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2D Born-Infeld electrostatic fields
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The electrostatic configurations of the Born-Infeld field in the 2-dimensional Euclidean plane are
obtained by means of a non-analytical complex mapping which captures the structure of equipoten-
tial and field lines. The electrostatic field reaches the Born-Infeld limit value when the field lines
become tangent to an epicycloid around the origin. The total energy by unit of length remains
finite.
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In 1934 Born and Infeld [1] proposed a non-linear elec-
tromagnetism that modifies the behavior of the Maxwell
theory in the regime of strong fields. The aim was to
formulate a theory where the self-energy of a point-like
charge is finite, and thus open the possibility of con-
ceiving a charged particle as a part of the field instead
of an external source of it. The basic idea was to im-
pose a finite limit value b to a purely electrostatic field.
This could be achieved by reproducing the way the ve-
locity of a particle remains lower than c when the clas-
sical Lagrangian L = (1/2)m q̇2 is replaced by the rela-

tivistic Lagrangian L = −mc2
√

1 − q̇2 c−2. This means
that the Maxwell Lagrangian LM = −

√
−g (8πc)−1(B2−

E2) should be replaced by the Lagrangian LB =
−
√
−g (4πc)−1b2

√

1 + (B2 − E2) b−2 [2]. In order that
the energy goes to zero when the field goes to zero, a
“rest” energy

√
−g (4πc)−1b2 should be subtracted from

LB, without affecting the dynamical equations. Never-
theless, Born and Infeld followed Einstein by judging that
the Lagrangian should combine the metric gij and the
electromagnetic field Fij = ∂iAj −∂jAi as the symmet-
ric and antisymmetric parts of a unique field b gij + Fij .
The Born-Infeld Lagrangian density is

LBI [Ak] = − 1

4πc

√

| det(b gij + Fij)| +
√
−g b2

4πc

=
√
−g b2

4πc

(

1 −
√

1 + 2S
b2 − P 2

b4

)

, (1)

where S and P are the scalar and pseudoscalar field in-
variants,

S =
1

4
FijF

ij =
1

2
(B2 − E2) ,

P =
1

8

√
−g εijkl F kl F ij =

1

4
∗FijF

ij = E ·B (2)

εijkl being the Levi-Civita symbol whose components are
±1 depending on (ijkl) is an even or odd permutation of
(0123). The Maxwell Lagrangian is recovered from the
Born-Infeld Lagrangian when b → ∞. The field equa-
tions derived from the Born-Infeld Lagrangian (1) are

∂j

( √
−g F ij

)

= 0 (3)

where Fij is the tensor

Fij =
Fij − b−2 P ∗Fij
√

1 + 2S
b2 − P 2

b4

(4)

Since the field is an exact 2-form (F = dA), the identities
dF = 0 must be added to the Euler-Lagrange equations
(3).

The energy-momentum tensor results (the metric sig-
nature is (+ −−−))

Tij =
2c√
−g

∂LBI

∂gij

= − 1

4π
Fik F k

j − b2

4π gij

(

1 −
√

1 + 2S
b2 − P 2

b4

)

(5)

To get the Born-Infeld charge we solve Eq.(3) for an
isotropic electrostatic field F = E(r) dt ∧ dr. Since√
−g = r2 sin θ in spherical coordinates, the solution is

F = q r−2 dt ∧ dr , F = b
(

b2 r4

q2 + 1
)

−
1
2

dt ∧ dr ,

T 0
0 = b2

4π

√

1 + q2

b2r4 − b2

4π ,

U =
∫

∞

0
T 00 4πr2dr = 1

6

√

q3b
π Γ(1

4
)2 (6)

While F and F are equal in Maxwell theory, they
differ in the Born-Infeld theory. As a result, only one
of them diverges: F diverges at ro = 0, but F (ro) =
b dt ∧ dr. This characteristic moderates the divergence
of the energy-momentum tensor, and leads to a finite en-
ergy U .

Another nice example is the axial magnetostatic field
F = B(ρ) dz ∧ dρ. Since

√
−g = ρ in cylindrical coordi-

nates, then the solution of Eq.(3) is

F =
2I

cρ
dz ∧dρ , F = b

(

b2 ρ2c2

4 I2 − 1
)

−
1
2

dz ∧ dρ ,

T 0
0 = b2

4π

(

1 − 4 I2

b2 ρ2c2

)

−
1
2 − b2

4π (7)
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Now F diverges at ρo = 2 I
c b , but F(ρo) = b dz ∧ dρ.

Although the energy is not finite in this case, as a conse-
quence of the extended character of the source, however
the integral

∫

T 00 2πρ dρ remains finite at ρ = ρo .
In the last decades there was a renewal of interest in

the Born-Infeld theory because it emerges in the low en-
ergy limit of string theories [3, 4, 5, 6, 7, 8]. Maxwell and
Born-Infeld theories have proved to be the sole theories
for the massless spin 1 field having causal propagation
[9, 10] and absence of birefringence [11, 12]. However
the essential features of field configurations other than
the kind above considered are hardly known, due to the
problem of dealing with the non-linear equations involved
in the theory. Here we are going to introduce a proce-
dure that works for Born-Infeld electrostatic fields lying
in the 2-dimensional plane. This procedure extends the
method of using analytic complex functions to get so-
lutions of the Laplace equation in 2 dimensions. As it
is well known, if w(z) = u(x, y) + i v(x, y) is an ana-
lytical function in the complex plane, then u(x, y) and
v(x, y) solve the Laplace equation. Analytic functions
generate conformal mappings z = f(w) in the Euclidean
plane; in fact, dx2 + dy2 = dz dz∗ = f ′ f ′∗dw dw∗ =
|f ′(w)|2 (du2 +dv2), so u, v are orthogonal coordinates di-
lating distances without changing the shapes of infinites-
imal figures. If we regard u(x, y) as the electrostatic po-
tential, then the coordinate lines u(x, y) = const. are
equipotential and the coordinate lines v(x, y) = const.
are field lines.

Although the Born-Infeld electrostatic potential is not
a solution of the Laplace equation, a modified version
of the complex mapping can be still applied to get the
structure of the Born-Infeld electrostatic field in 2 dimen-
sions. The substitute mapping must generate orthogo-
nal coordinates u, v –the field lines are orthogonal to the
equipotential surfaces–, but it will distort the infinitesi-
mal shapes. So let us try with

z = f(w) +
g(w∗)

4 b2
(8)

where f and g are analytic functions of their respective
arguments (in the sense that df/dw∗ = 0 and dg/dw =
0). Besides, let us choose

f ′(w)g′(w∗)∗ = 1 (9)

Then

dz = f ′(w) dw +
g′(w∗)

4b2
dw∗

= f ′(w) dw +
1

4b2f ′(w)∗
dw∗

= f ′(w)
[(

1 +
|f ′(w)|−2

4b2

)

du

+ i
(

1 − |f ′(w)|−2

4b2

)

dv
]

(10)

and

dx2 +dy2 = dz dz∗ = |f ′(w)|2
[(

1 +
|f ′(w)|−2

4b2

)2

du2

+
(

1 −
|f ′(w)|−2

4b2

)2

dv2

]

= −guu du2 − gvv dv2 (11)

So the mapping (8)-(9) effectively generates orthogonal
coordinates u, v in the Euclidean plane. Now we will
prove that u(x, y) is the electrostatic potential of a Born-
Infeld field, i.e. the exact 2-form F = du ∧ dt solves the
Born-Infeld equations. Since 2S results to be guu, then

√
−g F t u = −

√
guugvv guu

√

1 + guu

b2

=

√
guugvv

√

1 + guu

b2

= 1 (12)

for all f ′(w), and the Eq.(3) is fulfilled. The cartesian
components of the electric field, Ex = −∂u/∂x, Ey =
−∂u/∂y, are obtained by inverting the Jacobian matrix
of the coordinate transformation (8)-(9),

∂x

∂u
=

(

1 +
|f ′(w)|−2

4b2

)

Ref ′(w)

∂y

∂u
=

(

1 +
|f ′(w)|−2

4b2

)

Imf ′(w)

∂x

∂v
= −

(

1 − |f ′(w)|−2

4b2

)

Imf ′(w)

∂y

∂v
=

(

1 − |f ′(w)|−2

4b2

)

Ref ′(w) (13)

The inverse matrix is

− Ex =
∂u

∂x
=

4b2 Ref ′(w)

1 + 4b2 |f ′(w)|2

∂v

∂x
=

4b2 Imf ′(w)

1 − 4b2 |f ′(w)|2

−Ey =
∂u

∂y
=

4b2 Imf ′(w)

1 + 4b2 |f ′(w)|2

∂v

∂y
= −

4b2 Ref ′(w)

1 − 4b2 |f ′(w)|2
(14)

and the field is

E = Ex + iEy = − 4b2f ′(w)

1 + 4b2 |f ′(w)|2
(15)

In spite of the simple appearance of this result for elec-
trostatic fields in 2D, it must be remarked that the dif-
ficulty lies in writing w at f ′(w) as a function of (x, y),
because this implies solving the Eq.(8).

Special interest deserve the periodic non-isotropic
solutions. In Maxwell theory these are uM (x, y) =
Aρ−n cosnϕ, n ∈ N, and come from the mapping z =
f(w) = Aw−

1
n , where A is a constant. Consequently, for

the Born-Infeld field we will use the mapping

z =
A

w
1
n

−
w∗

1
n

+2

4 1

n ( 1

n + 2) Ab2
(16)
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FIG. 1: Epicycloids with 2, 4 and 6 cusps. Lines u = 0 (dashed lines) and v = 0.

In order to check the periodicity of this mapping, let
us note that the lines u = 0 (i.e. w = i v) are the points
where i1/n

z is real. Thus the lines u = 0 coincide with
those of the Maxwell field, so guaranteeing the periodicity
of the mapping (the same can be said about the lines
v = 0). Our first task is to find the places where the
field reaches the limit value b. According to Eq.(15), this
happens where |f ′(w)| = (2 b)−1. Therefore

1

2 b
= |f ′(w)| =

A

n
|w|−

1
n
−1

(17)

This equation corresponds to a circle in coordi-
nates u, v, which can be parameterized as w(τ) =
( 2

n Ab)
n

n+1 exp(−inτ). By replacing this parametrized
curve in the expression for z , we get parametric equa-
tions in cartesian coordinates:

z(τ) = x(τ) + i y (τ) = A
( 2

n
Ab

)

−
1

n+1
(

exp(i τ)

− 1

1 + 2n
exp[i (1 + 2n)τ ]

)

(18)

This curve is a 2n-cusped epicycloid, which is repre-
sented in Fig. 1 together with the lines u = 0, v = 0.
The cusps are the points where τ = kπ/n, k ∈ Z; then

zk = 2n
1+2n A ( 2

n Ab)−
1

n+1 exp(i kπ/n). w = u + i v
is real at the cusps; so |u| reaches there its maxi-
mum value ( 2

n Ab)
n

n+1 . The cusps should not be re-
garded as point-like charges because the field lines do
not converge on the cusps. Instead, the field lines
tangentially reach the epicycloid. In fact, on the one
hand the complex field E on the epicycloid is E(τ) =

−2 b2 f ′(w(τ)) = −2 b2 A
n w(τ)−

1
n
−1 = −b exp[i (1+n)τ ].

On the other hand the vector tangent to the epicycloid is

dz/dτ = i A ( 2

n Ab)−
1

n+1 (exp(i τ) − exp[i (1 + 2n)τ ]) =

2 A ( 2

n Ab)−
1

n+1 sinnτ exp[i (1 + n)τ ], which is parallel
to E(τ).

In Fig. 2 we show the main features of the 2D Born-
Infeld electrostatic field for the case n = 1. In Maxwell
context, this case corresponds to a pair of infinitely close
parallel opposite uniform line charges, and A is the sep-
aration distance times the linear density of charge. The

2-cusped epicycloid is a nephroid. The mapping is

x = Re
[

Aw∗
( 1

ww∗
− w∗ 2

12 A2b2

)]

=
Au

u2 + v2
− u

u2 − 3 v2

12 Ab2

y = Im
[

Aw∗
( 1

ww∗
− w∗ 2

12 A2b2

)]

= − Av

u2 + v2
− v

v2 − 3 u2

12 Ab2
(19)

Since the coordinate lines v = vo = const. are field
lines, then the equations x = x(u, vo), y = y(u, vo) are
parametric equations for the field lines and can be nu-
merically plotted. The equipotential lines are plotted in
the same way.

The energy of the field is the integral of T 00 outside
the epicycloid. This integral gets its simplest form when
it is expressed in terms of coordinates u, v because the
integration region is a circle of radius ( 2

n Ab)
n

n+1 (remem-
ber the epicycloid is a circle in coordinates u, v; the field
lives inside the circle because u, v goes to zero at the infin-

ity). Since the volumen is
√

guugvv = −guu

√

1 + guu

b2 =

E−2

√

1 − E2

b2 , then

U =

∫

T 00 √ guu gvv du dv dz

=
1

4π

∫

b2

E2

(

1 −
√

1 − E2

b2

)

du dv dz

=
1

8 π

∫

(

1 +
|f ′(w)|−2

4b2

)

du dv dz

=
1

8 π

∫

(

1 +
n2 (u2 + v2)1+

1
n

4 A2b2

)

du dv dz (20)

and the result is

U =
1

8

1 + 3n

1 + 2n

( 2

n
Ab

)
2 n

n+1

∫

dz (21)

Although it is nice to find that 2D electrostatic Born-
Infeld fields have a finite energy by unit of length, some
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FIG. 2: Born-Infeld field lines for f(w) ∝ w−1. Behavior of the field near the nephroid.

other features of these fields seem to be less pleasant.
The Euler-Lagrange equations break down on the epicy-
cloid because the tensor F diverges there, which prevents
us integrating the equations beyond the epicycloid; es-
sentially the same thing happens to the magnetostatic
field of Eq.(7). The field (6) of a point-like charge is
not devoid of problems since it is perplexing the finite
value at the origin of its isotropic vector field (Hoffmann
and Infeld proposed a modification of the Born-Infeld
Lagrangian to avoid this behavior [13]). Perhaps there is
nothing wrong with these features, but they only invite
us to consider non trivial combinations of electrostatic
and magnetostatic fields as meaningful static solutions.
Since the theory is non linear, the static solutions with
both types of field do not reduce to a mere superposition.
It would be enjoyable that a point-like charge get a com-
pletely satisfactory 3D monopolar electrostatic field once
its Born-Infeld field includes the dipolar magnetostatic
component.
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