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Abstract. The Beam Constraint Model (BCM) was developed for the purpose of accurately and analytically
modeling nonlinear behaviors of a planar beam flexure over an intermediate range of transverse deflections
(10 % of the beam length). The BCM is expressed in the form of Taylor’s expansion associated with the axial
force. It has been found that the BCM may yield large predicting errors (> 5 %) when the applied axial force
goes beyond a certain boundary, even the deflection is still in the intermediate range. However, this boundary has
not been clearly identified so far. In this work, we mathematically determine the non-dimensional boundary of
the axial force by the condition that the strain energy expression of the BCM is a positive definite quadratic form,
and by the buckling condition relate to compressing axial force. Several examples are analyzed to demonstrate
the effects of the axial force on the modeling errors of the BCM. When using the BCM for modeling, it is always
suggested to check if the axial force is within this boundary to avoid large modeling errors. If the axial force is
beyond the boundary, the Chained Beam Constraint Model (CBCM) can be used instead.

1 Introduction

The Beam Constraint Model (BCM), developed by Awtar et
al. (2007) a decade ago, offers a parametric and closed-form
model for accurately and analytically capturing nonlinear be-
haviors of a planar beam flexure over an intermediate range
of transverse deflections (typically when transverse motion is
less than 10 % of the beam length). The BCM is represented
in the form of Taylor’s expansion associated with the axial
force. The commonly-used BCM keeps the first-order terms
of the axial force (Awtar et al., 2007), termed as the first-
order BCM. The study objective of using the BCM is the
slender beam (Euler beam) where beam length is 10 times
longer than beam thickness in the bending direction. Due to
its simplicity and analytical form, the BCM has been success-
fully used in characterizing the performances of tilted-beam
compliant mechanisms (Awtar et al., 2007; Awtar and Sen,
2010a), XY flexure mechanisms (Awtar and Slocum, 2007),
cross-spring flexural pivots (Zhao et al., 2011), fully compli-
ant bistable mechanisms (Chen and Ma, 2015; Masters and
Howell, 2003; Wilcox and Howell, 2005), and compound
multibeam parallelogram mechanisms (Hao, 2015; Hao and

Li, 2015). The BCM can also capture the first fixed-free beam
buckling mode where the buckling load pcrit =−2.5, which
is less than 1.3 % deviation from the classical beam buckling
prediction of pcrit =−π

2/4.
It was demonstrated that the maximum error of the

first-order BCM is less than 5 % for the non-dimensional
transverse displacements (i.e., rotation θ and translation
y =1Y/L, as illustrated in Fig. 1) within ±0.1, in-
termediate deflection range, and the normalized axial
force (p = PL2/(EI )) within ±10 (Awtar et al., 2007).
The non-dimensional transverse displacements are confined
within ±0.1 because BCM was derived based on the lin-
earized beam-curvature assumptions (Awtar et al., 2007).
Moreover, the range of the normalized axial force p was
“empirically” restricted to [−10,10] to maintain less than
2 % truncation error (Awtar et al., 2010), which may limit
the application of the BCM.

For compliant mechanisms that use flexible elements ex-
periencing axial-force dominant loads, compressive force
(Holst et al., 2011; Chen and Ma, 2015) or tensile
force (Chen et al., 2009; Hao, 2015), there is a necessity
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to check if the maximum axial forces carried by the flex-
ible elements are within the BCM’s capability before us-
ing it for modeling. Moeen researched the nonlinear static
load-displacement relationships of beam-based flexure mod-
ules with an intermediate semi-rigid element (Moeen and
Moeenfard, 2017) and considered the load-stiffening effects
caused by axial loads using the BCM (Moeen and Moeen-
fard, 2018). Hao (2015) showed that the results of the first-
order BCM for compound multi-beam parallelogram mech-
anisms significantly deviate from the results of the BCM in-
cluding third-order terms of the axial force (termed as the
third-order BCM) when the axial force exceeds a certain
value. Although the third-order BCM is more accurate than
the first-order BCM and extends the use of the BCM, what
is the allowable axial force range of the third-order BCM re-
mains unknown.

The determination of the range of allowable axial force
includes finding the lower axial force boundary pl (i.e. the
maximum compressive axial force) and the upper bound-
ary pu (i.e. the maximum tensile axial force). Therefore, in
this paper, by using the conditions: (1) the positive definite
quadratic condition of the strain energy expression of the
BCM; (2) the characteristic that the BCM can only capture
the first buckling mode (the deflected beam carrying no more
than one inflection point), we mathematically derive the up-
per and lower bounds of the allowable axial force for the
third-order BCM, corresponding to the maximum tensile and
compressive forces that the BCM can take, respectively. The
third-order model is considered in this work because Hao
(2015) showed that the BCM with the third-order terms ac-
curately captures the relevant nonlinearities.

The rest of this paper is organized as follows. Section 2
briefly reviews the BCM equations and other related wor. The
range of allowable axial force for BCM is mathematically
obtained in Sects. 3.1 and 4.1. Three examples are utilised in
Sects. 3.2 and 4.2 to demonstrate how the axial force influ-
ences the modeling errors of the third BCM. Finally, Sect. 5
draws remarks of this study.

2 Literature review

2.1 Revisiting the Beam Constraint Model (BCM)

Figure 1 illustrates a uniform cross-section beam flexure im-
posed by a transverse force F , an axial force P and a moment
M at its free end, resulting in transverse and axial deflec-
tions 1X, 1Y and a tip slope θ . The parameters of the beam
include: the length L, the in-plane thickness T , the out-of-
plane thickness H , and the Young’s modulus of the material
E. A=HT and I =HT 3/12 are the area and the second
moment of inertia of the beam’s cross-section, respectively.
The BCM formulates the nonlinear load-deflection relations
of the beam using a set of parametric and closed-form equa-
tions (Awtar et al., 2010). Following are the BCM equations
with the third-order terms of the axial force included (Wilcox

Figure 1. A simple beam flexure subject to combined force and
moment loads.
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where the non-dimensional coefficients k’s and g’s in the ma-
trices are entirely independent of the beam shape and are re-
ferred to as the beam characteristic coefficients, as listed in
Table 1. t is the normalized thickness given as t = T/L. The
variables, m, f and p, are the normalized load parameters
and y and x are the non-dimensionalized (normalized) de-
flection parameters, which are, respectively, given as:

m=
ML

EI
, f =

FL2

EI
, p =

PL2

EI
, y =

1Y

L
, x =

1X

L
(3)

In addition, the third-order strain energy stored in the de-
flected beam is formulated as (Awtar et al., 2010; Awtar and
Sen, 2010b)
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Table 1. Beam characteristic coefficients of the BCM matrices (Awtar et al., 2010).

k
(0)
11 12 k

(0)
12 −6 k

(0)
22 4

k
(1)
11 6/5 k

(1)
12 −1/10 k

(1)
22 2/15

k
(2)
11 −1/700 k

(2)
12 1/1400 k

(2)
22 −11/6300

k
(3)
11 1/63 000 k

(3)
12 −1/126 000 k

(3)
22 1/27 000

g
(3)
11 −37/97 020 000 g

(3)
12 37/194 040 000 g

(3)
22 −509/291 060 000

in which v is the normalized strain energy with respect to the
beam parameters given as

v =
VL

EI

where V is the actual strain energy.
Note that the values of coefficients in Eqs. (1)–(4) are

listed in Table 1.

2.2 Other related work

Hao et al. (2011) proposed an analytical method for modeling
spatial deflection of a slender beam in its intermediate deflec-
tion range, which combines two orthogonal beam constraint
models (BCMs) with a torsional deflection model in the de-
formed configuration. Based on the Timoshenko beam the-
ory, the Timoshenko Beam Constraint Model (TBCM) was
developed for the purpose of including shear effects in the
model (Chen and Ma, 2015). Sen and Awtar (2013), Sen
(2013) presented a spatial BCM (SBCM) for the purpose of
accurately predicting the nonlinear spatial constraint charac-
teristics of thin bisymmetric beams in their intermediate de-
flection range (a bisymmetric beam refers to a beam whose
cross section has equal moments of area and zero product
of inertia). Ma and Chen (2016) proposed a Chained BCM
(CBCM), which extends the BCM for modeling large planer
deflections of beams in compliant mechanisms by utilizing
a discretization strategy. The CBCM also alleviates the lim-
itation of the maximum axial load of the BCM through dis-
cretization. Chen and Bai (2015) further developed a Chained
SBCM (CSBCM), which extends the SBCM for modeling
large spatial deflections of bisymmetric flexible beams.

3 Upper bound of axial force

3.1 Determining upper bound

The strain energy stored in the deflected beam (Eq. 4) can be
rewritten as:
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VL

EI
=

1
2
t2p2

12L2 +
1
2
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y

θ

]
(5)

where the first term on the right hand side of Eq. (5) repre-
sents the strain energy due to stretching or compressing and

the following second term represents the strain energy due to
bending. The Ke(p)’s in the strain energy formulation are
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Because the strain energy expression of the third-order BCM
is in a positive definite quadratic form for the case with a ten-
sile axial force. The following conditions should be satisfied
(Gilbert, 2009):

Ke11(p)> 0

Ke11(p)Ke22(p)−Ke12(p)Ke21(p)> 0 (7)

Combining Eqs. (6) and (7) and substituting the beam char-
acteristic coefficients in Table 1 into the result yields the fol-
lowing inequalities:

−
p3

31500
+
p2

700
+ 12> 0

p6

476280000
−

11p5

79380000
+

p4

504000
−

13p3

15750

+
19p2

1050
+ 12> 0 (8)

By solving the above inequalities, we have:

p < 34.05 (9)

That is to say, pu = 34.05 is the upper bound of axial force
when using the third-order BCM. It should also be noted that
a Maximum truncation error of 2.4 % is occurred with the
neglecting of the item with the fourth power of p in the poly-
nomial.

3.2 Case study

A compliant parallelogram mechanism, as shown in Fig. 2,
is widely used in precision positioning as compliant trans-
lational joints (Howell, 2001). The geometric nonlinearities
associated with deflections of the flexible beams and the re-
sulting nonlinear behaviors always complicate the modeling.
For example, when applying a vertical force Fy at the motion
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Figure 2. A fixed-guided beam in compliant parallelogram mecha-
nism.

Table 2. Geometric parameters of the compliant parallelogram
mechanism. H is the out-of-plane thickness of the beam.

Parameter H L T E

Value 20 mm 45 mm 1 mm 69 GPa

stage of the compliant parallelogram mechanism, the internal
tensile axial force along the flexible beam can become very
large while the transverse displacement1Y restrict to within
10 % of the beam length. The BCM is a reasonable choice to
model the flexible beams in compliant parallelogram mech-
anisms. Hao (2015) used the third-order BCM for modeling
compound compliant parallelogram mechanisms. But when
the transverse displacement 1Y increases to a certain value,
the difference between FEA and the BCM becomes large so
that the third-order BCM may fail to predict the correct force-
displacement relationship. The reason is that when the non-
dimensional axial force p exceeds the upper boundary ax-
ial force pu given in Eq. (9), the third-order BCM begins to
predict the inaccurate results, in other words, the third-order
BCM should be used within the allowable upper boundary of
the axial force. More details are followed below.

Since the compliant parallelogram mechanism has a sym-
metric configuration, only a single beam of the mechanism
is modeled. As shown in Fig. 3, the beam parameters listed
in Table 2 are identical to those used in Hao (2015). The co-
ordinate XOY is established with its origin at the fixed end
attached to the base. The normalized end displacement can
be written as:

x = 0, y =
1Y

L
, θ = 0 (10)

Let 1Y increase from the initial position to 0.1L and sub-
stitute Eq. (10) into Eqs. (1) and (2), the relationships of the
reaction force Fy and the normalized internal axial force p
along the beam against the transverse displacement 1Y can
be illustrated in Figs. 4 and 5, respectively.

A finite element model of the compliant parallelogram
mechanism was built with the ANSYS software where the
beam was meshed into 200 elements with Beam 188. The

Figure 3. A beam flexure in compliant parallelogram mechanism.
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Figure 4. Comparion of the load-displacement relationship of the
compliant parallelogram mechanism.

results are also plotted in Fig. 4. It can be seen from Fig. 4
that the results obtained by the third-order BCM clearly de-
viate from FEA results after p exceeds pu. The maximum
error of the BCM comparing with FEA is 20 % when the
non-dimensional end displacement is 0.1. The axial tensile
loads are also given in Fig. 5 which shows that the maximum
internal axial tensile force of the third-order BCM is larger
than 100, which is much larger the upper boundary of the
allowable force pu for the BCM.

In order to show the effect of the axial tensile force on the
modeling error of the third-order BCM, we compare its re-
sults to those obtained using CBCM. Considering the effec-
tiveness and efficiency, the CBCM results were obtained by
dividing the beam into 3 elements (Ma and Chen, 2016). In
such a way, the element axial tensile loads by normalization
is reduced to pe = P (L/3)2/EI = p/9 which is ensured to
be less than pu. The maximum error of the CBCM is reduced
to 1 %, and the curves of the CBCM error and the normal-
ized internal axial force during the deflection are also plotted
in Fig. 5. Although not discussed in this work, it should be

Mech. Sci., 9, 71–79, 2018 www.mech-sci.net/9/71/2018/
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Figure 5. Comparision of normalised axial force and error of the
compliant parallelogram mechanism.

noted that the maximum stress in the beams may exceed the
yield stress of the material when the mechanism translates
0.1L along the transverse direction, inducing failure of the
mechanism.

4 Lower bound of axial force

4.1 Determining lower bound

When the compressive force applied at the end of a flexible
beam exceeds a certain value p, the beam can buckle due
to the instability of the beam. Actually, the buckling corre-
sponds to a singularity of the stiffness matrix in the force-
displacement formula. This buckling load is also defined as
the critical load fcr. As the third-order BCM is derived based
on a fixed-free beam shown in Fig. 1, the compressive force
related to the buckling can be calculated by setting the deter-
minant of the nonlinear bending stiffness matrix to be zero.
Rewrite Eq. (1) as:

(
f

m

)
=Ks

(
y

θ

)
=

(
Ks11(p) Ks12(p)
Ks21(p) Ks22(p)

)(
y

θ

)
(11)

where Ks is the nonlinear stiffness matrix that relates the tip
loads and the tip displacements, in which each
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2
+ k
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3 (12)

By letting the determinant of Ks be zero and using the pa-
rameters given in Table 1, the following equation can be ob-

tained:

p6

1905120000
−

11p5

158760000
+

71p4

1512000
−

109p3

63000

+
277p2

2100
+

26p
5
+ 12= 0 (13)

Equation (13) is solved to obtain the following roots:

p =



47.16+ 83.74i
47.16+ 83.74i
31.82+ 61.26i
31.82− 61.26i
−23.50
−2.47

(14)

The first four roots are complex numbers with no physical
meaning, which thus are neglected. The fifth and sixth roots
are real solutions associated with two buckling modes. How-
ever, when the normalized compressive axial force increases
to the lower one, p =−2.47, the stiffness matrix Ks will ex-
hibit a singularity, which the beam buckles, so the larger one
(fifth root) is not considered. The axial force fa correspond-
ing to the first buckling mode of fixed-free beam is given as:

pa = p =−2.47 (15)

It is indicated in the knowledge of mechanics of materials
(Timoshenko, 2001) that the critical load fcr correspond-
ing to buckling is closely related to the boundary condi-
tion applying at the end of the flexible beam. In order to
find the lower boundary of the axial force that defines the
third-order BCM formula, we consider others boundary con-
ditions: fixed-pivoted and fixed-fixed, as illustrated in Fig. 6.
The critical loads corresponding to the fixed-free, fixed-
pivoted and fixed-fixed beam buckling modes (Fig. 6) can
be written, respectively, as:

pa = fcr

pb =
400
49
fcr

pc = 16fcr (16)

As the BCM can only capture the first buckling mode, ac-
cording to the results in Eq. (16), the lower boundary of the
axial force, pl, for different boundary conditions can be ex-
pressed as:

pl =


−2.47 Fixed-free beam

−20.16 Fixed-pivoted beam
−39.52 Fixed-fixed beam

(17)

4.2 Case study

The bistable mechanism shown in Fig. 7 has many potential
applications such as switches, static balancing mechanisms.

www.mech-sci.net/9/71/2018/ Mech. Sci., 9, 71–79, 2018
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Figure 6. (a) fixed-free beam buckling; (b) fixed-pivot beam buck-
ling; (c) fixed-fixed beam buckling.

The negative stiffness and the bistable behaviors have always
complicated the modeling. Furthermore, the compressive ax-
ial force along the flexible beam can become very large while
the transverse displacement 1Y (perpendicular to the beam)
is still limited within 10 % of the beam length. Among all the
methods, the BCM is a prior choice to model the behaviors of
bistable mechanisms. But, when the compressive axial force
exceeds a certain value, the BCM results may show an error.
In this section, two different bistable mechanism examples
were used to demonstrate the effectiveness of the range of
the axial force allowable for the BCM. The first example is
chosen to show the performance of the BCM when the com-
pressive axial force is larger than the allowable lower bound-
ary. The second example, on the contrary, is a case for the
compressive axial force within the allowable lower bound-
ary.

It should be demonstrated that for both examples the non-
dimensional transverse displacements perpendicular to the
beam are strictly limited within ±0.1 in all the deflected
cases in order to guarantee the effectiveness of the linearized
approximate expression for curvature. Details are elaborated
as follows.

Considering that the geometry and loading of the bistable
mechanism are symmetrical, a single fixed-guided limb is
chosen to analyze. Figure 8 illustrates the schematic of the
fixed-guided beam. Establish the coordinate system along the
beam with its origin placed at the fixed end and denote the
initial angle of the fixed-guided beam as β. The end displace-
ment can be written as:

x =
1Y cosβ

L
, y =

1Y sinβ
L

, θ = 0 (18)

Where x is the normalized displacement along the beam, y
is the normalized displacement perpendicular to the beam,
and θ is the tip rotation of the beam, which stays unchanged
during the deflection. The parameters of Example I are given
in Table 3. Let 1Y increase from the initial position to 0.1L
with the help of submitting Eq. (18) into Eqs. (1) and (2),

As-fabricated  position

Deflected position

T

Shuttle

L

β

Figure 7. A bistable mechanism.

Figure 8. Schematic of the bistable mechanism.

the relationships of the reaction force Fy and the normalized
internal axial force along the beam against the transverse dis-
placement 1Y can be obtained as shown in Figs. 9 and 10,
respectively.

Modelling the deflected beam of Example I using an
FEA model built with the ANSYS software (the beam was
meshed into 200 elements with Beam 188), the FEA force-
displacement relationship is also plotted in Fig. 9. It can be
observed that the results achieved by the BCM are consis-
tent well with those obtained by FEA at the beginning of
the force-deflection curve. When the tip displacement 1Y
getting larger, the third-order BCM fails to predict the force-
displacement relationship. The error between the results ob-
tained by the BCM and FEA is up to 60 %, as shown in
Fig. 10. The normalized internal axial force along the beam
during the deflection is also illustrated in Fig. 10 (using the
other y axis for comparison in the figure). It can be shown
that when the normalized compressing axial force magnitude
p is larger than 39.52, which exceeds the lower boundary of
the axial force pl, the third-order BCM fails to deal with this
problem.

The problem in Example I can be easily solved and the ax-
ial force at each displacement step was obtained by numeri-
cally solving the CBCM equations (Ma and Chen, 2016), The

Mech. Sci., 9, 71–79, 2018 www.mech-sci.net/9/71/2018/
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Table 3. Parameters of the examples. H is the out-of-plane thick-
ness of the beam.

Parameter Example I Example II

H 10 mm 10 mm
L 80 mm 60 mm
θ 3.5◦ 2◦

t 1 mm 1 mm
E 1.379 GPa 1.379 GPa

0 1 2 3 4 5 6 7 8

x 10
−3

−0.3
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F
y 

(N
)

 

 

Third−order BCM
FEA
CBCM

Figure 9. Comparison of the load-displacement relationship of Ex-
ample I.

curve obtained by the CBCM is given in Fig. 9. The error of
the force displacement relationship obtained by comparing
the CBCM and FEA results is also plotted in Fig. 10 and the
maximum error is less than 1 %.

As for Example II, we also model it using both the third-
order BCM and FEA methods. The force-displacement re-
lationship can be obtained as shown in Fig. 11. It can be
seen that the results obtained by the BCM and FEA match
well and the maximum error is 2.5 % as shown in Fig. 12.
The normalized internal axial loads along the beam during
the deflection are also displayed in Fig. 12 for comparison.
The maximum compressing axial force magnitude p = 21 is
lower than |pl| and the tip displacement 1Y is kept in the
intermediate deflection range, so the third-order BCM can
correctly capture the force-displacement of the mechanism.

5 Conclusions

In this work, we determine the range of the allowable axial
force of the third-order BCM. The upper bound pu are equal
to 34.05, and the lower bound pl is set to different values
with respect to different boundary conditions: pl =−2.47 for
fixed-free buckling, pl =−20.16 for fixed-pivoted buckling,
and pl =−39.52 for fixed-fixed buckling. Generally speak-
ing, a complaint mechanism is analyzed in a series of in-
cremental displacement steps or a series of incremental load
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Figure 10. Comparision of normalized axial force and error of Ex-
ample I.
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Figure 11. Comparion of the load-displacement relationship of Ex-
ample II between FEA and the BCM.

steps. At each step, the proposed bounds should be used to
check the axial force p to guarantee the effectiveness of the
BCM equations.

Three examples are analyzed to demonstrate the effects
of the axial force on the modeling errors of the third-order
BCM, and the CBCM with 3 elements were used in this
work to guarantee the accuracy of the results so that they
can be used as the exact solutions for the purpose of compar-
ison. Firstly, the case that the axial tensile force is beyond the
upper boundary of the allowable force is given showing the
effectiveness of pu. Secondly, the cases that the axial com-
pressing forces arewithin and beyond the lower boundary of
the allowable force are presented, the results have verified the
effectiveness of the value of pl. When using the third-order
BCM for modeling, it is always necessary to check if the ax-
ial force is in this allowable range to avoid (in case) large
modeling errors.
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Δ

Normalized axial force
Error

Figure 12. Comparision of normalized axial force and error of Ex-
ample II.

For the non-dimensional transverse displacements within
±0.1 and the normalized axial force (p = PL2/(EI )) within
[pl,pu], the majority of the modeling errors of the third-order
BCM comes from the truncation of the Taylor’s expansion.

It should be acknowledged that the CBCM expands the
range of the allowable axial force for the BCM through
discretizing the beam (Ma and Chen, 2016). For exam-
ple, if a beam is discretized into two elements with equal
length (the length of each element is L/2), then the corre-
sponding normalized compressive axial force of the model
for each element becomes 1/4 times of the original nor-
malised one according to Eq. (3). For a beam that carries
an axial force beyond the derived bounds in this paper, the
chained Beam- Constraint-Model (CBCM) (Ma and Chen,
2016, 2014) and the comprehensive elliptic integral solution
(Zhang and Chen, 2013) can be used to model it instead de-
spite they much less analytical than the third-order BCM.
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tained on request from the corresponding author.
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