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Overview In this paper, the authors give several refinement inequalities of the Heinz
inequality:

2∥|A1/2XB1/2∥| 5 ∥|AνXB1−ν + A1−νXBν∥| 5 ∥|AX +XB∥|.

In section 2, they recall the Hermite-Hadamard inequality:

f(
a+ b

2
) 5 1

b− a

∫ b

a

f(x)dx 5 f(a) + f(b)

2

for a convex function f, and its refinements in Theorems 2.1, 2.3, 2.4. In section 3, they
apply the above results to the convex function

F (ν) := ∥|AνXB1−ν + A1−νXBν∥|

for ν ∈ [0, 1] and have improvement of Kittaneh’s inequalities in Theorem 3.2 and other
refinements. In section 4, they obtain refinements of the Heinz inequality for matrices. In
Theorem 4.1, inequality (4.2) with two parameters is proved by the standard argument:
checking the positive semidefiniteness of the relevant matrices Y and Z. By Theorem 4.1
they give Corollaries 4.2, 4.3 as refinements of the Heinz inequality. They also give a new
estimation (4.4) in Theorem 4.4 which is of interest and implies Corollaries 4.5 and 4.8.
In 4.5, 4.6, 4.8, used is the observation that tα + sβ 5 (t − 1)α + (s + 1)β when α 5 β,
which is not interesting to the referee.

Conclusion I think that all argument are clear and that the proof of (4.4) is interesting
so that I would like to recommend its publication in LAA.

Comments
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Page 9, line-9: remove ‘matrix’; assume that A is . . . .
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The celebrated Heinz inequality asserts that 2|||A1/2XB1/2||| �
|||AνXB1−ν + A1−νXBν ||| � |||AX + XB||| for X ∈ B(H ), A, B ∈
B(H )+, every unitarily invariant norm ||| · ||| and ν ∈ [0, 1]. In
this paper, we present several improvement of the Heinz inequal-

ity by using the convexity of the function F(ν) = |||AνXB1−ν +
A1−νXBν |||, some integration techniques and various refinements

of the Hermite–Hadamard inequality. In the setting of matrices we

prove that

∣∣∣∣
∣∣∣∣
∣∣∣∣A α+β

2 XB1−
α+β
2 + A1− α+β

2 XB
α+β
2

∣∣∣∣
∣∣∣∣
∣∣∣∣

� 1

|β − α|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β

α

(
AνXB1−ν + A1−νXBν

)
dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣ ,

for real numbers α, β .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction30

Let B(H ) denote the C∗-algebra of all bounded linear operators acting on a complex separable31

Hilbert space (H , 〈·, ·〉). In the case when dimH = n, we identifyB(H )with the full matrix algebra32
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Mn of all n × n matrices with entries in the complex field. The cone of positive operators is denoted33

by B(H )+. A unitarily invariant norm |||·||| is defined on a norm ideal J|||·||| of B(H ) associated with34

it and has the property |||UXV ||| = |||X|||, where U and V are unitaries and X ∈ J|||.|||. Whenever we35

write |||X|||, we mean that X ∈ J|||·|||. The operator norm on B(H ) is denoted by ‖ · ‖.36

The arithmetic–geometric mean inequality for two positive real numbers a, b is
√

ab � (a+ b)/2,37

which has been generalized in the context of bounded linear operators as follows. For A, B ∈ B(H )+38

and an unitarily invariant norm ||| · ||| it holds that39

2|||A1/2XB1/2||| � |||AX + XB|||.
For 0 � ν � 1 and two nonnegative real numbers a and b, the Heinz mean is defined as40

Hν(a, b) = aνb1−ν + a1−νbν

2
.

The function Hν is symmetric about the point ν = 1
2
. Note that H0(a, b) = H1(a, b) = a+b

2
,41

H1/2(a, b) = √
ab and42

H1/2(a, b) � Hν(a, b) � H0(a, b) (1.1)

for 0 � ν � 1, i.e., the Heinz means interpolates between the geometric mean and the arithmetic43

mean. The generalization of (1.1) in B(H ) asserts that for operators A, B, X such that A, B ∈ B(H )+,44

every unitarily invariant norm ||| · ||| and ν ∈ [0, 1] the following double inequality due to Bhatia and45

Davis [3] holds46

2|||A1/2XB1/2||| � |||AνXB1−ν + A1−νXBν ||| � |||AX + XB|||. (1.2)

Indeed, it has been proved that F(ν) = |||AνXB1−ν + A1−νXBν ||| is a convex function of ν on [0, 1]47

with symmetry about ν = 1/2, which attains its minimum there at and its maximum at ν = 0 and48

ν = 1.49

The second part of the previous inequality is one of the most essential inequalities in the operator50

theory, which is called the Heinz inequality; see [11]. The proof given by Heinz [12] is based on the51

complex analysis and is somewhat complicated. In [19], McIntosh showed that the Heinz inequality is52

a consequence of the following inequality53 ∥∥A∗AX + XBB∗∥∥ � 2 ‖AXB‖ ,

where A, B, X ∈ B(H ). In the literature, the above inequality is called the arithmetic–geometric mean54

inequality. Fujii et al. [10] proved that the Heinz inequality is equivalent to several other norm inequal-55

ities such as the Corach–Porta–Recht inequality ‖AXA−1 + A−1XA‖ � 2‖X‖, where A is a selfadjoint56

invertible operator and X is a selfadjoint operator; see also [7]. Audenaert [2] gave a singular value57

inequality for Heinz means by showing that if A, B ∈ Mn are positive semidefinite and 0 � ν � 1,58

then sj(A
νB1−ν + A1−νBν) � sj(A+ B) for j = 1, . . . , n, where sj denotes the jth singular value. Also,59

Yamazaki [25] used the classical Heinz inequality ‖AXB‖r‖X‖1−r ≥ ‖ArXBr‖ (A, B, X ∈ B(H ), A �60

0, B � 0, r ∈ [0, 1]) to characterize the chaotic order relation and to study isometric Aluthge trans-61

formations.62

For a detailed study of these and associated norm inequalities along with their history of origin,63

refinements and applications, one may refer to [3,4,6,13–16].64

It should be noticed that F(1/2) � F(ν) � F(0)+F(1)
2

provides a refinement to the Jensen inequality65

F(1/2) � F(0)+F(1)
2

for the function F . Therefore it seems quite reasonable to obtain a new refinement66

of (1.2) by utilizing a refinement of Jensen’s inequality. This idea was recently applied by Kittaneh [18]67

in virtue of the Hermite–Hadamard inequality (2.1).68

One of the purposes of the present article is to obtain some new refinements of (1.2), from different69

refinements of inequality (2.1). We also aim to give a unified study and further refinements to the70

recent works for matrices.71

Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl.

(2013), http://dx.doi.org/10.1016/j.laa.2013.01.012
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2. The Hermite–Hadamard inequality and its refinements72

For a convex function f , the double inequality73

f

(
a + b

2

)
� 1

b − a

∫ b

a
f (x)dx � f (a) + f (b)

2
(2.1)

is known as the Hermite–Hadamard (H-H) inequality. This inequality was first published by Hermite74

in 1883 in an elementary journal and independently proved in 1893 by Hadamard. It gives us an75

estimation of the mean value of the convex function f ; see [17,20].76

There is an extensive amount of literature devoted to this simple and nice result, which has many77

applications in the theory of special means from which we would like to refer the reader to [21].78

Interestingly, each of two sides of the H-H inequality characterizes convex functions. More precisely, if79

J is an interval and f : J → R is a continuous function, whose restriction to every compact subinterval80

[a, b] verifies the first inequality of (2.1) then f is convex. The same works when the first inequality is81

replaced by the second one.82

Applying the H-H inequality, one can obtain the well-known geometric–logarithmic–arithmetic83

inequality84

H1/2(a, b) � L(a, b) � H0(a, b),

where L(a, b) = ∫ 1
0 atb1−tdt. An operator version of this has been proved by Hiai and Kosaki [14],85

which says that for A, B ∈ B(H )+,86

|||A1/2XB1/2||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1

0
AνXB1−νdν

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 1

2
|||AX + XB||| ,

which is another refinement of the arithmetic–geometric operator inequality.87

Throughout this paper we will use the following notation: For a, b ∈ R and t ∈ [0, 1], let88

mf (a, b) = 1

b − a

∫ b

a
f (x)dx,

and89

[a, b]t = (1 − t)a + tb.

If f is an integrable function on [a, b] then90

1

b − a

∫ b

a
f (x)dx =

∫ 1

0
f (ta + (1 − t)b)dt =

∫ 1

0
f (tb + (1 − t)a)dt,

and if f is convex on [a, b] we get91

1

b − a

∫ b

a
f (x)dx =

∫ 1

0
F(a,b)(t)dt,

where F(a,b)(t) = 1
2

(
f
(
a + t(b−a)

2

)
+ f

(
b − t(b−a)

2

))
; see [1, Theorem 1.2].92

In this section we collect various refinements of the H-H inequality for convex functions.93

Theorem 2.1 [8,23]. If f : [a, b] → R is a convex function and Ht, Gt are defined on [0, 1] by94

Ht(a, b) = 1

b − a

∫ b

a
f

([
a + b

2
, x

]
t

)
dx,

and95

Gt(a, b) = 1

2(b − a)

∫ b

a
[f ([x, a]t) + f ([x, b]t)]dx,

Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl.

(2013), http://dx.doi.org/10.1016/j.laa.2013.01.012
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then Ht and Gt are convex, increasing and96

f

(
a + b

2

)
= H0(a, b) � Ht(a, b) � H1(a, b) = mf (a, b), (2.2)

mf (a, b) = G0(a, b) � Gt(a, b) � G1(a, b) = f (a) + f (b)

2
(2.3)

for all t ∈ [0, 1]. Furthermore,97

f

(
a + b

2

)
� 2

b − a

∫ (a+3b)
4

(3a+b)
4

f (x)dx �
∫ 1

0
Ht(a, b)dt

� 1

2

(
f

(
a + b

2

)
+ mf (a, b)

)
� mf (a, b)

and98

2

b − a

∫ (a+3b)
4

(3a+b)
4

f (x)dx � 1

2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))
�
∫ 1

0
Gt(a, b)dt

� 1

2

(
f

(
a + b

2

)
+ f (a) + f (b)

2

)
� f (a) + f (b)

2
. (2.4)

Remark 2.2. (1) From (2.4) we get that99

mf (a, b) � 1

2

(
f

(
a + b

2

)
+ f (a) + f (b)

2

)
� f (a) + f (b)

2
,

which is the well-known Bullen’s inequality; see [21, p. 140]. As an immediate consequence,100

from the previous inequality, we note that the first inequality is stronger than the second one101

in (2.1), i.e.102

mf (a, b) − f

(
a + b

2

)
� f (a) + f (b)

2
− mf (a, b).

(2) We note some properties of Ht and Gt useful in the next sections. For μ ∈ [0, 1] we get103

(a) Ht(μ, 1 − μ) = 1
1−2μ

∫ 1−μ
μ f

([
1
2
, x
]
t

)
dx = 1

2μ−1

∫μ
1−μ f

([
1
2
, x
]
t

)
dx = Ht(1 − μ, μ).104

(b) Gt(μ, 1 − μ) = 1
2(1−2μ)

∫ 1−μ
μ [f ([x, μ]t) + f ([x, 1 − μ]t)]dx = Gt(1 − μ, μ).105

Recently, the following result was proved:106

Theorem 2.3 [24]. If f is a convex function defined on an interval J, a, b ∈ J◦ with a < b and the mapping107

Tt is defined by108

Tt(a, b) = 1

2

(
f

(
1 + t

2
a + 1 − t

2
b

)
+ f

(
1 − t

2
a + 1 + t

2
b

))
,

then Tt is convex and increasing on [0, 1] and109

f

(
a + b

2

)
� Tη(a, b) � Tξ (a, b) � Tλ(a, b) � f (a) + f (b)

2
,

for all η ∈ (0, ξ), λ ∈ (ξ, 1), where Tξ (a, b) = mf (a, b).110

In [9], the author asked whether for a convex function f on an interval J there exist real numbers l,111

L such that112

Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl.
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f

(
a + b

2

)
� l � 1

b − a

∫ b

a
f (x)dx � L � f (a) + f (b)

2
.

An affirmative answer to this question is given as follows.113

Theorem 2.4 [9]. Assume that f : [a, b] → R is a convex function. Then114

f

(
a + b

2

)
� l(λ) � 1

b − a

∫ b

a
f (x)dx � L(λ) � f (a) + f (b)

2
(2.5)

for all λ ∈ [0, 1], where115

l(λ) = λf

(
λb + (2 − λ)a

2

)
+ (1 − λ)f

(
(1 + λ)b + (1 − λ)a

2

)

and116

L(λ) = 1

2
(f (λb + (1 − λ)a) + λf (a) + (1 − λ)f (b)).

Remark 2.5. Applying inequality (2.5) for λ = 1
2
we get117

f

(
a + b

2

)
� 1

2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))
� mf (a, b)

� 1

2

(
f

(
a + b

2

)
+ f (a) + f (b)

2

)
� f (a) + f (b)

2
.

This result has been obtained by Akkouchi in [1].118

3. Refinements of the Heinz inequality for operators119

In this section we use the convexity of F(ν) = |||AνXB1−ν + A1−νXBν |||; ν ∈ [0, 1] and the120

different refinements of inequality (2.1) described in the previous section.121

Theorem 3.1. Let A, B, X be operators such that A, B ∈ B(H )+. Then for any t, μ ∈ [0, 1] and any122

unitary invariant norm ||| · |||,123

2|||A1/2XB1/2||| � 1

1 − 2μ

∫ 1−μ

μ
F([1/2, x]t)dx

� 1

1 − 2μ

∫ 1−μ

μ
|||AxXB1−x + A1−xXBx|||dx

� 1

2(1 − 2μ)

∫ 1−μ

μ
[F([x, μ]t) + F([x, 1 − μ]t)]dx

� |||AμXB1−μ + A1−μXBμ|||

Proof. For μ �= 1
2
the inequalities follows by applying inequalities (2.2) and (2.3) on the interval124

[μ, 1 − μ] if 0 � μ < 1
2
or [1 − μ, μ] if 1

2
< μ � 1. Finally125

lim
μ→ 1

2

1

2(1 − 2μ)

∫ 1−μ

μ
(F([x, μ]t) + F([x, 1 − μ]t)) dx = 2|||A1/2XB1/2|||

completes the proof. �126

Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl.
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Applying Theorem 2.1 to the function F on the interval
[
μ, 1

2

]
or
[
1
2
, μ
]
for μ ∈ [0, 1] we obtain127

the following refinement of [18, Theorem 2 and Corollary 1].128

Theorem 3.2. Let A, B, X be operators such that A, B ∈ B(H )+. Then for every μ ∈ [0, 1] and every129
unitarily invariant norm ||| · |||,130

2|||A1/2XB1/2||| � |||A 2μ+1
4 XB

3−2μ
4 + A

3−2μ
4 XB

2μ+1
4 |||

� 4

1 − 2μ

∫ (2μ+3)
8

(6μ+1)
8

|||AxXB1−x + A1−xXBx|||dx �
∫ 1

0
Ht(1/2, μ)dt

� 1

2
|||A 2μ+1

4 XB
3−2μ

4 + A
3−2μ

4 XB
2μ+1

4 ||| + 1

1 − 2μ

∫ 1/2

μ
F(x)dx

� 2

1 − 2μ

∫ 1/2

μ
|||AxXB1−x + A1−xXBx|||dx = G0(1/2, μ) �

∫ 1

0
Gt(1/2, μ)dt

� 1

2

(
|||A 2μ+1

4 XB
3−2μ

4 + A
3−2μ

4 XB
2μ+1

4 ||| + |||AμXB1−μ + A1−μXBμ||| + F(1/2)

)

� 1

2
|||AμXB1−μ + A1−μXBμ||| + |||A1/2XB1/2|||

� |||AμXB1−μ + A1−μXBμ|||.

Now, we have the following refinement of the first part of the the Heinz inequality via certain131

sequences.132

Theorem 3.3. Let A, B, X be operators such that A, B ∈ B(H )+ and for n ∈ N0 ,133

xn(F, a, b) = 1

2n

2n∑
i=1

F

(
a +

(
i − 1

2

)
b − a

2n

)
,

yn(F, a, b) = 1

2n

⎛
⎝F(a) + F(b)

2
+

2n−1∑
i=1

F

(
[a, b] i

2n

)⎞⎠ .

Then134

(1) For μ ∈ [0, 1/2] and for every unitarily invariant norm ||| · |||,135

2|||A1/2XB1/2||| = x0(F, μ, 1 − μ) � · · · � xn(F, μ, 1 − μ)

� 1

1 − 2μ

∫ 1−μ

μ
|||AxXB1−x + A1−xXBx|||dx

� yn(F, μ, 1 − μ) � · · · � y0(F, μ, 1 − μ) = F(μ)

(2) For μ ∈ [1/2, 1] and for every unitarily invariant norm ||| · |||,136

2|||A1/2XB1/2||| = x0(F, 1 − μ, μ) � · · · � xn(F, 1 − μ, μ)

� 1

2μ − 1

∫ μ

1−μ
|||AxXB1−x + A1−xXBx|||dx

� yn(F, 1 − μ, μ) � · · · � y0(F, 1 − μ, μ) = F(μ)

Applying the Theorem 2.4, we obtain the following refinement.137
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Theorem 3.4. Let A, B, X be operators such that A, B ∈ B(H )+ and α, β ∈ [0, 1] and ||| · ||| be a138

unitarily invariant norm. Then139

F

(
α + β

2

)
� l(λ) � 1

b − a

∫ b

a
F(x)dx � L(λ) � F(α) + F(β)

2

for all λ ∈ [0, 1], where140

l(λ) = λF

(
λβ + (2 − λ)α

2

)
+ (1 − λ)F

(
(1 + λ)β + (1 − λ)α

2

)

and141

L(λ) = 1

2
(F(λβ + (1 − λ)α) + λF(α) + (1 − λ)F(β)).

Finally, using the refinement presented in Theorem 2.3 we get the following statement.142

Theorem 3.5. Let A, B, X be operators such that A, B ∈ B(H )+. For a, b ∈ (0, 1) with a < b let Tt be143

the mapping defined in [0, 1] by144

Tt(a, b) = 1

2

(
F

(
1 + t

2
a + 1 − t

2
b

)
+ F

(
1 − t

2
a + 1 + t

2
b

))
.

Then, there exists ξ ∈ (0, 1) such that for any μ ∈ (0, 1) and any unitary invariant norm ||| · |||,145

2|||A1/2XB1/2||| � Tη(μ, 1 − μ) � Tξ (μ, 1 − μ) = 1

1 − 2μ

∫ 1−μ

μ
F(x)dx

� Tλ(μ, 1 − μ) � |||AμXB1−μ + A1−μXBμ||| ,
where η ∈ [0, ξ ] and λ ∈ [ξ, 1].146

From the generalization of the H-H inequality due to Vasić and Lacković, we get147

Theorem 3.6. Let A, B, X be operators such that A, B ∈ B(H )+ and let p, q be positive numbers and148

0 � α < β � 1. Then the double inequality149

F

(
pα + qβ

p + q

)
� 1

2y

∫ c+y

c−y
F(t)dt � pF(α) + qF(β)

p + q

holds for c = pα+qβ
p+q

, y > 0 if and only if y � β−α
p+q

min{p, q}.150

4. Refinement of the Heinz inequality for matrices151

In what follows, the capital letters A, B, X, . . . denote arbitrary elements of Mn. By Pn we denote152

the set of positive definite matrices. The Schur product of two matrices A = [aij] and B = [bij] in Mn153

is the entrywise product and denoted by A ◦ B. We shall state the following preliminary result, which154

is needed to prove our main results.155

If X = [xij] is positive semidefinite, then for any matrix Y, we have156

|||X ◦ Y ||| � |||Y |||max
i

xii (4.1)

for every unitarily invariant norm ||| · |||. For a proof of this, the reader may be referred to [12].157
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Theorem 4.1. Let A, B ∈ Pn and X ∈ Mn. Then for any real numbers α, β and any unitarily invariant158

norm ||| · |||,159 ∣∣∣∣
∣∣∣∣
∣∣∣∣A α+β

2 XB1−
α+β
2 + A1− α+β

2 XB
α+β
2

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 1

|β − α|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β

α

(
AνXB1−ν + A1−νXBν

)
dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣ . (4.2)

Proof. Without loss of generality assume that α < β . We shall first prove the result for the case160

A = B. Since the norms considered here are unitarily invariant, so we can assume that A is diagonal,161

i.e. A = diag(λ1, λ2, . . . , λn).162

Note that163

A
α+β
2 XA1− α+β

2 + A1− α+β
2 XA

α+β
2 = Y ◦

(∫ β

α

(
AνXA1−ν + A1−νXAν

)
dν

)
,

where Y is a Hermitian matrix. If X = [xij] and Y = [yij], then164 [
λ

α+β
2

i xijλ
1− α+β

2

j + λ
1− α+β

2

i xijλ
α+β
2

j

]
=
[
yij

∫ β

α

(
λν
i xijλ

1−ν
j + λ1−ν

i xijλ
ν
j

)
dν

]
,

whence165

yij =
λ

α+β
2

i λ
1− α+β

2

j + λ
1− α+β

2

i λ
α+β
2

j∫ β
α

(
exp

(
log(λi)ν + log(λj)(1 − ν)

)+ exp
(
log(λi)(1 − ν) + log(λj)ν

))
dν

= λ
β−α
2

i

(
λα
i λ

1−β
j + λ

1−β
i λα

j

)
λ

β−α
2

j (log λi − log λj)

λ
β
i λ

1−β
j − λ

1−β
i λ

β
j − λα

i λ1−α
j + λ1−α

i λα
j

= λ
β−α
2

i (log λi − log λj)λ
β−α
2

j

λ
β−α
i − λ

β−α
j

, for i �= j

and yii = 1
β−α

> 0. By (4.1), it is enough to show that the matrix Y is positive semidefinite, or166

equivalently the matrix167

y′
ij =

⎧⎪⎨
⎪⎩

log λi−log λj

λ
β−α
i −λ

β−α
j

if i �= j

1

(β−α)λ
β−α
i

if i = j

is positive semidefinite. On taking λ
β−α
i = si, we get168

(β − α)y′
ij =

⎧⎨
⎩

log si−log sj
si−sj

if i �= j

1
si

if i = j ,

which is a positive semidefinite matrix, since the matrix on the right hand side is the Löwner matrix169

corresponding to the matrix monotone function log x; see [4, Theorem 5.3.3]. This proves the first170

inequality in (4.2) for the case A = B.171

The second inequality will follow on the same lines. We indeed have172 ∫ β

α

(
AνXA1−ν + A1−νXAν

)
dν = Z ◦

(
AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ

)
,
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where Z is the Hermitian matrix with entries173

zij =
⎧⎪⎨
⎪⎩

λ
β−α
i −λ

β−α
j

(log λi−log λj)(λ
β−α
i +λ

β−α
j )

if i �= j

(β−α)
2

if i = j .

On taking λ
β−α
i = eti we conclude that Z is positive semidefinite if and only if so is the following174

matrix175

2

β − α
z′ij =

⎧⎨
⎩

tanh((ti−tj)/2)

(ti−tj)/2
if i �= j

1 if i = j .

The right hand sidematrix is positive semidefinite since the function f (x) = tanh x
x

is positive definite;176

see [4, Example 5.2.11]. This proves the second inequality in (4.2) for the case A = B.177

The general case follows on replacing A by

⎡
⎣ A 0

0 B

⎤
⎦ and X by

⎡
⎣ 0 X

0 0

⎤
⎦ . �178

The first corollary provides some variants of [18, Theorems 2 and 3]. It should be noticed that179

lim
μ→1/2

(
2

|1 − 2μ|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ 1/2

μ
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
)

= 2
∣∣∣∣∣∣∣∣∣A1/2XB1/2

∣∣∣∣∣∣∣∣∣
and180

lim
μ→0

(
1

|μ|
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ μ

0
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣
∣∣∣∣
∣∣∣∣
)

= |||AX + XB||| .

Corollary 4.2. Let A, B ∈ Pn, X ∈ Mn, μ be a real number and ||| · ||| be any unitarily invariant norm.181

Then182 ∣∣∣∣
∣∣∣∣
∣∣∣∣A 2μ+1

4 XB
3−2μ

4 + A
3−2μ

4 XB
2μ+1

4

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 2

|1 − 2μ|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ 1/2

μ
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AμXB1−μ + A1−μXBμ + 2A1/2XB1/2
∣∣∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣∣∣Aμ
2 XB1−

μ
2 + A1− μ

2 XB
μ
2

∣∣∣∣∣∣∣∣∣ � 1

|μ|
∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ μ

0
(AνXB1−ν + A1−νXBν)dν

∣∣∣∣
∣∣∣∣
∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AX + XB + AμXB1−μ + A1−μXBμ
∣∣∣∣∣∣∣∣∣ .

The following consequence provides a matrix analogue of (1.1).183

Corollary 4.3. Let A, B ∈ Pn and X ∈ Mn. Then for any 0 � α < β � 1 with α + β � 2 and any184

unitarily invariant norm ||| · |||,185

2|||A1/2XB1/2||| �
∣∣∣∣
∣∣∣∣
∣∣∣∣A α+β

2 XB1−
α+β
2 + A1− α+β

2 XB
α+β
2

∣∣∣∣
∣∣∣∣
∣∣∣∣

� 1

|β − α|
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β

α

(
AνXB1−ν + A1−νXBν

)
dν

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
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� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣

� 1

2

∣∣∣∣∣∣∣∣∣AαXB1−α + A1−αXBα
∣∣∣∣∣∣∣∣∣+ 1

2

∣∣∣∣∣∣∣∣∣AβXB1−β + A1−βXBβ
∣∣∣∣∣∣∣∣∣

� |||AX + XB|||.

Proof. Applying the triangle inequality, theproperties of the function f (ν) = |||AνXB1−ν+A1−νXBν |||186

and Theorem 4.1 we get the required inequalities. �187

It is shown in [18, Corollary 3] that188

|||AνXB1−ν + A1−νXBν ||| � 4r0|||A1/2XB1/2||| + (1 − 2r0)|||AX + XB|||. (4.3)

A natural generalization of (4.3) would be189

|||AνXB1−ν + A1−νXBν ||| � |||4r0A1/2XB1/2 + (1 − 2r0)(AX + XB)|||
for 0 � ν � 1 and r0 = min{ν, 1 − ν} with A, B ∈ Pn and X ∈ Mn, which in fact is not true, in190

general. The following counterexample justifies this:191

Take X =

⎡
⎢⎢⎢⎣
52.39 38.71 12.36

32.86 35.38 64.82

91.79 99.45 66.10

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

92.315 87.791 71.090

87.791 120.130 83.340

71.090 83.340 103.610

⎤
⎥⎥⎥⎦,192

B =

⎡
⎢⎢⎢⎣
118.482 23.249 112.676

23.249 10.343 38.224

112.676 38.224 156.551

⎤
⎥⎥⎥⎦ and ν = 0.4680. Then tr|AνXB1−ν + A1−νXBν | = 78135.5, while193

tr|4r0A1/2XB1/2 + (1 − 2r0)(AX + XB)| = 78125.4.194

We shall, however, present another result, which is a possible generalization of (4.3).195

196

Theorem 4.4. Let A, B ∈ Pn and X ∈ Mn. Then for ν ∈ [0, 1] and for every unitarily invariant norm197

||| · |||,198

|||AνXB1−ν + A1−νXBν ||| � |||4r1(ν)A1/2XB1/2 + (1 − 2r1(ν))(AX + XB)||| , (4.4)

where r1(ν) = min{ν,
∣∣∣ 1
2

− ν
∣∣∣ , 1 − ν}.199

Proof. First, we consider the case ν ∈ [0, 1/2]. Notice that by some simple algebraic or geometrical200

arguments, we may conclude that 0 � r1 � 1/4. Again, by following a similar way as in Theorem 4.1,201

we can write the matrix202

AνXA1−ν + A1−νXAν = W ◦ (4r1A
1/2XA1/2 + (1 − 2r1)(AX + XA)),

where W is a Hermitian matrix with entries203

wij =
⎧⎪⎨
⎪⎩

λν
i (λ

1−2ν
i +λ1−2ν

j )λν
j

4r1λ
1/2
i λ

1/2
j +(1−2r1)(λi+λj)

if i �= j

1 if i = j

Now, observe that 0 � 4r1
1−2r1

� 2 and 0 � 1 − 2ν � 1, so the matrixW is positive semidefinite; see204

[6, Theorem 5.2, p. 225]. On repeating the same argument as in Theorem 4.1, the required inequality205

(4.4) follows.206
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Finally, if ν ∈ [ 1
2
, 1] let μ = 1 − ν ∈ [0, 1

2
], then by the previous case we have207

|||AνXB1−ν + A1−νXBν ||| = |||A1−μXBμ + AμXB1−μ|||
� |||4r1(μ)A

1
2 XB

1
2 + (1 − 2r1(μ))(AX + XB)||| ,

where r1(μ) = min
{
μ,
∣∣∣ 1
2

− μ
∣∣∣ , 1 − μ

}
= r1(ν). �208

From the previous theorem, we deduce a new refinement of the Heinz inequality for matrices.209

Corollary 4.5. Let A, B ∈ Pn and X ∈ Mn. Then for ν ∈ [0, 1] and for every unitarily invariant norm210

||| · |||,211

|||AνXB1−ν + A1−νXBν ||| � |||4r1(ν)A1/2XB1/2 + (1 − 2r1(ν))(AX + XB)|||
� 4r1(ν)|||A1/2XB1/2||| + (1 − 2r1(ν))|||AX + XB|||
� 2(2r1(ν) − 1)|||A1/2XB1/2||| + 2(1 − r1(ν))|||AX + XB|||
� |||AX + XB||| ,

where r1(ν) = min{ν,
∣∣∣ 1
2

− ν
∣∣∣ , 1 − ν}.212

As a direct consequence of Theorem 4.4, we obtain the following refinement of an inequality213

(see [7]).214

Corollary 4.6. Let A, B ∈ Pn, X ∈ Mn, r ∈
[
1
2
, 3
2

]
and t ∈ (−2, 2]. Then for every unitarily invariant215

norm ||| · |||,216

|||ArXB2−r + A2−rXBr ||| � |||4sAXB + (1 − 2s)(A3/2XB1/2 + A1/2XB3/2)|||
� 4s|||AXB||| + (1 − 2s)|||A3/2XB1/2 + A1/2XB3/2|||
� 4s|||AXB||| + (1 − 2s)

2

t + 2
|||A2X + tAXB + XB2|||

� 2(2s − 1)|||AXB||| + 4(1 − s)

t + 2
|||A2X + tAXB + XB2|||

� 2

t + 2
|||A2X + tAXB + XB2|||

in which s = min
{
r − 1

2
, |1 − r|, 3

2
− r

}
.217

Proof. Let Y = A1/2XB1/2 ∈ Mn and ν = r − 1
2

∈ [0, 1]. It follows from Theorem 4.4 that218

|||ArXB2−r + A2−rXBr ||| = |||ArA−1/2YB−1/2B2−r + A2−rA−1/2YB−1/2Br |||
= |||AνYB1−ν + A1−νYB1−ν |||
� |||4r1(ν)A1/2YB1/2 + (1 − 2r1(ν))(AY + YB)|||
= |||4r1(ν)AXB + (1 − 2r1(ν))(A3/2XB1/2 + A1/2XB3/2)||| ,

where r1(ν) = min
{
ν,
∣∣∣ 1
2

− ν
∣∣∣ , 1 − ν

}
. Let s = r1

(
r − 1

2

)
. Applying the triangle inequality and219

Zhan’s inequality, we obtain220

|||ArXB2−r + A2−rXBr ||| � |||4sAXB + (1 − 2s)(A3/2XB1/2 + A1/2XB3/2)|||
� 4s|||AXB||| + (1 − 2s)|||A3/2XB1/2 + A1/2XB3/2|||
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� 4s|||AXB||| + 2(1 − 2s)

t + 2
|||A2X + tAXB + XB2|||

� 2(2s − 1)|||AXB||| + 4(1 − s)

t + 2
|||A2X + tAXB + XB2|||

� 2

t + 2
|||A2X + tAXB + XB2|||. �
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