sequencing with
significant GO terms from our predicted miRNA target enrichment.
We found that miR-211-5p, miR-204-5p and miR-200b-3p dis-
played significant enrichment for select GO terms that overlapped
with those from mRNA sequencing (Figures 5c and d).
Supplementary Table 3 indicates which of our observed dysregu-
lated mRNAs in GF-n mice these miRNAs are predicted to target.

Unique miRNA response to fear retention stimulus in CON and GF
mice with predicted interaction with dysregulated mRNAs
We found a number of miRNAs to be differentially regulated after
the retention test in both GF-fc and CON-fc when compared with
the unconditioned counterparts respectively (Supplementary
Tables 4 and 5). The CON-fc mice after fear retention test had
altered expression of 25 miRNAs (7 up-regulated and 18 down-
regulated; Figure 5e and Supplementary Table 4). After retention,
GF-fc mice had 7 altered miRNAs in the amygdala (2 up-regulated
and 5 down-regulated; Figure 5e and Supplementary Table 5).
miR-34b-5p, miR-34c-5p and miR-34b-3p were down-regulated
in both CON-fc and GF-fc mice (Figure 5e). The remaining
differentially regulated miRNAs were unique to CON-fc and GF-fc.
Again we listed the predicted mRNA targets of differentially
regulated miRNAs between CON-n and CON-fc and GF-n and
GF-fc and overlapped them with up- or down-regulated mRNAs
to identify potential relevant targets of these miRNAs
(Supplementary Tables 6 and 7).

DISCUSSION
A growing body of literature implicated the host microbiome in
brain and behaviour. Here we show, for what is to our knowledge
the first time, that the microbiome regulates amygdala-dependent
fear conditioning in GF mice. We found that after training, GF
animals displayed reduced freezing to the conditioned stimulus
indicative of impaired cued memory recall. Therefore, it appears
that GF animals were unable to retain the association between
tone and shock to the same degree as CON mice. Exposure to
environmental microbes appeared to reverse the deficit in
memory retention displayed by GF mice. Previous colonization
studies have shown normalization of behavioural phenotypes
related to reduced anxiety,14 social deficits29 and hypothalamic–
pituitary–adrenal axis activity.38 Regarding extinction, there is
evidence of reduced freezing during the initial 3 trial blocks in
CON mice, but this was not evident in GF animals. The lack of
extinction cannot be easily disentangled from the deficits in
retention in GF mice and may be a consequence of the reduced
recall-induced freezing response in these mice. In addition, it is
worth noting that GF mice display reduced anxiety-related
behaviours in a variety of approach–avoidance tasks.13,14,39 Thus,
the relative contribution of this reduced anxiety response to the
observed differences in cued fear conditioning is unclear,
although it is worth noting that the neurobiological basis of
learned fear and ethological anxiety responses in such rodent
paradigms are quite distinct.40–42 Moreover, we did not see a
difference in freezing response during the acquisition training
between groups. In addition, future studies should investigate the
role of the dysfunctional hypothalamic–pituitary–adrenal axis

evident in GF animals38 in potentially driving the altered response
to fear conditioning given the relationship between stress
hormones such as glucocorticoids and memory formation.43,44

Accompanying this impairment in fear memory recall was
a marked reshaping of the transcriptional landscape in the
amygdala of GF-n mice when compared with CON-n mice. The
in-depth analysis of differentially up-regulated genes in the
amygdala demonstrates a marked increase in the expression of
immediate-early genes and genes involved in synaptic transmis-
sion with specific enrichment for genes involved in cholinergic
transmission. Among others, we found an increase in Fos, Fosb,
Egr2 and Arc in GF-n mice, in line with our previous finding
indicating orchestrated up-regulation of these genes in the
amygdala of naive GF mice.21 It is worth noting that these
findings are consistently independent of host genetics/strain and
method of tissue isolation and is more related to the microbiota-
deficient animal model used in both studies. Activation of
immediate early-response genes and CREB activation, which is
essential for activity-driven neuronal gene expression, are
markedly up-regulated in the amygdala following social novelty
and fear memory retrieval.21,45 Our data confirm this typical
observation as CON-fc mice display increased expression of
immediate-early genes, for example, Fos, Fosb and Erg2, indicating
that cued fear memory recall induces activation of these early-
response genes in the amygdala of CON mice. Indeed, up-
regulated of these typical genes (for example, Fos, Nr4a1, Egr1) has
previously been demonstrated to follow cued memory recall.46

Increased neuronal activity of the amygdala in GF-n mice is
further suggested by specific up-regulated of genes related to
cholinergic and dopaminergic neurotransmission (Drd2, Adora2a,
Tac1, Chrnra2 and Chat) that have been shown to be critical for
many aspects of amygdala-dependent conditioned learning and
extinction.47,48 Many of these genes additionally contribute to
enrichment for GO terms such as nervous system development,
neurogenesis and cell development with specific increases in
genes such as nerve growth factor receptor (Ngfr) and early
growth factor 1 and 2 (Egr1, Egr2), with the latter previously shown
to regulate fear memory conditioning.49,50 Together, these data
suggest that the amygdalar circuitry of GF mice at baseline is in a
hyperactive state, potentially originating from altered microglial
signalling during critical phases of neurodevelopment.51,52 Inter-
estingly, we find no overlap in differentially regulated genes when
comparing our current findings with those of a previous study that
investigated changes in gene expression in other brain regions
(hippocampus, striatum and frontal cortex) of GF mice using
hybridization-based microarray technology.16 Despite the use of
different brain regions, many of the genes seen in both studies are
associated with several common neuronal processes such as
synaptic transmission and nervous system development. However,
we see no similarity at the individual gene level suggesting that
gene expression in different brain regions are differentially
affected by the microbiota.
We next tested whether this differential baseline priming of the

amygdala in GF mice would translate to differential gene
expression patterns in response to a recall stimulus. Surprisingly,
minimal overlap existed between comparisons and large differ-
ences in gene expression were present in response to the
retention test between CON-fc and GF-fc mice when compared
with naive, unconditioned counterparts (CON-n and GF-n;
Figure 4c). Although we saw the expected increase in expression
of immediate early genes Fos, Fosb and Egr2, indicating activation
of the amygdala after fear retention in CON-fc mice, a comparable
increase in the expression of these genes was not observed in the
GF-fc animals. This suggests altered cellular signalling pathways
are associated with impaired memory retention in GF animals. This
unique response pattern is likely because of already elevated
levels of immediate-early gene expression in naive GF animals and
the potentially underlying neuronal hyperactivity that in turn
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primes the amygdala for a different transcriptional response. In
fact, a number of genes that were up-regulated in GF-n mice
when compared with CON-n (for example, Nr4a1, Crh, Gabre and
Fosl2) and that contributed to the enrichment in increased
synaptic transmission-related genes were down-regulated after
fear retention. GF-fc mice had decreased expression of Nr4a1 and
Nr4a3 that are a class of nuclear receptor transcription factors that
are important for the formation of long-lasting memory as
blockade of these receptors impairs long-term but not short-
term memory in the hippocampus53 and are up-regulated
following cued and contextual fear conditioning.46,53 Scrutinizing
further down-regulated genes unique to GF-fc mice shows a
decrease in many activity-related pathways and transcription
factors that further supports that GF-n amygdala is primed for a
different transcriptional response to fear retention.
Research from our group has previously demonstrated that

there is marked volumetric expansion in the amygdala of GF
mice.22 In addition, the basolateral amygdala nuclei GF animals
displayed increased spine density, specifically in mushroom
spines, that are critical for formation of glutamatergic
synapses.54 This suggests that these cells receive more excitatory
inputs.22 Though our transcriptomic study is not exclusive to the
basolateral amygdala, hyperactivity in this specific nucleus may
underlie the inability to regulate fear memory retention or in
many behavioural responses that depend on this brain region.
Disruption of cued fear memory is less well characterized in
animal models of autism spectrum disorder. Deficits in social
behaviour are more commonly observed in autism spectrum
disorder models, and this is also a feature of the GF
phenotype.29,55,56 The valproic acid model of autism spectrum
disorder also showed increased amygdala volume57 with evidence
of hyperactivity.58 In this model, offspring of mothers exposed to
valproic acid during gestation display increased memory retention
with evidence of increased fear as valproic acid-exposed rats were
unable to extinguish cued fear memory.58 This could be related to
the increased anxiety displayed by these animals, although this
model is also associated with microbiome alterations.59 Clearly,
amygdala hyperactivity and dramatic reshaping of the dendritic
landscape can have detrimental effects on amygdala-dependent
memory.
The most unique and surprising finding in our RNA sequencing

was in relation to the impact of the retention test on down-
regulated gene in the amygdala of CON-fc mice. We found
significant enrichment of genes related to oligodendrocyte
differentiation and myelination and specific decreases in critical
transcription factors (Sox9 and Sox10), gene encoding enzymes
responsible for the biosynthesis of sphinogolipids of the myelin
sheath (Ugt8a). However, we only found changes in one myelin
structural, Plp1.60,61 There is growing evidence for a relationship
between the microbiome and brain myelination patterns.37,58,62

More work is required to investigate whether this type of stimulus
could correspond with demyelination in the amygdala, but it must
be noted that this was unique to CON-fc mice. The same
orchestrated down-regulated of myelin-related genes was not
seen in GF-fc mice following the retention stimulus.
Although other microbiota-mediated manipulation strategies

have investigated cued fear conditioning in rodents, to our
knowledge this is the first demonstration of such a behavioural
deficit in GF mice. In line with this, chronic probiotic administra-
tion of Lactobacillus rhamnosus resulted in increased freezing
during cued memory recall.63 Faecal microbiota transplantation
from mice on a high-fat diet to microbiota-depleted donors
display significant decrease in freezing behaviours when cued
memory retention was assessed when compared with mice
receiving microbiota form control diet feed donors. High-fat diet
fed mice had significant alterations in their microbiota composi-
tion, and when transferred to a donor mouse, it resulted in
amygdala-dependent memory impairment.64 Together, these data

demonstrate that changes at the level of gut microbiota com-
position can dramatically affect amygdala-dependent learning.
As previous studies have shown the involvement of miRNAs in

amygdala-dependent stress and fear-related outputs,21,65,66 we
next investigated whether posttranscriptional regulation via
miRNAs may be a contributing factor underlying impairments in
fear memory learning and the observed altered transcriptional
network. Indeed, in line with our mRNA sequencing, we
investigated miRNA expression in the amygdala of naive CON
and GF mice and 1 h after fear retention that is in line with
previous studies expanding miRNA expression 30 min to 1 h after
conditioning. Analysis by pairwise comparisons revealed a number
of differentially regulated miRNAs. We found that 3 miRNAs,
miR-211-5p, miR-204-5p and miR-200-3p, had predicted targets
that were enrichment for GO terms overlapping with our RNA
sequencing analysis and therefore could be contributing to
enrichment at the mRNA level. As such, we found enrichment in
GO terms such as synaptic transmission, cholinergic transmission
and cell development (for example, Chrna2, Arc, Egr2, Crh, Fosb).
Interestingly, miR-204-5p and miR-211-5p are from the same
miRNA family and therefore have very similar sequence align-
ments that is reflected by the similarity in the mRNAs they are
predicted to target (Supplementary Table 3). Currently, there are
no studies to our knowledge investigating the importance of
these miRNAs in neuronal function within the amygdala; however,
studies have shown the importance of miR-204 family in lens and
retina development.67 Further work is needed to tease apart
whether the microbiota recruits these miRNAs in regulation of
these altered transcriptional networks. In addition, we found a
number of miRNAs that are altered after fear retention testing and
that are unique to CON-fc and GF-fc that show a predicted
interaction with many mRNAs altered from those comparisons
(Supplementary Tables 5 and 7). Only three miRNAs were
commonly down-regulated after fear retention in CON and GF
mice (miR-34b-5p, miR-34c-5p and miR-34b-3p). A recent study
demonstrated that targeted deletion of this miRNA family results
in resilience to stress-induced anxiety and displayed reduced
freezing during retention/extinction trials.68 Conversely, miR-34c
has also been shown to be down-regulated in the central
amygdala 30 min after acute restraint stress and lentiviral over-
expression in this nucleus has an anxiolytic effect.69 The diverging
behavioural impact of this miRNA following different experimental
approaches in conjunction with acute stressors notwithstanding,
these studies highlight the potential important of this target in
regulating anxiety-like behaviours.

CONCLUSION
In conclusion, the present study indicates that retention of cued
fear memory relies on the presence of a functional microbiota
during critical windows of neurodevelopment. The in-depth
analysis of the transcriptome data confirms a functional hyper-
activity in the GF amygdala. Here we demonstrate a unique
transcriptional response to cued fear retention testing that may, at
least in part, underlie the observed impairment in retaining cued
fear memory. The apparent hyperactive start of the amygdala at
baseline may ultimately prime GF animals to respond differentially
to external stimuli. Converging evidence of predicted interaction
between miRNAs and their target genes indicates that the
observed orchestrated GO enrichments in naive GF mice may
be regulated by miRNAs. Future studies should focus on
investigating changes in gene expression at multiple time points
in order to better appraise a temporal response in the amygdala of
GF mice following fear recall. Moreover, this aberrant behavioural
profile can be (partially) normalized by introduction of a
microbiome after weaning. It will be of interest to investigate
the molecular mechanisms driving this partial reversal in future
studies as it may unmask specific target genes that may be under

Microbiome regulates amygdala-dependent fear recall
AE Hoban et al

1142

Molecular Psychiatry (2018), 1134 – 1144



the influence of the gut microbiota. Furthermore, given that the
microbiome has now become implicated in a wide variety of brain
process such as myelination,37 microglia activation/neuroimmune
function,52,70,71 blood brain barrier function72 and dendritic
morphology,22 it will be of interest to investigate the relationship
between these processes and microbial regulation of fear recall in
the future. Taken together, our data indicate that the microbiome
may be a promising new therapeutic target for developing
psychobiotic approaches73 for fear-related disorders.
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