Report on LAA-D-12-00856:
Further refinements of the Heinz inequality by M. S. Moslehian, R. Kaur, M. Singh and C. Conde

Overview In this paper, the authors give several refinement inequalities of the Heinz inequality:

$$
2\left\|\left|A ^ { 1 / 2 } X B ^ { 1 / 2 } \left\|\left|\leqq\left\|\left|A^{\nu} X B^{1-\nu}+A^{1-\nu} X B^{\nu}\||\leqq\||A X+X B \|| .\right.\right.\right.\right.\right.\right.
$$

In section 2, they recall the Hermite-Hadamard inequality:

$$
f\left(\frac{a+b}{2}\right) \leqq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqq \frac{f(a)+f(b)}{2}
$$

for a convex function f, and its refinements in Theorems 2.1, 2.3, 2.4. In section 3, they apply the above results to the convex function

$$
F(\nu):=\| \| A^{\nu} X B^{1-\nu}+A^{1-\nu} X B^{\nu} \| \mid
$$

for $\nu \in[0,1]$ and have improvement of Kittaneh's inequalities in Theorem 3.2 and other refinements. In section 4, they obtain refinements of the Heinz inequality for matrices. In Theorem 4.1, inequality (4.2) with two parameters is proved by the standard argument: checking the positive semidefiniteness of the relevant matrices Y and Z. By Theorem 4.1 they give Corollaries 4.2, 4.3 as refinements of the Heinz inequality. They also give a new estimation (4.4) in Theorem 4.4 which is of interest and implies Corollaries 4.5 and 4.8. In $4.5,4.6,4.8$, used is the observation that $t \alpha+s \beta \leqq(t-1) \alpha+(s+1) \beta$ when $\alpha \leqq \beta$, which is not interesting to the referee.

Conclusion I think that all argument are clear and that the proof of (4.4) is interesting so that I would like to recommend its publication in LAA.

Comments

Page 9, line 4: remove 'the matrix'.
Page 9, line-9: remove 'matrix'; assume that A is

AUTHOR QUERY FORM

Please e-mail or fax your responses and any corrections		
to:		
ELSEVIER	Article Number: 12062	Fax: +31204852799

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.
Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ' \underline{Q} ' link to go to the location in the proof.

Location in article	Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof
$\underline{\mathrm{Q} 1}$	Please check the e-mail address for the corresponding author that has been added here, and correct if necessary. Please check whether the designated corresponding author and tel./fax numbers are correct, and amend if necessary. Please note that Refs. [5,22] are listed but not cited in the text. Kindly check. Please update Ref. [20], if available.
$\underline{\mathrm{Q} 4}$	Please check this box if you have no corrections to make to the PDF file

[^0]

Further refinements of the Heinz inequality

Rupinderjit Kaur ${ }^{\text {a }}$, Mohammad Sal Moslehian ${ }^{\text {b,*, Mandeep Singh }}{ }^{\text {a }}$, Cristian Conde ${ }^{c}$
${ }^{\text {a }}$ Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
b Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran
${ }^{\text {c }}$ Instituto de Ciencias, Universidad Nacional de Gral. Sarmiento, J. M. Gutierrez 1150, (B1613GSX) Los Polvorines and Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 153 piso, (C1083ACA) Buenos Aires, Argentina

ARTICLEINFO

Article history:
Received 3 September 2012
Accepted 8 January 2013
Available online xxxx
Q1Submitted by Hans Schneider
Dedicated in the memory of Professors
Michael Neumann and Uriel Rothblum.
AMS classification:
15A60
47A30
47A64
47B15
Keywords:
Heinz inequality
Convex function
Hermite-Hadamard inequality
Positive definite matrix
Unitarily invariant norm

ABSTRACT

The celebrated Heinz inequality asserts that $2\left\|\mid A^{1 / 2} X B^{1 / 2}\right\| \| \leqslant$ $\left\|\mid A^{\nu} X B^{1-v}+A^{1-v} X B^{\nu}\right\| \leqslant\|A X+X B\| \|$ for $X \in \mathbb{B}(\mathscr{H}), A, B \in$ $\mathbb{B}(\mathscr{H})_{+}$, every unitarily invariant norm $\|\|\cdot\|\|$ and $v \in[0,1]$. In this paper, we present several improvement of the Heinz inequality by using the convexity of the function $F(v)=\| \| A^{v} X B^{1-v}+$ $A^{1-v} X B^{v}| | \mid$, some integration techniques and various refinements of the Hermite-Hadamard inequality. In the setting of matrices we prove that

$$
\begin{aligned}
& \left\|\left|A^{\frac{\alpha+\beta}{2}} X B^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X B^{\frac{\alpha+\beta}{2}}\right|\right\| \\
& \quad \leqslant \frac{1}{|\beta-\alpha|}\| \| \int_{\alpha}^{\beta}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v\| \| \\
& \quad \leqslant \frac{1}{2}\| \| A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\| \|
\end{aligned}
$$

for real numbers α, β.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators acting on a complex separable Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$. In the case when $\operatorname{dim} \mathscr{H}=n$, we identify $\mathbb{B}(\mathscr{H})$ with the full matrix algebra

[^1]0024-3795/\$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2013.01.012
Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl. (2013), http://dx.doi.org/10.1016/j.laa.2013.01.012
\mathcal{M}_{n} of all $n \times n$ matrices with entries in the complex field. The cone of positive operators is denoted by $\mathbb{B}(\mathscr{H})_{+}$. A unitarily invariant norm $\|\|\cdot\|\|$ is defined on a norm ideal $\mathfrak{J}\|\cdot\| \|$ of $\mathbb{B}(\mathscr{H})$ associated with it and has the property $\|\|U X V\|\|=\| \| X\| \|$, where U and V are unitaries and $X \in \mathfrak{J}\|\|$.$\| . Whenever we$ write $\|\|X\|\|$, we mean that $X \in \mathfrak{J}\|\|\cdot\| \mid$. The operator norm on $\mathbb{B}(\mathscr{H})$ is denoted by $\| \cdot \|$.

The arithmetic-geometric mean inequality for two positive real numbers a, b is $\sqrt{a b} \leqslant(a+b) / 2$, which has been generalized in the context of bounded linear operators as follows. For $A, B \in \mathbb{B}(\mathscr{H})_{+}$ and an unitarily invariant norm $\|||\cdot||$ it holds that

$$
2\left\|\mid A^{1 / 2} X B^{1 / 2}\right\| \leqslant\|A X+X B\|
$$

For $0 \leqslant v \leqslant 1$ and two nonnegative real numbers a and b, the Heinz mean is defined as

$$
H_{v}(a, b)=\frac{a^{v} b^{1-v}+a^{1-v} b^{v}}{2}
$$

The function H_{v} is symmetric about the point $v=\frac{1}{2}$. Note that $H_{0}(a, b)=H_{1}(a, b)=\frac{a+b}{2}$, $H_{1 / 2}(a, b)=\sqrt{a b}$ and

$$
\begin{equation*}
H_{1 / 2}(a, b) \leqslant H_{v}(a, b) \leqslant H_{0}(a, b) \tag{1.1}
\end{equation*}
$$

for $0 \leqslant v \leqslant 1$, i.e., the Heinz means interpolates between the geometric mean and the arithmetic mean. The generalization of (1.1) in $B(\mathscr{H})$ asserts that for operators A, B, X such that $A, B \in \mathbb{B}(\mathscr{H})_{+}$, every unitarily invariant norm $\|\|\cdot\|\|$ and $v \in[0,1]$ the following double inequality due to Bhatia and Davis [3] holds

$$
\begin{equation*}
2\left\|\left|A^{1 / 2} X B^{1 / 2}\| \|\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\| \leqslant\|\mid A X+X B\| \|\right.\right. \tag{1.2}
\end{equation*}
$$

Indeed, it has been proved that $F(v)=\left\|\mid A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\| \|$ is a convex function of v on $[0,1]$ with symmetry about $v=1 / 2$, which attains its minimum there at and its maximum at $v=0$ and $v=1$.

The second part of the previous inequality is one of the most essential inequalities in the operator theory, which is called the Heinz inequality; see [11]. The proof given by Heinz [12] is based on the complex analysis and is somewhat complicated. In [19], McIntosh showed that the Heinz inequality is a consequence of the following inequality

$$
\left\|A^{*} A X+X B B^{*}\right\| \geqslant 2\|A X B\|
$$

where $A, B, X \in \mathbb{B}(\mathscr{H})$. In the literature, the above inequality is called the arithmetic-geometric mean inequality. Fujii et al. [10] proved that the Heinz inequality is equivalent to several other norm inequalities such as the Corach-Porta-Recht inequality $\left\|A X A^{-1}+A^{-1} X A\right\| \geqslant 2\|X\|$, where A is a selfadjoint invertible operator and X is a selfadjoint operator; see also [7]. Audenaert [2] gave a singular value inequality for Heinz means by showing that if $A, B \in \mathcal{M}_{n}$ are positive semidefinite and $0 \leqslant v \leqslant 1$, then $s_{j}\left(A^{v} B^{1-v}+A^{1-v} B^{v}\right) \leqslant s_{j}(A+B)$ for $j=1, \ldots, n$, where s_{j} denotes the j th singular value. Also, Yamazaki [25] used the classical Heinz inequality $\|A X B\|^{r}\|X\|^{1-r} \geq\left\|A^{r} X B^{r}\right\|(A, B, X \in \mathbb{B}(\mathscr{H}), A \geqslant$ $0, B \geqslant 0, r \in[0,1])$ to characterize the chaotic order relation and to study isometric Aluthge transformations.

For a detailed study of these and associated norm inequalities along with their history of origin, refinements and applications, one may refer to $[3,4,6,13-16]$.

It should be noticed that $F(1 / 2) \leqslant F(v) \leqslant \frac{F(0)+F(1)}{2}$ provides a refinement to the Jensen inequality $F(1 / 2) \leqslant \frac{F(0)+F(1)}{2}$ for the function F. Therefore it seems quite reasonable to obtain a new refinement of (1.2) by utilizing a refinement of Jensen's inequality. This idea was recently applied by Kittaneh [18] in virtue of the Hermite-Hadamard inequality (2.1).

One of the purposes of the present article is to obtain some new refinements of (1.2), from different refinements of inequality (2.1). We also aim to give a unified study and further refinements to the recent works for matrices.

[^2]
2. The Hermite-Hadamard inequality and its refinements

For a convex function f, the double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant \frac{f(a)+f(b)}{2} \tag{2.1}
\end{equation*}
$$

is known as the Hermite-Hadamard ($\mathrm{H}-\mathrm{H}$) inequality. This inequality was first published by Hermite in 1883 in an elementary journal and independently proved in 1893 by Hadamard. It gives us an estimation of the mean value of the convex function f; see $[17,20]$.

There is an extensive amount of literature devoted to this simple and nice result, which has many applications in the theory of special means from which we would like to refer the reader to [21]. Interestingly, each of two sides of the H-H inequality characterizes convex functions. More precisely, if J is an interval and $f: J \rightarrow \mathbb{R}$ is a continuous function, whose restriction to every compact subinterval $[a, b]$ verifies the first inequality of (2.1) then f is convex. The same works when the first inequality is replaced by the second one.

Applying the $\mathrm{H}-\mathrm{H}$ inequality, one can obtain the well-known geometric-logarithmic-arithmetic inequality

$$
H_{1 / 2}(a, b) \leqslant L(a, b) \leqslant H_{0}(a, b)
$$

where $L(a, b)=\int_{0}^{1} a^{t} b^{1-t} d t$. An operator version of this has been proved by Hiai and Kosaki [14], which says that for $A, B \in \mathbb{B}(\mathscr{H})_{+}$,

$$
\left\|\left|A^{1 / 2} X B^{1 / 2}\left\|\left|\leqslant\left\|\int_{0}^{1} A^{v} X B^{1-v} d v\right\|\left\|\leqslant \frac{1}{2}\right\|\right| A X+X B\right\| \|\right.\right.
$$

which is another refinement of the arithmetic-geometric operator inequality.
Throughout this paper we will use the following notation: For $a, b \in \mathbb{R}$ and $t \in[0,1]$, let

$$
m_{f}(a, b)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and

$$
[a, b]_{t}=(1-t) a+t b
$$

If f is an integrable function on $[a, b]$ then

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\int_{0}^{1} f(t a+(1-t) b) d t=\int_{0}^{1} f(t b+(1-t) a) d t
$$

and if f is convex on $[a, b]$ we get

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=\int_{0}^{1} F_{(a, b)}(t) d t
$$

where $F_{(a, b)}(t)=\frac{1}{2}\left(f\left(a+\frac{t(b-a)}{2}\right)+f\left(b-\frac{t(b-a)}{2}\right)\right)$; see [1, Theorem 1.2].
In this section we collect various refinements of the $\mathrm{H}-\mathrm{H}$ inequality for convex functions.
Theorem 2.1 $[8,23]$. Iff $:[a, b] \rightarrow \mathbb{R}$ is a convex function and H_{t}, G_{t} are defined on $[0,1]$ by

$$
H_{t}(a, b)=\frac{1}{b-a} \int_{a}^{b} f\left(\left[\frac{a+b}{2}, x\right]_{t}\right) d x
$$

and

$$
G_{t}(a, b)=\frac{1}{2(b-a)} \int_{a}^{b}\left[f\left([x, a]_{t}\right)+f\left([x, b]_{t}\right)\right] d x
$$

Remark 2.2. (1) From (2.4) we get that

$$
m_{f}(a, b) \leqslant \frac{1}{2}\left(f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right) \leqslant \frac{f(a)+f(b)}{2}
$$

which is the well-known Bullen's inequality; see [21, p. 140]. As an immediate consequence, from the previous inequality, we note that the first inequality is stronger than the second one in (2.1), i.e.

$$
m_{f}(a, b)-f\left(\frac{a+b}{2}\right) \leqslant \frac{f(a)+f(b)}{2}-m_{f}(a, b)
$$

(2) We note some properties of H_{t} and G_{t} useful in the next sections. For $\mu \in[0,1]$ we get
(a) $H_{t}(\mu, 1-\mu)=\frac{1}{1-2 \mu} \int_{\mu}^{1-\mu} f\left(\left[\frac{1}{2}, x\right]_{t}\right) d x=\frac{1}{2 \mu-1} \int_{1-\mu}^{\mu} f\left(\left[\frac{1}{2}, x\right]_{t}\right) d x=H_{t}(1-\mu, \mu)$.
(b) $G_{t}(\mu, 1-\mu)=\frac{1}{2(1-2 \mu)} \int_{\mu}^{1-\mu}\left[f\left([x, \mu]_{t}\right)+f\left([x, 1-\mu]_{t}\right)\right] d x=G_{t}(1-\mu, \mu)$.

Recently, the following result was proved:
Theorem 2.3 [24]. Iff is a convex function defined on an interval $J, a, b \in J^{\circ}$ with $a<b$ and the mapping 108 T_{t} is defined by

$$
T_{t}(a, b)=\frac{1}{2}\left(f\left(\frac{1+t}{2} a+\frac{1-t}{2} b\right)+f\left(\frac{1-t}{2} a+\frac{1+t}{2} b\right)\right)
$$

109
then T_{t} is convex and increasing on $[0,1]$ and

$$
f\left(\frac{a+b}{2}\right) \leqslant T_{\eta}(a, b) \leqslant T_{\xi}(a, b) \leqslant T_{\lambda}(a, b) \leqslant \frac{f(a)+f(b)}{2}
$$

110 for all $\eta \in(0, \xi), \lambda \in(\xi, 1)$, where $T_{\xi}(a, b)=m_{f}(a, b)$.
In [9], the author asked whether for a convex function f on an interval J there exist real numbers l,
L such that

Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl. (2013), http://dx.doi.org/10.1016/j.laa.2013.01.012

$$
f\left(\frac{a+b}{2}\right) \leqslant l \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant L \leqslant \frac{f(a)+f(b)}{2}
$$

113 An affirmative answer to this question is given as follows.
114 Theorem 2.4 [9]. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is a convex function. Then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leqslant l(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant L(\lambda) \leqslant \frac{f(a)+f(b)}{2} \tag{2.5}
\end{equation*}
$$

115 for all $\lambda \in[0,1]$, where

$$
l(\lambda)=\lambda f\left(\frac{\lambda b+(2-\lambda) a}{2}\right)+(1-\lambda) f\left(\frac{(1+\lambda) b+(1-\lambda) a}{2}\right)
$$

and

$$
L(\lambda)=\frac{1}{2}(f(\lambda b+(1-\lambda) a)+\lambda f(a)+(1-\lambda) f(b)) .
$$

117 Remark 2.5. Applying inequality (2.5) for $\lambda=\frac{1}{2}$ we get

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & \leqslant \frac{1}{2}\left(f\left(\frac{3 a+b}{4}\right)+f\left(\frac{a+3 b}{4}\right)\right) \leqslant m_{f}(a, b) \\
& \leqslant \frac{1}{2}\left(f\left(\frac{a+b}{2}\right)+\frac{f(a)+f(b)}{2}\right) \leqslant \frac{f(a)+f(b)}{2}
\end{aligned}
$$

118 This result has been obtained by Akkouchi in [1].

3. Refinements of the Heinz inequality for operators

In this section we use the convexity of $F(\nu)=\left\|\mid A^{\nu} X B^{1-v}+A^{1-\nu} X B^{\nu}\right\| ; v \in[0,1]$ and the different refinements of inequality (2.1) described in the previous section.

Theorem 3.1. Let A, B, X be operators such that $A, B \in \mathbb{B}(\mathscr{H})_{+}$. Then for any $t, \mu \in[0,1]$ and any unitary invariant norm ||| • |||,

$$
\begin{aligned}
2\left\|\left\|A^{1 / 2} X B^{1 / 2}\right\|\right\| & \leqslant \frac{1}{1-2 \mu} \int_{\mu}^{1-\mu} F\left([1 / 2, x]_{t}\right) d x \\
& \leqslant \frac{1}{1-2 \mu} \int_{\mu}^{1-\mu}\left\|A^{x} X B^{1-x}+A^{1-x} X B^{x}\right\| \| d x \\
& \leqslant \frac{1}{2(1-2 \mu)} \int_{\mu}^{1-\mu}\left[F\left([x, \mu]_{t}\right)+F\left([x, 1-\mu]_{t}\right)\right] d x \\
& \leqslant\left\|A^{\mu} X B^{1-\mu}+A^{1-\mu} X B^{\mu}\right\| \|
\end{aligned}
$$

124 Proof. For $\mu \neq \frac{1}{2}$ the inequalities follows by applying inequalities (2.2) and (2.3) on the interval 125 [$\mu, 1-\mu$] if $0 \leqslant \mu<\frac{1}{2}$ or $[1-\mu, \mu]$ if $\frac{1}{2}<\mu \leqslant 1$. Finally

$$
\left.\lim _{\mu \rightarrow \frac{1}{2}} \frac{1}{2(1-2 \mu)} \int_{\mu}^{1-\mu}\left(F\left([x, \mu]_{t}\right)+F\left([x, 1-\mu]_{t}\right)\right) d x=2 \right\rvert\,\left\|A^{1 / 2} X B^{1 / 2}\right\| \|
$$

completes the proof.
(2) For $\mu \in[1 / 2,1]$ and for every unitarily invariant norm ||| $\cdot \| \mid$,

$$
\begin{aligned}
2\left\|\left\|A^{1 / 2} X B^{1 / 2}\right\|\right\| & =x_{0}(F, 1-\mu, \mu) \leqslant \cdots \leqslant x_{n}(F, 1-\mu, \mu) \\
& \leqslant \frac{1}{2 \mu-1} \int_{1-\mu}^{\mu}\left\|\left|A^{x} X B^{1-x}+A^{1-x} X B^{x} \|\right| d x\right. \\
& \leqslant y_{n}(F, 1-\mu, \mu) \leqslant \cdots \leqslant y_{0}(F, 1-\mu, \mu)=F(\mu)
\end{aligned}
$$

Applying the Theorem 2.4, we obtain the following refinement.
and

$$
L(\lambda)=\frac{1}{2}(F(\lambda \beta+(1-\lambda) \alpha)+\lambda F(\alpha)+(1-\lambda) F(\beta))
$$

Finally, using the refinement presented in Theorem 2.3 we get the following statement.

143 144

Theorem 3.4. Let A, B, X be operators such that $A, B \in \mathbb{B}(\mathscr{H})_{+}$and $\alpha, \beta \in[0,1]$ and $\|\|\cdot\|\|$ be a unitarily invariant norm. Then

$$
F\left(\frac{\alpha+\beta}{2}\right) \leqslant l(\lambda) \leqslant \frac{1}{b-a} \int_{a}^{b} F(x) d x \leqslant L(\lambda) \leqslant \frac{F(\alpha)+F(\beta)}{2}
$$

for all $\lambda \in[0,1]$, where

$$
l(\lambda)=\lambda F\left(\frac{\lambda \beta+(2-\lambda) \alpha}{2}\right)+(1-\lambda) F\left(\frac{(1+\lambda) \beta+(1-\lambda) \alpha}{2}\right)
$$

Theorem 3.5. Let A, B, X be operators such that $A, B \in \mathbb{B}(\mathscr{H})_{+}$. For $a, b \in(0,1)$ with $a<b$ let T_{t} be the mapping defined in $[0,1]$ by

$$
T_{t}(a, b)=\frac{1}{2}\left(F\left(\frac{1+t}{2} a+\frac{1-t}{2} b\right)+F\left(\frac{1-t}{2} a+\frac{1+t}{2} b\right)\right)
$$

Then, there exists $\xi \in(0,1)$ such that for any $\mu \in(0,1)$ and any unitary invariant norm $\|\|\cdot\|\|$,

$$
\begin{aligned}
2\left\|\mid A^{1 / 2} X B^{1 / 2}\right\| \| & \leqslant T_{\eta}(\mu, 1-\mu) \leqslant T_{\xi}(\mu, 1-\mu)=\frac{1}{1-2 \mu} \int_{\mu}^{1-\mu} F(x) d x \\
& \leqslant T_{\lambda}(\mu, 1-\mu) \leqslant\left\|\mid A^{\mu} X B^{1-\mu}+A^{1-\mu} X B^{\mu}\right\|
\end{aligned}
$$

where $\eta \in[0, \xi]$ and $\lambda \in[\xi, 1]$.
From the generalization of the H-H inequality due to Vasić and Lacković, we get
Theorem 3.6. Let A, B, X be operators such that $A, B \in \mathbb{B}(\mathscr{H})_{+}$and let p, q be positive numbers and $0 \leqslant \alpha<\beta \leqslant 1$. Then the double inequality

$$
F\left(\frac{p \alpha+q \beta}{p+q}\right) \leqslant \frac{1}{2 y} \int_{c-y}^{c+y} F(t) d t \leqslant \frac{p F(\alpha)+q F(\beta)}{p+q}
$$

holds for $c=\frac{p \alpha+q \beta}{p+q}, y>0$ if and only if $y \leqslant \frac{\beta-\alpha}{p+q} \min \{p, q\}$.

4. Refinement of the Heinz inequality for matrices

In what follows, the capital letters A, B, X, \ldots denote arbitrary elements of \mathcal{M}_{n}. By \mathbb{P}_{n} we denote the set of positive definite matrices. The Schur product of two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ in M_{n} is the entrywise product and denoted by $A \circ B$. We shall state the following preliminary result, which is needed to prove our main results.

If $X=\left[x_{i j}\right]$ is positive semidefinite, then for any matrix Y, we have

$$
\begin{equation*}
\|\|X \circ Y\|\| \leqslant\|Y Y\| \| \max _{i} x_{i i} \tag{4.1}
\end{equation*}
$$

for every unitarily invariant norm ||| $\cdot \| \mid$. For a proof of this, the reader may be referred to [12].

Theorem 4.1. Let $A, B \in \mathbb{P}_{n}$ and $X \in M_{n}$. Then for any real numbers α, β and any unitarily invariant norm ||| • |||,

$$
\begin{align*}
& \left.\left\|\left\|A^{\frac{\alpha+\beta}{2}} X B^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X B^{\frac{\alpha+\beta}{2}}\right\|\right\| \leqslant \frac{1}{|\beta-\alpha|} \right\rvert\,\left\|\int_{\alpha}^{\beta}\left(A^{\nu} X B^{1-v}+A^{1-v} X B^{\nu}\right) d v\right\| \| \\
& \quad \leqslant \frac{1}{2}\left\|\mid A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\right\| \| . \tag{4.2}
\end{align*}
$$

160

Proof. Without loss of generality assume that $\alpha<\beta$. We shall first prove the result for the case $A=B$. Since the norms considered here are unitarily invariant, so we can assume that A is diagonal, i.e. $A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

Note that

$$
A^{\frac{\alpha+\beta}{2}} X A^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X A^{\frac{\alpha+\beta}{2}}=Y \circ\left(\int_{\alpha}^{\beta}\left(A^{v} X A^{1-v}+A^{1-v} X A^{v}\right) d \nu\right),
$$

where Y is a Hermitian matrix. If $X=\left[x_{i j}\right]$ and $Y=\left[y_{i j}\right]$, then

$$
\left[\lambda_{i}^{\frac{\alpha+\beta}{2}} x_{i j} \lambda_{j}^{1-\frac{\alpha+\beta}{2}}+\lambda_{i}^{1-\frac{\alpha+\beta}{2}} x_{i j} \lambda_{j}^{\frac{\alpha+\beta}{2}}\right]=\left[y_{i j} \int_{\alpha}^{\beta}\left(\lambda_{i}^{v} x_{i j} \lambda_{j}^{1-v}+\lambda_{i}^{1-v} x_{i j} \lambda_{j}^{\nu}\right) d \nu\right],
$$

whence

$$
\begin{aligned}
y_{i j} & =\frac{\lambda_{i}^{\frac{\alpha+\beta}{2}} \lambda_{j}^{1-\frac{\alpha+\beta}{2}}+\lambda_{i}^{1-\frac{\alpha+\beta}{2}} \lambda_{j}^{\frac{\alpha+\beta}{2}}}{\int_{\alpha}^{\beta}\left(\exp \left(\log \left(\lambda_{i}\right) \nu+\log \left(\lambda_{j}\right)(1-v)\right)+\exp \left(\log \left(\lambda_{i}\right)(1-v)+\log \left(\lambda_{j}\right) \nu\right)\right) d \nu} \\
& =\frac{\lambda_{i}^{\frac{\beta-\alpha}{2}}\left(\lambda_{i}^{\alpha} \lambda_{j}^{1-\beta}+\lambda_{i}^{1-\beta} \lambda_{j}^{\alpha}\right) \lambda_{j}^{\frac{\beta-\alpha}{2}}\left(\log \lambda_{i}-\log \lambda_{j}\right)}{\lambda_{i}^{\beta} \lambda_{j}^{1-\beta}-\lambda_{i}^{1-\beta} \lambda_{j}^{\beta}-\lambda_{i}^{\alpha} \lambda_{j}^{1-\alpha}+\lambda_{i}^{1-\alpha} \lambda_{j}^{\alpha}} \\
& =\frac{\lambda_{i}^{\frac{\beta-\alpha}{2}}\left(\log \lambda_{i}-\log \lambda_{j}\right)_{j}^{\frac{\beta-\alpha}{2}}}{\lambda_{i}^{\beta-\alpha}-\lambda_{j}^{\beta-\alpha}}, \quad \text { for } i \neq j
\end{aligned}
$$

and $y_{i i}=\frac{1}{\beta-\alpha}>0$. By (4.1), it is enough to show that the matrix Y is positive semidefinite, or equivalently the matrix

$$
y_{i j}^{\prime}= \begin{cases}\frac{\log \lambda_{i}-\log \lambda_{j}}{\lambda_{i}^{\beta-\alpha}-\lambda_{j}^{\beta-\alpha}} & \text { if } i \neq j \\ \frac{1}{(\beta-\alpha) \lambda_{i}^{\beta-\alpha}} & \text { if } i=j\end{cases}
$$

is positive semidefinite. On taking $\lambda_{i}^{\beta-\alpha}=s_{i}$, we get

$$
(\beta-\alpha) y_{i j}^{\prime}= \begin{cases}\frac{\log s_{i}-\log s_{j}}{s_{i}-s_{j}} & \text { if } i \neq j \\ \frac{1}{s_{i}} & \text { if } i=j\end{cases}
$$

which is a positive semidefinite matrix, since the matrix on the right hand side is the Löwner matrix corresponding to the matrix monotone function $\log x$; see [4, Theorem 5.3.3]. This proves the first inequality in (4.2) for the case $A=B$.

The second inequality will follow on the same lines. We indeed have

$$
\int_{\alpha}^{\beta}\left(A^{v} X A^{1-v}+A^{1-v} X A^{\nu}\right) d v=Z \circ\left(A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\right),
$$

where Z is the Hermitian matrix with entries

$$
z_{i j}= \begin{cases}\frac{\lambda_{i}^{\beta-\alpha}-\lambda_{j}^{\beta-\alpha}}{\left(\log \lambda_{i}-\log \lambda_{j}\right)\left(\lambda_{i}^{\beta-\alpha}+\lambda_{j}^{\beta-\alpha}\right)} & \text { if } i \neq j \\ \frac{(\beta-\alpha)}{2} & \text { if } i=j\end{cases}
$$

174 On taking $\lambda_{i}^{\beta-\alpha}=e^{t_{i}}$ we conclude that Z is positive semidefinite if and only if so is the following 175 matrix

$$
\frac{2}{\beta-\alpha} z_{i j}^{\prime}= \begin{cases}\frac{\tanh \left(\left(t_{i}-t_{j}\right) / 2\right)}{\left(t_{i}-t_{j}\right) / 2} & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

176

The following consequence provides a matrix analogue of (1.1).

184 185

The right hand side matrix is positive semidefinite since the function $f(x)=\frac{\tanh x}{x}$ is positive definite; see [4, Example 5.2.11]. This proves the second inequality in (4.2) for the case $A=B$. The general case follows on replacing A by $\left[\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right]$ and X by $\left[\begin{array}{ll}0 & X \\ 0 & 0\end{array}\right]$.

The first corollary provides some variants of [18, Theorems 2 and 3]. It should be noticed that

$$
\lim _{\mu \rightarrow 1 / 2}\left(\frac{2}{|1-2 \mu|}\left\|\int_{\mu}^{1 / 2}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v\right\|\right)=2\left\|\mid A^{1 / 2} X B^{1 / 2}\right\| \|
$$

and

$$
\lim _{\mu \rightarrow 0}\left(\left.\frac{1}{|\mu|}\left|\left\|\int_{0}^{\mu}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \mid\right\|\right)=\| \| A X+X B \right\rvert\, \|\right.
$$

Corollary 4.2. Let $A, B \in \mathbb{P}_{n}, X \in M_{n}$, μ be a real number and $\|\|\cdot\|$ be any unitarily invariant norm. Then

$$
\begin{aligned}
& \left\|\left\|A^{\frac{2 \mu+1}{4}} X B^{\frac{3-2 \mu}{4}}+A^{\frac{3-2 \mu}{4}} X B^{\frac{2 \mu+1}{4}}\right\|\right\| \frac{2}{|1-2 \mu|}\left\|\left\|\int_{\mu}^{1 / 2}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v\right\|\right\| \\
& \leqslant \frac{1}{2}\| \| A^{\mu} X B^{1-\mu}+A^{1-\mu} X B^{\mu}+2 A^{1 / 2} X B^{1 / 2}\| \| \\
& \left\|\left\|A^{\frac{\mu}{2}} X B^{1-\frac{\mu}{2}}+A^{1-\frac{\mu}{2}} X B^{\frac{\mu}{2}}\right\|\right\| \frac{1}{|\mu|}\left\|\int_{0}^{\mu}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v \mid\right\| \\
& \leqslant \frac{1}{2}\left\|A X+X B+A^{\mu} X B^{1-\mu}+A^{1-\mu} X B^{\mu}\right\| \|
\end{aligned}
$$

Corollary 4.3. Let $A, B \in \mathbb{P}_{n}$ and $X \in M_{n}$. Then for any $0 \leqslant \alpha<\beta \leqslant 1$ with $\alpha+\beta \leqslant 2$ and any unitarily invariant norm $\|\|\cdot\| \mid$,

$$
\begin{aligned}
2\left\|\mid A^{1 / 2} X B^{1 / 2}\right\| \| & \leqslant\| \| A^{\frac{\alpha+\beta}{2}} X B^{1-\frac{\alpha+\beta}{2}}+A^{1-\frac{\alpha+\beta}{2}} X B^{\frac{\alpha+\beta}{2}}\| \| \\
& \leqslant \frac{1}{|\beta-\alpha|}\left\|\int_{\alpha}^{\beta}\left(A^{v} X B^{1-v}+A^{1-v} X B^{v}\right) d v\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{1}{2}\| \| A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}+A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta} \| \\
& \leqslant \frac{1}{2}\| \| A^{\alpha} X B^{1-\alpha}+A^{1-\alpha} X B^{\alpha}\| \|+\frac{1}{2}\left\|A^{\beta} X B^{1-\beta}+A^{1-\beta} X B^{\beta}\right\| \| \\
& \leqslant\|A X+X B\| \| .
\end{aligned}
$$

where W is a Hermitian matrix with entries

$$
w_{i j}= \begin{cases}\frac{\lambda_{i}^{v}\left(\lambda_{i}^{1-2 v}+\lambda_{j}^{1-2 v}\right) \lambda_{j}^{v}}{4 r_{1} \lambda_{i}^{1 / 2} \lambda_{j}^{1 / 2}+\left(1-2 r_{1}\right)\left(\lambda_{i}+\lambda_{j}\right)} & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$ and Theorem 4.1 we get the required inequalities.

It is shown in [18, Corollary 3] that

A natural generalization of (4.3) would be general. The following counterexample justifies this:
Take $X=\left[\begin{array}{lll}52.39 & 38.71 & 12.36 \\ 32.86 & 35.38 & 64.82 \\ 91.79 & 99.45 & 66.10\end{array}\right], A=\left[\begin{array}{ccc}92.315 & 87.791 & 71.090 \\ 87.791 & 120.130 & 83.340 \\ 71.090 & 83.340 & 103.610\end{array}\right]$, $\operatorname{tr}\left|4 r_{0} A^{1 / 2} X B^{1 / 2}+\left(1-2 r_{0}\right)(A X+X B)\right|=78125.4$. $|||\cdot|||$,
where $r_{1}(v)=\min \left\{v,\left|\frac{1}{2}-v\right|, 1-v\right\}$. we can write the matrix (4.4) follows.

Proof. Applying the triangle inequality, the properties of the function $f(v)=\left\|\mid A^{\nu} X B^{1-v}+A^{1-v} X B^{\nu}\right\|$

$$
\begin{equation*}
\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\|\left\|\leqslant 4 r_{0}\right\|\left\|A^{1 / 2} X B^{1 / 2}\right\|\left\|+\left(1-2 r_{0}\right)\right\|\|A X+X B\| \| . \tag{4.3}
\end{equation*}
$$

$$
\left\|\left|A^{v} X B^{1-v}+A^{1-v} X B^{v}\| \| \leqslant\|\mid\| r_{0} A^{1 / 2} X B^{1 / 2}+\left(1-2 r_{0}\right)(A X+X B)\| \|\right.\right.
$$

for $0 \leqslant v \leqslant 1$ and $r_{0}=\min \{\nu, 1-\nu\}$ with $A, B \in \mathbb{P}_{n}$ and $X \in M_{n}$, which in fact is not true, in
$B=\left[\begin{array}{ccc}118.482 & 23.249 & 112.676 \\ 23.249 & 10.343 & 38.224 \\ 112.676 & 38.224 & 156.551\end{array}\right]$ and $v=0.4680$. Then $\operatorname{tr}\left|A^{\nu} X B^{1-v}+A^{1-v} X B^{\nu}\right|=78135.5$, while
We shall, however, present another result, which is a possible generalization of (4.3).

Theorem 4.4. Let $A, B \in \mathbb{P}_{n}$ and $X \in M_{n}$. Then for $v \in[0,1]$ and for every unitarily invariant norm

$$
\begin{equation*}
\left\|\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\|\right\| \leqslant\left\|\mid 4 r_{1}(v) A^{1 / 2} X B^{1 / 2}+\left(1-2 r_{1}(v)\right)(A X+X B)\right\| \|, \tag{4.4}
\end{equation*}
$$

Proof. First, we consider the case $v \in[0,1 / 2]$. Notice that by some simple algebraic or geometrical arguments, we may conclude that $0 \leqslant r_{1} \leqslant 1 / 4$. Again, by following a similar way as in Theorem 4.1,

$$
A^{\nu} X A^{1-v}+A^{1-v} X A^{\nu}=W \circ\left(4 r_{1} A^{1 / 2} X A^{1 / 2}+\left(1-2 r_{1}\right)(A X+X A)\right),
$$

Now, observe that $0 \leqslant \frac{4 r_{1}}{1-2 r_{1}} \leqslant 2$ and $0 \leqslant 1-2 v \leqslant 1$, so the matrix W is positive semidefinite; see [6 , Theorem 5.2 , p. 225]. On repeating the same argument as in Theorem 4.1, the required inequality

217 in which $s=\min \left\{r-\frac{1}{2},|1-r|, \frac{3}{2}-r\right\}$.
218 Proof. Let $Y=A^{1 / 2} X B^{1 / 2} \in M_{n}$ and $v=r-\frac{1}{2} \in[0,1]$. It follows from Theorem 4.4 that

$$
\begin{aligned}
\left\|\left\|A^{r} X B^{2-r}+A^{2-r} X B^{r}\right\|\right\| & =\left\|A^{r} A^{-1 / 2} Y B^{-1 / 2} B^{2-r}+A^{2-r} A^{-1 / 2} Y B^{-1 / 2} B^{r}\right\| \| \\
& =\left\|A^{v} Y B^{1-v}+A^{1-v} Y B^{1-v}\right\| \| \\
& \leqslant\left\|4 r_{1}(v) A^{1 / 2} Y B^{1 / 2}+\left(1-2 r_{1}(v)\right)(A Y+Y B)\right\| \| \\
& =\left\|\mid r_{1}(v) A X B+\left(1-2 r_{1}(v)\right)\left(A^{3 / 2} X B^{1 / 2}+A^{1 / 2} X B^{3 / 2}\right)\right\| \|
\end{aligned}
$$

219 where $r_{1}(v)=\min \left\{v,\left|\frac{1}{2}-v\right|, 1-v\right\}$. Let $s=r_{1}\left(r-\frac{1}{2}\right)$. Applying the triangle inequality and 220 Zhan's inequality, we obtain

$$
\begin{aligned}
\left\|A^{r} X B^{2-r}+A^{2-r} X B^{r}\right\| \| & \leqslant\| \| 4 s A X B+(1-2 s)\left(A^{3 / 2} X B^{1 / 2}+A^{1 / 2} X B^{3 / 2}\right)\| \| \\
& \leqslant 4 s\|A X B\|\|+(1-2 s)\| A^{3 / 2} X B^{1 / 2}+A^{1 / 2} X B^{3 / 2}\| \|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant 4 s\|| | A X B\|\left\|+\frac{2(1-2 s)}{t+2}\right\|\left\|A^{2} X+t A X B+X B^{2}\right\| \| \\
& \leqslant 2(2 s-1)\left|\|A X B\|\left\|+\frac{4(1-s)}{t+2}\right\|\right| A^{2} X+t A X B+X B^{2}\| \| \\
& \leqslant \frac{2}{t+2}\| \| A^{2} X+t A X B+X B^{2}\| \| .
\end{aligned}
$$

221 Acknowledgments

241 [12] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1990.
244 [15] F. Hiai, H. Kosaki, Means of Hilbert Space Operators, Lecture Notes in Mathematics, vol. 1820, Springer, New York, 2003.
245 [16] H. Kosaki, Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal. 156 (1998) 429-451.
246 [17] E. Kikianty, Hermite-Hadamard inequality in the geometry of Banach spaces, Ph.D. thesis, Victoria University, 2010. Available from: http://eprints.vu.edu.au/15793/1/EderKikiantyThesis.pdf.
247
[18] F. Kittaneh, On convexity of the Heinz means, Integral Equations Operator Theory 68 (2010) 519-527.
250
[19] A. McIntosh, Heinz inequalities and perturbation of spectral families, Macquarie Mathematical Reports, Macquarie University,
1979.
20] M.S. Moslehian, Matrix Hermite-Hadamard type inequalities, Houston J. Math., in press, arXiv:1203.5300.
$\begin{array}{ll}250 & \text { 1979. } \\ 251 \text { Q4[20] M.S. Moslehian, Matrix Hermite-Hadamard type inequalities, Houston J. Math., in press, arXiv:1203.5300. }\end{array}$
252 [21] J. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press Inc., 1992.
253 [22] W.T. Sulaiman, Some mappings in connection to Hadamard's inequality, Int. J. Math. Anal. (Ruse) 4 (37-40) (2010) 1829-1836.
254 [23] G.-S. Yang, M.-C. Hong, A note on Hadamard's inequality, Tamkang J. Math. 28 (1) (1997) 33-37.
255 [24] F. Wang, A family associated with Hadamard's inequality on a hypercube, ISRN Math. Anal. (2011) Article ID 594758.
256 [25] T. Yamazaki, Characterizations of $\log A \geqslant \log B$ and normaloid operators via Heinz inequality, Integral Equations Operator 257

The first author would like to sincerely thank the "Council of Scientific \& Industrial Research Human Resource Development Group, India" for grant of Senior Research Fellowship vide 09/797(0009)/2012-EMR-I. The second author was supported by a grant from Ferdowsi University of Mashhad (No. MP91290MOS).

References

[1] M. Akkouchi, Some remarks on the Jensen-Hadamard inequalities and applications, Ann. Univ. Ferrara Sez. VII (N.S.) 49 (2003) 1-10.
[2] K.M.R. Audenaert, A singular value inequality for Heinz means, Linear Algebra Appl. 422 (2007) 279-283.
[3] R. Bhatia, C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14(1993)132-136.
[4] R. Bhatia, Positive Definite Matrices, Princeton University Press, New Jersey, 2007.
[5] R. Bhatia, F. Kittaneh, Clarkson inequalities with several operators, Bull. London Math. Soc. 36 (6) (2004) 820-832.
[6] R. Bhatia, K.R. Parthasarathy, Positive definite functions and operator inequalities, Bull. London Math. Soc. 32 (2000) $214-228$.
[7] C. Conde, A. Seddik, M.S. Moslehian, Operator inequalities related to the Corach-Porta-Recht inequality, Linear Algebra Appl. 436 (9) (2012) 3008-3017.
[8] S.S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl. 167 (1) (1992) 49-56.
[9] A. El Farissi, Simple proof and refinement of Hermite-Hadamard inequality, J. Math. Inequal. 4 (3) (2010) 365-369.
[10] J.I. Fujii, M. Fujii, T. Furuta, M. Nakamoto, Norm inequalities equivalent to Heinz inequality, Proc. Amer. Math. Soc. 118 (1993) 827-830.
[11] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951) 415-438 (in German).
[13] F. Hiai, H. Kosaki, Means for matrices and comparison of their norms, Indiana Univ. Math. J. 48 (1999) 899-936.
[16] H. Kosaki, Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal. 156 (1998) 429-451. Theory 43 (2) (2002) 237-247.

[^0]: Thank you for your assistance.

[^1]: Q2 * Corresponding author. Tel.: +98 9151140894; fax: +98 5118644594.
 E-mail addresses: rupinder_grewal_86@yahoo.co.in (R. Kaur), moslehian@um.ac.ir, moslehian@ferdowsi.um.ac.ir, moslehian@ member.ams.org, moslehian@yahoo.com (M.S. Moslehian), msrawla@yahoo.com (M. Singh), cconde@ungs.edu.ar (C. Conde).

[^2]: Please cite this article in press as: R. Kaur et al., Further refinements of the Heinz inequality, Linear Algebra Appl. (2013), http://dx.doi.org/10.1016/j.laa.2013.01.012

