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We propose an efficient control protocol for charge transfer in a double quantum dot. We con-
sider numerically a two-dimensional model system, where the quantum dots are subjected to time-
dependent electric fields corresponding to experimental gate voltages. Our protocol enables navi-
gation in the charge stability diagram from a state to another through controllable variation of the
fields. We show that the well-known adiabatic Landau-Zener transition – when supplemented with
a time-dependent field tailored with optimal control theory – can remarkably improve the transi-
tion speed. The results also lead to a simple control scheme that requires only a single parameter
obtained from the experimental charge stability diagram. Eventually, we can control the system at
the fastest speed allowed by the quantum dynamics and with a high fidelity.

I. INTRODUCTION

High-fidelity control of electron dynamics in a quantum
system is of paramount importance for quantum informa-
tion processing [1]. The quantum information, encoded
in qubits, is processed by the action of quantum gates
that must act accurately on time scales much shorter
than the coherence time and under the fault-tolerance
threshold [2]. In addition, the experimental limitations
and the quantum speed limit (QSL) [3, 4] (a fundamental
limit imposed by quantum mechanics) determine, respec-
tively, the possible temporal dependencies and minimum
time duration of realistic quantum gates. In the quan-
tum control terminology, the action of a quantum gate
corresponds to engineering the time dependence of exter-
nal parameters to drive the qubit from an initial state to
a desired target state. Such constrained quantum con-
trol problems can be successfully stated into the general
theoretical framework of quantum optimal control theory
(OCT) [5, 6].

Semiconductor qubits, embodied by charge or spin de-
grees of freedom of electrons in quantum dots, are in the
heart of the current qubit proposals due to their potential
scalability within present solid-state technology. Partic-
ularly, the most used setup for semiconductor qubits con-
sists of two coupled semiconductor quantum dots where
the confinement potential and charge state can be con-
trolled with high accuracy [7]. In principle, charge or spin
qubits can be manipulated by both optical and electrical
methods. However, all-electrical control by local gates
seems more appealing than optical control due to practi-
cal difficulties in focusing optimally shaped laser beams
with the desired spatial precision. For example, in the

∗ diegoacoden@gmail.com

double quantum dots (DQD) the charge degree of free-
dom is fully tunable by biasing the double well potential
and interdot tunnel barrier by gate voltages [9].

Since the seminal Letter of Grossmann et al. [8] a
number of theoretical and experimental works have ad-
dressed the issue of controlling the localization of an elec-
tron state in a double well potential [9–22]. These vari-
ous control strategies include the use of analytically well-
established phenomena like the paradigmatic Landau-
Zener (LZ) transition [12–14], Landau-Zener-Stückelberg
interferometry [15, 16], the composite pulse (CP) proto-
col and several other two-level control strategies [12, 24–
27], and OCT [18–23]. For the experimental control
strategies, as can be seen in [10, 15–17], the first stage is
the measurement of the charge stability diagram (CSD).
This diagram characterizes the electron localization as
functions of the gate voltages [7] and therefore initial-
izes the scenario for the control strategy. However, un-
like experimental control strategies, this diagram has
rarely been applied in the context of theoretical control
schemes.

In this work, we use OCT to numerically find electric
fields (and thus the corresponding gate voltages) that
lead to desired charge transfer in a semiconductor dou-
ble quantum dot. We compare the efficiency of the OCT
method with the LZ scheme, one of the simplest but
slowest strategies, and also with the CP protocol that
allows driving the system at the QSL [24, 27]. We find
that the optimal gate voltages tailored to produce the
charge transfer between the dots are fully parameteriz-
able through a one-parameter trajectory in the charge
stability diagram (CSD) defined by the degeneracy point
of the regions of none and one electron occupation, and
by the initial and final configurations. Thus, the relevant
information to produce charge transfer between the dots
can be extracted directly from the CSD. This remark-
able result is in contrast with the most of the alterna-
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tive strategies in which further information of the energy
spectrum is required.

The rest of the paper is organized as follows. In Sec.
II we first describe the physical model and parameters
and then explain with the dynamics in the adiabatic and
diabatic basis. This is followed by the description of the
OCT scheme and field parameters. In Sec. III we focus
on our results by first comparing the fidelity and speed of
the three protocols. Then we propose parametric scheme
defined in the CSD. Finally, in Sec. IV we discuss the
advantages of the proposed mechanism.

II. THEORY AND METHODS

A. Model

The effective-mass Hamiltonian for the N -electron sys-
tem is given by

H =

N∑
i=1

h(ri) +

N∑
i<j

C(ri, rj), (1)

where the single-particle Hamiltonian

h(r) = − 1

2m∗
∇2 + V (r) + Vb(r) +W (r), (2)

consists of the kinetic-energy term, DQD model potential
V (r), central potential barrier Vb(r) and a surrounding
boundary W (r) (see below). The second term in the
Hamiltonian,

C(ri, rj) =
e2

4πεε0|ri − rj |
, (3)

describes the Coulombic interaction between the elec-
trons. The complete Hamiltonian is used to build the
CSD, but we focus on time-dependent transitions occur-
ring within the one-electron regions. We use the material
parameters of GaAs, i.e., the effective mass m∗ = 0.067
me and the dielectric constant ε = 12.4.

Inspired by the realistic experimental setup of coupled
quantum dots [10], we propose a model potential com-
posed by a double well

V (x, y, t) = − VL(t)

e(rL−a)/b + 1
− VR(t)

e(rR−a)/b + 1
, (4)

where the depths of the left and right wells, VL(t)
and VR(t), are time-dependent functions corresponding
to the applied gate voltages. Here a is the radius of
the dot, b defines the hardness of the boundary, rR

L
=√

(x∓ d)2 + y2 is the distance from the center of right or
left dot, and d is a half of the distance between the centers
of the dots. The parameter values are set to a = 40 nm,
b = 1 nm, and d = 60 nm. This potential is supplemented
by a central potential barrier Vb(r) = vb/(1 + e(x−bx)/b)

to separate the QDs as well as by a rectangular boundary
defined as

W (r) = 2− 1

1 + e(|x|−lx)/b
− 1

1 + e(|y|−ly)/b
. (5)

This potential prevents the wave function to extend over
the external leads. We use values lx = 180 nm and ly =
100 nm corresponding to an area of 360 nm × 200 nm.
A potential barrier height between the dots is vb=0.565
meV.

The spatial eigenstates of the single-particle problem
are expanded in a basis set of Gaussian functions centered
at the dot positions

Gi(r) = Nxmiyni exp(−αi r2Qi
) with Qi = R,L,

(6)
where N is a normalization constant, αi are the Gaussian
exponents, and mi and ni are integers that define the z-
projection `i = mi + ni of the angular momentum of the
basis function [35]. For the two-particle case we consider
only the singlet states that is always the ground state in
the absence of an external magnetic field [36]. Then the
spatial eigenstates are expanded in properly symmetrized
products of Gaussian functions

Φij(r1, r2) =

{ 1√
2

[Gi(r1)Gj(r2) +Gj(r1)Gi(r2)] , for i 6= j

Gi(r1)Gi(r2), for i = j
(7)

of the form

Ψm(r1, r2) =

Nconf∑
n=1

cmnΦn(r1, r2) (8)

where Nconf is the number of two-electron configurations
and cmn are the expansion coefficients. The eigenen-
ergies and the corresponding eigenfunctions of the one-
and two-particle problem are obtained by using the Ritz-
variational method for a non-orthogonal basis set. For
each pair (VL, VR) the exponents αi are optimized simul-
taneously using Nelder−Mead method [37] to minimize
the ground-state energy. To achieve converged energy re-
sults for the ground state a set of 2s2p2d basis is found
to be sufficient in all the cases considered here and all
two-electron configurations for such a basis is included.

B. Dynamics in the adiabatic and diabatic basis

Our goal is to control the state vector of the system
|Ψ(t)〉 by varying the gate voltages VL(t) and VR(t) with
time. For a given pair of functions [VL(t), VR(t)] the
evolution of the state vector is governed by the time-
dependent Schrödinger equation (TDSE)

i
∂|Ψ(t)〉
∂t

= Ĥ(t)|Ψ(t)〉 (9)

where |Ψ(t)〉 is the state vector of the system and Ĥ(t)
is a simplified notation for the variation in time through
the gate voltages of the Hamiltonian, see Eq. (1).
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The state vector |Ψ(t)〉 can be expanded in any set
of eigenvectors of the Hilbert space, in particular, in
the so-called diabatic basis, which is the stationary ba-
sis of the system, involving the eigenvectors of the time-
independent part of the Hamiltonian Ĥ0,

Ĥ0|ΦDi 〉 = εDi |ΦDi 〉, (10)

where Ĥ(t) = Ĥ0 + Û(t). The expansion of the state
vector in the diabatic basis is

|Ψ(t)〉 =
∑
i

Di(t)e
−ıεDi t|ΦDi 〉, (11)

and the dynamics is governed by the time evolution of
the expansion coefficients Di(t),

Ḋi(t) = −ı
∑
j

Dj(t)e
−ı(εDj −ε

D
i )tUij(t), (12)

where Uij(t) = 〈ΦDi |Û(t)|ΦDj 〉.
Another possible basis set, that facilitates the discus-

sion of time-evolving quantum systems, is the adiabatic
basis made of the eigenstates of the instantaneous Hamil-
tonian,

Ĥ(t)|ΦAi (t)〉 = εAi (t)|ΦAi (t)〉, (13)

where the eigenvalues εAi (t) and the eigenstates |ΦAi (t)〉
are the instantaneous eigenvalues and eigenvectors of the
Hamiltonian at time t, i.e., for a given VL(t) and VR(t).
The expansion of the state vector in the adiabatic basis,

|Ψ(t)〉 =
∑
i

Ai(t)|ΦA(t)〉, (14)

leads to the following equation for the expansion coeffi-
cients Ai(t)

Ȧj(t) = −ı
∑
ikk′

[
R−1jk Hkk′Rk′i − ıR−1jk Ṙki

]
Ai(t), (15)

where Hij = 〈ΦAi (t)|Ĥ(t)|ΦAj (t)〉, Rij connects the super-
position coefficients of the state vector expansions (11)
and (14)

Di(t) =
∑
j

Rij(t)Aj(t), (16)

and R−1ij (t) is the matrix of the diabatic-adiabatic trans-
formation

|ΦAi (t)〉 =
∑
j

R−1ij (t)|ΦDj 〉. (17)

The systems of differential equations for the coefficients
Di(t) and Ai(t), given by equations (12) and (15), respec-
tively, is integrated numerically with the fourth-order
Runge-Kutta method [38]. The matrices R−1 and R de-
pend on time through the gate voltages VL(t) and VR(t),
and are thus available at an arbitrary time instant for

the integrator. We calculate these matrices on a grid in
a given region of the CSD and we use a simple first-order
polynomial interpolation for every point between the grid
points. A spacing of 0.01 meV between grid points has
been shows to be sufficiently small to obtain converged
dynamics on the adiabatic basis. In terms of the num-
ber of levels, we find converged dynamics with the first
eight diabatic eigenstates for the diabatic evolution, and
with the first two adiabatic eigenstates for the adiabatic
evolution.

C. Optimal control theory

If we assume that the system is initially, at t = 0, in
the state |ΦI〉, the key task of OCT is to determine the
functions VL(t) and VR(t) in order to get, after a time
T , a predefined final state |ΦF 〉. For this purpose, a
cost functional J , that will be subsequently maximized,
is constructed:

J [Ψ, χ, VL, VR] = J1[Ψ]+J2[VL]+J2[VR]+J3[Ψ, χ, VL, VR].
(18)

Here the part J1[Ψ] = |〈Ψ(T )|ΦF 〉|2 maximizes the pro-
jection of the wave function after the pulse duration T on
the target state |ΦF 〉. This quantity is usually designated
as the yield. The second functional

J2[V ] = −α

[
1

T

∫ T

0

dt V 2(t)/s(t)− f

]
, (19)

restricts the total fluence f of the gate voltage V (t). Here
α is a time-independent Lagrange multiplier, and s(t)
serves as an envelope function for the field. In this paper
we use an envelope function of a form [21]

s(t) =
1

2

{
erf

[
a

T

(
t− T

b

)]
+ erf

[
−a
T

(
t− T +

T

b

)]}
(20)

with a = 5.8 ps and b = 2.9 ps. The constraint that
the electronic wave function has to satisfy the TDSE,
formulated in integral form, is expressed in terms of the
Lagrange multiplier χ(t) by the third functional

J3[Ψ, χ, VL, VR] = −2 Im

∫ T

0

dt 〈χ(t)|(i∂t − Ĥ(t))|Ψ(t)〉.

(21)
In what follows we split the field functions into two

terms, VL = viL + vL and VR = viR + vR, where vi is a
fixed initial ansatz taking into account the available in-
formation on the physical system (structure of avoided
crossings, previous control protocols, etc.), and v is opti-
mized with the OCT algorithm. In particular, we define
viL(t) and viR(t) as linear functions on time in accordance
to the LZ recipe detailed in the following. In this scheme,
Eqs. (18), (19), and (21) can be restated in terms of vL
and vR instead of VL and VR.
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Setting the variations in the total functional to zero,
i.e., δJ = 0, leads to the so-called control equations

i∂t|Ψ(t)〉 = Ĥ(vL, vR, t)|Ψ(t)〉, |Ψ(0)〉 = |ΦI〉, (22)

i∂t|χ(t)〉 = Ĥ(vL, vR, t)|χ(t)〉, |χ(T )〉 = |ΦF 〉, (23)

vL(t) = − 1

αL
Im〈χ(t)| −1

e(rL−a)/b + 1
|Ψ(t)〉, (24)

vR(t) = − 1

αR
Im〈χ(t)| −1

e(rR−a)/b + 1
|Ψ(t)〉. (25)

In order to solve the above nonlinear coupled equations
we use an iterative algorithm proposed by Werschnik
and Gross [30]. The algorithm allows us to introduce
further experimental constraints, in particular, the filter
frequency ωc defined as the maximum allowed frequency
in the optimized pulse.

III. RESULTS

A. Charge stability diagram

The CSD [Fig. 1(a)] specifies the charge configuration
of the DQD as a function of potential gates in terms of
the pair (nL, nR) where nL (nR) represents the number of
electrons in the left (right) dot. The regions with electron
localization in the left or right dot are separated by a
degeneracy line, where the electrons occupy orbitals that
span both dots. The charge configuration in each region
is determined from the condition that the electrochemical
potential in the dots µ(nL + nR), defined as

µ(nL + nR) = EG(nL + nR)− EG(nL + nR − 1),

where EG(n) represent the ground state energy of the
DQD with n electrons, is equal to the electrochemical
potential in the reservoirs which are defined as zero.

The system setup with the total potential V and its
components are visualized in Fig. 1(b) (at y = 0; note
that the real potential is two-dimensional). The CSD as
a function of the gate voltages VL and VR are shown in
Fig. 1(a), where the degeneracy lines (black solid lines)
are associated with the passage of an electron between
the reservoir and the left and right dot (horizontal and
vertical lines), or with the exchange of one electron be-
tween the dots (diagonal line). On the diagonal there are
two points (gray), where the one-electron configurations
(1,0) and (0,1) are equally probable with (0,0) at ∼ 0.53
meV or with (1,1) at ∼ 2 meV. In the following these
points are referred to as shallow and deep degeneracy
points, respectively.

The black dots marked on the CSD in Fig. 1(a) cor-
respond to two configurations that will be used as our
initial or final states of the control protocol. The first
point, located at (VL, VR) = (1.8, 0.9) meV, has a Hamil-
toninan and ground state denoted by the ket HL and
|L〉 respectively, while for the second point, located at
(VL, VR) = (0.9, 1.8) meV, the Hamiltonian and ground

state are denoted by HR and |R〉. The red dashed line
corresponds to one of the possible paths on the CSD to
connect the states |L〉 and |R〉. This trajectory corre-
sponds to a linear relation of the voltages VL and VR as-
sociated with the LZ transition between |L〉 and |R〉. In
Fig. 1(c) we show the eigenenergies of the first two eigen-
states over this LZ path as a function of the detuning
ε = VR − VL. As expected, the energies are clearly sep-
arated at large detunings. The positive (negative) slope
of the eigenstate is related to its left (right) dominant
localization. At ε = 0 the energies form a clear avoided
crossing, which has a central role in the LZ charge trans-
fer process.

Our CSD in Fig. 1(a) is in accordance with previ-
ous CSDs calculated from a microscopic theory [32, 33].
In contrast to these studies, in which only the double-
well potential is considered, we require that the DQD
eigenstates are confined in a region of the size of the
lithographics dimensions of the sample through W (r) in
Eq. (5). This spatial restriction affects mainly the weakly
bound states and the main effect of this potential in the
CSD is modify the position of the degeneracy points. For
example, the shallow degeneracy point calculated in the
absence of the potential well W (r) is moved at 0.43 meV,
i.e., 0.1 meV below its previous value.

B. Efficiency and speed of control protocols for
CSD navigation

We consider three control strategies to vary VL(t) and
VR(t), each corresponding to a different pathway through
the CSD. We may consider the charge localization in the
left or right dot, together with a transition between the
states |L〉 and |R〉 as a simple single-qubit operation. For
realistic material parameters and device dimensions used
in this work, the operating time should be kept within
the maximum coherence time of GaAs of about 7 ns [40]
and the frequency spectrum of the functions VL(t) and
VR(t) should not exceed the typical high-frequency limit
of operation with gate electrodes, around 50 GHz [39].

First, we consider the passage of the electron using a
LZ transition [12]. Now, the depth of the left dot de-
creases linearly in time while the depth of the right dot
increases at the same rate, i.e., V LZ

L,R(t) = V 0
L,R ± (V 0

R −
V 0
L )t/T , where V 0

L = 1.8 meV and V 0
R = 0.9 meV .

The second scheme we consider is the CP protocol [25].
This scheme has been proved to be capable to control a
system described by a LZ-type Hamiltonian at the max-
imum speed allowed by quantum mechanics [24, 26]. In
addition, the CP scheme corresponds to an analytical so-
lution of the optimal control problem for these systems
[26]. In the CP protocol, the time dependence of the gate
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FIG. 1. (a) Charge stability diagram for our double quantum
dot system. The notation (n1, n2) identifies the dominant
localization of the ground state and characterizes the regions
of the charge stability diagram. These regions are separated
by degeneracy lines (black solid lines) and the intersection
of two of these lines is called degeneracy point (gray points).
The black points, located at (0.9, 1.8) meV and (1.8,0.9) meV
and denoted by the kets |L〉 and |R〉 respectively, correspond
to the initial and final state of the control protocol. The
red dashed line represents one possible pathway on the CSD,
related to the LZ strategy, to go from |L〉 to |R〉. (b) Total
potential V (r) + Vb(r) + W (r) as a function of x (for y = 0)
colored according to its leading contribution. (c) The energies
of the ground and excited states as a function of the detuning
ε (ε = VR − VL) varied from the configuration (1,0) to (0,1)
through the dashed red line from |L〉 to |R〉.

voltages is a piecewise function given by

ε(t) =


−ε0 t ≤ 0
+εM t ∈ (0, t0]

0 t ∈ (t0, T − t0)
−εM t ∈ [T − t0, T )
+ε0 t ≥ 0,

(26)

where ε0 = 0.9 meV, εM = 20 meV, and t0 satisfies
εM t0 = π/4. In the first and last piece, the gate voltages
are chosen such that the initial |L〉 and final |R〉 states are
eigenstates of the instantaneous Hamiltonian for t = 0
and t = T , respectively. In between these intervals, there
are two δ-like pulses separated by a central piece with

VL = VR. It should be noted that the abrupt changes
in the field make it rather unrealistic for experimental
applications.

Finally, we propose a third scheme in which the linear
LZ gate voltages V LZ

L,R(t) are corrected by optimized func-

tions vL,R(t) obtained with OCT. The composite voltages
have a form

Vi(t) = V LZ
i (t) + vi(t), (i = L,R). (27)

While the LZ protocol is known to produce slow (adia-
batic) transitions, the optimized part in Eq. (27) enables
extremely fast, non-adiabatic, transitions as shown be-
low.
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FIG. 2. (a) Calculated yield as a function of the pulse du-
ration for the Landau-Zener (LZ), composite pulse (CP) and
Optimized Landau-Zener (OCT) protocols. The inset shows a
more detailed comparison between CP and OCT, both reach-
ing yields higher than 99% for pulse lengths of 44 ps. The
OCT yield keeps on increasing up to 99.99% at about 74 ps.
(b) Time variation of left and right voltages as a function of
time for LZ, CP and OCT, when the pulse length is fixed to
44 ps. (c) Diabatic electron populations in left and right dots
as a function of time for LZ, CP and OCT procedures.

Figure 2(a) shows the yield as a function of the field
length for the transition |L〉 → |R〉 obtained with LZ, CP,
and OCT strategies. The TDSE have been solved in the
diabatic basis of eigenstates of the left localized Hamil-
toninan HL and the OCT calculations are carried out
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with a total fluence of 0.31 mev2. The CP and OCT pro-
tocols allow efficient transitions leading to yields higher
than 99% for the field length of 44 ps, while the LZ proto-
col requires about 1000 ps to reach a comparable fidelity.
It should be noted [see the inset of Fig. 2(a)] that the
OCT field can reach even higher yields up to ∼ 99.99%
with longer fields. The remarkable fact that the CP and
the OCT protocols give the same minimal pulse duration
to control the charge with a high fidelity is related to the
property of these strategies to drive the system at the
QSL [27, 41]. The coincidence between these very differ-
ent strategies suggest that the time of 44 ps is intrinsic
of our system. For that pulse duration the gate voltages
and the populations in the relevant diabatic states as a
function of time are shown in Figure 2(b-c). At that
characteristic time the LZ process leads to only minor
population transfer, whereas the CP and OCT methods
show a similar trend of fast transition from the initial to
the target configuration.

Short transition times (below 100 ps) obtained here
with the CP and OCT schemes are naturally favorable
for applications of DQDs in the coherent regime. One of
the key questions is the ability to produce the suggested
fields with experimental methods. In this respect, the
OCT field in Fig. 2(b) looks rather and smooth, which
has also been found in earlier studies on electrically con-
trolled DQD transitions [42]. On the other hand, the
abrupt changes characteristic of the CP field are difficult
to obtain with experimental methods.

Next we examine in detail different optimized paths
in the CSD. Fig. 3(a) shows curves in the plane
(VL(t), VR(t)) obtained by an OCT optimization of the
left and right well depths [Eq. (27)]. Several fixed values
for the fluence between 0 and 0.31 meV2 are considered,
and the time is set to 44 ps. Notably, the OCT algorithm
for the maximization of the yield provokes VL(t) and
VR(t) to evolve along a loop-shaped trajectory, which is
axially symmetric with respect to the diagonal VL = VR.
The trajectories give rise to fidelities increasing with the
fluence, from 16.5% (LZ process, straight line) up to
99.9%. It should be noted that the increasing fidelity
is related with an approach of the trajectory towards the
shallow degeneracy point. In particular, the highest fi-
delity corresponds to the time-dependent gate voltages
for which the trajectory passes through the triple point
of degeneracy [34].

The instantaneous energies, EA0 and EA1 , for the
ground and excited states calculated with this field are
shown in Fig. 3(b). It shows that the effect of the time-
dependent gate voltages is to get these levels closer to
each other during the interval 8 ps . t . 36 ps, thus
favoring the interference between the states. This regime
corresponds to trajectories close to the degeneracy line
separating the (1,0) and (0,1) regions. This effect is also
reflected in the populations of the ground and excited
levels as a function of time shown in Fig. 3(c). In the
above mentioned time interval, both levels are, on the av-
erage, equally populated reaching the final occupations
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FIG. 3. (a) Optimized trajectories in the charge stability dia-
gram for various values of fluence in meV2 for a pulse duration
of 44 ps. For the larger fluence, the trajectory passes through
the degeneracy point at the corner of the region (0,0). For
the red trajectory the energies of the adiabatic ground and
exited states as a function of the time and their populations
are shown in (b) and (c), respectively.

in the last 8 ps of the field.
As a conclusion of this section, it should be pointed

out that the OCT strategy, characterized by loop-shaped
trajectories in the CSD, is shown to be able to produce
charge transfer at nearly the QSL, en tanto es medido por
el CP protocol, thus fulfilling the stringent requirements
for the quantum error correction (loss of fidelity ranging
between 0.01% and fractions of a percent [28, 29]).

C. Control protocol from a parametric ansatz

Based on the above OCT results, we may propose a
control protocol depending on a single parameter, Aε,
whose meaning is explained below. Similarly to Eq. (27)
above, the detuning ε(t) = VR(t) − VL(t) and the sum
µ(t) = VR(t) + VL(t) can be expressed as

ε(t) = εLZ(t) + εOCT(t), (28)
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µ(t) = µLZ(t) + µOCT(t). (29)

Since the optimized field is set to zero at t = 0 and t = T
by definition, the same condition applies also to µ(t). We
suggest the following ansatz,

ε(t) = εLZ(t) +Aε sin(2π t/T ) (30)

µ(t) = µ0 +Aµ [cos(2π t/T )− 1], (31)

where Aε and Aµ are fitting parameters. As discussed
in the previous section, the trajectories passing close to
the degeneracy point (DP), (VL, VR) = (VDP , VDP ), have
yields higher than 99%. Therefore, we fix the value of Aµ
by the condition that the degeneracy point is the turn-
ing point at t = T/2; therefore, Aµ = (µ0 − 2VDP )/2
with µ0 = VL(0) + VR(0). This ansatz, with such a
parametrization, gives a very accurate representation of
the OCT protocol for a variety of trajectories.

In Fig. 4(a) we show three different parametrized tran-
sitions (A, B, C) marked in the CSD [for the parameter
values see Figs. 4(b-d)]. The protocol is applied to reach
the target state symmetrically localized in the right dot
from the initial state localized in the left dot. In all cases,
the trajectories are smooth curves that drive the system
to the desired target state with a high fidelity.

In Figs. 4(b-d) we show the yield as a function of the
pulse duration for the three parametrized trajectories
A, B and C and for the CP strategy. Note that, for a
given trajectory and value of Aε, our control strategy
has several characteristic times when the maximum
yield is obtained. The shortest of these characteristic
times, which is obtained by adjusting the value of Aε,
is greater than the time in which the maximum yield is
obtained by the CP. As with the case of the optimized
pulses, the parametrized pulses can at best match the
speed of the CP for the optimal value of the parameters
Aε. For the processes A, B and C we found that this
optimal parameters correspond to Aε = 0.452, 0.791
and 1.085 meV, respectively. In Figs. 4(b-d) we also
show the yields for pulses with different values of Aε.
For the A trajectory a fidelity of 98% is obtained at
the characteristic time measured by the CP. For this
trajectory our scheme leads to a second maximum, at
around four times the characteristic time, to a fidelity of
99.9%. For trajectories B and C the proposed protocol
produces yields as high as 99.99% within times similar
to the CP one with the optimal values of Aε.

IV. CONCLUDING REMARKS

We have studied the optimal procedures to control
charge transitions in a realistic double quantum dot by
using driving gate voltages. We have shown that a field
tailored with quantum optimal control theory on top
of the Landau-Zener protocol is an efficient strategy to
speed up the transitions without compromising the fi-
delity. Moreover, the optimal fields are found to be rel-
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atively smoothly varying and thus realistic in compari-
son with step-like fields proposed by the composite pulse
method. The transition times in the optimized and com-
posite pulse protocols correspond to the quantum speed
limit.

The analysis of the dynamics in the charge stability di-
agram shows that the evolution follows loop-shaped tra-
jectories. They correspond to time-dependent gate volt-
ages for which the charge states of the system stays, most
of the time, close to the degeneracy line, where the elec-
tron is partially localized in both quantum dots. Such a
condition has been found to allow an efficient transition
with a high yield. Finally, we have been able to find sim-
ple single-parameter fits for the optimal fields, which in

principle could be implemented in an experimental setup.
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